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Gas Network Benchmark Models

P. Benner, S. Grundel, C. Himpe, C. Huck, T. Streubel, C. Tischendorf

Abstract The simulation of gas transportation networks becomes increasingly more
important as its use-cases broadens to more complex applications. Classically, the
purpose of the gas network was the transportation of predominantly natural gas
from a supplier to the consumer for long-term scheduled volumes. With the rise of
renewable energy sources, gas-fired power plants are often chosen to compensate for
the fluctuating nature of the renewables, due to their on-demand power generation
capability. Such an only short-term plannable supply and demand setting requires
sophisticated simulations of the gas network prior to the dispatch to ensure the sup-
ply of all customers for a range of possible scenarios and to prevent damages to the
gas network. In this work we describe the modelling of gas networks and present
benchmark systems to test implementations and compare new or extended models.
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Symbol Meaning SI-Unit Symbol Meaning SI-Unit
ρ Density [ kg

m3 ] Rs Specific gas constant
[ m2

s2 K

]
p Pressure [ kg

s2 m ] γ Gas state [m2

s2 ]

ϕ Flow-rate [m3

s ] z Compressibility factor [1]
q Mass-flow [ kg

s ] S Cross-sectional area [m2]
v Velocity [m

s ] D Pipe diameter [m]
g Gravity constant [ m

s2 ] L Pipe length [m]

h Pipe elevation [m] T Temperature [K]
λ Friction factor [1] c Speed of sound [m

s ]

R Gas constant
[ kgm2

s2 mol K

]
P Power [W]

Table 1 List of Symbols

1 Introduction

The simulation of gas transport over large pipeline networks is essential to a safe
and timely dispatch and delivery of contracted denominations. The modelling and
verified implementation of gas transport is a prerequisite for the reliable simulation
of gas transportation scenarios. Beyond the basic network of pipelines, further (ac-
tive) components such as compressors have to be included into realistic models. To
this end, a modelling approach for gas networks including these components is pre-
sented in this work together with four benchmark examples and associated reference
solutions allowing the test of gas network simulation implementations.

The basis for gas network models are the Euler equations as introduced in [24],
which describe the transient behavior in terms of conservation of momentum, con-
servation of mass and the gas state. Discretizations of this gas network model given
by partial differential algebraic equations have been investigated in [6, 1]. An index
reduction of this differential-algebraic model in a model order reduction setting has
been investigated in [9, 11, 10]. The modelling of complex network elements such
as compressors in the context of gas networks is described in [12, 7], while verifi-
cation of this model has been conducted for example in [2, 25]. Modelling based on
practical engineering considerations can be found in [8, 20].

In this work, we will present a modular gas network model based on the isother-
mal Euler equations. The modularity rests upon factor approximations which in dif-
ferent regimes are chosen accordingly. The focus of the modelling effort is hereby
directed towards transient simulations of the gas transport. Beyond basic pipeline
networks, the following modelling approach includes gas network elements like
valves or compressors, and allows the extension with new elements. Additionally,
certain benchmark networks are outlined together with respective scenarios, describ-
ing the transient boundary value behavior in order to provide testable discretized
model instances.

In Section 2 we describe the model for a single pipe, which is extended to a
network of pipes and additional components in Section 3. Section 4 details partial
discretization of the network model and finally, Section 5 describes four benchmark
networks with increasing degree of complexity.
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2 Pipe Physics

2.1 The Isothermal Euler Equations

The flow of (a real) gas is modelled by the Euler equations, which describe the
conservation of mass (1a), conservation of momentum (1b), and inherent state of
the gas (1c). In the following, we discuss the analytic modelling, assumptions and
simplifications of these partial differential equations (PDEs).

First of all, we assume that the temperature variations throughout the network
have negligible effects on the dynamic behavior of the gas transport. This may seem
unrealistic, but for strictly on-shore gas networks this actually is a sensible assump-
tion [20, Ch. 45] and greatly reduces the complexity of the model. Hence, we fix the
temperature to a constant value T0.

For the transport of gas in a network of pipes, we first model a single pipe of
length L by the one-dimensional isothermal Euler equations over the spatial domain
x ∈ [0,L] and time t ∈ R+:

∂

∂ t
ρ =− ∂

∂x
ϕ, (1a)

∂

∂ t
ϕ =− ∂

∂x
p− ∂

∂x
(ρv2)−gρ

∂

∂x
h− λ̂ (ϕ)

2D
ρv|v|, (1b)

p = γ(T )z(p,T )ρ. (1c)

This system of coupled (PDEs) in space and time consists of the variables: den-
sity ρ = ρ(x, t), flow rate ϕ = ϕ(x, t), pressure p = p(x, t), velocity v = v(x, t) and
pipe elevation h = h(x). Note, that the Euler equations are nonlinear (1b) and of
hyperbolic nature [18].

The remaining components are: the gravity constant g, pipe diameter D, gas state
γ(T ), friction factor λ̂ (ϕ) and the compressibility factor z(p,T ). The latter two
functions will be discussed in Section 2.2 and Section 2.3. Also, as the temperature
T is assumed constant, the temperature dependency of the gas state and compress-
ibility factor is fixed to T ≡ T0.

Subsequently we will transform this model, based on physical laws, to a repre-
sentation which contains the measurable quantities as solution variables, to a more
convenient form with respect to the numerical simulation. To this end we introduce
the mass flow q = q(x, t) := mϕ(x, t) and the pipe’s cross-sectional area S := 1

2 Dπ2,
over which the gas flow in the pipe is averaged, to replace the velocity by mass flux
(mass flow per area) over density v = 1

S
q
ρ

and obtain:
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Pressure
(Continuity)

{ 1
γ0

∂

∂ t
p

z0(p)
=−1

S
∂

∂x
q,

Mass Flux
(Momentum)

{ 1
S

∂

∂ t
q =− ∂

∂x
p− γ0

S2
∂

∂x
q2 z0(p)

p︸ ︷︷ ︸
Inertia Term

− g
γ0

p
z0(p)

∂

∂x
h︸ ︷︷ ︸

Gravity Term

−λ (q)γ0

2DS2
q|q|(

p
z0(p)

)
︸ ︷︷ ︸

Friction Term

Fig. 1 Term-wise highlighted PDE model with respect to physical meaning.

∂

∂ t
ρ =−1

S
∂

∂x
q, (2a)

1
S

∂

∂ t
q =− ∂

∂x
p− 1

S2
∂

∂x
q2

ρ
−gρ

∂

∂x
h− λ (q)

2DS2
q|q|
ρ

, (2b)

p = γ(T )z(p,T )ρ. (2c)

To match the change in variables, the friction factor is also adapted to the represen-
tation λ (q) := λ̂ (Sϕ).

Using Boyle’s Law and given the specific gas constant Rs, the gas state is con-
stant γ0 := γ(T0) = RsT0 and we define z0(p) := z(p,T0) due to the isothermality
assumption. Finally, we substitute the pressure relation (2c) into (2a) and (2b) to
obtain the following formulation of the isothermal Euler equations:

1
γ0

∂

∂ t
p

z0(p)
=−1

S
∂

∂x
q, (3a)

1
S

∂

∂ t
q =− ∂

∂x
p− γ0

S2
∂

∂x
q2 z0(p)

p
− g

γ0

p
z0(p)

∂

∂x
h− λ (q)γ0

2DS2
q|q|(

p
z0(p)

) ; (3b)

see also Fig. 1.
The inertia (or kinematic) term of the mass-flux equation in the pipe gas flow

model evolves on a much smaller scale compared to the other components [24].
This is justified by comparing the coupling term and the inertia term (first two right-
hand side components in (3b)) after factoring the spatial derivative operator ∂

∂x :∣∣∣ γ0

S2
q2z0(p)

p

∣∣∣= ∣∣∣p v2

z0(p)γ0

∣∣∣� |p|, for z0(p)γ0� v2,

based on the velocity-mass-flux relation used in (2b). Since the speed of sound (in
the medium) c ≈

√
z0(p)γ0 typically exceeds the transport velocity v, the inertia

term is discarded in several works, as i.e. [9, 11, 10, 13]. We will follow this ap-
proach and similarly exclude the inertia term from the model, which then leads to
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∂

∂ t
p

γ0z0(p)
=−1

S
∂

∂x
q,

∂

∂ t
q =−S

∂

∂x
p−Sg

p
γ0z0(p)

∂

∂x
h− λ (q)

2DS
q|q|(

p
γ0z0(p)

) (4)

The nonlinearity in the friction term q|q|
p may be treated as quadratic, i.e. q2

p , only
if the flow does not change direction. Since not only pipelines, but cyclic networks
of pipes are considered, a flow direction may change throughout the course of a
simulation. Some works [1, 28] linearize the friction term around the steady state of
a given scenario, which is not considered in this work to preserve accuracy. Yet, the
linearized equations may be used to obtain an approximate steady state given some
boundary condition.

In terms of boundary conditions, the pressure and mass flow in the pipe at time
t = 0 as well as the pressure at the inflow boundary pl(t) := p(0, t) and mass flow
at the outflow qr(t) := q(L, t) are given. With this set up, the aim is the computation
of the pressure at the outflow boundary pr(t) := p(L, t) and the mass flow at the
inflow boundary ql(t) := q(0, t). Table 2 summarizes this relation of given boundary
quantities and sought quantities of interest (QoI).

Boundary QoI
Pressure p(0, t) p(L, t)

Mass-Flux q(L, t) q(0, t)

Table 2 Boundary values and quantities of interest.

It remains to be specified how the friction and compressibility factor are included
into the model. As these factors are typically derived from formulas determined by
experimental measurements, we will not specify which formula to use, but instead
keep the model modular in this regard and present different popular choices for the
aforementioned factors in the following.

2.2 Friction Factor

The friction factor λ (q) scales the (nonlinear) friction term and depends on the
Reynolds number Re(q), which in turn depends on the mass flow variable q for a
flow in a pipe, and, depending on the approximation method, on the pipe roughness
k and pipe diameter D. We will present two sets of approximation formulas for
the friction factor (for turbulent flows): The first is predominately used in European
countries, while the second is preferably used in the Commonwealth of Independent
States (CIS) [20, Ch. 28]. In both regions, for a laminar flow (Reynolds numbers
Re < 2100), the well-known Hagen-Poisseuille formula is used to approximate
the friction factor:
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λHP(q) :=
64

Re(q)
.

For Reynolds numbers Re > 4000 a flow is considered turbulent. In the Eu-
ropean region, the Colebrook-White formula [4], also known as Prandtl-Colebrook
formula, is the most accurate approximation of the friction factor [29]:

1√
λCW(q)

=−2log10

( 2.51
Re(q)

√
λCW (q)

+
k

3.71D

)
,

yet of implicit nature. An explicit variant of the Colebrook-White formula is given
by the Hofer approximation [14]:

λH(q) :=
(
−2log10

( 4.518
Re(q)

log10

(Re(q)
7

)
+

k
3.71D

))−2
,

which is of sufficient accuracy for transient gas network simulations. The Nikuradse
formula [23] results from the Hofer formula for Re→ ∞:

λN(q) :=
(
−2log10

( k
3.71D

))−2
.

In the CIS region, approximations based on the Altschul formula [22, Ch. 7.26]
are favored:

λA(q) := 0.11
( 68

Re(q)
+

k
D

) 1
4
.

Similarly, for Re→ ∞, a simplified formula by Schifrinson [20] exists:

λS(q) := 0.11
( k

D

) 1
4
.

Lastly, a simple yet commonly used approximation [19] of the friction factor for
turbulent flows is given by the Chodanovich-Odischarija formula [3]:

λCO(q) := 0.067
( 158

Re(q)
+

2k
D

)2
.

2.3 Compressibility Factor

The inner state of the gas is described by (2c) and relates pressure, volume and
temperature. To account for medium specific behavior deviating from an ideal gas,
the compressibility factor z(p,T ) is utilized. For an ideal gas, the compressibility
factor is given independent from pressure and temperature by the unit constant:
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z1(p,T ) := 1.

Typically, the compressibility factor is approximated using the Virial expansion:

z(p,T ) = 1+
∞

∑
k=1

Bk pk,

for real gases. Usually, this expansion is truncated after the first terms, and the asso-
ciated coefficients Bk are estimated heuristically. The AGA8-DC92 and SGERG
[25] approximations are assembled in this fashion; see also [8]. Yet, the partial
derivatives of the compressibility factor in (4) induce a root-finding problem due
to the higher-order terms in the truncated series for these formulas. To avoid this
additional complexity, we allow coarser but explicit approximations to the com-
pressibility factor. Such explicit formulas for the compressibility factor are given
first, by the AGA88 formula [17]:

z2(p,T ) := 1+0.257
p
pc
−0.533

pTc

pcT
,

which is valid for pressures p < 70bar, and second, by the Papay formula [26]:

z3(p,T ) := 1−3.52
p
pc

e−2.26 T
Tc +0.247

( p
pc

)2
e−1.878 T

Tc .

The latter is valid up to p < 150bar and hence should be preferred due to the higher
accuracy. The symbols pc and Tc refer to the critical pressure and critical tempera-
ture, respectively. Since the temperature is assumed constant in this work, the com-
pressibility factor formula z2 is a linear and z3 is a quadratic polynomial.

Since the previous obtained variant of Euler equations (4) requires derivatives of
the compressibility factor with respect to pressure, these should be pre-computed
analytically to prevent an on-demand numerical approximation.

3 Gas Network

The abstract gas transportation network is described by a directed graph:

G = (N ,E ),

consisting of a tuple: A set of nodes N and a set of oriented edges E . The edges
embody a (possibly large) number of pipes (P), as well as short pipes (S), valves (V),
compressors (C), resistors (R), and controlled valves (CV). We introduce an index
set I = {P,S,V,C,R,CV} representing these components. Similarly, the nodes are
divided into pressure nodes (p) and flux nodes (q), and we will create an index set
for those as well J = {p,q}. In total this means we can write the set of edges as a
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union over the different components by using the corresponding index set. Likewise,
this can be done for the set of nodes:

E = EP∪ES∪EV ∪EC ∪ER∪ECV =
⋃

i∈I
Ei,

N = Np∪Nq =
⋃

j∈J
N j.

In the following we will repeat the set of equations used on each pipe and introduce
the set of equations used for all other components.

3.1 Pipes

The Euler equation for the pressure p and the mass flux q, we use (4), depend on the
following parameters that can vary for an individual pipe:

γ0,z0(p),S,h(x),λ (q),D. (5)

Since a network consists of more than one pipe, we label the pressure and the
flux function for each pipe by its pipe edge index e∈ EP: pe(x, t) and qe(x, t) as well
as all the parameters given in (5). The equations are then given by

∂

∂ t
dpipe,e(pe) =−

1
Se

∂

∂x
qe, ∀e ∈ EP

∂

∂ t
qe =−Se

∂

∂x
pe + fpipe,e(pe,qe), ∀e ∈ EP

(6)

where we also introduce the two nonlinear functions dpipe,e and fpipe,e for a simpli-
fied notation:

dpipe,e(pe) :=
pe

γe
0ze

0(pe)
,

fpipe,e(pe,qe) :=−Segedpipe,e(pe)
∂

∂x
he−

λe(qe)

2DeSe

qe|qe|
dpipe,e(pe)

.
(7)

3.2 Non-Pipe Edge Components

We will give a short description of all the components used in the given benchmark
models, namely the ones defined above: short pipe, valves, compressors, resistors
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and controlled valves. For a comprehensive description of these and further gas
network components, such as reservoirs or heaters, see also [8] and [20]. In order
to describe these components we need four variables for each component, namely:
pe,r(t), pe,l(t),qe,r(t),qe,l(t), referring to the left and right pressure and the left and
right flux for the edge e ∈ E , meaning we work on a model that is discrete in space.
For the sake of readability we will drop the time dependency in our notation (e.g.
pe,l instead of pe,l(t)) for the remainder of this section.

3.2.1 Short pipe

First, we introduce a short pipe element, which is an idealized network element with
neither friction nor pressure loss due to height differences. The model is simply
given by:

qe,r−qe,l = 0,
pe,l− pe,r = 0, ∀e ∈ ES.

(8)

3.2.2 Valves

Valves are gas network components, which connect two junctions and have two
modes of operation: open and close. The open state means that the valve component
acts as a pipe, while the closed state of the valve causes a disconnection of the
junctions. Hence, the topology of the network can be changed if the valve is toggled
between its two states, and thus significantly alter the behavior of the network for
example by disconnecting a part of the graph or introducing cycles. A model for
valves is given as follows:{

qe,r = qe,l , pe,r = pe,l open valve
qe,r = qe,l = 0 closed valve ∀e ∈ EV .

(9)

According to this model, the adjacent nodes are topologically disconnected when
the valve is closed, but connected by a short pipe otherwise.

3.2.3 Compressor/Ideal compressor unit

Compressors are complex gas network components which connect two junctions,
and increase the energy (pressure) along the selected path. A basic model is given
by the idealized compressor:

qe,r = qe,l , (10a)
pe,r
pe,l

= αC,e(pe,l , pe,r,qe,l ,qe,r, t), (10b)
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where α : R5→ [1,∞[. The model of the idealized compressor unit coincides with
that of the short pipe whenever α ≡ 1. So this may also serve as the minimum
compression ratio provided by the idealized unit. We might also introduce more
technical limitations to the capabilities of the ideal unit, e.g. by choosing a maximum
compression ratio (e.g. 80bar/60bar). A further possibility might be a bound for
power consumption. To this end, we solve the power equation from [8, eq. (2.43)]
for the compression ratio pe,r/pe,l ≡ α and substitute the power P by the maximum
consumption allowed Pmax :

αP,max ≡
[

η ·Pmax

qe,r ·RsT0 · z0(pe,l)
· γ−1

γ
+1
] γ

γ−1
.

Here γ η ∈ ]0,1[ is a unit specific efficiency factor and is the isentropic expansion
factor or isentropic exponent. The isentropic exponent corresponds to the ratio of
specific heats for constant pressure and volume, and is the basis for isentropic pro-
cesses such as idealized compression of (ideal) gas, which is based on the relation
of pressure and volume before and after the compression pe,lV

γ

e,l = pe,rV
γ
e,r [8]1. By

introducing target values pr,set and pl,set for the pressures, we can model two modes
for α:

αC,e(pe,l , pe,r,qe,l ,qe,r, t)≡


max

(
1,min

(
80
60 ,αP,max ,

pr,set
pe,l

))
pr,set mode

max
(

1,min
(

80
60 ,αP,max ,

pe,r
pl,set

))
pl,set mode

.

In either mode the idealized unit will try to keep the corresponding pressure value
close to the target value (pr,set or pl,set) w.r.t. to the modelled technical limitations.

Sometimes compressors consume some of the gas from the network to power
themselves. Accordingly to [21] and [5], the fuel consumption can be modeled by
replacing formula (10a) with:

qe,r = qe,l−
dc

RsT0
c2 ·qe,l

(
αC,e(pe,l , pe,r,qe,l ,qe,r, t)

γ−1
γ −1

)
, (11)

where dc is a compressor specific constant.

3.2.4 Resistor

There is no existing infrastructure with the intended purpose of generating resis-
tance. So resistors are virtual elements which resemble and substitute very local
microscopic structures in our macroscopic view on a gas network. The following
model of resistors is a simplified pipe model. This means we use some of the pa-
rameters used for the pipe as well. Here the friction and length parameter is replaced

1 In [8] an approximation of γ = 1.296 is used.
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by a so called drag factor ξ . Height differences are neglected and time derivatives
are set to zero:

qe,r−qe,l = 0, pe,r− pe,l =−ξ
RsT0 · z0(pe,r)

2S2
e

qe,l |qe,l |
pe,r

. (12)

A very similar model is proposed in [8]. However the pressure on the right hand
side of (12) is evaluated at the right boundary instead of the left. The reason for
this subtle difference is that the resistor model (12) is derived consistently with the
spatial discretization introduced later in Section 4.

3.2.5 Control valve

Control valves can be derived from the model (12) of resistors, but with a variable
diameter. To that end we introduce a factor α : R5→ [0,1]:

qe,r(t)−qe,l(t) = 0 (13a)

αCV,e(pe,l , pe,r,qe,l ,qe,r, t) · (pe,r− pe,l) =−ξ
RsT0 · z0(pe,r)

2S2
e

qe,l |qe,l |
pe,r

. (13b)

Once again we may introduce target values for the ingoing and outgoing pressure
and so we can model two modes via the degree of openess α:

αCV,e(pe,l , pe,r,qe,l ,qe,r, t)≡

max
(

0,min
(

1,−ξ
RsT0·z0(pr,set)

2S2
e ·(pr,set−pe,l)

qe,l |qe,l |
pr,set

))
pr,set mode

max
(

0,min
(

1,−ξ
RsT0·z0(pe,r)

2S2
e ·(pe,r−pl,set)

qe,l |qe,l |
pe,r

))
pl,set mode

3.2.6 Summary of non-pipe components

For each i ∈I \p we introduce a function fi,e, where e ∈ Ei.

fS,e(pe,l , pe,r,qe,l , t) = pe,r− pe,l ,

fV,e(pe,l , pe,r,qe,l , t) = χe(t)(pe,r− pe,l)+(1−χe(t))qe,l ,

fC,e(pe,l , pe,r,qe,l , t) = pe,r−αC,e(pe,l , pe,r,qe, t) · pe,l

fR,e(pe,l , pe,r,qe,l , t) = Se(pe,r− pe,l)+ξ
RsT0z0(pe,r)

2Se

qe,l |qe,l |
pe,r

,

fCV,e(pe,l , pe,r,qe,l , t) = αCV,e(pe,l , pe,r,qe,l ,qe,r, t) · (pe,r− pe,l)

+ξ
RsT0 · z0(pe,r)

2S2
e

qe,l |qe,l |
pe,r
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where χe(t) = 1 if the valve is open and χe(t) = 0 if the valve is closed. This means
that we can write the equations for the components as:

qe,r = qe,l ,

0 = fi,e(pe,l , pe,r,qe,l , t) e ∈ Ei, i ∈I \P.
(14)

Thus we have a simple way to describe the equation on all edges.

3.3 Node conditions

We have a description of the pipe physics as a partial differential equation for the
functions qe(x, t) and pe(x, t) for all e ∈ EP. Furthermore, we have two algebraic
equations for the other components for the four variables qe,l ,qe,r, pe,l , pe,r. Those
four variables exist also for each pipe, namely:

qe,l(t) = qe(0, t), qe,r(t) = qe(Le, t), pe,l(t) = pe(0, t), pe,r(t) = pe(Le, t),

where Le is the length of the pipe e. We furthermore introduce the set of pressures
pu belonging to each node u ∈ N . Describing the graph we distinguish between
pressure nodes and flux nodes. At pressure nodes - as the name suggests - a pressure
function is given:

pu(t) = psetu(t), u ∈Np.

At the other nodes u ∈Nq the equations are modelled by a set of Kirchhoff-type
balance equations:

∑
e∈δ−(u)

qe,r− ∑
e∈δ+(u)

qe,l(t) = qsetu(t), u ∈Nq,

where δ+(u) and δ−(u) are sets of edges in which u is a right or left node, respec-
tively. The functions psetu(t) and qsetu(t) are given as time-dependent input func-
tions to the system and are typically encoded in a given scenario. At nodes with
neither in- nor outflow the function qsetu(t) is set to zero. Sometimes the mass flow
nodes are separated into ones with identically zero-set flow and those where that is
not the case. The next condition connecting the different notation of the pressure
will be eliminated in a further step of the description of the system. But for now, as
we have left and right pressure for each edge as well as pressure on the node, we
have to make sure these are consistent. This results in:

pu = pe,l and pv = pe,r ∀e = (u,v) ∈ E .



Pr
ep

rin
t

Gas Network Benchmark Models 13

3.4 Partial Differential Algebraic Equation

The overall so called Partial Differential Algebraic Equation (PDAE) is then given
by:

∂

∂ t
dpipe,e(pe) =−

1
Se

∂

∂x
qe, ∀e ∈ EP (15)

∂

∂ t
qe =−Se

∂

∂x
pe + fpipe,e(pe,qe) ∀e ∈ EP (16)

qe,l = qe(0, t) qe,r = qe(Le, t) (17)
pe,l = pe(0, t) pe,r = pe(Le, t) ∀e ∈ EP (18)
qe,r = qe,l , ∀e ∈ Ei, i ∈I \P (19)

0 = fi,e(pe,l , pe,r,qe,l , t) ∀e ∈ Ei, i ∈I \P (20)
pu(t) = psetu(t), ∀u ∈Np (21)

∑
e∈δ−(u)

qe,r− ∑
e∈δ+(u)

qe,l(t) = qsetu(t), ∀u ∈Nq, (22)

pu = pe,l and pv = pe,r ∀e ∈ E , e = (u,v), u,v ∈N (23)

In the system above we have the two PDE equations for each pipe describing
the flow through the pipe (15, 16), then the definition of the boundary values for
each pipe (17, 18). Then we have two equations for the nonpipe components. The
first equation is (19) is the same for each component and the second equation (20)
depends on the component specific function fi for i ∈ I \P. Equation (21) defines
the pressure at the pressure nodes and 22 the flow condition at the nodes where no
pressure is given. The last equation (23) ensures that the different pressure variables
at a given node do have the same value.

In order to be able to write this complex system in a concise form, we will first
need to introduce the incidence matrix of a graph. Given a directed graph with N
nodes and M edges, the associated incidence matrix A ∈ RN×M is defined as:

Ai j :=


1 edge j connects to node i
0 edge j does not connect to node i
−1 edge j connects from node i

.

If this graph has a tree structure, meaning it is connected and acyclic, then the asso-
ciated incidence matrix is of rank (N−1) [11]. As we distinguish between different
type of nodes and different types of edge we can always take only certain edges
or nodes of the network and the incidence matrix that corresponds to the subgraph
spanned by just those. For example, if we are interested in the incidence matrix for
just pipes as egdes and just the mass flow condition nodes we denote that matrix
by AP,q. Furthermore, we may only be interested in the negative part of the matrix
or just in the positive part of that matrix. We call the negative matrix AL and the
positive AR as the negative part represents the node to edge that connects on the left
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to the matrix and the positive part corresponds to the node to egde relationship that
connects on the right end of the edge. As before we can create submatrix in the same
way.

The mass balance Kirchhoff type equation (22) can now be written as

AR
q qr +AL

qql = qset(t), (24)

where qr and ql is a vector of all left and right flux for each edge. The equation 23
for the pressure reads

pl = (AL)ᵀp, pr = (AR)ᵀp, (25)

where the vectors pr and pl are as above and p is the vector of all pressures at the
individual nodes.

Next, the spatial discretization for this partial differential algebraic equations is
described, which then leads to a differential algebraic equation (DAE).

4 Discretization

To perform simulations of the partial differential algebraic equation modelling the
gas flow in a network of pipes, the Euler equations in (4) need to be discretized.
The considered model contains spatial ∂

∂x and temporal ∂

∂ t derivative operators. We
follow the established approach of discretizing first in space to obtain a differential-
algebraic equation system, consisting of an ordinary differential equation system (in
time) and a set of algebraic constraints. This will lead to an overall representation
as an input-output system with the input-output quantities given in Table 2 for each
supply node and demand node.

4.1 Spatial Discretization

4.1.1 Spatial discretization of pipes

We present a spatial discretization of the pipe model (6) yielding index-1 DAEs
for a stable integration if the pipes in the network are directed properly. Let e ∈ EP
be an arbitrary edge modeling a pipe. As before, we introduce the discrete vari-
ables qe,l(t) = qe(0, t), qe,r(t) = qe(Le, t), pe,l(t) = pe(0, t), pe,r(t) = pe(Le, t) and
discretize (6) spatially as follows:

d
dt

dpipe,e(pe,l(t))+
1

SeLe
(qe,r(t)−qe,l(t)) = 0, (26a)

d
dt

qe,l(t)+
Se

Le
(pe,r(t)− pe,l(t)) = fpipe,e(pe,r(t),qe,l(t)), (26b)
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with dpipe and fpipe defined by (7). The parameter Le is the length of the pipe e and
Se is its diameter.

4.1.2 Network DAE

We consider gas networks with network elements described in Section 3.2. Using
the pipe discretization, we obtain a differential algebraic equation (DAE) of the form

E
d
dt

d(x(t))+b(x(t), t) = 0.

Let p = (pp, pq) with pp the pressure vector of the nodes with pressure conditions
and pq the ones without. Furthermore, qP,l and qP,r are the vectors of all pipe flows at
left and right nodes of the pipes. Since the left and right flows of all non-pipe element
models are equal, it is enough to consider only one flow per non-pipe arc. They are
collected in a vector qA . Then the DAE is derived from the PDAE by replacing
the first four equations (15)-(18) with (26), removing (19) by introducing just one
variable for it and removing (23) by replacing pl and pr everywhere by equation
(25). The equations (20)-(22) are written more concisely to get the following DAE:

d
dt

dpipe(A>P,r p(t)) = D−1
S D−1

L (qP,l(t)−qP,r(t)) (27a)

d
dt

qP,l(t) =−DSD−1
L (A>P,r +A>P,l)p(t)− fpipe(A>P,r p(t),qP,l(t)) (27b)

0 = fA (p(t),qA(t), t) (27c)
0 = AP,rqP,r(t)+AP,lqP,l(t)+AA qA (t)−qset(t) (27d)
0 = pp(t)− pset(t). (27e)

where dpipe and fpipe are vector-valued functions defined component-wise:
(dpipe(x))e = (dpipe,e)(xe) and similar for fpipe. For a concise notation we also in-
troduce the constant diagonal matrices DS and DL:

DS = diag{Se, e ∈ EP} DL = diag{Le, e ∈ EP}.

The algebraic element descriptions are given by

fA (p,qA , t) = [ fS, fV , fC, fR, fCV ]
> (AL p,AR p,qA , t),

with edge-wise defined functions fi = ( fi,e)e∈Ei , i ∈I \P.
In order to obtain a DAE system of index 1 for networks with a spatial pipe

discretization of the form (26), one has to adapt the direction of pipes in the network
to their topological location with respect to nodes with pressure and flow conditions.

Assumption 1
Let a gas network with pipes, resistors and compressors be given and described by
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a graph G = (N ,E ) with the node set N and the arc set E . Denote the set of nodes
with pressure conditions by Np and the set of pipe arcs by EP. Let NA be the set
of nodes u ∈N \Np that have an arc e ∈ E \EP directing to u. The graph G shall
fulfill the following conditions:

1. Each pipe eP is connected to a node of N \(Np∪NA ).
2. Each connected component of GP :=(N ,EP) has at least one node in Np∪NA .
3. For each node u ∈N , there exists at most one arc in E \EP directing to u.
4. No arc of E \EP directs to a node of Np.

In this assumption we consider nodes that are connected to an arc that is not a pipe
as special nodes and call the set of all these nodes by NA . We assume that a pipe
arc is always connected to a least one node that is not such a node and not a supply
node. The second point in the assumption is that in each connected component of
the network, we have a least one node that is either a supply node or connected to
a non-pipe arc. The third point is that every node is the end node for at most one
non-pipe arc and a non-pipe arc can never end in a supply node.

In [15] it has been shown that under these assumptions, the pipes of such gas
networks can be directed in such a way that the resulting DAE formed by (27) has
index 1 as the next theorem explains.

Theorem 1.
Let G = (N ,E ) be a connected, directed graph describing a gas network that ful-
fills Assumption 1. Then, the pipes in G can be directed in such a way that

1. no arc directs to a node of Np,
2. for each node u ∈N \Np, there exists an arc directed to u,
3. if an arc e ∈ E \EP directs to u ∈N \Np then none of the arcs of EP is directed

to u

and the DAE formed by (27) has index 1.

Given a network, we set up the directions within the network in such a way
that, if a certain node is a supply node (it lies in Np) all edges connected to it are
leaving the node and no edge is entering that node. It is always placed as a left end,
meaning that the direction of the orientation of the oriented graph points away from
the supply node. This makes sense as normally we assume that a supply node is
an inlet into the network. All other nodes have at least one arc that ends in them,
meaning they are the right node of at least one edge. Furthermore if an arc that is
not a pipe ends in a node than no other arc ends in that node. Under Assumption 1
this is always possible (Theorem 1) and creates a DAE of index 1.

5 Benchmark Networks

In this section we present four benchmark networks of different complexities. The
first benchmark describes a long pipeline, the second benchmark features a small
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pipe network including a cycle, the third benchmark has compressor and resistor
elements, and the fourth benchmark models a real gas transport network.

5.1 Pipeline Benchmark Model

The first benchmark model is taken from [2] and represents a real pipeline. For
this pipeline model, with physical specifications given in Table 3, the single pipe
model can be utilized together with the scenario, given in Fig. 2, to simulate outputs
from inputs. The inputs of the model are the pressure at the inlet of the pipe (the
supply node) and the mass-flux at the outlet (the demand node). The outputs are
then the mass-flux at the inlet and pressure at the outlet. Starting from a steady
state, a scenario is given by the input time series at the inlet and outlet (boundary).
In the provided scenario the inlet-pressure is kept constant over time, and the outlet-
mass-flux varies over time Fig. 2.

pipeline length 36300m
pipeline diameter 1.422m
pipeline roughness 0.000015m
Reynolds number 5000.0
Isothermal speed of sound 300.0 m

s
Steady supply 84.0bar
Steady demand 463.33 kg

s
time horizon 200h

Table 3 Pipeline benchmark model attributes

We reduced the length of the pipeline to 36.3km compared to [2] to allow an eas-
ier discretization. Practically, the pipeline simulation is realized using 1000 virtual
nodes subdividing the long pipeline into a cascade of shorter sequentially connected
pipes. The order of the differential equation is then 2000. This refinement strategy,
also used in [13], relaxes the Courant-Friedrichs-Levy (CFL) number allowing a
stable time-stepping. Using the parameters from Table 3 and the aforementioned in-
put scenario, the resulting output quantities over time are depicted in Fig. 2. These
results agree with the behavior described in [2].

5.2 Diamond network

This small-scale network is made up of 7 pipes, 1 entry node and 5 exit-nodes. The
topology is given by Fig. 3. Note that

Np = {u0}, Nq = {u1,u2,u3,u4,u5}.
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Fig. 2 Input-Output behavior for the pipeline benchmark. Upper left: Pressure at inlet, upper right:
mass flow at outlet, lower left: mass flow at inlet, lower right: pressure at outlet.
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1

Fig. 3 gas diamond – gas transportation network with 6 nodes and 7 arcs.

The gas network gas diamond (see Fig. 3) contains 6 nodes and 7 pipes. The node
u0 is considered to be a source and is modelled by a (constant) pressure condition
of 80bar. The remaining nodes are modelled via flow balance equations, but in our
scenario, only at node u6, gas will exit the network (see Fig. 4). The demand function
is given by a piecewise linear function, with a demand between 80 and 200 kg

s . A
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graphical representation of a solution to the scenario described in Fig. 4 can be seen
in Fig. 5.
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Fig. 4 (Diamond) pressure curves at the source node u0 and and demand at sink node u5.
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Fig. 5 (Diamond) Simulation results for scenario in Fig. 4. Pressures at the nodes (left), mass flows
at positions x = ` (middle) and x = 0 (right) for the pipes.

arc type u v (left) flow right flow
e0 pipe 1 0 23 24
e1 pipe 3 2 25 26
e2 pipe 5 4 27 28
e3 pipe 2 1 29 30
e4 pipe 1 6 31 32
e5 pipe 6 4 33 34
e6 pipe 4 2 35 36
e7 pipe 6 7 37 38
e8 pipe 7 8 39 40
e9 pipe 8 9 41 42
e10 pipe 9 10 43 44
e11 pipe 10 11 45 46

arc type u v (left) flow right flow
e12 valve 11 14 47
e13 short pipe 14 15 48
e14 resistor 11 12 49
e15 c.-unit 12 13 50
e16 resistor 13 15 51
e17 pipe 15 16 52 53
e18 pipe 16 17 54 55
e19 pipe 17 18 56 57
e20 pipe 18 19 58 59
e21 pipe 19 20 60 61
e22 pipe 20 21 62 63
e23 pipe 20 22 64 65

Table 4 ids of adjacent nodes and flows of edges from gas N23 A24 network, see Fig. 6.
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Fig. 6 gas N23 A24 – gas transportation network with 23 nodes and 24 arcs. The dashed line rep-
resents a short pipe. The node enumeration corresponds to that defined in the benchmark function
(for viewing results).

5.3 Gas transportation network – gas N23 A24

The gas network gas N23 A24 DAE (see Fig. 6) contains 23 nodes, which can be
defined as pressure conditions (mostly at sources) or flow conditions (representing
other sources, sinks and innodes) depending on a user definable behaviour prop-
erty. Per default the nodes N and W are considered to be sources and initialised
with pressure conditions. Any other node is considered a flow node, where S, E1
and E2 are considered to be the only sinks. Furthermore, a compressor station be-
longs to the network in the middle of the 100 km pipeline. The station consists of 2
resistors, a by-pass valve, a short pipe and a single idealised compressor unit. The
scenario including boundary conditions and target values for the compressor unit is
described in an extra file N23_A24_bconditions.xml as well as implemented
or contained within the python script of this benchmark instance N23_A24.py.

Between hour 5 and 7, the compressor unit works maximum power bound and
cannot sustain the desired compression ratio until the ingoing pressure raises up
again.
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Fig. 7 gas N23 A24 – pipe e2 (node 4 & source node N): flow and pressure curves
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Fig. 8 gas N23 A24 – pipe e22 (node 20 & exit node E1): flow and pressure curves
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Fig. 9 gas N23 A24 – idealised compressor unit (nodes 12 & 13): flow, pressures and
compression-factor (α)

5.4 Gas transportation network – gas N138 A139 (derived from
GasLib-134)

The gas network gas N138 A139 DAE (see Fig. 10) contains 138 nodes and is de-
rived from the stationary gas network instance GasLib-134 (see [16] and [27]). Here
the compressor station and the control valve from the original source are extended
by an ingoing and outgoing resistor as well as a bypass valve. To that end 4 addi-
tional nodes were introduced increasing the number from 134 up to 138. The rest
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Fig. 10 gaslib 134 – gas network from gaslib.zib.de with 134 nodes and 133 arcs. The node Ids of
all 45 sinks and the 3 sources are displayed.

of the network topology stays the same. All nodes and arcs in the python imple-
mentation of this benchmark example are enumerated and do have a name property,
too. This example contains an idealized compressor unit and a control valve. The 6
hour transient scenario was created on the basis of the daily nominations from the
GasLib-134 instance in that the nominated flows are interpolated piece-wise linear
and switched through every 2 hours.

Between hour 2 and 6 the source node with name node 1 stops providing gas
to the network (see Fig. 11). The adjacent pipe with name p br1 is 14.56 km long
such that gas can still be drawn from the other side while the gas pressure and so the
gas density decreases. It can be observed that the compressor station (see Fig. 13)
increases its power or the compression ratio α resp. as a counter reaction to preserve
the outgoing target pressure which is set to pr,set ≡ 70 bar.
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Fig. 11 gas N138 A139 – pipe p br1 (connecting the source node (name: node 1, idx: 0) with
innode (name: node 2, idx: 1): flow and pressure curves
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Fig. 12 gas N138 A139 – pipe node 72 ld42 (connecting the innode (name: node 72, idx: 108)
with sink node (name: node ld42, idx: 107): flow and pressure curves

0 1 2 3 4 5 6
time [h]

64.5

65.0

65.5

66.0

66.5

67.0

flo
w 

[k
g_

pe
r_
s]

e(134, 135) : idealCompressor_p
q

0 1 2 3 4 5 6
time [h]

63

64

65

66

67

68

69

70

pr
es
su
re
 [b

ar
]

node 134 and 135

pL
pR

0 1 2 3 4 5 6
time [h]

1.090

1.095

1.100

1.105

1.110

1.115

al
ph

a 
sc

al
ar
 [1

]

alpha scalar - e(134, 135)

Fig. 13 gas N138 A139 – idealised compressor unit (nodes 134 & 135): flow, pressures and
compression-factor (α)

6 Concluding Remarks

Gas network modelling and numerical solution thereof is at the interface between
the real life application and differential algebraic equation research, This is also an
interesting class of applications due to their manifold challenges, such as nonlinear-
ity or hyperbolicity. In this work we presented a modular gas network model as well
as four benchmarks, which enable testing of extensions of this basic model as well
as implementations of DAE solvers.
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Fig. 14 gas N138 A139 – control valves (nodes 136 & 137): flow, pressures and degree of openess
(α)

Code and Data Availability

The code and data used in this work can be obtained as supplementary material.
The data is prepared in form of three XML-files for each benchmark example. The
net.xml-file containing the network topology, the bconditions.xml-file providing the
boundary conditions (i.e. the in- and out going flows at sources and sinks as well
as fixed pressures and target values for compressors and control valves) and the re-
sult.xml-file containing our reference solution. XML Schema or XSD files for the
validation and documentation will be provided alongside. These schema files were
created to store transient gas network scenarios and were kindly supplied to us by
the SFB Transregio 154 (homepage http://trr154.fau.de/index.php/
en/). It should be noted, however that the net.xml and the bconditions.xml files of
both the gas N23 A24 and the gas N138 A139 will not completly validate against
the schemes. The formats were intended for a more detailed description of compres-
sor units as so called turbo compressors. In this paper we introduced an idealized
description of compressors which are not covered by the schema files. Besides this
described data the supplementary material also includes code that creates the Dif-
ferential Algebraic Equation for each of this networks. For the pipeline this is done
in MATLAB, and for the others it is done in Python.

http://trr154.fau.de/index.php/en/
http://trr154.fau.de/index.php/en/
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