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Abstract

We present a new efficient algorithm for the solution of direct time-harmonic scattering problems based on
the Laplace transform. This method does not rely on an explicit knowledge of a Green function or a series
representation of the solution, and it can be used for the solution of problems with radially symmetric potentials
and problems with waveguides. The starting point is an alternative characterization of outgoing waves called
pole condition, which is equivalent to Sommerfeld’s radiation condition for problems with radially symmetric
potentials. We obtain a new representation formula, which can be used for a numerical evaluation of the exterior
field in a postprocessing step. Based on previous theoretical studies, we discuss the numerical realization of our
algorithm and compare its performance to the PML method.

1 Introduction

For the solution of time-harmonic electromagnetic and acoustic scattering problems by finite element, finite differ-
ence or finite volume methods, one has to deal with a mesh termination problem: Which boundary condition has to
be imposed on the artificial boundary of the computational domain such that the computed solution approximates
the true solution. Such boundary conditions are called transparent or absorbing. They have to take care of the
radiation condition at infinity. If the far field behavior of the solution is also of interest, one has to use a method
which allows the evaluation of the solution in the exterior domain.

A variety of methods for the construction of transparent boundary conditions has been considered. The idea
of integral equation method (cf. [3]) is to represent the solution in the exterior domain by a superposition of
fundamental solutions. Another idea is to compute the Dirichlet-to-Neumann (DtN) map on the artificial boundary
by a series representation using Hankel functions (cf. [5]). Infinite element methods (cf. [4]) are based on a series
representation of the exterior solution, e.g. the Wilcox expansion, and use a finite element-type discretization
in the exterior domain. Other authors have constructed local approximations to the DtN-operator of arbitrary
order (cf. [8] for an overview). Finally, the Perfectly Matched Layer (PML) Method consists in surrounding the
computational domain by a sponge layer with an anisotropic damping tensor (cf. [1, 10]).

We are particularly interested in applications in fiber optics. The simplest model of an optical fiber is an
infinitely long strip in the plane with a different wave number. Under certain conditions such a strip can act
as a waveguide, i.e. it can support waves which propagate without damping to infinity. In the simulation of
optical components the far field behavior of the solution is of particular interest. Since for problems with an
inhomogeneous exterior domain neither a fundamental solution nor a series representation of the solution is known
explicitly in general, only the PML method is applicable. However, the PML method does not allow an evaluation
of the solution in the exterior domain. This was one of the motivations for us to look for an alternative method.

In the following section we summarize the main ideas of our approach, and in section 3 its numerical realiza-
tion. Unfortunately, our theoretical analysis in [7] only covers radially symmetric potentials, but not waveguides,
yet. Therefore, in section 4 we discuss a variant of our method which requires less information about the solution,
but does not allow the evaluation of the far field. As an application we present a simulation of a photonic crystal.

2 Theoretical background

We consider partial differential equations of the form

∆u
�
x ��� �

1 � p
���

x
� ��� κ2u

�
x �	� 0 
 x � IRd 
 � x �
� a � (1)
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with a real-valued, analytic function p of the form p
�
r �	� ∑∞

j � 2 p jr
� j. For

�
x
���

a � , u may satisfy a more compli-

cated differential equation. Let us introduce the function U
�
ρ 
 x̂ � : � ρ

d � 1
2 u

�
ρx̂ � defined for ρ

�
a � , x̂ � Sd � 1 and its

shifted Laplace transform

Ûa
�
s 
 x̂ � : �

� ∞

0
e
� srU

�
r � a 
 x̂ � dr
 (2)

for Res
�

0, x̂ � Sd � 1 : ��� x � IRd :
�
x
� � 1 � , and a 	 a � . The differential equation (1) is equivalent to each of the

following equations for U and Û :

∂2U
∂ρ2

�
ρ 
 x̂ ��� 1

ρ2

�
∆Sd � 1 � Cd � U �

ρ 
 x̂ ��� �
1 � p

�
ρ � � κ2U

�
ρ 
 x̂ �	� 0 
 (3)

�
s2 � κ2 � Ûa

�
s 
 x̂ ���

� ∞

s 
 p̌a
�
σ � s ��� e

� a � σ � s 
 � σ � s � � ∆Sd � 1 � CdI � Ûa
�
σ 
 x̂ ��� dσ � sU

�
a 
 x̂ ��� ∂U

∂ρ
�
a 
 x̂ ��� (4)

Here p̌a
�
s � : � e

� as ∑∞
m � 2

pm� m � 1 
 ! sm � 1 is the inverse Laplace transform of p
�
a ��� � , Cd : � 1

4

�
d � 1 � � 3 � d � and ∆Sd � 1

denotes the Laplace-Beltrami operator on Sd � 1. For d � 1 we set ∆S0 : � 0. For the simplest case p � 0 and d � 1
a partial fraction decomposition yields

Û
�
s �	� 1

2
U
�
a ��� iκ � 1U � � a �

s � iκ
� 1

2
U
�
a ��� iκ � 1U � � a �

s � iκ
�

It is easy to see that the first term is the shifted Laplace transform of the outgoing part of U given by 1
2

�
U
�
a � �

iκU � � a ��� eiκ � ρ � a 
 and that the second term is the shifted Laplace transform of the incoming part. Hence, U is
outgoing if and only if Û does not have a pole in the lower half of the complex plane. It turns out that a similar
characterization of outgoing fields is possible for d

�
1:

Definition: (Pole Condition) A bounded function u : � x � IRd :
�
x
� �

a � ��� C satisfies the pole condition if
for some a 	 a � the function Ûa

� � 
 x̂ � defined by (2) has a holomorphic extension to the lower complex half-plane

C
�

: ��� s � C : Ims � 0 � for all x̂ � Sd � 1 such that the function s ���� Sd � 1
� ∂Ûa

∂s

�
s 
 x̂ � � 2 ds

�
x̂ � is bounded on compact

subsets of C
�

.
It is shown in [7] that a bounded solution u to the differential equation (1) satisfies the pole condition for one

(and then for all!) a 	 a � if and only if it satisfies the Sommerfeld radiation condition.
In general, Û

� � 
 x̂ � does not have isolated singularities as in the example above, but singularities with a branch
cuts. The most difficult part of the analysis in [7] was to show that for each Dirichlet data U

�
a 
�� � there exist unique

Neumann data ∂U
∂ρ

�
a 
�� � such that the integro-differential equation (4) has a solution defined on

�
C � � iκ � t : t 	

0 �
�"! Sd � 1. This solution has a continuous extension to the branch cut � iκ � t : t 	 0 � from both sides and satisfies�
Û
�
s 
 x̂ � � � O # � s � � 1 $ as

�
s
� � ∞. Moreover, the following quantities are well defined:

u∞
�
x̂ � : � lim

s % iκ

e
� iκaÛa

� � 
 x̂ �
s � iκ


 (5)

Ψa
�
t 
 x̂ � : � e

� iκa

2πi
lim
ε % 0

# Ûa
�
iκ � t � iε 
 x̂ ��� Ûa

�
iκ � t � iε � $ (6)

For an isolated pole of order 1, u∞ denotes its residual, and Ψa is the jump of Û across the branch cut.
If these facts have been established, we can draw some simple, but important consequences. By the Fourier

inversion theorem, U
�
r � a 
 x̂ � � 1

2πi � ε & i∞
ε � i∞ Û

�
s 
 x̂ � ers ds for any ε

�
0. Moreover, the integral over the closed path

shown in Fig. 1a) vanishes by virtue of Cauchy’s integral theorem. Using the decay property of Û , it can be shown
that the integrals over the paths γR

2 , γR
3 , γR

7 , and γR
8 vanish as R � ∞. Therefore,

U
�
r � a 
 x̂ � � 1

2πi
lim

R % ∞

�
γR

1

ersÛ
�
s 
 x̂ � ds ��� 1

2πi
lim

R % ∞

�
γR

4 & γR
5 & γR

6

ersÛ
�
s 
 x̂ � ds �

This yields a representation formula for U in terms of u∞ and Ψa:

U
�
a � r 
 x̂ � � eiκ � a & r 
(' u∞

�
x̂ ���

� ∞

0
e
� trΨa

�
t 
 x̂ � dt ) 
 r 	 0 � (7)

Note that (7) implies that u∞ defined by (5) is the far field pattern or scattering amplitude of u.
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Figure 1: Integration paths for the proofs of the main formulas

Subtracting eq. (4) with s � iκ � t � iε from eq. (4) with s � iκ � t � iε, choosing the integration paths as shown
in Fig. 1b), and taking the limit ε � 0 yields the Volterra integro-differential equation�

p̌a
�
t � � te

� at � ∆Sd � 1 � Cd ��� u∞
�
x̂ ��� t

�
t � 2iκ � Ψa

�
t 
 x̂ � (8)

�
� t

0

�
p̌a

�
t � t1 ��� �

t � t1 � e � a � t � t1 
 � ∆Sd � 1 � CdI ��� Ψa
�
t1 
 x̂ � dt1 � 0 �

3 The cut function approach

Discretization. For simplicity we will only consider the Helmholtz equation, i.e. the case p � 0 although the
algorithm in this section also works for p �� 0. We start with the exterior Dirichlet problem on the artificial
boundary Γa : � � x :

�
x
� � a � with boundary data f � H1 � 2 � Γa � :

∆u � κ2u � 0 
 in � x :
�
x
�
�

a � 
 (9a)

u � f 
 on Γa 
 (9b)

u satisfies the pole condition � (9c)

Eq. (7) with r � 0 and (8) yields the following system of equations for the two unknown functions Ψa and u∞

u∞
�
x̂ ���

� ∞

0
Ψa

�
t 
 x̂ � dt � e

� iκaa � d � 1 
�� 2 f
�
x̂ � 
 (10a)

te
� at � ∆Sd � 1 � CdI � u∞

�
x̂ ��� t

�
t � 2iκ � Ψa

�
t 
 x̂ ���

� t

0

�
t � t1 � e � a � t � t1 
 � ∆Sd � 1 � CdI � Ψa

�
t1 
 x̂ � dt1 � 0 � (10b)

We first discretize this system of equations with respect to the angular variable x̂. This corresponds to the method
of lines for evolution problems. Given a finite element mesh on Sd � 1, let M denote the boundary mass matrix, and
K the boundary stiffness matrix. Then (10) is approximated by

Mu∞ � M
� ∞

0
ψ
�
t � dt � Ma � d � 1 
�� 2e

� iκa f 
 (11a)

�
CdM � K � exp

� � at �
t � 2iκ

u∞ � Mψ
�
t ���

� t

0
ker

�
t 
 t1 � ψ �

t1 � dt1 � 0 
 (11b)

where the kernel is given by ker
�
t 
 t1 � : � �

K � CdM � � t � t1 � exp � � a � t � t1 
 

t � t � 2iκ 
 .

The Volterra equation (11b) is solved by an extended Volterra-Runge-Kutta method (cf. Brunner and van der
Houwen [2]). We choose a Runge-Kutta method represented by the Butcher scheme

c1 a11 ����� a1p
...

...
...

cp ap1 ����� app

b1 ����� bp

�
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This induces a quadrature rule � 1
0 ϕ

�
x � dx � ∑p

ν � 1 bνϕ
�
cν � which is used for the numerical integration. Given a

step sequence 0 � t1 � t2 ������� � tN & 1, and the intermediate points tnν : � tn � cν
�
tn & 1 � tn � for n � 1 
�������
 N and

ν � 1 
�������
 p, we approximate (11a) by

Mu∞ �
N

∑
n � 1

ν

∑
p � 1

wnνψnν � Ma � d � 1 
�� 2e
� iκa f � (12)

Here wnν : � �
tn & 1 � tn � bν and ψnν

� ψ
�
tnν � . Eq. (11b) is approximated by

�
CdM � K � exp

� � atnν �
tnν � 2iκ

u∞ � Mψnν �
p

∑
µ � 1

�
tn & 1 � tn � aνµ ker

�
tnν 
 tnµ � ψnµ �

n � 1

∑
m � 1

p

∑
µ � 1

wmµ ker
�
tnν 
 tmµ � ψmµ � 0 
 (13)

n � 1 
������ 
 N, ν � 1 
�������
 p.

Coupling to the interior problem. Usually the exterior problem (9) is coupled to an interior problem, say
∆uint � κ2uint � 0 in a domain Ω : � Ba � K with a Neumann condition on the smooth boundary of the obstacle K
contained in the ball Ba : ��� x � IRd :

�
x
� � a � . Green’s formula yields the weak form�

Ω
# ∇uint∇v � κ2uintv $ dx �

�
Γa

∂uint

∂n
vds � F

�
v � 
 v � H1 � Ω � (14)

where F : H1 � Ω � � C is a bounded linear functional. Another equation involving the Neumann data ∂u
∂n � ∂uint

∂n is
obtained by differentiating (8) with respect to t:

iκu∞ �
� ∞

0

�
iκ � t � Ψa

�
t � dt � a � d � 1 
�� 2e

� iκa ∂u
∂n

� d � 1
2

a � d � 3 
�� 2e
� iκa f � (15)

We set f � TrΓauint and write the equations (14), (10a), (10b) and (15) for the case d � 2 in matrix form:����
�

� Ω
� � ∇ ����� ∇v � κ2 ����� v � dx � Γa

����� vds� e
� iκa � aTrΓa I � ∞

0 ����� dt
e � at

t � 2iκ A I � � t
0
� t � t1 
 e � a � t � t1 �

t � t � 2iκ 
 A ����� dt1� e � iκa

2 � a TrΓa iκ I � ∞
0

�
iκ � t � ����� dt � e

� iκa � aI

�
			
�

���
�

uint

u∞
Ψa
∂u
∂n

�
		
� �

���
�

F
�
v �

0
0
0

�
		
�

Here A : � ∆S1 � 1
4 I. Eq. (14) is discretized by finite element technology. Eq. (15) is approximated the same way

as eq. (10a).

Numerical results. The kite-shaped domain shown in Fig. 2 is a well known test example in scattering theory. We
imposed the Dirichlet boundary condition u ��� ui on the boundary of the kite with the incident wave ui

�
x �	� eix1

and κ � 1. A reference solution of high accuracy was computed by the integral equation method (cf. [3]). It has
been shown in [7] the

�
Ψa

�
t 
 x̂ � � decays exponentially as t � ∞. This is a heuristic explanation for the experimental

observation that the error in uint and u∞ introduced by replacing � ∞
0 by � R

0 in (10a) and (15) decays exponentially
as R � ∞. A rigorous proof of this observation remains an open problem. For the PML method, exponential
convergence with increasing thickness of the sponge layer has been established for p � 0 by Lassas and Somersalo
[10] using integral equation techniques. Their proof was generalized by the authors to the case p �� 0 using pole
condition techniques (cf.[6]).

It is advantageous to work with a non-uniform grid on the branch cut which is finer near the singularity. We
have chosen t j � Cmesh

�
j � N � 2 ln2 N, j � 0 
�������
 N. The term ln2 N is motivated by the exponential decay of Ψa.

In the computations documented in Table 1 we used the Butcher schemes of the Lobatto A methods of order 4
and 6 with Cmesh � 1 and Cmesh � 1 � 5, respectively. The total number of degrees of freedom for the discretization
of each component of Ψa

�
t � and u∞ is given by DOF � 2 � 2N for Lobatto 4A scheme and by DOF � 2 � 3N

for Lobatto 6A scheme. In Table 1 E
�
∂ru � and E

�
u∞ � denote the relative L2-errors in the Neumann data and the

far field pattern. The results show that good accuracy can be achieved with a quite small number of degrees of
freedom. This number is comparable to that of the PML method with a small difference in favor of the PML
method. However, with the cut function approach we also compute the far field pattern and we can evaluate the
exterior field using the representation formula (7).
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Figure 2: Finite element mesh and cut function on one of the rays

Lobatto 4A

N DOF E
�
∂ru � E

�
u∞ �

4 10 3.4e-3 2.0e-3
8 17 4.1e-4 2.5e-4

16 34 8.6e-5 3.7e-5
32 66 1.8e-5 2.5e-6

Lobatto 6A

N DOF E
�
∂ru � E

�
u∞ �

4 13 8.0e-4 5.9e-5
8 26 6.4e-5 3.5e-6

16 50 4.3e-6 1.5e-7
32 98 3.5e-7 7.4 e-9

PML

N DOF E
�
∂ru �

4 10 1.3e-3
8 17 2.2e-4

16 33 1.4e-5
32 65 1.5e-6

Table 1: Numerical results

4 The real axis approach

For problems with waveguides it is usually still possible to introduce a coordinate system such that the Helmholtz
equation can be Laplace transformed analytically in radial direction. However, we do not know the type and the
location of the singularities of Û for this case, yet. In the direction of the waveguide we expect singularities at
iβ1 
������ 
 iβN where β j are the propagation constants of the guided modes. To obtain a numerical solution of these
problems, we compute the Laplace transform Û on the real axis using eq. (4). Consider the integration path in

Fig. 1c). If Û satisfies the pole condition, then Cauchy’s integral theorem implies that � γR
1 & γR

2

Û � s � x̂ 

s � z ds � 0 for any

z � C with Imz
�

0. Since Û
�
s 
 x̂ � � O # � s � � 1 $ for

�
s
� � ∞, it follows that limR % ∞ � γR

2

Û � s � x̂ 

s � z ds � 0. Therefore,� � ∞

∞

Û
�
s 
 x̂ �

s � z
ds � 0 � (16)

We do not use the scaling factor ρ � d � 1 
�� 2 in the definition of U in this case since the solution may behave differ-
ently for different directions. A general method of lines type discretization of the Helmholtz equation, which is
appropriate for problems involving waveguides, is derived in [11].

The real axis approach has the advantage that it does not require the knowledge of the type and location of
the singularities of the Laplace transform. On the other hand, it is not possible to evaluate the far field with this
approach since the singularities of the Laplace transform determine the far field behavior of the solution.

In our test example (cf. Fig. 3) light enters a photonic crystal through a waveguide at the left. Photonic crystals
are materials with a dielectric constant varying periodically at a length scale comparable to the wavelength of
light. This can create a range of ’forbidden’ frequencies called a photonic bandgap. Photons with energies lying
in the bandgap cannot propagate through the medium in any direction. Recently, photonic crystals have received
considerable attention of engineers, physicists, and mathematicians (cf. the review article [9] and the literature
therein). One of the reasons for this popularity is that photonic crystals can mould the flow of light at a very small
scale. In Fig. 3 light cannot penetrate into the areas with the periodically arranged circles. Therefore, it follows the
path without circles and leaves the photonic crystal at the top.
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refractive index profile mesh computed solution

Figure 3: Photonic crystal

5 Conclusion

We have discussed a new method for the solution of time-harmonic scattering problems with inhomogeneous
exterior domains, which is based on the Laplace transform. For the homogeneous Helmholtz equation and for
radially symmetric potentials our method allows the evaluation of the exterior field and the far field pattern. For
waveguide problems we have discussed a modified version of our method which only yields the solution on the
computational domain.
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