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Abstract

An algorithm based on a delayed constraint generation method for solving semi-
infinite programs for constructing minimax optimal designs for nonlinear models
is proposed. The outer optimization level of the minimax optimization problem
is solved using a semidefinite programming based approach that requires the de-
sign space be discretized. A nonlinear programming solver is then used to solve
the inner program to determine the combination of the parameters that yields the
worst-case value of the design criterion. The proposed algorithm is applied to
find minimax optimal designs for the logistic model, the flexible 4-parameter Hill
homoscedastic model and the general nth order consecutive reaction model, and
shows that it (i) produces designs that compare well with minimax D−optimal de-
signs obtained from semi-infinite programming method in the literature; (ii) can
be applied to semidefinite representable optimality criteria, that include the com-
mon A−, E−, G−, I− and D-optimality criteria; (iii) can tackle design problems
with arbitrary linear constraints on the weights; and (iv) is fast and relatively easy
to use.
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1. Motivation

We consider the problem of determining model-based optimal designs of ex-
periments (M-bODE) for statistical models. Such a problem has increasing rele-
vance today to control costs with broad applications in areas such as biomedicine,
engineering, and pharmaceutical industry, to name a few (Berger and Wong, 2009;
Goos and Jones, 2011; Fedorov and Leonov, 2014). M-bODE are useful because
they can provide maximum information with high statistical efficiency at min-
imum cost. Our setup is that we have a given parametric model defined on a
compact design space, a given design criterion and a given budget, that typically
translates into having a predetermined total number of observations, n, available
for the study. The design problem is to determine optimal design points that de-
scribe the experimental conditions and whether replicates are required at each of
these design points, subject to the requirement that they sum to n. These design
issues involve hard combinatorial optimization problems that are known to be NP-
hard (Welch, 1982). However, the limit problem where n→ ∞, which is the focus
of this paper, and in which we search the optimal proportion of the total number
of trials to be performed at each individual design point, is an easier, convex con-
tinuous optimization problem.

In the field of M-bODE, mathematical programming approaches have been
successfully applied to solve design problems. Some examples are Linear Pro-
gramming (Gaivoronski, 1986; Harman and Jurík, 2008), Second Order Conic
Programming (Sagnol, 2011; Sagnol and Harman, 2015), Semidefinite Program-
ming (SDP) (Vandenberghe and Boyd, 1999; Papp, 2012; Duarte and Wong, 2015),
Semi-Infinite Programming (SIP) (Duarte and Wong, 2014; Duarte et al., 2015),
Nonlinear Programming (NLP) (Chaloner and Larntz, 1989; Molchanov and Zuyev,
2002), NLP combined with stochastic procedures such as genetic algorithms (Heredia-
Langner et al., 2004; Zhang, 2006), and global optimization techniques (Boer and
Hendrix, 2000; Duarte et al., 2016). Traditional algorithms for finding optimal
designs are reviewed, compared and discussed in Cook and Nachtsheim (1982)
and Pronzato (2008), among others. Mandal et al. (2015) provides a review of al-
gorithms for generating optimal designs, including nature-inspired meta-heuristic
algorithms, which are increasingly used in computer science and engineering to
solve high dimensional complex optimization problems.

When the design criterion is not differentiable, finding an optimal design for
a general nonlinear model is a difficult computational task. For instance, consider
finding a minimax (or maximin) optimal design which has a non-differentiable
criterion. The design criterion remains convex and there is an equivalence the-
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orem for checking the optimality of the design. However in practice, there are
considerable difficulties in finding and checking whether a design is optimal un-
der the minimax framework (Noubiap and Seidel, 2000). In particular, the prob-
lem has two or more levels of optimization and the non-differentiability of the
criterion requires mathematical programming based algorithms that can compute
sub-gradient and iteratively evaluate the global or local (lower/upper) bounds to
solve the optimization problem.

Minimax design problems abound in practice. For example, one may wish to
estimate the overall response surface in a dose response study. A common design
criterion is to consider the areas where the largest predictive variance may occur
and find a design that minimizes the maximum predictive variance. The outer
level program finds a design after the inner problem determines the set of model
parameters that results in the largest possible predictive variance. Theoretically,
we can use SIP to tackle optimal design problems for any nonlinear model, see
for example Duarte and Wong (2014). However, there are three potential issues
with the SIP approach: (i) the task to program from scratch the various functionals
of the inverse of the Fisher Information Matrix FIM (e.g. determinant, trace) for
the various design criteria can be complex and so may limit generalization of the
algorithm to solve other problems; (ii) the SIP-based approach finds the optimal
design in the outer optimization problem (which is a hard problem) using a NLP
solver that does not guarantee global optimality of the solution unless global op-
timization techniques are employed; and (iii) the SIP-based algorithm determines
the number of support point for the optimal design iteratively, which can be time
consuming. This is in contrast to our proposed SDP-NLP combined approach
where (i) we solve the outer optimization problem using SDP which guarantees
the global optimality of the design; (ii) we use the NLP solver to only solve the
inner optimization program; (iii) find the number of support points for the opti-
mal design simultaneously using SDP; and (iv) our method optimizes the design
points from a pre-determined candidate set of points versus having to search for
the number and the design points over a continuous domain.

Our main contribution is an algorithm to determining minimax optimal de-
signs using a combination of mathematical programming algorithms that on turn
stand on deterministic replicable methods. The algorithm creatively combines
SDP and NLP to find minimax A−, E− and D−optimal designs easily and real-
ize the efficiency gain in computing. In particular, the convex solver is able to
identify support points of the design (within the predetermined set of points) by
assigning zero-weight to non-support points for a broad class of semidefinite rep-
resentable criteria. Our approach is flexible in that it can incorporate other con-
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straints and strategies when appropriate. For instance, adaptive grid techniques
recently proposed by Duarte et al. (2017) may be incorporated into our algorithm
to refine the support points and collapse those that are close in proximity using a
pre-defined εCOL-vicinity tolerance. The key advantages in our approach are that
the SDP solver guarantees that it finds the global optimum in polynomial time and
the NLP solver only finds the parameter combination at which a locally optimal
design is least efficient, which is, in most of the problems, a low dimension pro-
gram. Another innovative aspect is using the structure of the plausible region of
the parameters to judiciously construct the initial approximation of the continuous
domain which increases the convergence rate to the solution.

Section 2 presents mathematical background for the SDP and NLP formula-
tion problems. Section 3 provides the specifics for the SDP and NLP formulations
for the outer and inner levels of the optimization problem. Section 4 presents
three applications of the algorithm to find minimax optimal designs for nonlinear
models where the nominal values of the parameters of interest all belong to a user-
specified set called the plausibility region. We first consider the logistic model and
then the more flexible and widely used 4-parameter homoscedastic Hill model to
test if our proposed algorithms can generate minimax optimal designs similar to
those reported in the literature. In the third application, we test our algorithm
using the nth order consecutive reaction model described by ordinary differential
equations. Section 5 concludes with a summary.

2. Background

This section provides the background material and the mathematical formu-
lation for finding optimal experimental designs for nonlinear models. In section
2.1 we introduce the minimax optimal design problem. Section 2.2 introduces
the fundamentals of SDP and section 2.3 presents the basics of NLP. We use bold
face lowercase letters to represent vectors, bold face capital letters for contin-
uous domains, blackboard bold capital letters for discrete domains, and capital
letters for matrices. Finite sets containing ι elements are compactly represented
by [ι] = {1, · · · , ι}.

Throughout we assume we have a regression model with a univariate response
and several regressors x ∈ X ⊂ Rnx where nx is the dimension of the design space.
The mean response at x is

E[y|x, p] = f (x, p), (1)
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where f (x, p) is a given differentiable function, E[•] is the expectation operator
with respect to the error distribution and the vector of unknown model param-
eters is p ∈ P ⊂ Rnp . Here, P is a user-selected np-dimensional cartesian box
P ≡ ×np

j=1[l j, u j] with each interval [l j, u j] representing the plausible range of val-
ues for the jth parameter. The exact optimal design problem is: given a design
criterion and a predetermined sample size, n, select a set of n runs using the best
combinations of the levels of the regressors to observe the responses.

Here, we focus on approximate or continuous designs, which are large sam-
ple designs so that the replicates can be viewed as proportions of the total num-
ber of observations to be taken at the design points. A continuous design, ξ,
is characterized by the number of support or design points, k, their locations
xi ∈ Rnx , i ∈ [k], from a user-specified design space X and the proportion of the to-
tal number of observations, wi, to assign at each design point. Clearly, wi ∈ (0, 1),
and w1 + w2 + · · · + wk = 1. In practice, continuous designs are implemented by
taking roughly n×wi replicates at level xi, i ∈ [k] after rounding n×wi to an inte-
ger subject to the constraint n×w1 + · · ·+ n×wk = n. Advantages of working with
continuous designs are many, and there is a unified framework for finding optimal
continuous designs for M-bODE problems when the design criterion is a convex
function on the set of all approximate designs (Fedorov, 1980). In particular, the
optimal design problem can be formulated into a mathematical optimization pro-
gram with convex properties and equivalence theorems are available to check the
optimality of a design in a practical way.

Consider a continuous design ξ with k points, where the weight of the ith design
point xT

i = (xi,1, . . . , xi,nx) is wi, with
∑k

i=1 wi = 1. We identify such a design
with the discrete probability measure ξ =

∑k
i=1 wi δxi , and simply represent it

by a list of k vectors (xT
i ,wi), i ∈ [k]. Under mild regularity assumptions of

the probability density function of the observations and design ξ, the variance-
covariance matrix of Maximum Likelihood Estimates is well approximated by
the inverse of the Fisher Information Matrix (FIM) and attains the lower bound
in Cramér-Rao inequality (Rao, 1973). Consequently, one can view an optimal
design problem as an allocation scheme of the covariates to minimize in some
sense the variance-covariance matrix. Given the relation between the variance-
covariance matrix and the FIM, the worth of the design ξ is measured by its FIM,
which is the matrix with elements equal to the negative of the expectation of the
second order derivatives of the log-likelihood of all observed data with respect
to the parameters. When responses are independent, the normalized FIM of a
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continuous design ξ is

M(ξ, p) = − E
[
∂

∂p

(
∂L(ξ, p)
∂pT

)]
=

∫
X

M(δxi , p)ξ(dx) =

k∑
i=1

wi M(δxi , p). (2)

Here, L(ξ, p) is the log-likelihood function of the observed responses using
design ξ, δx is the degenerate design that puts all its mass at x andM(ξ, p) is the
global FIM from the design ξ for making inference on the parameter vector p.
Sometimes, the term global FIM is also referred to as the total FIM, or simply,
FIM and, the FIM from a degenerate design is called elemental.

In what is to follow, we show our proposed semidefinite programming based
approach is well suited to solve minimax optimal design problems. The method-
ology requires the design space X be discretized into many points. Let X be the
discretized version of X with say q points. A common and simple way to dis-
cretize X is to use a grid set with equally-spaced points ∆x units apart on each
of the design spaces for all the regressor variables. We then search a probability
measure χ on X so that ∑

x∈X

M(δx, p) χ(x)

approximates (2) as close as possible.
When errors are normally and independently distributed, the volume of the

asymptotic confidence region of p is proportional to det[M−1/2(ξ, p)], and so max-
imization of the determinant of the FIM leads to the smallest possible volume.
Other design criteria maximize the FIM in different ways and are usually formu-
lated as a convex function of the FIM. For example, when p is fixed, the locally
D−, A− and E−optimal designs are each, respectively, defined by

ξD = arg min
ξ∈Ξ

{
det[M(ξ, p)−1]

}1/np
, (3)

ξA = arg min
ξ∈Ξ

{
tr[M(ξ, p)−1]

}
, (4)

ξE = arg min
ξ∈Ξ
{1/λmin[M(ξ, p)]} . (5)

Here λmin(λmax) is the minimum (maximum) eigenvalue of the FIM, and Ξ is the
set of all designs on X. We note that 1/λmin[M(ξ, p)] = λmax[M(ξ, p)−1], and by
continuity, the design criteria (3-5) are defined as +∞ for designs with singular
information matrices.
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More generally, Kiefer (1974) proposed a class of positively homogeneous de-
sign criteria defined on the set of symmetric np×np positive semidefinite matrices
S+

np
. IfM(ξ, p) ∈ S+

np
, this class is

Φδ[M(ξ, p)−1] =

[
1
np

tr(M(ξ, p)−δ)
]1/δ

, (6)

where δ ≥ −1 is a parameter.
We note that Φδ is proportional to (i) [tr(M(ξ, p)−1)], which is A−optimality

when δ = 1; (ii) 1/λmin[M(ξ, p)], which is E−optimality when δ = +∞; and
(iii) [det[M(ξ, p)]−1]1/np , which is D−optimality when δ→ 0.

Because these criteria are convex on the space of information matrices, the
global optimality of any design ξ in X can be verified using equivalence theorems,
see for example (Whittle, 1973; Kiefer, 1974; Fedorov, 1980). They are derived
from directional derivative considerations and have a general form, with each con-
vex criterion having its own specific form. For instance, the equivalence theorems
for D− and A−optimality are as follows: (i) ξD is locally D-optimal if and only if

tr
{
[M(ξD, p)]−1 M(δxi , p)

}
− np ≤ 0, ∀x ∈ X; (7)

and (ii) ξA is locally A-optimal if and only if

tr
{
[M(ξA, p)]−2 M(δxi , p)

}
− tr

{
[M(ξA, p)]−1

}
≤ 0, ∀x ∈ X. (8)

We call the functions on the left side of the inequalities in (7) and (8) disper-
sion functions.

2.1. Minimax designs
Nonlinear models are common in many areas with typical applications rang-

ing from engineering to pharmacokinetics. For such models, the FIM depends
on the parameters and consequently all design criteria, which are dependent on
the FIM, depend on the unknown parameters that we want to estimate. When
nominal values are assumed for these parameters, the resulting designs are termed
locally optimal. The design strategies commonly used to handle the dependence
noticed above include the use of: (i) a sequence of locally optimal designs, each
computed using the latest estimate of p; (ii) Bayesian designs that optimize the
expectation of the optimality criterion value averaged over the prior distribution
of model parameters p in P (Chaloner and Larntz, 1989); (iii) minimax designs
that minimize the maximal value of the criterion from the unknown values of the
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model parameters in P (Wong, 1992).In either case the prior distribution and the
set P are assumed known. Here we focus on finding minimax optimal designs.

Minimax design criteria have many forms and in this paper, we assume that
there is a priori minimal knowledge of the true values of the parameters. One
scenario is that the user has a plausible range of values for each model parameter.
A reasonable goal is to find a design that maximizes the minimal accuracy for the
parameter estimates regardless which set of model parameter values in the plau-
sible region is the truth. The maximin, or equivalently, the minimax Φδ-optimal
design sought is the one that minimizes

max
p∈P

Φδ[M(ξ, p)−1] (9)

among all designs in Ξ. The minimax optimal design problems for A−, E− and
D−optimality criteria are constructed from (9) for δ = 1, +∞ and δ → 0, respec-
tively, see (3-5). The mathematical program for problem (9) is

min
ξ∈Ξ

max
p∈P

Φδ[M(ξ, p)−1] (10a)

s.t
k∑

i=1

wi = 1. (10b)

As an example, application of (10) to find a minimax E−optimal design yields:

min
ξ∈Ξ

max
p∈P

(λmin[M(ξ, p)])−1 (11a)

s.t
k∑

i=1

wi = 1 (11b)

and similar formulations apply for other criteria in the Φδ class.
Our minimax design problems remain convex and so equivalence theorems for

verifying optimality of a minimax design can also be constructed. The reader is
referred to Berger and Wong (2009) for details on the general equivalence theo-
rems for a minimax type of optimality criteria. This is discussed more generally
in Wong (1992), who gave an unified approach to constructing minimax optimal
designs. Duarte and Wong (2014), among others, displayed the equivalence the-
orems for minimax D−, A− and E−optimality and for space consideration, we
do not discuss them in this paper. They are more complicated than the ones for
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locally optimal designs because sub-gradients are involved in the dispersion func-
tions. These plots represent the dispersion functions and have a general pattern; if
the design under investigation is optimal, the dispersion function must be bounded
from above by zero with equality at every support point of the design. Figure 2 in
Section 4 display examples of such plots.

We next review programming based tools for solving such minimax problems.
Finding the design ξ in (10a) is called the outer problem of the minimax pro-
gram. The inner problem determines, for a given design, the values of the model
parameters p that make the criterion least attainable. The overall optimization
problem is complex because it poses several challenges: (i) the objective function
of the outer problem is not differentiable, and consequently the subgradient used
in the approximation may lead to many maximizers; (ii) the inner problem func-
tion can be sensitive and may require long computing time to solve it accurately;
and (iii) global maxima of the inner problem are required to solve the minimax
problem (Rustem et al., 2008).

2.2. Semidefinite programming
We use semidefinite programming to solve the outer problem by first discretiz-

ing the design space before applying a SDP solver to find the optimal design.
Details on general use and application of SDP to search for optimal designs for
linear models are available in Vandenberghe and Boyd (1996). Additional ap-
plications include finding (i) criterion-robust maximin designs for linear models
(Filová et al., 2011), (ii) D−optimal designs for polynomial models and rational
functions (Papp, 2012); and (iii) Bayesian optimal designs for nonlinear models
(Duarte and Wong, 2015). This section reviews briefly the basics of this class of
mathematical programs.

Let S+
np

be the space of np × np positive semidefinite matrices. A function
ϕ : Rm1 7→ R is called semidefinite representable (SDr) if and only if inequalities
of the form u ≤ ϕ(ζ) can be expressed by linear matrix inequalities (LMI), see for
example, Papp (2012) and Sagnol (2013). That is, ϕ(ζ) is SDr if and only if there
exists some symmetric matrices M0, · · · ,Mm1 , · · · ,Mm1+m2 such that

u ≤ ϕ(ζ) ⇐⇒ ∃v ∈ Rm2 : u M0 +

m1∑
i=1

ζi Mi +

m2∑
j=1

v j Mm1+ j � 0. (12)

Here, � stands for the ordering associated with the semidefinite cone where A � B
holds if and only if A− B ∈ S+

np
. For a given vector c, the optimal values, ζ ∈ Rm1 ,
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of the SDr functions are found from semidefinite programs of the form:

max
ζ

cT ζ,
m1∑
i=1

ζi Mi − M0 � 0

 . (13)

In the design context, c is a vector of known constants that depends on the
design problem and the matrices Mi, i ∈ [m1] contain the local FIM’s and other
matrices produced by the reformulation of the functions ϕ. The decision variables
in the vector ζ contain the weights wi, i ∈ [q] of the optimal design and opti-
mized values for the auxiliary variables introduced, and q is pre-determined by
the discretization scheme. The outer problem corresponds to finding a design for
a finite set of parameter combinations p found by solving (13) subject to the linear
constraints on the weights such that they are non-negative and sum to unity.

Ben-Tal and Nemirovski (2001, Chap. 2-3) provides a list of SDr functions
useful in SDP formulations for solving M-bODE problems, see Boyd and Van-
denberghe (2004, Sec. 7.3) for the basis. Sagnol (2013) showed that each crite-
rion in the Kiefer’s class of optimality criteria in (6) is SDr for all rational values
of δ ∈ [−1,+∞) where δ = 0 is taken to mean the limiting case when δ → 0,
i.e., D−optimality criterion. We note that when there are a finite number of α SDr
functions ϕ1, · · · , ϕα, then mini=1,··· ,α{ϕi} is also SDr, implying that one can formu-
late the worst-case scenario problem by a semidefinite representable hypograph.

2.3. Nonlinear programming
Nonlinear programming seeks to find the optimum of a mathematical program

where some of the constraints or the objective function are nonlinear. A general
nonlinear program has the following form:

max
p∈P

f (p) (14a)

s.t g(p) ≤ 0 (14b)
h(p) = 0 (14c)

where f (p) is a linear/nonlinear function, g(p) is a set of inequality constraints
which may be linear and/or nonlinear and h(p) is a set of equality constraints.
Here, p are variables to be optimized from a known compact set P. We use non-
linear programming to solve the inner problem of (9) for each fixed design ξ. Our
objective function is Φδ[M(ξ, p)−1] criterion and the solution to the inner problem
is the vector of parameters that result in the ξ being least efficient.
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Finding the solution of the nonlinear program (14) is the most difficult step in
the algorithm (Pázman and Pronzato, 2014) because it requires finding globally
optimal solutions in the compact domain P to guarantee the convergence of the
upper bound as we will show in §3.

There are several algorithms commonly used to solve NLP problems and they
include the following: General Reduced Gradient (GRG) (Drud, 1985, 1994),
Sequential Quadratic Programming (SQP) (Gill et al., 2005), Interior-Point (IP)
(Byrd et al., 1999), and Trust-Region (Coleman and Li, 1994). Ruszczyński
(2006) provides an overview of NLP algorithms. The NLP solvers employed in
our proposed algorithm do not guarantee global optimality, only local optimal-
ity. This is in contrast to those based on Lipschitz global optimization techniques
that guarantee convergence but are a lot less computationally efficient. There
are heuristics, such as resorting to multiple restarts or simulated annealing that
can be used to find a “good” local optimum, but in general it would require the
use of branch and bound techniques to prove global optimality (Sahinidis, 2014).
Most of Lipschitz global optimization solvers are based on branch and bound tech-
niques or stochastic procedures, and may require long CPU times. Consequently,
we avoid them for practical reasons, and use a gradient-based local NLP solver.
These tools might be unable to find global optima but they guarantee that local
optima can be found in mild computational time, and since the problems are of
low dimension we believe that in most cases they coincide with the global optima.
To increase the efficiency and accuracy of the NLP solver we use an automatic
differentiation tool to generate the jacobian analytically. With the same purpose,
we developed a global nonlinear programming tool based on a multistart heuristic
algorithm that was compared with the NLP solver.

3. Algorithms

This section describes our proposed algorithm for finding minimax Φδ-optimal
designs over Ξ, or more generally, over ΞA,b where ΞA,b := {{xi,wi}i=1,...,k : w ≥
0,

∑
i wi = 1, Aw ≤ b}, A is a matrix and b is a vector. In section 3.1 we formulate

and solve the outer optimization problem using SDP, and in section 3.2 we tackle
the inner optimization problem using a NLP solver.

The minimax optimal design problem is handled in program (10) after the en-
tire covariate design space X is discretized. The optimization problem has finitely
many variables to be optimized over a given feasible set described by infinitely
many constraints, one for each p ∈ P (López and Still, 2007). This falls into
the class of semi-infinite programming, where Hettich and Kortanek (1993) and
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López and Still (2007) each provides a survey of the theory, applications and re-
cent developments. The algorithms employed to solve SIP problems fall into three
classes: (i) exchange methods; (ii) discretization based methods; and (iii) local re-
duction based methods (Hettich et al., 2001). Here, we use an exchange based
procedure similar to the one proposed by Blankenship and Falk (1976), and fur-
ther exploited by Žakovíc and Rustem (2003) and Mitsos and Tsoukalas (2015)
among others.

To convert (10) into an equivalent semi-infinite program we note that for a
given value of τLB ∈ R:

max
p∈P

Φδ[M(ξ, p)−1] ≤ τLB ⇐⇒ Φδ[M(ξ, p)−1] ≤ τLB, ∀p ∈ P. (15)

Accordingly, the equivalent semi-infinite program obtained using a relaxation
procedure is (Shimizu and Aiyoshi, 1980):

min
ξ∈Ξ,τLB∈T

τLB (16a)

s.t Φδ[M(ξ, p)−1] ≤ τLB, ∀p ∈ P (16b)
k∑

i=1

wi = 1 (16c)

where T = [τL, τU] ∈ R is a closed interval with τL being a large negative value,
and τU a large positive one. The semi-infinite program (16) is called the master
problem when P is infinite. One advantage of our approach is that additional
linear constraints on the design weights, if any, can be handled in a straightforward
fashion. Indeed, if a minimax optimal design is sought over ΞA,b, one must simply
add the following constraints into the master problem:

Aw ≤ b. (16d)

When P is replaced by a finite subset P of P, we obtain an approximation of
program (16) which is commonly designated a restricted master problem (RMP).
By construction, the optimal solution of this RMP provides a lower bound of the
optimal value of (16), see for example Mutapcic and Boyd (2009), and our strat-
egy is to solve the RMP using semidefinite programming. A delayed constraint
generation method is used to solve the original problem, which has an infinite
number of constraints. We do so by approximating the problem by a finite set
of points P sampled from P. The constraints might be saturated at the optimum
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(Terry, 2009) and the term “delayed” means that not all constraints are present
at the beginning. Initially, the set P is populated with random points and at each
iteration that follows, additional vectors p that make the SDP-generated design
least efficient are included. The optimization problem (16) is solved iteratively,
alternating between two phases as follows.

The proposed algorithm has similarities with the approach used in Pronzato
and Walter (1988) and Walter and Pronzato (1997, Sec. 6.4.4) to find minimax
designs. Here, we start the convergence with a finite number of vectors P, not
only one as in the latest reference. Similarly to Walter and Pronzato (1997, Sec.
6.4.4), the outer and the inner optimization problems are solved iteratively to con-
vergence. The inner program is formulated as a NLP and serves to find the vector
of parameters at which a locally optimal design is less efficient; the outer program,
formulated as a SDP in a previously discretized design space, is to determine the
optimal design for a finite set P that replaces P. The vectors of parameters that
solve the inner problem for a given locally optimal design are appended to the set
of instances P to increasingly constraining the design. Notice that P replacing P
changes at each iteration. Suppose that the initial set P(0) has m0 elements and at
the jth iteration, this set becomes P( j) and has m0 + j elements. This assumes that
we add one element from P to the original finite set P(0) at each iteration, and this
element is the worst p for a given local optimum design ξ. The algorithm iterates
between the outer program P1 and the inner problem P2 until convergence. If ξ(0)

is the initial design and ξ( j−1) is the optimal design at the ( j − 1)th iteration, we
solve

• the Phase 1 outer problemP1 (16) by finding a design ξ( j) and a lower bound
of the minimax program, τ( j)

LB after P is replaced by P( j−1), and

• the Phase 2 inner problem P2 by finding the set of model-parameter values
p( j) that yields the worst (largest) possible value of the criterion Φδ[M(ξ, p)−1]
for ξ( j). The solution provides an upper bound τ( j)

UB for the minimax problem
and iterates after adding p( j) to P( j−1) to obtain

P( j) = P( j−1) ∪ p( j), (18)

for the next iteration.

The above algorithm stops when the two bounds converge and reaches an ε-
optimal solution, where ε is a user-specified small positive constant. In practice
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this means that after each iteration one verifies whether the condition∣∣∣∣∣∣∣τ
( j)
UB − τ

( j)
LB

τ
( j)
UB

∣∣∣∣∣∣∣ ≤ ε, (19)

is satisfied. Blankenship and Falk (1976) showed that the procedure is guaranteed
to converge to the global optimum in a finite number of iterations. Moreover, we
shall see in Proposition 1 that the stopping criterion (19) ensures a lower bound
on the efficiency of the returned design.

Our algorithm has similarities with algorithms developed by Melas (2006, Sec.
8.7.1) using the functional approach for determining maximin and standardized
maximin optimal designs. The key idea is that the optimal support points and the
associated optimal weights can be treated as functions of the estimated parameters
and, as such, can be developed into a Taylor series around the nominal values of
these parameters. The author uses standard arguments to prove that a sequence
of locally optimal designs obtained for a given discrete set of parameter combina-
tions contains a weakly convergent subsequence with a limit, and the standardized
maximin optimality can be checked with a general equivalence theorem, see Dette
et al. (2007). The approach is elegant and behaves well numerically but because it
exploits problem specificities may be somewhat limited for general applications.

To describe our algorithm in more detail, we need additional notation. Let
υ(P) and E(P) be the sets of vertices and edges of P, respectively. Let m0 be
the user-specified sample size of P(0) and let U(Q) be the uniform distribution
over the general compact domain Q enclosing a general sub-domain of the pa-
rameters plausible region. Let m0,k ≤ m0 be the number of samples p including
the vertices and other points randomly generated by sampling E(P). Further, let
m0,r = m0 − m0,k be the remaining number of samples that are generated by sam-
pling randomly from the overall domain P and not only from the edges E(P). The
sampling procedure uses a uniform random number generator to draw elements
from the closed domain Q, see Press et al. (2007, Chap. 7).

We use an empirical relation based on the structure of P to set the value of
m0,k. Since P is formed from the cartesian product of intervals for each of the
np parameters, the compact domain contains 2np vertices and np 2np−1 edges. We
then set m0,k = 2np + np 2np−1, and consequently m0,r = m0 − 2np − np 2np−1. The
collection of data samples in P(0) is constructed as follows:

P(0) =
{
p1, ..., pm0

}
(20)

where p1, ..., p2np are the vertices of P, p2np +1, ..., pm0,r are sampled from the uni-
form distribution U(E(P)) with one point from each edge, and pm0,r+1, ..., pm0 are
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drawn fromU(P). The sampling scheme is similar to that used in the H-algorithm
proposed by Fackle-Fornius et al. (2015) to first find a prior distribution for con-
structing Bayesian optimal designs and then use them to check the optimality of
minimax standardized designs.

All our examples in §4 use m0=50 but other values can be used. The above rule
is empirical and seems to work well for finding the optimal designs sought here.
We reason that the construction of P(0) relies on the properties of Φδ[M(ξ, p)−1]
and our experience is that while this function is not convex nor concave (Pronzato
and Pázman, 2013) over the parameter space, the vectors p for which a design is
least efficient are usually the vertices of the plausible region or points located on
one of the edges of P. We exploit this feature and so include the vertices and some
randomly chosen points of E(P) in the initial set. We find that such a construction
can sometimes reduce the computation time, especially when the optimum of the
inner problem is one of the vertices.

Algorithm 1 below summarizes how we combine SDP with NLP to find min-
imax optimal designs with accompanying details on the subproblems in Phases
1 and 2. Sections 3.1 and 3.2 provide additional details about the formulations
and numerical solvers used in Algorithm 1. Here and throughout, we denote the
design obtained after convergence by ξOPT and one set of worst-case values for the
model parameter at convergence by pOPT.

The minimax-criteria Ψ(ξ) := maxp∈P Φδ[M(ξ, p)−1] is nonnegative (and even
positive at the optimum, cf. Pukelsheim (1993)) and positively homogeneous, so
it is natural to define the efficiency of a design ξ by

Eff(ξ) =
Ψ(ξOPT)

Ψ(ξ)
,

where ξOPT is minimax-optimal. Uppon convergence, the following proposition
bounds the efficiency of the design returned by Algorithm 1:

Proposition 1. Let ξOPT be the design returned by Algorithm 1, where we assume
that each subproblem P1 and P2 is solved exactly (to global optimality). Then,
Eff(ξOPT) ≥ 1 − ε. More generally, if we assume that the subproblems P1 and P2

are solved within relative accuracy εL and εU , respectively, then the bound on the
efficiency becomes

Eff(ξOPT) ≥ (1 − ε)
1 − εL

1 + εU
.

Proof. We start with the case where each subproblem is solved exactly. By con-
struction, τ( j)

LB and τ( j)
UB are lower and upper bounds for Ψ(ξOPT), and at each itera-
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Algorithm 1 Algorithm to find minimax optimal designs
procedure MinimaxOptimalDesign(∆x,m0,r,m0,k, τ

L, τU , ε, l j, u j, ξ
OPT, pOPT)

Construct X using intervals ∆x . Discretization of the design space
Construct P(0) . Sample m0 points from P according to (20)
j← 1 . Initialize iterations counter
τ(0)

LB ← τL, τ(0)
UB ← τU

while |(τ( j−1)
UB − τ

( j−1)
LB )/τ( j−1)

UB | > ε do . Convergence checking
Solve P1 to determine τ and ξ . SDP problem
τ

( j)
LB ← τ, ξ( j) ← ξ . Update τ( j)

LB
Solve P2 to determine τ and p . NLP problem
p( j) ← p
if τ < τ( j−1)

UB then . Update opt. design and worst parameter
τ

( j)
UB ← τ, pOPT ← p, ξOPT ← ξ

else
τ

( j)
UB ← τ

( j−1)
UB . Update τ( j)

UB
end if
P( j) ← P( j−1) ∪ p( j) . Update P
j← j + 1 . Update the iteration counter

end while
end procedure

tion, the design ξOPT stored by the algorithm satisfies Ψ(ξOPT) ≤ τ( j)
UB. Indeed, the

value τ returned by P2 is the value of Ψ(ξ( j)). It follows that

Eff(ξ) =
Ψ(ξOPT)

Ψ(ξ)
≥
τ

( j)
LB

τ
( j)
UB

,

which is at least 1 − ε when the convergence criterion is satisfied. When the
solutions to the subproblems P1 and P2 are approximate and not exact, the proof
is similar. This follows by observing that Ψ(ξOPT) ≥ τ

( j)
LB(1 − εL) and Ψ(ξOPT) ≤

τ
( j)
UB(1 + εU).

Algorithm 1 has some similarities with that proposed by Duarte and Wong
(2014), and the main differences are listed below:

(a) the Phase 1 problem is formulated here as a semidefinite program problem
instead of a nonlinear problem that requires global optimization solvers.
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The use of SDP in Phase 1 allows us to find approximate designs in poly-
nomial time but requires the discretization of the design space, here rep-
resented by a finite number of candidate points. In contrast to Duarte and
Wong (2014), the algorithm herein does not require an initial estimate of
the number of support points.

(b) the Phase 2 problem is partially similar to that used in Duarte and Wong
(2014). Specifically, the calculation of the answering set for the optimal de-
sign produced by Phase 1 is also represented as a NLP problem, and solved
using a similar method, but does not require iterating the number of support
points until the equivalence theorem is validated. This task is highly time
consuming since it requires finding the maxima of the dispersion function
for a given answering set, which is a rather challenging NLP with multiple
optima.

(c) the algorithm proposed herein can easily be extended to find minimax A−
and E−optimal designs by taking advantage of the semidefinite representabil-
ity of those criteria; the one proposed in Duarte and Wong (2014) works
only for the D−optimality criterion. In practice, Algorithm 1 can be ex-
tended to every semidefinite representable criterion used for designing a
multiple regression model, see Sagnol (2011).

(d) the set P(0) in our algorithm is formed by m0 samples judiciously chosen
from P, whereas in Duarte and Wong (2014), P(0) is formed by a singleton
element p. This approach potentially increases the convergence rate.

Algorithm 1 has common features with that proposed by Pázman and Pron-
zato (2014) for finding extended E− and G−optimal designs for protection against
close-to-overlapping situations, and recently extended to find D−, A− and Ek−optimal
designs for linear models (Burclová and Pázman, 2016). Here, we formulate the
Phase 1 problem for finding optimal designs on a discrete design space as a SDP
problem and exploit the semidefinite representability of D−, A− and E−optimality
criteria. This is in contrast with the work of Pázman and Pronzato (2014) where
the problem is handled by Linear Programming. The SDP formulation is harder
to solve than the LP problem because the former requires specific Interior Point
algorithms (Boyd and Vandenberghe, 2004), but because it is broader in scope
and in particular, the formulation can be generalized to include all problems with
a SDr criterion. Further, we solve the Phase 2 problem as a NLP and consequently
the convergence of the successive cutting planes that generate the upper bounds
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is guaranteed if global optimization techniques are used. This desirable property
is not found in the method proposed by Pázman and Pronzato (2014), where they
used a combination of grid search and local optimization.

3.1. Phase 1 problem - P1

The SDP formulation for solving the problem P1 and obtaining the successive
global lower bounds for the minimax program (10) are as follows. At the jth

iteration, the goal is to find the design ξ( j) with weights w( j) = (w( j)
1 . . . ,w( j)

q )T in
the following SDP problem:

min
ξ( j)∈Ξ,τ

( j)
LB∈T

τ
( j)
LB (21a)

s.t Φδ[M(ξ( j), p)−1] ≤ τ( j)
LB, ∀p ∈ P( j) (21b)

q∑
i=1

w( j)
i = 1, (21c)

where for our interests, we set Φδ[M(ξ( j), p)−1] to be either [tr(M(ξ( j), p)−1)] for
A−optimality, (λmin[M(ξ( j), p)])−1 for E−optimality, [det[M(ξ( j), p)]−1]1/np for D−optimality,
and each w( j)

i is the weight of the point xT
i ∈ X, i ∈ [q]. As we mentioned for the

master problem (16), additional constraints of the form Aw ≤ b can be added to
the above SDP formulation, for the case of optimization over ΞA,b. To handle the
SDP problems, there are user-friendly interfaces, such as cvx (Grant et al., 2012)
or Picos (Sagnol, 2012), that automatically transform the constraints (21b) into a
series of LMIs before passing them to SDP solvers such as SeDuMi (Sturm, 1999)
or Mosek (Andersen et al., 2009). This is possible if Φδ is SDr, which is true for
our design criteria of interest. In our work, we solved all SDP problems using the
cvx environment combined with the solver Mosek that uses an efficient interior
point algorithm.

3.2. Phase 2 problem - P2

This problem is to find the vector p given the design determined in Phase 1
which results in it having the smallest efficiency. The problem is non-convex and
requires nonlinear programming tools. Its solution generates successive global
upper bounds for the minimax optimal design problem, with one obtained for
each locally optimal design. Let’s assume that at the jth iteration the design ξ( j) is
already determined after solving (21). The problem to solve in this phase is

τ = max
p∈P

Φδ[M(ξ( j), p)−1], (22)
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and we use a NLP solver IPOPT based on an interior point algorithm (Wächter
and Biegler, 2005). To increase the accuracy of the computed gradient, we use
an automatic differentiation tool, ADiMat (Bischof et al., 2002), where its analyt-
ical representation is then passed to the solver to handle the program (22). We
notice that IPOPT is a local nonlinear programming solver, and the problem (22)
may have multiple local optima. To handle this issue we develop a global non-
linear programming tool based on a multistart heuristic algorithm similar to that
proposed by Ugray et al. (2005), and in §4.1 we compare the local NLP with our
algorithm.

In every iteration we assumed that the optimum found by solving P2 is global
and τ is a global upper bound for the minimax problem. The optimal p is used to
update the set of data samples in P( j) employing the rule (18). In many situations,
ε−optimum is found in the first iteration by the SDP solver, and P2 is used to
compute the upper bound, and hence, to confirm the optimality of the design.

4. Results

In this section, we apply our proposed algorithm in §3 to find minimax A−,
E− and D−optimal designs for the power logistic model, the 4-parameter logistic
model and the general consecutive reaction model that represents the reactants
concentration in a continuous stirred tank. The second is also called the Emax
model or the Hill model. Such logistic models are commonly used to study the
drug effects as the dose varies, see for example Ting (2006), and in other areas
such as agronomy (Tsoularis and Wallace, 2002; Ludena et al., 2007). The third
is described by a system of evolutive ordinary differential equations, and puts
additional issues concerning the computation of the FIM. Except for the minimax
D−optimal designs for the logistic model, the other optimal designs, as far as
we know, are not published in the literature. The logistic model is considered
a benchmark test for algorithms for finding optimal designs of experiments, and
and we use it here for comparison. First, we find minimax D−optimal designs
for the logistic model for different uncertainty parameter regions and compare the
results with those of Duarte and Wong (2014). We then apply the algorithm to
find minimax A− and E−optimal designs for all models. In all cases, we assume
that there is a known plausible set of values for each parameter.

All computation in this paper were carried using on an Intel Core i7 machine
(Intel Corporation, Santa Clara, CA) running 64 bits Windows 10 operating sys-
tem with 2.80 GHz. The relative and absolute tolerances used to solve the SDP
problems were set to 10−5 in all problems. Similarly, the relative and absolute
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tolerances of the NLP solver were also set to 10−5 in all problems. The value of ε
used in the convergence criterion in Algorithm 1 is 10−4.

4.1. Example 1 - Logistic model
We consider the power logistic model proposed by Prentice (1976) and com-

monly used in dose response studies when the outcome is binary:

E[y|x, p] =
1{

1 + exp[−β (x − µ)]
}s , x ∈ X, p ∈ P (23)

where X is a used-defined bounded interval, p = [β, µ, s]T is the vector of model
parameters assumed to lie in a known compact set P. The probability of a response
at dose x ∈ X is y(x, p) and the binary outcome is coded as 1 for response and 0
otherwise. When s = 1, we have the logistic model, other values of s provide
more flexibility in capturing skewness and kurtosis, but for comparison purposes
we first assume the simpler case when s = 1. Accordingly, let p = [β, µ]T and
assume that P = [µL, µU] × [βL, βU] which contains all plausible values of the two
parameters. Here, µL is the lower bound of µ and µU is its upper bound. Similarly,
βL is the lower bound of β and βU is its upper bound. The FIM of the design at the
point xi is M(xi, p) = h(xi, p) h(xi, p)T, where

h(xi, p) =
1√

E[y|xi, p] (1 − E[y|xi, p])

(
∂E[y|xi, p]

∂p

)
,

∂E[y|xi, p]
∂p

=

∂E[y|xi,p]
∂β

∂E[y|xi,p]
∂µ

 .
The initial population in P(0) of the numerical tests presented in this section

was constructed using the 22 vertices plus 16 points randomly sampled from the
edges of P with one per edge. What we meant is that we sample 16 points uni-
formly, each on an edge selected at random. More precisely, we use the following
procedure to sample a vector θ on an edge of the plausible region: we first sample
one index j uniformly in {1, . . . , np}. Then, we sample θ j uniformly at random in
the interval [l j, u j], and for i = 1, . . . , np, i , j, we draw θi from the bounds {li, ui}

using a binary random number generator. In addition, we randomly sample 30
more points from P using a uniform random number generator, resulting in a total
of 50 vectors for p.

In our analysis we first study the impact of the size of the plausible parametric
region on the optimal design and the computation time. We consider X ≡ [−1, 5]
and four different regions for p that result from combining the intervals [1.0, 1.25]
and [1.0, 3.0] for β with the intervals [0.0, 1.0] and [0.0, 3.5] for µ. Next, we study
the impact of the design space range and solve the problem for X ≡ [3.0, 9.0]
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with µ ∈ [6.0, 8.0] and β ∈ [1.0, 1.25] and β ∈ [1.0, 3.0], respectively. In all these
tests, the design space was discretized using equally spaced points ∆x = 0.02 unit
apart, and so for each of the design spaces X ≡ [−1, 5] and [3.0, 9.0], we have 301
candidate design points.

Table 1 presents the D−optimal designs for different plausibility parameter re-
gions. Our experience is that the size of X seems to have a small impact on the
speed of our proposed method. The grid obtained after discretizing the design
space seems to have impact on the computational time required by the Phase 1
problem. In practice, dense grids result in more nodes, and consequently larger
semidefinite programs are produced, thus increasing the difficulty in solving the
optimal design problem for a set of samples of parameters. The algorithm per-
forms potentially well with a larger number of points but the SDP solver might
be unable to provide a solution in realistic time. Having denser grids allows us
to obtain more accurate optimal designs closer to those obtained if X is not dis-
cretized. In practice, one may increase the size of X by keeping the size of the
SDP problem the same by manipulating the discretization grid intervals to mini-
mize the impact on computational time. The Phase 2 problem is independent on
the design space because the search is made on the space of the parameters, and
so has a small impact on the CPU time.

The resulting designs in Table 1 show good agreement with the designs found
with a SIP-based approach which assumes X is continuous, see Duarte and Wong
(2014). In some cases, the SDP-based minimax designs have more support points
than the SIP-generated minimax designs. The additional points are usually close
to each other and depend on how we discretize the design space. Table 1 shows
that larger plausible regions tend to result in designs with more support points, a
finding already observed by other authors for Bayesian and minimax designs, see
for example, Chaloner and Larntz (1989); Duarte and Wong (2014). The CPU
times required by Algorithm 1 to find minimax D−optimal designs is, on average,
8.56 times shorter than that required in the SIP approach in Duarte and Wong
(2014). The efficiency of each design in Table 1 is computed as:

Eff =

(
det[M(ξOPT, pOPT)]

det[M(ξ∗, p∗)]

)1/np

(24)

where ξOPT is the optimal design obtained from the proposed algorithm, along with
the worst-case parameter pOPT, and ξ∗ is the design in Duarte and Wong (2014) for
the corresponding answering set p∗. We note that the efficiencies of the designs
obtained from the proposed algorithm relative the SIP-generated designs are all
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between 0.9990 and 1.0000 and so this suggests our algorithm produces optimal or
highly efficient minimax designs but using shorter CPU time. It is possible to find
optimal designs with an efficiency below 1− ε, because the reference design ξOPT

in Proposition 1 is restricted to have support points on the grid and the designs ξ∗

in Duarte and Wong (2014) are constructed assuming a continuous design space
and so may perform better. The CPU time of the designs in Table 1 is larger for
larger regions P, one reason being the increasing complexity of the NLPs solved
to find p∗ in each iteration.

To analyze the impact of the grid density on the optimal design and CPU
we consider P ≡ [1.0, 3.0] × [0.0, 1.0], X ≡ [−1, 5], and discretize the design
space using equally spaced points with ∆x = 0.08 (76 points), ∆x = 0.04 (151
points), ∆x = 0.02 (301 points) and ∆x = 0.01 (601 points), respectively. Table
2 shows that (i) the designs obtained from different grid sets are very close and
have a similar efficiency; and (ii) the CPU times are alike, where the larger size
semidefinite program is compensated by the higher convergence rate.Although the
performance of the method does not deteriorate very much when the size of the
grid increases (cf. Table 2), the SDP approach usually fails if it includes between
3000 and 6000 design points, mainly due to memory problems, depending on
the hardware. In some multi-factor problems, it is not unusual to have millions
of design points and the this approach cannot handle large design spaces unless
coarser discretization grids are used.

Finally, to study the accuracy of the NLP solver to find global optima in our
algorithm, we implemented a multistart heuristic algorithm and compared its per-
formance with the local NLP solver. To briefly describe the algorithm, we set the
number of starting points used, ns, and generate ns vectors of parameters p em-
ploying a uniform random generator mechanism inΘ. Then, we solve the Phase 2
problem by calling IPOPT ns times using a different starting point in each call. The
optimum and the objective function are saved, and subsequently the best is(are)
picked. If a singleton is found, P is updated with a single vector p while when
more than one optimum is obtained all of them are included in P, that augments
more than a vector p per iteration. For comparison purposes we used ns = 20, and
for all the examples in Table 1 we obtained the same optimal designs found with
the local NLP solver. Although, the CPU time required increased in average 4.18
times. We also observed that in most of the problems and iterations the optimum
is a single point which is in agreement with our result in Table 1 where pOPT is a
singleton.

Now, we analyze the accuracy of our algorithm in determining the vector p
where the criterion is least attainable. Figure 1 displays the objective function,
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Table 1: Minimax D−optimal designs for the logistic model on X discretized using ∆x = 0.02,
for different plausible regions. The design space is X ≡ [−1, 5] for plausible regions with the
superscript ‡ and X ≡ [3, 9] for those with the superscript †.

[µL, µU]

[βL, βU] [0.0, 1.0]‡ [0.0, 3.5]‡ [6.0, 8.0]†

[1.0, 1.25]

(-0.84,0.3810) (-0.88,0.2746) (5.16, 0.0048)
(-0.82,0.1190) (1.74,0.2254) (5.18,0.3428)
(1.82,0.1190) (1.76,0.2254) (7.00, 0.3047)
(1.84,0.3810) (4.38,0.2746) (8.82,0.3427)

(8.84,0.0049)

pOPT [1.25, 1.0]T [1.25, 3.5]T [1.25, 8.0]T

CPU (s) 10.13 25.00 10.09
Eff 1.0000 1.0000 0.9999

[µL, µU]

[βL, βU] [0.0, 1.0]‡ [0.0, 3.5]‡ [6.0, 8.0]†

[1.0, 3.0]

(-0.54,0.2190) (-0.40,0.0491) (5.66, 0.2592)
(-0.52,0.1421) (-0.38,0.1516) (6.86,0.2408)
(0.50,0.1193) (0.68,0.2350) (7.14, 0.2408)
(0.52,0.1612) (1.52,0.0384) (8.34,0.2592)
(1.52,0.0514) (1.54,0.0305)
(1.54,0.3070) (2.02,0.0610)

(2.82,0.1141)
(2.84,0.1251)
(3.88,0.0420)
(3.90,0.1532)

pOPT [3.0, 0.0]T [3.0, 3.5]T [3.0, 8.0]T

CPU (s) 10.08 52.13 49.35
Eff 0.9995 1.0000 1.0000

(x.xx,w.wwww) ≡(design point, weight)

(det[M(ξOPT, p)])1/np , for the optimal design obtained with the Algorithm 1 for
P ≡ [1.0, 3.0] × [0.0, 1.0], X ≡ [−1, 5] and the design space discretized using
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Table 2: Minimax D−optimal designs for the logistic model on X ≡≡ [−1, 5] and P ≡ [1.0, 3.0] ×
[0.0, 1.0] when equally spaced grids of different sizes are used.

∆x

0.08 0.04 0.02 0.01

(-0.60,0.0542) (-0.56,0.1265) (-0.54,0.2190) (-0.55,0.0760)
(-0.52,0.3066) (-0.52,0.2334) (-0.52,0.1421) (-0.54,0.2799)
(0.44,0.0295) (0.48,0.1552) (0.50,0.1193) (0.48,0.2052)
(0.52,0.2512) (0.52,0.1242) (0.52,0.1612) (0.49,0.0789)
(1.48,0.1057) (1.52,0.2422) (1.52,0.0514) (1.53,0.1942)
(1.56,0.2528) (1.56, 0.1183) (1.54,0.3070) (1.54,0.1658)

pOPT [3.0, 0.0]T [3.0, 0.0]T [3.0, 0.0]T [3.0, 0.0]T

CPU (s) 6.86 7.50 10.08 10.56
Eff 0.9169 0.9659 0.9995 0.9998

(x.xx,w.wwww) ≡(design point, weight)

equally spaced points with ∆x = 0.02, presented in second line, first column of
Table 1. The plot shows that for the minimax design ξOPT the answering set is the
singleton pOPT = [3.0, 0.0]T.

Figure 2(a) displays the dispersion function of the SDP-generated design un-
der the D-optimality criterion for the logistic model when X ≡ [−1, 5] and the
plausible region is P = [1.0, 3.0] × [0.0, 1.0]. The dispersion functions of the
designs found by our algorithm at termination are constructed after the conver-
gence condition is attained. Briefly, it requires the determination of a probability
measure in P that validates the conditions of the equivalence theorems using a LP
formulation (Duarte and Wong, 2014). Practically, the construction of the disper-
sion function for minimax optimal designs is cumbersome because the need of
finding a probability measure on the parameters domain before checking the Gen-
eral Equivalence Theorem on the design. The procedure becomes easier when the
answering set is a singleton which is what we have, see Figure 1. The dispersion
function is bounded above by 0 and peaks at the support points of the generated
design. It follows that the dispersion function satisfies the conditions required in
the equivalence theorem and so confirms the minimax D-optimality of the gener-
ated design.

Similar dispersion functions can be obtained for all designs in Table 1 and for
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Figure 1: Display of the objective function (det[M(ξOPT, p)])1/np vs. p for the optimal design
obtained for P ≡ [1.0, 3.0] × [0.0, 1.0], X ≡ [−1, 5] and the design space discretized using equally
spaced points with ∆x = 0.02 (in second line, first column of Table 1).

designs found by our algorithm under other criteria. For example, Figures 2(b) and
2(c) show, respectively, the dispersion functions of the A− and E−optimal designs
in Table 3 found by our algorithm for the logistic model when P = [1.0, 3.0] ×
[0.0, 1.0], ∆x = 0.02 and X ≡ [−1, 5].

In contrast to minimax D−optimal designs, minimax A− and E−optimal de-
signs have not been reported in the literature for the logistic model. Our pro-
posed algorithm can be directly used to find such minimax optimal designs us-
ing the same discretization scheme. Table 3 displays selected minimax A− and
E−optimal designs obtained when [βL, βU] = [1.0, 3.0] and there are different
plausible regions for µ. We observe from Tables 1 and 3 that the minimax A−
and E−optimal designs have more support points than D−optimal designs. Fur-
ther, the computational times required by all the designs are all quite similar, and
the differences are mainly due to the number of iterations required to reach con-
vergence, as defined by the user-specified tolerance level ε, see equation (19).
Overall, the proposed algorithm shows good flexibility and determines the vari-
ous optimal designs without requiring a prohibitive amount of computational re-
sources.

The number of initial sampling points tends to have low impact on the conver-
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(a) (b)

(c)

Figure 2: Dispersion functions of the generated designs for the logistic model under (a)
D−optimality criterion, (b) A−optimality criterion, (c) E−optimality criterion, when X ≡ [−1, 5]
is discretized by ∆x = 0.02 and the plausible region is P = [1.0, 3.0] × [0.0, 1.0].

gence rate. In each iteration we determine the hypograph of the design criterion by
considering all elements in P and generate the optimal cutting plan corresponding
to the lower bound. It follows that when P(0), by chance, contains pOPT the conver-
gence is potentially faster since the lower bound limit is attained at the end of the
first iteration but is independent on the number of sampling points. In contrast, the
location of the sampling points might have significant impact on the convergence
rate. We exploit this feature by judiciously choosing the points in P(0), which in-
clude the vertices of the parameter domain. When pOPT coincides with one of the
vertices, which is a feature we observed empirically for many problems, the final
lower bound is obtained at the first iteration and the subsequent iterations serve
only to let the upper bound converge. General problems where pOPT does not coin-
cide with one of the vertices require a few iterations since successive cutting plans
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generating lower and upper bounds are constructed until the condition (19) is at-
tained. Consequently, the number of points in the initial sample does not explain
the differences observed in CPU time which are mainly due to the algorithm.

4.2. Example 2 - Four-parameter homoscedastic Hill model
Consider the 4-parameter homoscedastic Hill model, commonly used for curve-

fitting analysis in bioassays or immunoassays such as ELISAs or dose-response
curves (Hill, 1910). The model is widely used in various types of dose response
studies and in other disciplines because it is flexible and can model mean response
with different shapes. Let y be the outcome at level x of the independent variable
defined in the design space X, which we assumed is a close and bounded interval
for the dose or log dose. The outcome depends on x, and its mean response at x is

E[y|x, p] = E0 +
(E∞ − E0) xm

xm + km
d

, x ∈ X, p ∈ P. (25)

Here, p = [E0, E∞, km
d , m]T is the vector of parameters in the Hill model and

its plausible values are known to lie in a compact set P. The interpretations of
the Hill parameters are: E0 is the control effect at zero dose concentration, E∞ is
the effect of a very large dose of the drug, kd is the dose that induces 50 % of the
maximal effect, and m is the power that controls the slope. Khinkis et al. (2003)
used (25) for studying the effect of an inhibitory drug on tumor growth and found
locally D−optimal designs using seven sets of nominal values for p and assuming
no uncertainty in parameters. These designs were found to be sensitive to mis-
specification of the values of p, meaning that a design can loose its efficiency
greatly if the nominal values are wrong. One design strategy that may possibly
overcome this problem is to adopt a minimax strategy for designing the study.
Our goal is to find optimal designs for parameter uncertainty scenarios employing
a minimax framework formalized in §3.

Assume that P = [EL
0 , E

U
0 ]× [EL

∞, E
U
∞]× [(km

d )L, (km
d )U]× [mL,mU] is the known

set that contains all plausible values of all the parameters in the model. The su-
perscripts L and U designate the lower and upper bounds for values of the model
parameters. The FIM at the point xi is M(xi, p) = h(xi, p) h(xi, p)T, where

h(xi, p) =


∂E[y|xi,p]
∂E∞

∂E[y|xi,p]
∂E0

∂E[y|xi,p]
∂(km

d )
∂E[y|xi,p]

∂m

 =



xm
i

km
d +xm

i
km

d
km

d +xm
i

−
(E∞−E0) xm

i
(km

d +xm
i )2

(E∞−E0) km
d xm

i log(xi)
(km

d +xm
i )2


.
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Tables 4-5 presents minimax D−, A− and E− optimal designs for a plausibility
region P = [1.0, 2.0] × [0.1, 0.5] × [0.5, 1.0] × [mL,mU], and the design space is
X ≡ [10−5, 10]. We consider two intervals for possible values of m to assess
the impact of the slope (positive and negative values) on the algorithm and the
optimal designs. In all cases, the design interval is discretized using intervals of
length ∆x = 0.05, yielding 201 candidate design points. The initial population in
P(0) is formed by the 24 vertices of P plus 32 points random uniformly sampled
from the edges, one per edge, and 2 additional points sampled from inside the
domain, in a total of 50 vectors p.

All the designs have support points at the extremes of X. When the model has
a positive slope, i.e. m > 0, the minimax optimal designs include three additional
points, one at x ∈ [0.3, 0.5], another at x ∈ [1.35, 1.45] and one at x = 0.05.
When the model has a negative slope, the optimal designs have a support point
at x ∈ [0.05, 0.1], another at x ∈ [0.65, 0.85] and the last one at x ∈ [1.80, 1.85].
Our designs have 5 points, one point more than the locally D−optimal designs
with four support points found by Khinkis et al. (2003) and Qiu (2014). This is
not surprising because minimax optimal designs often require more support points
than locally optimal designs based on a single best guess for the nominal values
of the parameters. We notice that pOPT in four cases is located on one of the vertex
of the plausible region, and in the remaining two cases is on one of the edges.
In those particular cases, the algorithm takes several (more than 2) iterations to
converge to pOPT.

The optimality of the generated minimax designs for the four-parameter ho-
moscedastic Hill model in Tables 4-5 was also confirmed using the equivalence
theorem.

4.3. Example 3 - nth order successive kinetic rate model
To further test the algorithm in Section 3, we next use a model defined by or-

dinary differential equations (ODEs) and discussed in Atkinson et al. (2007, pag.
270). The model describes the dynamics of two consecutive reactions A

r1
−→B

r2
−→C

occurring in a constant volume continuous stirred tank reactor (CSTR), where the
concentration CB of product B is measured. Let CA be the concentration of reac-
tant A, CC the concentration of the product C, and r1 and r2 the kinetic rates of
A −→ B and B −→ C, respectively. Both kinetic rates are temperature independent
and follow the Arrhenius law, i.e. ri = πi Cαi

r,i, i ∈ {1, 2}, where πi and αi are,
respectively, the pre-exponential factor and the order of ith kinetic law; Cr,i is the
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Table 4: Minimax D−, A− and E− optimal designs found by our algorithm for the 4-parameter
homoscedastic Hill model on X ≡ [10−5, 10] using a grid of equally spaced points ∆x = 0.05 unit
apart and P ≡ [1.0, 2.0] × [0.1, 0.5] × [0.5, 1.0] × [0.5, 1].

D−optimal design A−optimal design E−optimal design

(10−5,0.2453) (10−5,0.0697) (10−5,0.0368)
(0.05,0.2218) (0.05,0.2126) (0.05,0.2058)
(0.30,0.0547) (0.45,0.0013) (0.50,0.0227)
(1.35,0.2292) (0.50,0.0066) (1.40,0.0313)

(10.00,0.2490) (1.35,0.0022) (1.45,0.4178)
(10.00,0.2711) (10.00,0.2856)

pOPT [1.0, 0.5, 1.0, 0.5]T [1.0, 0.5, 1.0, 1.0]T [1.0, 0.5, 1.0, 1.0]T

CPU (s) 44.67 56.38 38.19

(xx.xx,w.wwww) ≡(design point, weight)

Table 5: Minimax D, A− and E− optimal designs found by our algorithm for the 4-parameter
homoscedastic Hill model on X ≡ [10−5, 10] using a grid of equally spaced points ∆x = 0.05 unit
apart and P ≡ [1.0, 2.0] × [0.1, 0.5] × [0.5, 1.0] × [−2,−0.5].

D−optimal design A−optimal design E−optimal design

(10−5,0.2422) (10−5,0.0969) (10−5,0.0816)
(0.05,0.2190) (0.05,0.2328) (0.05,0.2289)
(0.10,0.0121) (0.85,0.0901) (0.80,0.0076)
(0.65,0.0662) (1.75,0.0010) (0.85,0.0818)
(1.80,0.0239) (1.80,0.3048) (1.80,0.0011)
(1.85,0.1876) (1.85,0.0234) (1.85,0.3425)
(10.00,0.2490) (1.90,0.0015) (10.00,0.2565)
(10.00,0.2490) (10.00,0.2495)

pOPT [1.0, 0.5, 1.0,−2.0]T [1.0, 0.5, 1.0,−1.1092]T [1.0, 0.5, 0.5,−1.0763]T

CPU (s) 41.94 47.95 38.92

(xx.xx,w.wwww) ≡(design point, weight)

concentration of the reactant. The model equations are

E(CB|t, p) = CB(t), t ∈ T, p ∈ P (26a)
dCA

dt
= −π1 Cα1

A (26b)

dCB

dt
= π1 Cα1

A − π2 Cα2
B (26c)

dCC

dt
= π2 Cα2

B (26d)

CA(0) = 1.0 CB(0) = 0.0 CC(0) = 0.0. (26e)
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Here, T is a user-selected, bounded time interval, p = [π1, π2, α1, α2]T is the
vector of model parameters belonging to a known compact set P. Equations (26b-
26d) describe the dynamics of the concentrations of the species in the CSTR and
(26e) is the the set of initial conditions. The design interval is T = [0, 20], and
we discretize it to become T with a uniform grid ∆t units apart. Each time instant
ti = ti−1 +∆t is a candidate point from T for inclusion in the support of the optimal
design.

Our goal is to prescribe an optimal design of experiments to estimate p by
choosing appropriate time points, ti, to sample from the CSTR and measure CB

in the CSTR. The plausibility region of the parameters is known and equal to
P ≡ [0.5, 1.0] × [0.1, 0.5] × [1.0, 2.0] × [1.0, 2.0]. The sampling mechanism to
generate the first m0 parameter combinations populating P(0) is similar to previous
examples, that is, we select the 24 = 16 corners of P, plus 32 vectors drawn from
a uniform distribution over the edges of P and 2 additional vectors drawn from P.

To construct the FIM for model (26b-26e), we adopt the process systems ter-
minology and designate the variables representing the process dynamics as states.
The states characterize the evolution of the reactional mass in time, and the vec-
tor of states is Z(t) = [CA(t), CB(t), CC(t)]T. The variables used for monitor-
ing the process along the time is a subset or a linear combination of the states
called measurements, and generically represented by Y(t). Here, a single mea-
surement is employed for monitoring the process where Y(t) = [CB(t)]T. The
vector of functions f (Z(t), p) = [−π1 Cα1

A (t), π1 Cα1
A (t) − π2 Cα2

B (t), π2 Cα2
B (t)]T

contains the right hand side of the Differential Equations (26b-26d) and the vector
g(Z(t), p) = [CB(t)]T the right side of the measurements equation (26a). Finally,
the sensitivity of the ith state denoted by zi ∈ Z(t) with respect to parameter p j at
reference point pref is designated by σi, j, yielding:

dσi, j

dt
=

3∑
k=1

∂ fi(Z(t), pref)
∂zk

σk, j +
∂ fi(Z(t), pref)

∂p j
,

i ∈ {1, 2, 3}, j ∈ {1, · · · , np}, (27a)

ηCB
p j

(t, pref) =
∂g(Z(t), pref)

∂z2
σ2, j(t, pref), j ∈ {1, · · · , np}. (27b)

σi, j(0) = 0, i ∈ {1, 2, 3}, j ∈ {1, · · · , np} (27c)

where ηCB
p j (t, pref) is the sensitivity of the measure CB with respect to parameter p j

at time instant t for pref. The vector of sensitivities used to compute the FIM at
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each candidate time instant ti ∈ T is

ηCB(ti, pref) = [ηCB
π1

(t, pref), ηCB
π2

(t, pref), ηCB
α1

(t, pref), ηCB
α2

(t, pref)]T,

and
M(ti, p) = ηCB(ti, pref)

[
ηCB(ti, pref)

]T
.

The sensitivity of CB(t) with respect to the parameters at pi ∈ P is determined
by solving the Equation (27) simultaneously with the Model (26b-26d) employing
an ODEs solver. Here, the ODEs system is solved for each pi; in each iteration
pref assumes a value pi of P. A variable order, variable step stiff implicit integrator
was used to solve the ODEs system (26b-27c) for each vector p ∈ P. The absolute
and relative tolerances of the integrator were set to 10−5.

Table 6 presents the optimal designs for ∆t = 0.2, and we observe that the
D-optimal design is in good agreement with the locally D−optimal designs in
Atkinson et al. (2007, pag. 270). The locally D−optimal designs were determined
for a singleton p employing an exchange algorithm which does not require the
discretization of the time domain, and are consistently based on 4 support points.
Our design has 7 support points, which is consistent with the trend observed by
several authors, that minimax and Bayesian optimal designs tend to have more
support points than locally optimal designs. The sampling instances are similar
for all criteria except that the D−optimality criterion produces a design that does
not include t = 20, which also has low weight in the A− and E−optimal designs.
We note that a considerable fraction of the CPU time (about 80 %) is devoted to
computing the FIM that requires solving the ODE’s for every vector p ∈ P. We
also observe that for all the designs in Table 6, pOPT is on a vertex, which explains
why the algorithm required only 2 iterations to reach the ε−optimality where the
second is confirmatory.

4.4. Alternative algorithms
In previous sections we compared the proposed algorithm with another deter-

ministic based procedure based on SIP. Here, we briefly discuss other mathemati-
cal programming based tools and other kinds of algorithms, such as metaheuristic
optimization techniques that were recently used to find minimax optimal designs
of experiments.

Our work suggests that the SDP based algorithm is generally more flexible,
faster and easier to use than SIP for obtaining minimax optimal designs. Ex-
change and multiplicative algorithms, along with many of their variants, are also
systematic ways of finding various optimal designs but they are not applicable
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Table 6: Minimax optimal designs for the nth order consecutive reaction model with ∆t = 0.2,
T ≡ [0, 20] and P ≡ [0.5, 1.0] × [0.1, 0.5] × [1.0, 2.0] × [1.0, 2.0].

D−optimal design A−optimal design E−optimal design

(0.4,0.2493) (0.2,0.3881) (0.2,0.3889)
(1.6,0.1517) (1.6,0.2266) (1.6,0.2278)
(1.8,0.0940) (4.6,0.1595) (4.6,0.1565)
(4.4,0.1436) (10.8,0.1392) (10.8,0.1341)
(4.6,0.1057) (20.0,0.0862) (20.0,0.0941)

(10.8,0.0330)
(11.0,0.2158)

pOPT [1.0, 0.1, 2.0, 2.0]T [1.0, 0.5, 2.0, 2.0]T [1.0, 0.5, 2.0, 2.0]T

CPU (s) 121.31 77.94 109.38

(tt.t,w.wwww) ≡(design point, weight)

when the optimality criteria are non-differentiable, which is the case when we
have a minimax or maximin type of criterion. Another algorithmic approach to
find maximin and maximin standardized optimal designs is to use functional ap-
proach and methods developed by Melas (2006, Sec. 8.7.1). We feel that the
method offers potential but is not well tested for different applications.

Recently, nature-inspired metaheuristic algorithms are increasingly used to
solve large and difficult optimization problems (Yang, 2010; Whitacre, 2011a,b) in
computer science and engineering. These are general optimization tools and have
gained much attention in recent years because of their flexibility, ease of imple-
mentation and their many reported successes in solving or nearly solving different
types of high dimensional and complex optimization problems in practice. Meta-
heuristic algorithms are generally assumptions free, relatively powerful and can
solve an optimization problem regardless of the model, optimality criteria and the
types of constraints imposed on the problem. However, global optimality of the
solutions can not be guaranteed. Qiu (2014) and Chen et al. (2015) applied a well
known member of this class of algorithms, called Particle Swarm Optimization
(PSO) to generate several types of optimal designs. Masoudi et al. (2017) adopted
another metaheuristic procedure called Imperialist Competitive Algorithm (ICA)
for the same purpose.

We did not compare performance of such algorithms with our proposed ap-
proach because we feel that comparing performance of algorithms should always
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be done meaningfully and fairly and we do not feel it is feasible to do so here.
At the onset, we focus on a systematic approach for finding optimal designs and
an approach that uses metaheuristic algorithms is not. The latter algorithms have
very different motivations and work very differently from our proposed procedure.
For example, metaheuristic algorithms are stochastic in nature, meaning that re-
peated runs may produce different or slightly different results, there is generally no
firm rationale behind the construction of these algorithms and they also frequently
depend on a host of tuning parameters that can affect the performance of the algo-
rithm dramatically. Exacerbating the comparison issues is that each metaheuristic
algorithm has different number of tuning parameters with different interpretations
and there are no firm guidelines for choosing these parameters. Consequently, if
say PSO fails to find the optimum, it could well be that the tuning parameters were
not properly chosen and if PSO did find the optimum, there is no guarantee that
a rerun of the algorithm under the same settings will produce the same result. In
addition, the maximum iteration number and the flock size in PSO are somewhat
arbitrary but their choices can affect the convergence of the algorithm. Ultimately,
it is a matter of user’s preference which type of algorithms to use and the training
of the user.

5. Summary

We propose a systematic approach based on mathematical programming to
find minimax optimal designs of experiments for nonlinear models. Our algo-
rithm uses NLP to solve the inner level problem after using SDP to solve the outer
problem. Our approach requires the design space to be discretized before employ-
ing a delayed constraint generation method to solve the minimax program itera-
tively until convergence is attained. The SDP problem is formulated as a restricted
problem where a finitely constrained set of parameters replaces the plausible re-
gion of the model parameters. We use information from the parameters domain to
generate the initial sample of instances that replace the compact domain P.

We apply the proposed algorithm to find minimax D−optimal designs for the
logistic model, the 4-parameter Hill model and the model for the dynamics of two
temperature independent nth order consecutive reactions in a CSTR. The results
obtained are similar to those obtained with an algorithm that assumes a continuous
design space. Our designs typically contain more support points than that obtained
from a continuous domain, where the extra points may be freely collapsed into a
few obvious points. With a discrete design space, a true optimal design point may
be clustered among a few grid points and has its weights spread among the nearby
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points. Our experience is that there are small differences in the efficiencies of the
resulting designs if any one of the clustered points is selected as the support point.

We also applied our algorithm to generate minimax A− and E−optimal designs
for the previous models. Such optimal designs have not been reported before in
the literature. This suggests that our algorithm is flexible and can generate opti-
mal designs for semidefinite representable criteria and requires mild computation
times. We believe that this is the first algorithm for finding minimax optimal de-
signs that uses SDP formulations within a cutting plane approach. The global
optima of the consecutive outer problems are solved iteratively to convergence. In
the majority of practical cases that we have tested, our algorithm requires a single
iteration to converge, and occasionally 2 or 3 iterations are required. This means
that the NLP solver is used only to “confirm” the optimality of the design and
frequently after the SDP solver finds a highly efficient design.

Minimax or maximin types of optimal design problems are generally hard to
solve because the design criterion is not differentiable and involve two or more
layers of optimization. Many current algorithms assume the criterion is differen-
tiable and so they are not applicable. Our focus was on developing an effective
algorithm for finding minimax optimal designs under a broad setup. Our work
includes several examples of varying complexities that demonstrate our approach
works, including cases when the model is more complex, such as when there are
additional linear constraints on the weights and we wish to optimize among de-
signs designs ξ in ΞA,b. Such situations occur when each weight may have its
lower or upper bounds, cf. e.g. Uciński (2015) or when the sought optimal design
is marginally constrained (Martín-Martín et al., 2007). It can be shown such a
problem falls under our framework and so our approach applies. The equivalence
theorem for confirming the optimality of a design in ΞA,b is more complicated than
Eq. (7) or (8) because the Lagrange multipliers for the constraints Aw ≤ b are in-
volved, see Cook and Fedorov (1995). For space consideration, we omit further
discussion and examples.
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