
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

ARIE M.C.A. KOSTER

HANS L. BODLAENDER

STAN P.M. VAN HOESEL

Treewidth: Computational Experiments

ZIB-Report 01–38 (December 2001)



Treewidth: Computational Experiments

Arie M.C.A. Koster† Hans L. Bodlaender‡ Stan P.M. van Hoesel§

December 28, 2001

Abstract

ManyNP-hard graph problems can be solved in polynomial time for graphs with bounded
treewidth. Equivalent results are known for pathwidth and branchwidth. In recent years,
several studies have shown that this result is not only of theoretical interest but can success-
fully be applied to find (almost) optimal solutions or lower bounds for many optimization
problems.

To apply a tree decomposition approach, the treewidth of the graph has to be determined,
independently of the application at hand. Although for fixed k, linear time algorithms exist
to solve the decision problem “treewidth ≤ k”, their practical use is very limited. The
computational tractability of treewidth has been rarely studied so far. In this paper, we
compare four heuristics and two lower bounds for instances from applications such as the
frequency assignment problem and the vertex coloring problem.

Three of the heuristics are based on well-known algorithms to recognize triangulated
graphs. The fourth heuristic recursively improves a tree decomposition by the computation of
minimal separating vertex sets in subgraphs. Lower bounds can be computed from maximal
cliques and the minimum degree of induced subgraphs. A computational analysis shows
that the treewidth of several graphs can be identified by these methods. For other graphs,
however, more sophisticated techniques are necessary.

1 Introduction

In the 1980s and early 1990s, Robertson and Seymour defined the graph parameters path-
width [28], treewidth [29], and branchwidth [30, 31] as well as the associated graph structures
path decomposition, tree decomposition, and branch decomposition. Originally these concepts
were introduced in the context of their fundamental research on graph minors. In addition, the
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notions have proved to be of importance in computational complexity theory. Many NP-hard
graph problems can be solved in polynomial time for graphs with path-, tree-, or branchwidth
bounded by a constant. Among these problems are many well-known combinatorial optimiza-
tion problems such as the maximum independent set problem, the Hamiltonian cycle problem,
and the Steiner tree problem. Moreover, several PSPACE-complete problems can be solved in
linear time for input restricted to graphs of bounded treewidth (cf. [6]).

All these results have been considered primarily of theoretical interest only. In recent years, a
number of computational studies has shown that the results can also be applied successfully.
A first attempt to benefit from the polynomial time solvability has been undertaken by Cook
and Seymour [10]. They use branch decompositions to obtain close-to-optimal solutions of the
traveling salesman problem. Path decompositions are used by Verweij [37] to solve lifting prob-
lems of cycle inequalities for the independent set problem. In [22, 23], tree decompositions are
used to obtain lower bounds and optimal solutions for a special type of frequency assignment
problems. Finally, tree decompositions are used to solve problems in the area of expert sys-
tems. The currently most efficient algorithm for the inference calculation in probabilistic (or
Bayesian) networks builds upon a tree decomposition of a network’s moralized graph [20, 24].
All these studies show that (dynamic programming) algorithms based on a path/tree/branch
decomposition of the graph can be an alternative for integer programming techniques to solve
hard (combinatorial) optimization problems.

The procedure to solve an optimization problem with for instance bounded treewidth involves
two steps: (i) computation of a (good) tree decomposition, and (ii) application of an algorithm
that solves instances of bounded treewidth in polynomial time (typically by a dynamic pro-
gramming algorithm based on the tree decomposition). Whereas the second step is application-
dependent, the calculation of a good tree decomposition of a graph can be done independently
of the application. The need for a tree decomposition with optimal, or second best, good width
becomes clear by the time and space requirements of the algorithm in the second step, which
typically are exponentially in the width. A similar procedure is due for pathwidth and branch-
width. Henceforth, we focus on the computation of the treewidth of graphs from a practical
point of view. Hicks [19] recently studied the practical computation of branchwidth for (specific
classes of) graphs.

The treewidth of a graph is, in general, NP-hard to compute. Much research has been carried
out to determine the treewidth (or related notions) for classes of graphs. Moreover, for fixed
k, linear time algorithms to determine whether a graph has treewidth k have been developed.
Their use in practice, however, is very limited since the running time contains a large constant
with k in the exponent. For small graphs, Shoikhet and Geiger [33] performed various exper-
iments on randomly generated graphs with an adaption of an algorithm of Arnborg et al. [3].
Approximation with an O(log n) approximation ratio can be done in polynomial time (here n
denotes the number of vertices in the graph); finding a polynomial time constant approximation
ratio algorithm remains open. We refer to [6] for a survey on these and other complexity issues
for treewidth.

Heuristics without theoretical quality guarantee and easily computable lower bounds emerge as a
practical alternative. Motivated by problems from combinatorial optimization and probabilistic
networks, we describe a computational analysis of four heuristics and two lower bounds in this
paper. We focus on algorithms that are not exponential in the treewidth (like the algorithm
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of Becker and Geiger [5]). The heuristics are described in Section 3, whereas Section 4 is
devoted to the lower bounds. The computational analysis of the heuristics and lower bounds
on several classes of graphs is the topic of Section 5. The used graphs originate from frequency
assignment problems, vertex coloring problems, and probabilistic networks. The paper is closed
by concluding remarks and directions for further research.

2 Definitions and Notation

We briefly introduce the most important definitions and notation. Let G = (V,E) be an undi-
rected graph with vertex set V and edge set E. Let n = |V | and m = |E| throughout this paper.
The set of vertices adjacent to a vertex v ∈ V is denoted by N(v) = {w ∈ V : vw ∈ E}. Let
δ(v) := |N(v)| be the degree of v. A set of vertices Q ⊆ V is called a clique in G if there is an
edge between every pair of distinct vertices from Q. The cardinality |Q| of Q, is the size of the
clique. For a set W of vertices, the subgraph induced by W is the graph G[W ] := (W,E[W ]),
with E[W ] := (W ×W ) ∩ E. A graph H is a minor of a graph G if H can be obtained from
G by vertex deletions, edge deletions, and edge contractions (the operation that replaces two
adjacent vertices v and w by a single vertex that is connected to all neighbors of v and w).

The tree decomposition concept and its measure of value treewidth was introduced by Robertson
and Seymour [29] in the context of graph minor research.

Definition 2.1 (Robertson and Seymour [29]) Let G = (V,E) be a graph. A tree decom-

position of G is a pair (T,X ), where T = (I, F ) is a tree with node set I and edge set F , and
X = {Xi : i ∈ I} is a family of subsets of V , one for each node of T , such that

(i).
⋃
i∈I Xi = V ,

(ii). for every edge vw ∈ E, there is an i ∈ I with v ∈ Xi and w ∈ Xi, and

(iii). for all i, j, k ∈ I, if j is on the path from i to k in T , then Xi ∩Xk ⊆ Xj.

The width of a tree decomposition is maxi∈I |Xi| − 1. The treewidth of a graph G, denoted by
tw(G), is the minimum width over all possible tree decompositions of G.

The third condition of the tree decomposition is equivalent to the condition that for all v ∈ V ,
the set of nodes {i ∈ I : v ∈ Xi} is connected in T , i.e., they form a subtree. Figure 1 shows an
example of a graph together with an optimal tree decomposition.

If we restrict the tree T to be a path, a path decomposition of G is obtained. The minimum
width over all possible path decompositions of G is called the pathwidth of G. Many definitions
equivalent to treewidth or pathwidth are known, see [7] for an overview. For the heuristics
described in the next section, two of these alternative characterizations are exploited.

3 Heuristics

In this section, we present four heuristics for computing the treewidth of a graph. The first
three are based on algorithms for determining whether a graph is triangulated. The fourth one
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(b) tree decomposition with width 2

Figure 1: Example of a graph with a tree decomposition; the subsets Xi are displayed at the
nodes

bases on minimal separating vertex sets.

3.1 Graph Triangulation Heuristics

A graph is called triangulated if every cycle of length at least four contains a chord, that is, two
non-consecutive vertices on the cycle are adjacent. Triangulated graphs are also called chordal
due to the existence of a chord in every cycle. Triangulated graphs are among the first classes
of graphs for which it has been proved that they are perfect.

The reason for introducing triangulated graphs in this paper is the following property of these
graphs:

Theorem 3.1 (Gavril [16]) A graph G = (V,E) is triangulated if and only if G can be con-
structed as the intersection graph of subtrees of trees, i.e., there exists a tree T = (I, F ) such
that one can associate a subtree Tv = (Iv, Fv) of T with each vertex v ∈ V , such that vw ∈ E if
and only if Iv ∩ Iw 6= ∅.

Although the concept of tree decomposition was not yet introduced by the time Gavril formulated
Theorem 3.1, exactly this concept was used to characterize triangulated graphs. To state the
result in a different way, a graph is triangulated if and only if there exists a tree decomposition
with the additional property that vw ∈ E if and only if Iv ∩ Iw 6= ∅. This additional property
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guarantees that the tree decomposition has minimal width. Let Xi := {v ∈ V : i ∈ Iv}.
Non-adjacent vertices are not in a common subset Xi. Hence, a maximum cardinality subset Xi

contains the vertices of a maximum cardinality clique Q in G. Since it also holds that in any tree
decomposition (T,X ) and every maximum clique Q, there exists a node i ∈ I with Q ⊆ Xi (cf.
Section 4.1), the tree decomposition has minimum width. Moreover, it follows that the treewidth
of a triangulated graph equals the maximum clique number minus one, tw(G) = ω(G)− 1.

Lemma 3.2 For every graph G = (V,E), there exists a triangulation of G, Ḡ = (V,E ∪ Et),
with tw(Ḡ) = tw(G).

Proof. Let G be a general graph and (T,X ) a tree decomposition of minimum width. We
construct a graph Ḡ = (V, Ē) by the following rule: vw ∈ Ē if and only if vw ∈ Xi for some
i ∈ I. From Theorem 3.1 it is clear that Ḡ is triangulated. From the second condition of a tree
decomposition, the edge set Ē can be divided into two parts E and Et. So, Ḡ is a triangulation
of G by the addition of the triangulation edges Et. Moreover, the treewidth of G and Ḡ is equal,
tw(Ḡ) = tw(G). ¥

Corollary 3.3 Finding the treewidth of a graph G is equivalent to finding a triangulation Ḡ of
G with minimum clique size.

Since finding the treewidth of a graph is NP-hard, also finding a triangulation with minimum
clique number is an NP-hard problem. However, the clique number (minus one) of any tri-
angulation Ḡ of a graph G provides an upper bound on the treewidth. Moreover, ω(Ḡ) can
be computed in polynomial time. Therefore, we are looking for algorithms that triangulate a
graph, and by that provide upper bounds for the treewidth. There exist several algorithms
to test whether a graph is triangulated. These recognition algorithms either detect that the
graph is triangulated or return a triangulation of the graph. In the subsequent subsections,
three of these algorithms are presented, two variants of the lexicographic breadth first search
algorithm of Rose et al. [32], and the maximum cardinality search algorithm of Tarjan and Yan-
nakakis [35]. All three algorithms are based on the characterization of triangulated graphs by a
perfect elimination scheme.

A vertex v ∈ V is called simplicial if its neighbors N(v) induce a complete subgraph of G. An
ordering σ = [v1, . . . , vn] of the vertices is called a perfect elimination scheme if vi is a simplicial
vertex of the induced subgraph G[{vi, . . . , vn}] for all i = 1, . . . , n. So, G contains a simplicial
vertex v1, and every time a simplicial vertex vi is removed from the graph, a new simplicial
vertex vi+1 exists. Fulkerson and Gross [15] proved that a graph is triangulated if and only if
it has a perfect elimination scheme. Given a perfect elimination scheme, the maximal cliques
of G are of the form {u} ∪M(v), where M(v) = {w ∈ N(v) : σ−1(v) < σ−1(w)} denotes the
set of higher ordered neighbors. The value maxv∈V |M(v)| is also called the dimension of G.
Arnborg [2] proved that the dimension of G equals the treewidth.

For a non-triangulated graph G and an elimination scheme σ, a triangulation Ḡ can be con-
structed by Algorithm 1. Moreover, the algorithm returns the treewidth of Ḡ, which is an upper
bound for the treewidth of G. The subset Et := Ē \ E is also called the fill-in of G.
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Algorithm 1 Triangulation of a graph, given an elimination scheme
Input: connected graph G = (V,E), elimination scheme σ = [v1, . . . , vn]
Output: triangulated graph Ḡ = (V, Ē) with tw(Ḡ) ≥ tw(G)
1: for v ∈ V do

2: M(v) := N(v)
3: end for

4: Ē := E, tw := 0
5: for i = 1 to n do

6: if |M(vi)| > tw then

7: tw := |M(vi)| // update treewidth
8: end if

9: for u,w ∈M(vi) and uw 6∈ Ē do

10: Ē := Ē ∪ {uw} // add edge between higher ordered neighbors

11: M(u) := M(u)∪ {w}, M(w) := M(w)∪ {u} // update adjacency lists

12: end for

13: for u ∈M(vi) do

14: M(u) := M(u) \ {vi} // vi is lower ordered than u

15: end for

16: end for

The easiest way to recognize triangulated graphs is the construction of an elimination scheme σ,
which is perfect (i.e., no edges are added by Algorithm 1) in case the graph is indeed triangulated.
The following observation plays an important role in such a recognition algorithm.

Proposition 3.4 (Fulkerson and Gross [15]) Let G be a triangulated graph. Any simplicial
vertex can start a perfect elimination scheme for G.

So an algorithm could be: search for a simplicial vertex in the graph, add it to the elimination
scheme and remove it from the graph. If at some point no simplicial vertex exists, the graph
is not triangulated, otherwise the graph indeed is. Such an algorithm requires n searches for a
simplicial vertex, which requires an adjacency-test for all pairs of neighbors of a vertex. More
efficient algorithms can be constructed by using another observation.

Proposition 3.5 (Dirac [12]) Every triangulated, non-complete graph has two non-adjacent
simplicial vertices.

This observation (combined with Proposition 3.4) implies that at every step of the above de-
scribed algorithm we have the choice between at least two non-adjacent vertices to place at the
next position of the elimination scheme. Hence, without loss of generality, we can select a vertex
vn for the last position in the elimination scheme. Next, we choose a vertex vn−1 adjacent to vn
for the (n− 1)th position. Further vertices have to be selected in such a way that their already
selected neighbors form a clique. In this way, the elimination scheme is constructed backwards.
Since, vertices need not be identified as simplicial explicitly, algorithms that construct the elim-
ination scheme are more efficient compared with forward construction algorithms. In the next
two subsections, three such backward algorithms are presented.

For non-triangulated graphs these algorithms can be applied to obtain a triangulation, and thus,
an upper bound on the treewidth of G. Since in general G is not triangulated, the choice of the
vertex vn for the last position of the elimination scheme influences the upper bound returned
by the algorithm.
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3.1.1 Lexicographic Breadth First Search

In this subsection, we present two variants of what is called a lexicographic breadth first search
algorithm. These algorithms as well as the maximum cardinality search algorithm in the next
subsection only differ in the way the vertices for positions n−1, n−2, . . . , 1 are determined. All
three algorithms guarantee that the elimination scheme is perfect if and only if G is triangulated.
Hence, for a triangulated graph G, the vertices have to be ordered in such a way that for all i,
1 ≤ i ≤ n it should hold that vi is simplicial in G[{vi, . . . , vn}].

The algorithm presented in Rose et al. [32] is known as the lexicographic breadth-first search
recognition algorithm (see also [17, Section 4.3]). A first version of this algorithm focuses pri-
marily on the perfectness of the elimination scheme (referred to as LEX P). In the original version,
it terminates as soon as it recognizes that no perfect elimination scheme exists, i.e., as soon as
no vertex vi can be found that is simplicial in G[{vi, . . . , vn}]. Leaving out this termination of
the algorithm, it returns an elimination scheme that can be used to find a triangulation of G.
The algorithm labels the vertices with their already ordered neighbors. Each label consists of
the positions of the already ordered neighbors in decreasing order. The unordered vertex with
the lexicographic highest label is selected in every iteration (cf. Algorithm 2). The most efficient
implementation of Algorithm 2 requires O(n+m′) time and space, wherem′ = m+|Et| (see [32]
for details). If we start the algorithm n times with every time another vertex v∗, the overall
running time is O(n2 + nm′).

Algorithm 2 Lexicographic Breadth First Search, variant Perfect (LEX P)
Input: connected graph G = (V,E), vertex v∗ ∈ V

Output: triangulated graph GT = (V,E ∪ Et) with tw(GT ) ≥ tw(G); if G is triangulated, then Et ≡ ∅
1: Et := ∅
2: for v ∈ V do

3: label(v) := ∅ // set of numbers listed in decreasing order

4: end for

5: S := V // set of unordered vertices

6: for i = |V | to 1 do

7: if i ≡ |V | then

8: u := v∗

9: else

10: u := argmaxv∈S label(v) // u is a vertex with lexicographic largest label

11: end if

12: σ(i) := u // add u to ordering at position i

13: for j, k ∈ {i+ 1, . . . , |V |}, j 6= k do

14: if {σ(i), σ(j)}, {σ(i), σ(k)} ∈ E ∧ {σ(j), σ(k)} 6∈ E ∪ Et then

15: Et := Et ∪ {σ(j), σ(k)} // add edge to triangulation

16: end if

17: end for

18: S := S \ {u}
19: for w ∈ N(u) ∩ S do

20: label(w) := label(w) ∪ {i} // add i to the label of all unordered neighbors

21: end for

22: end for

Compared with the LEX P algorithm, the second version of the lexicographic breadth first search
algorithm has the feature that a minimal triangulation of G is returned (henceforth called LEX M).
A triangulation is called minimal if the removal of any edge e of the fill-in Et results in a non-
triangulated graph. To guarantee this property of the triangulation, not only the neighbors of an
ordered vertex are labeled, but also all of the vertices that can be reached by a path of unordered
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vertices with lower labels (cf. Algorithm 3). Due to this extension of the labeling procedure, the
running time of the algorithm increases to O(nm′), whereas the space requirements O(n+m′)
are equal to those of LEX P. Running LEX M once for all v∗ ∈ V results in an overall running
time of O(n2m′).

Algorithm 3 Lexicographic Breadth First Search, variant Minimal (LEX M)
Input: connected graph G = (V,E), vertex v∗ ∈ V

Output: minimal triangulated graph GT = (V,E ∪ Et) with tw(GT ) ≥ tw(G); if G is triangulated, then Et ≡ ∅
1: Et := ∅
2: for v ∈ V do

3: label(v) := ∅ // set of numbers listed in decreasing order

4: end for

5: S := V // set of unordered vertices

6: for i = |V | to 1 do

7: if i ≡ |V | then

8: u := v∗

9: else

10: u := argmaxv∈S label(v) // u is a vertex with lexicographic largest label

11: end if

12: σ(i) := u // add u to ordering at position i

13: for j, k ∈ {i+ 1, . . . , |V |}, j 6= k do

14: if {σ(i), σ(j)}, {σ(i), σ(k)} ∈ E ∧ {σ(j), σ(k)} 6∈ E ∪ Et then

15: Et := Et ∪ {σ(j), σ(k)} // add edge to triangulation

16: end if

17: end for

18: S := S \ {u}
19: for w ∈ S : ∃ path {u = v1, . . . , vk+1 = w} in G

with vj ∈ S and label(vj) < label(w) for j = 2, 3, . . . , k do

20: label(w) := label(w) ∪ {i} // add i to the label of all unordered neighbors

21: end for

22: end for

3.1.2 Maximum Cardinality Search

The Maximum Cardinality Search (MCS) recognition algorithm of Tarjan and Yannakakis [35]
uses another criterion to select the vertices. Instead of selecting the vertex with the highest
lexicographic label, they select the vertex which is adjacent to the highest number of ordered
vertices. The algorithm does not guarantee a minimal triangulation and runs in O(n+m′) time.

3.2 Minimum Separating Vertex Set Heuristic

The fourth heuristic described in this paper was developed in the context of solving frequency as-
signment problems with a tree decomposition approach [21]. It bases on another characterization
of tree decompositions. Every tree decomposition can be transformed to a tree decomposition
in which the vertex set associated to an internal node separates the graph into at least two
components, i.e., the vertices associated with the node form a separating vertex set. The heuris-
tic therefore searches for separating vertex sets. To find a good tree decomposition, we in fact
search for minimum separating vertex sets. This explains the name of the heuristic. The choice
for minimum separating vertex sets is motivated by the observation of Dirac [12] that a graph G
is triangulated if and only if every minimal separating vertex set induces a complete subgraph of
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Algorithm 4 Maximum Cardinality Search (MCS)
Input: connected graph G = (V,E), vertex v∗ ∈ V

Output: triangulated graph GT = (V,E ∪ Et) with tw(GT ) ≥ tw(G); if G is triangulated, then Et ≡ ∅
1: Et := ∅
2: for v ∈ V do

3: counter(v) := 0 // counts the number of ordered neighbors

4: end for

5: S := V // set of unordered vertices

6: for i = |V | to 1 do

7: u := argmaxv∈S counter(v) // vertex with largest number of ordered neighbors

8: σ(i) := u // add u to ordering at position i

9: for j, k ∈ {i+ 1, . . . , |V |}, j 6= k do

10: if {σ(i), σ(j)}, {σ(i), σ(k)} ∈ E ∧ {σ(j), σ(k)} 6∈ E ∪ Et then

11: Et := Et ∪ {σ(j), σ(k)} // add edge to triangulation

12: end if

13: end for

14: S := S \ {u}
15: for w ∈ N(u) ∩ S do

16: counter(w) := counter(w) + 1 // increase counter for all unordered neighbors

17: end for

18: end for

G. So, for a triangulation Ḡ of G with tw(Ḡ) = tw(G), the vertex sets associated with internal
nodes of T correspond to minimum vertex separating sets. We are looking for exactly those sets
in the original graph G. Before describing the minimum separating vertex set (MSVS) heuristic,
we briefly describe how a separating vertex set of minimum cardinality can be found in a graph.

3.2.1 Minimum Separating Vertex Sets in Graphs

To find a minimum separating vertex set S in a graph G = (V,E), we have to compute the
minimum st-separating set for all non-adjacent s, t ∈ V .

Definition 3.6 An st-separating set of a graph G = (V,E) is a set S ⊆ V \ {s, t} with the
property that any path from s to t passes through a vertex of S. The minimum separating vertex
set of G is given by the st-separating set S with minimum cardinality over all combinations
st 6∈ E.

The st-separating set with minimum cardinality can be found efficiently using Menger’s theorem
(see also Ahuja, Magnanti, and Orlin [1]).

Theorem 3.7 (Menger [26]) Given a graph G = (V,E) and two distinct non-adjacent vertices
s, t ∈ V , the minimum number of vertices in an st-separating set is equal to the maximum number
of vertex-disjoint paths connecting s and t.

So, we have to calculate the maximum number of vertex-disjoint paths. This problem is solvable
in polynomial time by standard network flow techniques. First, G is transformed into a directed
graph D = (V,A), in which each edge vw is replaced by two arcs (v, w) and (w, v). Next, we
construct an auxiliary directed graph D′, with weights on the arcs, by

• replacing each vertex v by two vertices v′ and v′′,
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• redirecting each arc with head v to v′, and introducing a weight of ∞,

• redirecting each arc with tail v to v′′, and introducing a weight of ∞, and

• adding an arc from v′ to v′′ with weight 1.

Then, the minimum number of vertices in an st-separating set in G is equal to the minimum
weight of an s′′− t′ cut in D′. So, if we calculate the minimum s′′− t′ cut for every non-adjacent
pair s, t ∈ V , we obtain the minimum separating vertex set. Note that since the graph D′ is
a directed graph, we have to solve O(n2) minimum cut problems. In other words, we cannot
use the algorithm of Gomory and Hu [18], which solves the all pairs minimum cut problem for
undirected graphs by solving only O(n) minimum cut problems.

3.2.2 MSVS Heuristic

The MSVS heuristic is in fact an improvement heuristic, i.e., it starts with a tree decomposition
and tries to improve its width. The heuristic becomes a constructive heuristic if it starts with
the trivial tree decomposition (T,X ): |I| = 1, F = ∅, and Xi = V .

We assume that the tree decomposition (T,X ) to start with is minimal in the sense that no
v ∈ V can be removed from a subset Xi, i ∈ I, without violating one of the tree decomposition
conditions. Suppose there exists an unique node with maximum cardinality associated vertex
set. Then, a replacement of this node by a set of nodes, all with smaller associated vertex sets,
reduces the width of the tree decomposition. If the node is not unique, then we have to replace
all nodes with maximum cardinality vertex set by nodes with smaller associated vertex sets to
achieve an improvement in the width.

For each replacement of a node by new nodes, the new nodes have to be connected with the
remaining parts of the tree in such a way that again all conditions of a tree decomposition are
satisfied. Let i ∈ I be a node with maximum cardinality vertex set. Suppose we would like to
replace i by a new node i∗ and q nodes I∗ as displayed in Figure 2. So, all new nodes p ∈ I∗

are connected with i∗, some of the previous neighbors j ∈ N(i) are connected with i∗, and all
other neighbors are connected with i∗ via a (unique) node p ∈ I∗. Here, we allow that multiple
neighbors j ∈ N(i) are connected with one and the same new node p. But we also allow that
not every new node p ∈ I∗ has to be connected with nodes j ∈ N(i).

We require that the vertex set Xi∗ of node i∗ defines a minimum separating vertex set in a
graph H = (V (H), E(H)) to be specified in the following. Each of the q ≥ 2 nodes p ∈ I∗

corresponds with a component of H[V (H) \ Xi∗ ]. Let Yp be the vertex set of component p.
Note that each v ∈ Xi∗ is connected with all components, since otherwise Xi∗ is not a minimum
separating vertex set. As a consequence, for every p ∈ I∗, the associated vertex set has to consist
of both the vertices in the component and the separating vertex set, Xp := Yp ∪Xi∗ (otherwise
the condition that for all vw ∈ E there exist a i ∈ I with v, w ∈ Xi cannot be guaranteed
afterwards). Now, the graph H can be specified.

Lemma 3.8 To guarantee that the newly constructed pair (T,X ) satisfies all conditions of tree
decomposition, the vertex set and edge set of graph H = (V (H), E(H)) have to satisfy Xi ⊆
V (H) and

⋃
j∈N(i)Q(Xi ∩Xj) ∪ EG[Xi] ⊆ E(H), respectively. These sets are also sufficient.
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Figure 2: Improvement step of a tree decomposition

Proof. Since we assume that the algorithm starts with a minimal tree decomposition, no vertex
v ∈ Xi can be left out without violating the tree decomposition conditions. As a consequence,
every vertex v ∈ Xi has to be in the vertex set ofH, otherwise the condition cannot be guaranteed
afterwards anymore.

For the edge set we distinguish between pairs of vertices v, w ∈ Xj for some j ∈ N(i) and
v, w 6∈ Xj for all j ∈ N(i). First, let there be a j ∈ N(i) with v, w ∈ Xj . Let p(j) be the new
node p ∈ I∗ between j and i∗ if such a node exists, otherwise let p(j) = i∗. By v ∈ Xj and
the definition of the subset Xp(j), we have v ∈ Xp(j). The same holds for w. Thus v and w

have to be in the same component of the graph H[Xi \Xi∗ ], which only can be guaranteed by
vw ∈ E(H). Hence, Q(Xi ∩Xj) ⊂ E(H) for all j ∈ N(i).

Now, let v, w ∈ Xi with v, w 6∈ Xj for all j ∈ N(i). So, i is the unique node with vw ∈ Xi. If
vw ∈ E, this node is required to guarantee the second condition of a tree decomposition. To
guarantee that after the replacement of i, there still is a node with both v and w belonging
to the associated vertex set, v and w should not end up in two different components. Thus,
vw ∈ E(H). If vw 6∈ E, then separation of v and w does not violate any condition for the
resulting tree decomposition. Hence, it is not necessary to include non-adjacent v and w in
E(H). ¥

Lemma 3.9 The cardinality of the associated vertex sets decreases, max{|Xi∗ |,maxp∈I∗ |Xp|} <
|Xi|, if and only if H is not a complete graph.

Proof. If H is complete, then no minimum separating vertex set exists, and thus no reduction
in the cardinality of the associated vertex sets can be achieved. If H is non-complete, then there
exist v, w ∈ V (H) with vw 6∈ E(H). The minimum vw-separating vertex set S contains at least
one, and at most |V (H)| − 2 vertices. Every component of H[V (H) \ S] contains also at least
one vertex. Hence, maxp∈I∗ |Xp| < |Xi|. ¥

From Lemma 3.9, it directly follows that as long as H is non-complete for all nodes i ∈ I with

11



maximum cardinality associated vertex set, improvements on the treewidth are achieved. Note
that by construction of H and Yp, the set Xj has a non-empty intersection with at most one
set Yp, p ∈ {1, . . . , q}. Let v, w ∈ Xi ∩Xj , then vw ∈ Q(Xi ∩Xj) ⊂ E(H), which implies that
v and w cannot be separated by Xi∗ . So, either v, w ∈ Xi∗ or v, w ∈ Yp ∪ Xi∗ =: Xp for only
one j ∈ {1, . . . ,m}. Therefore, we connect each neighbor j ∈ N(i) with the node p ∈ {1, . . . , q}
for which the intersection of Xj and Yp is non-empty, or in case there is no such p we connect j
with i∗ (cf. Figure 2). Algorithm 5 shows a pseudo-code implementation of the heuristic.

Algorithm 5 Minimum Separating Vertex Sets (MSVS)
Input: initial tree decomposition (T,X )
Output: modified tree decomposition (T̄ , X̄ ) with tw((T̄ , X̄ )) ≤ tw((T,X ))

// if for a maximal subset Xi, H is non-complete, the width can be improved

1: while ∃i ∈ I : |Xi| ≡ maxj∈I |Xj | and H = (Xi, E(H)) non-complete
with E(H) =

⋃
j∈N(i) Q(Xi ∩Xj) ∪ EG[Xi] do

2: Nold(i) := N(i) // store old neighbors of i

3: F := F \ {ij : j ∈ Nold(i)} // disconnect i from tree

4: let S ⊂ Xi be a minimum separating vertex set in H (cf. Section 3.2.1)
5: let q be the number of components of H[Xi \ S]
6: n := |I| // current number of nodes
7: I := I ∪ {n+ 1, . . . , n+ q} // construct q new nodes

8: F := F ∪ {ij : j = n+ 1, . . . , n+ q} // connect new nodes with i

9: for p = 1 to q do

10: let Yp ⊂ Xi be the set of vertices in component p of H[Xi \ S]
11: Xn+p := Yp ∪ S // define new vertex subsets

12: end for

13: Xi := S

14: for j ∈ Nold(i) do

15: if ∃p ∈ {1, . . . , q} with Xj ∩ Yp 6= ∅ then

16: F := F ∪ {n+ p, j} // reconnect old neighbors

17: else

18: F := F ∪ {i, j} // reconnect old neighbors

19: end if

20: end for

21: end while

The width of the resulting tree decomposition approximates the minimal treewidth. Note that as
long as the separating vertex sets S form cliques in the original graph G, the algorithm operates
in an exact way, since the optimal tree decomposition will contain a node for every clique that
separates the graph in multiple components.

4 Lower Bounds

By applying the heuristics on a set of graphs, a reciprocative comparison of the algorithms
can be carried out. The results, however, do not tell us anything about the quality of the best
heuristic. For that purpose, we need to know the treewidth of the graphs, which requires to solve
an NP-hard problem. Alternatively, lower bounds on the treewidth can be used to benchmark
the heuristics. In this section, two lower bounds that are used in this computational study are
presented.
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4.1 Maximum Clique Bound

It is well known that the treewidth of a graph does not increase under taking minors. So, the
treewidth of a minor H of G is a lower bound for the treewidth of G, tw(H) ≤ tw(G). The minor
of G that provides the best lower bound is of course G itself, or minors H with tw(H) = tw(G).
For general minors, computing treewidth is however as difficult as computing the treewidth of
G.

Since every graph induced by a clique Q ⊆ V in G is a minor of G, tw(G) ≥ |Q| − 1. The best
bound derived this way is for the maximum clique. Hence, the maximum clique number ω(G)
of a graph G minus one is a lower bound for the treewidth. Computing the maximum clique
number is NP-hard, in general. Nevertheless, several studies have shown that for not too large
and not too dense graphs, the maximum clique number can be computed within reasonable
time [4, 27].

4.2 Maximum Minimum Degree Bound

A trivial lower bound on the treewidth is given by the minimum degree of the graph: let (T,X ) be
minimal tree decomposition with optimal width k, and let i ∈ I be a leaf node with predecessor
j. By minimality of the tree decomposition, there is a vertex v ∈ Xi \Xj . Hence, δ(v) ≤ k.

The above implies that the minimum degree of a minor provides a lower bound as well. Since
every (induced) subgraph of G is a minor of G, the maximum of the minimum degree over
all subgraphs, MMD(G) = minH⊆G δ(H), bounds the treewidth from below. This so-called
maximum minimum degree bound can be computed in polynomial time.

Lemma 4.1 The maximum minimum degree of G is MMD(G) = max{δ(v),MMD(G[V \
{v}])} for all v ∈ V of minimum degree.

Proof. Let v ∈ V be a vertex in G of minimum degree. The minimum degree of all subgraphs
G′ containing v is at most the minimum degree of G. Thus, either MMD(G) = δ(v), or the
maximum minimum degree bound equals the same bound for the graph without v. ¥

This result directly provides an algorithm to compute the maximum minimum degree: remove
sequentially minimum degree vertices of the graph and keep track of the maximum of these
minimum degrees, see Algorithm 6.

Since the maximum clique of G is a subgraph, MMD(G) ≥ ω(G) − 1. In fact, Szekeres and
Wilf [34] proved that χ(G)−1 ≤MMD(G). So, a bound that is at least as good as the maximum
clique bound and the minimum coloring bound can be found in polynomial time. Using a Van
Embe Boas-tree [36], the algorithm can be implemented in O(n log log n+m) time.

Note that the maximum minimum degree MMD(G) dualizes with another graph theoretic
concept called k-degeneracy [25]. A graph is called k-degenerate if and only if every induced
subgraph of G has a vertex of degree at most k. The minimum k for which G is k-degenerate
equals MMD(G).
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Algorithm 6 Maximum Minimum Degree (MMD)
Input: connected graph G = (V,E)
Output: MMD ≤ tw(G)
1: for v ∈ V do

2: n(v) := N(v)
3: end for

4: S := V , MMD := 0. // S defines induced subgraph

5: while S 6= ∅ do

6: u := argminv∈S |n(v)| // vertex with minimum degree in subgraph

7: if |n(u)| > MMD then

8: MMD := |n(u)| // update maximum
9: end if

10: for v ∈ n(u) do

11: n(v) := n(v) \ {u}
12: end for

13: S := S \ {u} // reduce subset
14: end while

5 Computational Analysis

The algorithms described in the previous sections are tested on graphs obtained from applica-
tions like vertex coloring, frequency assignment, and probabilistic networks. All instances are
well known in the application area, and are often used for benchmarking newly proposed method-
ologies. All algorithms have been implemented in C++ on a Linux PC with Pentium III 800
MHz processor. Consecutively, we discuss the results for instances from frequency assignment,
probabilistic networks, and vertex coloring.

5.1 Frequency Assignment

The frequency assignment problem deals with the allocation of frequencies to the transmitters
of a wireless communication network. Interference between signals transmitted on (almost) the
same frequency restricts the assignment of the frequencies. Moreover, certain frequencies can be
locally blocked at a transmitter, i.e., it is prohibited to assign the frequency to the transmitter.
Depending on the application at hand, we want to minimize the number of used frequencies, the
span of the used frequencies, the blocking probability of the network, or the total interference
in the network. For more information on frequency assignment, we refer to [13, 21] or to FAP
web [14].

In the context of the EUCLID CALMA project [9], instances for a variety of frequency as-
signment problems have been made available. We restrict ourselves to the instances where the
objective is to minimize the overall interference in an assignment. In [21], it was shown that
application of a tree decomposition approach yield to good lower bounds and optimal solutions
for these instances. In total 11 instances are available with a total of 9 different graphs. Several
preprocessing ideas (for frequency assignment) led to an additional set of 7 instances (3 instances
were solved by preprocessing, for 1 the graph did not change). We tested the diverse algorithms
on these 16 instances.

Table 1 shows statistics for the performance of the algorithms on these instances. The maximum
clique size (MC) is computed with a standard tree search (branch-and-bound) algorithm. Several
remarks can be made. The table shows that the MMD lower bound is indeed better than the clique
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instance |V | |E| MC MMD MCS LEX P LEX M MSVS

min. avg. max. min. avg. max. min. avg. max.

celar06 100 350 10 10 11 11.27 14 11 13.69 14 11 13.61 14 11
celar07 200 817 10 11 18 22.25 26 19 23.64 32 17 20.64 29 17
celar08 458 1655 10 11 18 24.36 30 21 29.16 39 20 27.71 38 18
celar09 340 1130 10 11 18 25.09 31 21 29.39 39 17 27.82 38 18
graph05 100 416 8 8 28 33.60 36 29 36.60 47 28 35.13 43 27
graph06 200 843 8 8 54 61.94 74 61 72.06 83 59 70.93 85 56
graph11 340 1425 7 7 102 115.43 127 106 121.88 143 106 120.80 139 102
graph12 340 1255 5 5 97 108.31 121 99 114.77 128 99 113.73 128 93
graph13 458 1877 6 6 136 148.89 162 147 161.22 178 147 160.55 176 133
celar06pp 82 327 10 10 11 11.33 14 11 13.65 16 11 13.52 14 11
celar07pp 162 764 10 11 18 21.60 26 19 25.65 30 17 25.62 29 17
celar08pp 365 1539 10 11 19 25.04 29 21 32.28 38 19 28.58 38 18
celar09pp 67 165 7 7 7 7.00 7 7 7.00 7 7 7.00 7 7
graph06pp 119 348 5 5 19 23.85 30 21 26.97 33 20 25.83 31 18
graph12pp 61 123 4 4 5 6.85 9 5 6.48 8 4 5.48 7 4
graph13pp 456 1874 6 6 133 149.19 163 147 161.20 178 147 160.52 176 133

Table 1: Statistics for CALMA frequency assignment problems
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instance CPU time (in seconds)
MC MCS LEX P LEX M MSVS

celar06 0.11 0.07 0.09 0.74 9.30
celar07 0.44 0.48 0.57 5.90 101.62
celar08 1.49 5.02 6.08 46.24 603.19
celar09 0.74 2.55 2.39 28.17 580.30
graph05 0.06 0.68 0.84 1.98 34.98
graph06 0.20 15.42 20.08 28.88 323.19
graph11 0.33 247.30 262.45 292.71 2290.80
graph12 0.18 199.57 222.60 246.63 2124.58
graph13 0.50 994.37 1118.32 1170.50 7507.91
celar06pp 0.09 0.04 0.06 0.52 5.67
celar07pp 0.39 0.36 0.46 4.08 58.65
celar08pp 1.24 2.51 4.26 28.12 412.07
celar09pp 0.00 0.03 0.03 0.10 0.03
graph06pp 0.01 0.48 0.54 2.26 22.81
graph12pp 0.00 0.02 0.01 0.16 2.04
graph13pp 0.46 970.08 1092.34 1111.65 7602.44

Table 2: Computation times for CALMA frequency assignment problems

bound for some instances. The MSVS heuristic produces the best result for 14 out of 16 instances,
MCS 7 times, LEX P 3 times, and LEX M 7 times. In Table 1, not only the upper bounds computed
by the MCS, LEX P, and LEX M heuristics are reported, but also the average and maximum bound
computed in the runs with different vertex v∗ (cf. Algorithms 2, 3, and 4). These values show
that the bounds computed by LEX P and LEX M are spread out over a wider range of values than
the bounds computed by MCS. For celar08, we depict this observation in Figure 3. The range
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Figure 3: Statistics triangulation heuristics for celar08

of the bounds is not only smaller than those for the other heuristics, but also smaller values
are more often generated. Next, note that the treewidth for two instances (celar09pp and
graph12pp) is known since the best lower and upper bound are equal. For celar09pp, all
algorithms produce the same bound, even for arbitrary starting vertex. On the other hand, the
table shows (very) large gaps between lower and upper bounds for the larger graph instances.
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This remarkable difference between larger celar and graph instances seems to be caused by
the origin of the instances: the celar instances are taken from real-life whereas the graph
instances are computer generated. Finally, we would like to point out that the figures show that
the frequency assignment preprocessing is very effective, also for reducing the treewidth of the
graphs: the upper bound for the treewidth reduces from 93 to 4 for graph12. Also for other
instances, Table 1 shows substantial reductions.

Table 2 shows the computation times of the heuristics as well as the MC bound. The MMD bound
is computed in a fraction of a second for all instances. The computation times of the heuristics
MCS, LEX P, and LEX M do not differ that much. The MSVS heuristic consumes much more time
than the other ones.

5.2 Probabilistic networks

We continue our computational study with 8 real-life probabilistic networks from the field of
medicine. Table 3 shows the origin of the instances and the size of the network. The most effi-
cient way to compute the inference in a probabilistic network is by the use of the junction-tree
propagation algorithm of Lauritzen and Spiegelhalter [24]. This algorithm uses a tree decom-
position of the network’s moralized graph. The moralization of a network (or directed graph)
D = (V,A) is the undirected graph G = (V,E) obtained from D by adding edges between every
pair of non-adjacent vertices that have a common successor, and then dropping arc directions.
The size of the edge set E is also reported in Table 3. After the application of pre-processing

after pre-pro.
network origin |V | |A| |E| |V | |E|

wilson Wilson’s liver disease 21 23 27 - -
alarm anesthesia monitoring 37 44 62 - -
vsd prognosis of ventricular septal defect in infants 38 51 61 - -
oesophagus staging of oesophageal cancer 42 57 68 - -
oesophagus+ prediction of response to treatment of oe-

sophageal cancer
67 117 194 26 121

munin interpretation of electromyographic findings 1003 1244 1662 175 471
icea prediction of coverage by antibiotics of patho-

gens causing pneumonia
89 154 215 59 170

pathfinder diagnosis of lymphatic disease 109 192 211 14 49

Table 3: Probabilistic network characteristics

techniques for computing the treewidth [8], an additional four instances to conduct our heuris-
tics on are available. The size of these four instances is reported in Table 3 as well. After [8],
henceforth we refer to these instances as instancename {3,4}.

Table 4 shows the results of the heuristics and lower bounds for these instances. The computation
times for both lower bounds are neglectable. For three instances lower and upper bounds are
equal and so the treewidth is reported. For the other instances the gap ranges from 1 to 5.
Further the same observations can be made as for the frequency assignment instances. The
computation time of MSVS is substantially larger than for the other heuristics, but at the same
time the best result for all instances is obtained with this heuristic. Especially, for icea( 3) and
munin, MSVS outperforms the other heuristics.

Although not reported in Table 4, like for the frequency assignment instances, the range of
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network lower bounds upper bounds CPU time (in seconds)
MC MMD MCS LEX P LEX M MSVS MCS LEX P LEX M MSVS

wilson 2 2 3 3 3 3 0.00 0.00 0.01 0.01
alarm 4 4 4 4 4 4 0.00 0.01 0.03 0.05
vsd 4 4 4 4 4 4 0.01 0.00 0.03 0.09
oesophagus 3 3 3 3 3 3 0.01 0.01 0.03 0.09
oesophagus+ 9 9 10 11 10 10 0.02 0.04 0.20 1.28
munin 3 3 10 16 16 8 24.99 30.69 286.46 5636.16
icea 5 5 15 14 13 9 0.10 0.10 0.55 4.62
pathfinder 5 5 7 7 7 6 0.04 0.05 0.28 0.36
oesophagus+ 4 8 8 10 11 10 10 0.00 0.01 0.04 0.21
munin 3 3 4 9 8 8 7 0.23 0.27 2.78 65.36
icea 3 5 5 15 14 13 9 0.05 0.06 0.25 2.86
pathfinder 4 5 5 7 7 7 6 0.00 0.00 0.01 0.03

Table 4: Computational results for Probabilistic Networks

bounds generated by the triangulation heuristics is smaller for MCS compared with LEX P and
LEX M. This in particular holds for the munin network. Where the bound ranges from 16 to
56 for LEX P and LEX M, MCS reports bounds from 10 to 26 (see [8] for details). Hence, it is
important not to restrict the computations to a single run of these heuristics.

5.3 Vertex Coloring

Except for the frequency assignment instances and the probabilistic networks, where tree decom-
position is indeed reported in the literature, we decided to test the algorithms also on another
class of publicly available graphs. We have chosen for the well-known DIMACS benchmarks
for vertex coloring [11]1. Advantage of these instances is, that for many of them the chromatic
number is known. In Section 4.2, we have seen that this value minus one is a lower bound for
treewidth as well, and outperforms the clique bound. Details on the 62 instances and results can
be found in Table 5 in Appendix A. In Figure 4 and 5, the results are reported in a different,
more descriptive way. Figure 4 deals with the lower bounds and their relation to the upper
bounds. Figure 5 depicts the quality of the upper bounds.

In Figure 4(a), we compare the chromatic number (provided the value is known) with the MMD

bound. We counted the number of times the values are equal, differ one, differ two, etcetera.
This results in the histogram of Figure 4(a). Note that the intervals are not equally sized. The
diagram shows that in 33 of the 49 cases, the MMD bound is indeed better. The improvement of
the lower bound is incidentally over 30.

In Figure 4(b), we compare the MMD bound with the best upper bound achieved by the various
heuristics. Again, we count the number of times the difference between best upper bound and
MMD lower bound is zero, one, etcetera. In addition, the cumulative percentage below a difference
is displayed. Figure 4(b) shows that for 7 (out of 62) instances the optimal value is achieved,
whereas for 25 instances (or 37%) the gap is at most 5. On the other side, the gap is extremely
large (> 100) for another 22%, with a maximum gap of 327. For many instances it seems to be
difficult to find a good lower bound, or a good upper bound, or both.

1The flat* instances as well as the larger dsjc* and dsjr* instances are left out, since they have a very high
density and thus are very time consuming.
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Figure 4: Statistical information lower bounds for DIMACS vertex coloring instances

Figures 5(a)–5(d) show the difference between the best upper bound achieved and the heuristics
MCS, LEX P, LEX M, and MSVS, respectively, in a similar way as the difference between best upper
bound and MMD bound in Figure 4(b). To simplify a comparison between the histograms, the
same intervals and the same scale are used in all diagrams. The number of times LEX M and
MSVS supply the best upper bound attracts our attention at first sight. Respectively, 36 and 33
times the best bound is reported by these heuristics. An even more impressive result is obtained
by joining the results of LEX M and MSVS. Together, they are responsible for 59 (out of 62) best
upper bounds. The bounds reported by the other heuristics MCS and LEX P are more spread out.

The maximum difference between best upper bound and the bound by a particular heuristic is
smallest for MSVS with 25, followed by MCS with 47, LEX M with 193, and LEX P with 198. The
maximum difference between best lower bound and the heuristics is for respectively MCS, LEX P,
LEX M, and MSVS, 344, 330, 330, and 327.

Concerning the computation times, again the MSVS heuristic is outperformed by all other heuris-
tics. On average it took more than 20,000 seconds (> 5.5 hours) to compute the MSVS bound,
whereas the MCS, LEX P, and LEX M bound are computed in respectively 1,768, 1,974, and 2,167
seconds (30–36 minutes). The computation of the MMD lower bound took on average a (in com-
parison with the other times) neglectable 1.17 seconds.

6 Concluding Remarks

In recent years, alternatives for integer programming to solve combinatorial optimization prob-
lems attract more and more attention. One of these methods is based on a tree decomposition
of the graph associated with the problem. In this approach, the treewidth of a graph has to
be computed, independently of the application at hand. Studies to the solvability of treewidth
have been rarely carried out. In this paper, a computational study to the quality of heuristics
and lower bounds for treewidth has been undertaken. A total of four heuristics and two lower
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(c) LEX M - best upper bound
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Figure 5: Statistical information heuristics for DIMACS vertex coloring instances

bounds have been compared on graphs from different applications. Three of the heuristics are
based on triangulation recognition algorithms, the other one on minimal separating vertex sets.
The lower bounds compared are based on maximum cliques and the maximum minimum degree
in a subgraph. For the latter one, it is easy to show that it is never worse than the maximum
clique bound.

The bounds are tested on graphs from three different applications; frequency assignment, prob-
abilistic networks, and vertex coloring. The best upper bounds were achieved by the MSVS

heuristic. A good alternative to this time consuming bound is the LEX M bound that performs
almost as good as MSVS but has the advantage to be computable in substantially less time. The
MMD algorithm provides a reasonable lower bound very fast.

For all applications, the treewidth of some graphs could be identified by combining the best lower
and upper bound. On the other hand, for several graphs from frequency assignment and vertex

20



coloring the gap between best lower and upper bound is far too large to draw any conclusion
about the treewidth. It is needless to say that for these instances better lower and upper bounds
are necessary.

To determine the treewidth for graphs with a relatively small gap between lower and upper
bound, also the development and implementation of exact solution procedures can be effective.
Ideas in this direction are currently under development. Moreover, for all graphs pre-processing
can be a powerful tool to simultaneously reduce the size of the graph and obtain lower bounds.
In [8], a first attempt in this direction has been undertaken for the graphs from probabilistic
networks (cf. Section 5.2). In a follow-up paper more ideas for graph reduction will be presented.
Therefore, this paper should be viewed as one of the first (together with [8]) in a series of the
authors and other collaborators to study the practical setting of treewidth and the tractability
of the tree decomposition approach for combinatorial optimization problems.
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A Results for vertex coloring instances

instance |V | |E| lower bounds upper bounds CPU time (in seconds)
χ(G) − 1 MMD MCS LEX P LEX M MSVS MMD MCS LEX P LEX M MSVS

anna 138 986 10 10 13 13 12 12 0.01 0.14 0.16 1.24 18.39
david 87 812 10 10 14 13 13 13 0.00 0.08 0.10 0.56 7.77
huck 74 602 10 10 10 10 10 10 0.00 0.04 0.05 0.24 2.30
homer 561 3258 12 12 38 37 37 31 0.04 10.09 14.24 68.08 556.82
jean 80 508 9 9 9 9 9 9 0.00 0.04 0.04 0.29 1.98
games120 120 638 8 8 37 37 37 51 0.00 2.16 2.61 5.20 65.97
queen5 5 25 160 4 12 19 18 18 18 0.00 0.01 0.02 0.04 0.22
queen6 6 36 290 6 15 27 27 26 28 0.00 0.07 0.07 0.16 1.16
queen7 7 49 476 6 18 38 36 35 38 0.01 0.27 0.23 0.51 4.66
queen8 8 64 728 8 21 51 48 46 49 0.00 0.94 0.81 1.49 16.38
queen9 9 81 1056 9 24 66 60 59 66 0.01 2.82 2.41 3.91 47.35
queen10 10 100 1470 - 27 82 76 73 79 0.01 7.87 6.61 9.97 128.30
queen11 11 121 1980 10 30 96 92 89 101 0.01 19.47 16.45 23.36 310.83
queen12 12 144 2596 - 33 122 109 106 120 0.02 46.11 38.77 49.93 702.29
queen13 13 169 3328 12 36 139 129 125 145 0.04 99.90 85.01 107.62 1589.77
queen14 14 196 4186 - 39 163 149 145 164 0.07 211.08 177.79 215.36 3275.75
queen15 15 225 5180 - 42 183 173 167 192 0.11 416.44 347.58 416.25 6002.33
queen16 16 256 6320 - 45 210 195 191 214 0.21 796.98 657.53 773.09 11783.30
fpsol2.i.1 269 11654 64 64 66 66 66 66 1.03 50.18 194.66 319.34 4220.91
fpsol2.i.2 363 8691 29 31 35 57 52 31 0.51 21.75 541.81 622.22 8068.88
fpsol2.i.3 363 8688 29 31 35 57 52 31 0.67 23.13 555.27 621.89 8161.78
inithx.i.1 519 18707 53 55 56 223 223 56 5.83 109.75 3133.94 3144.95 37455.10
inithx.i.2 558 13979 30 31 42 233 228 35 2.37 54.56 4715.02 5567.96 37437.20
inithx.i.3 559 13969 30 31 42 233 228 35 2.48 56.22 4757.95 5190.39 36566.80
miles1000 128 3216 41 41 55 51 49 53 0.07 5.48 5.15 14.39 229.00
miles1500 128 5198 72 72 80 77 77 83 0.10 10.63 11.23 29.12 268.19
miles250 125 387 7 7 10 10 10 9 0.00 0.11 0.12 1.12 10.62
miles500 128 1170 19 19 26 23 22 28 0.01 0.83 0.84 4.37 87.18
miles750 128 2113 30 31 41 37 37 38 0.02 2.64 2.42 8.13 136.69
mulsol.i.1 138 3925 48 48 51 66 66 50 0.07 4.22 8.99 17.77 240.24
mulsol.i.2 173 3885 30 31 35 69 69 32 0.09 4.24 18.92 34.06 508.71
mulsol.i.3 174 3916 30 31 35 69 69 32 0.09 4.32 19.40 34.58 527.89
mulsol.i.4 175 3946 30 31 35 69 69 32 0.09 4.42 19.90 35.53 535.72
mulsol.i.5 176 3973 30 31 35 69 69 31 0.09 4.47 20.41 36.25 549.55
myciel3 11 20 3 3 5 5 5 5 0.00 0.00 0.00 0.00 0.01
myciel4 23 71 4 5 11 10 11 11 0.00 0.01 0.01 0.02 0.13
myciel5 47 236 5 8 21 23 23 20 0.00 0.06 0.11 0.28 2.00
myciel6 95 755 6 12 38 46 47 35 0.01 0.94 2.59 4.56 29.83
myciel7 191 2360 7 18 69 93 94 74 0.03 16.98 72.44 109.86 634.32
school1 385 19095 - 73 273 254 252 244 4.79 2770.65 3299.87 3987.64 41141.10
school1 nsh 352 14612 - 61 225 193 192 214 3.08 1653.17 1700.36 2059.52 28954.90
zeroin.i.1 126 4100 48 48 50 50 50 50 0.17 5.33 8.96 17.78 338.26
zeroin.i.2 157 3541 29 29 42 40 40 33 0.09 4.27 16.12 24.82 448.74
zeroin.i.3 157 3540 29 29 42 40 40 33 0.07 4.19 16.03 24.69 437.06
le450 5a 450 5714 4 17 330 308 310 317 0.35 8340.05 7446.27 7836.99 73239.66
le450 5b 450 5734 4 17 331 314 313 320 0.46 8593.04 7499.38 7909.11 73644.28
le450 5c 450 9803 4 33 369 345 348 340 1.38 10819.96 9953.81 10745.70 103637.17
le450 5d 450 9757 4 32 373 348 349 326 2.30 11141.73 9894.74 10681.29 96227.40
le450 15a 450 8168 14 24 327 299 296 297 0.39 6350.69 6461.77 6887.15 59277.90
le450 15b 450 8169 14 24 317 300 296 307 0.80 6067.16 6484.28 6886.84 65173.20
le450 15c 450 16680 14 49 393 379 379 376 7.58 10974 11324.23 12471.09 122069.00
le450 15d 450 16750 14 51 392 377 379 375 8.76 10804 11313.32 12481.22 127602.00
le450 25a 450 8260 24 26 275 255 255 270 1.31 3750.33 4194.31 4478.30 53076.40
le450 25b 450 8263 24 25 288 257 251 264 1.20 4913.72 4636.22 4869.97 52890.00
le450 25c 450 17343 24 52 377 359 355 365 8.13 9182.24 9992.39 10998.68 109141.00
le450 25d 450 17425 24 51 377 359 356 359 5.31 10227.34 10658.33 11376.02 111432.25
DSJC125.1 125 736 - 8 73 73 70 67 0.01 9.98 9.03 12.90 171.54
DSJC125.5 125 3891 - 53 114 111 110 110 0.07 24.69 23.90 38.07 254.90
DSJC125.9 125 6961 - 103 121 119 119 120 0.20 26.65 26.93 55.60 70.79
DSJC250.1 250 3218 - 18 193 186 183 179 0.09 477.40 462.75 528.10 5507.86
DSJC250.5 250 15668 - 109 238 235 233 233 3.62 749.19 749.09 1111.66 7756.38
DSJC250.9 250 27897 - 211 245 244 243 244 8.20 789.43 788.35 1414.58 1684.83

Table 5: Computational results for DIMACS vertex coloring instances
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