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Abstract

In this study we investigate methods for fitting a Statistical Shape Model (SSM) to intra-
operatively acquired point cloud data from a surgical navigation system. We validate the fitted
models against the pre-operatively acquired Magnetic Resonance Imaging (MRI) data from the
same patients.

We consider a cohort of 10 patients who underwent navigated total knee arthroplasty. As
part of the surgical protocol the patients’ distal femurs were partially digitized. All patients
had an MRI scan two months pre-operatively. The MRI data were manually segmented and
the reconstructed bone surfaces used as ground truth against which the fit was compared. Two
methods were used to fit the SSM to the data, based on (1) Iterative Closest Points (ICP) and
(2) Gaussian Mixture Models (GMM).

For both approaches, the difference between model fit and ground truth surface averaged
less than 1.7 mm and excellent correspondence with the distal femoral morphology can be
demonstrated.

Index Terms

Total Knee Arthroplasty, Sparse Geometry Reconstruction, Statistical Shape Models

I. PROBLEM

Historically, the objective of total knee arthroplasty (TKA) was only to relieve the pain of
severe osteoarthritis (OA), whereas functional expectations were low. With younger and more
active patients receiving TKA, functional expectations are higher and relief of pain alone is
no longer adequate. Despite the success of total knee arthroplasty, the reported overall rate of
dissatisfaction is usually in the 20% range with functional satisfaction being even lower. Patient
dissatisfaction may be partially related to a mismatch between the pre-operative shape of the
distal femur and its shape post-operatively, either due to the shape of the femoral component
or its positioning. To improve the post-operative functional satisfaction, patient-specific implant
positioning and design could be a suitable strategy.

Statistical Shape Models (SSMs) are able to generate plausible shapes within a learned shape
space of a certain anatomical structure through adjusting a sparse deformation model, the so-
called shape modes. By adjusting the shape modes an SSM can be fit to given sample points
yielding a complete model of the respective anatomy.

The objective of the present study was to evaluate two methods for fitting an SSM of a
distal femur to the respective point cloud data collected during routine navigated total knee
arthroplasty, and to validate it against MRI data for the same subjects.
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II. MATERIAL AND METHODS

We used data of 10 patients (4 males, 6 females) acquired in a previous study [1]. All patients
underwent navigated TKA and also had an MRI scan within two months pre-operatively (sagittal
PDw turbo spin echo; 1.5 Tesla system by GE Healthcare, Chicago, Illinois, USA; TR/TE
3000/25 ms, slice thickness 2 mm, resolution 0.3125/0.3125 mm). The distal femora including
the femoral cartilage were manually segmented by expert users to reconstruct 3D surfaces
using the dedicated 3D geometry reconstruction and visualization software AmiraZIBEdition
(Zuse-Institute Berlin, Germany) [2].

The Stryker R©Precision Total Knee Arthroplasty Navigation System (Stryker Corporation,
Kalamazoo, MI, USA) was used for all TKA cases and anatomical landmarks were digitized for
the anterior cortex (106-241 points), distal medial and lateral femoral condyles (50 points each),
posterior medial and lateral femoral condyles (35 points each), lateral and medial epicondyles
and the trochlear center.

A. SSM adjustment to point cloud data

In order to recover the shape and pose (position and orientation) of the distal femur as
accurately as possible, the shape and pose of an SSM of the distal femoral bone was adjusted
to optimally match the given point cloud data. Throughout this section we refer to the following
surface distance measures (with vector valued components marked in bold face):

Mean surface distance =
1

N

N∑
i=1

min
x∈S
||yi − x||2, (1)

Root Mean Square (RMS) surface distance =

√√√√ 1

N

N∑
i=1

(min
x∈S
||yi − x||2)2, (2)

Maximum surface distance = max
yi

min
x∈S
||yi − x||2, (3)

where S is an arbitrary surface and y1, ...,yN are point coordinates in R3, representing either
vertices of the surface model or point cloud elements, depending on whether a distance between
two surfaces or between a surface and a point cloud is measured.

The Iterative Closest Point (ICP) [3] algorithm is often used to adjust an SSM to sparse
points. However, since Gaussian Mixture Models (GMM) outperformed ICP in a recent study
[4], we assessed the ability of fitting an SSM to navigation point cloud data for both algorithms.
The resulting SSM fit was compared to the ground truth surface reconstructed from MRI data.

To approximate the pathological femoral shapes for the 10 patients with severe OA, we used
an SSM consisting of 184 training cases, including male and female subjects with and without
varus/valgus knee malalignment. Shape model creation and establishment of correspondence
between shapes was done following [5] and thus can be found described there in more
details. The explained variance by the number of shape modes is shown in Figure 1. 60
shape modes explain approximately 98.9% of a femurs geometric variation. A majority of
subjects exhibit severe OA and no patient of this study is included in the SSM. To test the
approximative power of the SSM, prior to fitting to the point cloud data, the fitting was adjusted
to match the individual patients anatomies from the MRI data as closely as possible. For the
10 patients of this study the averaged mean surface distance between SSM reconstruction and
ground truth segmentation was 0.54 mm 0.2 mm (Table I). Thus, the SSM was capable of
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accurately representing the patients anatomy. An example is shown in Figure 2 illustrating the
approximation error for case 3 (mean surface distance of 0.60 mm).

TABLE I
MEAN SURFACE DISTANCE (± STD. DEVIATION) FOR EACH SSM FITTED TO GROUND TRUTH SEGMENTATION.

Case 1 Case 2 Case 3 Case 4 Case 5
0.56 ± 0.44 0.50 ± 0.43 0.60 ± 0.47 0.47 ± 0.38 0.53 ± 0.41

Case 6 Case 7 Case 8 Case 9 Case 10
0.60 ± 0.47 0.63 ± 0.50 0.42 ± 0.33 0.51 ± 0.41 0.55 ± 0.45

Fig. 1. Percentage of total variance explained with respect to the number of shape modes for the used SSM consisting
of 184 training shapes.

Fig. 2. Surface distance with isolines (1 mm, 3 mm and 5 mm) between the ground truth MRI surface of case 3 and
an SSM consisting of 184 training instances fitted to that surface, showing that the patient-specific shape could be
well-captured, before attempting to fit to the point cloud data. (The scale to 6 is provided for consistency with Figure
3; in this case, no isolines were greater than 1 mm)
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1) Initial alignment of SSM to point cloud data: Since SSM and navigation point cloud data
require an initial alignment, independently of the method used, a suitable transformation had to
be found. To cover differences in position, orientation and scale, a similarity transformation with
uniform scaling was calculated by minimizing the distance between three digitized anatomical
landmarks (lateral and medial epicondyles and the femoral center) and the corresponding
landmarks defined on the SSM.

2) Adjusting the SSM to point cloud data via an ICP approach: After initial alignment, an
iterative optimization was carried out to adjust the SSM. For each point of the acquired cloud
a closest vertex in the SSM is detected in every step. The closest vertices are collected in v
and their 3D distance vectors to the point cloud in ∆v. Vertices of the SSM without matching
point cloud data are not considered within the SSM fitting procedure. To minimize the distance
(in mm) between the SSM and the point cloud, the following problem was solved by adjusting
SSM-modes pk through the real coefficients bk and a rigid transformation with uniform scale
T in an alternating fashion

min
b,T

(||(v + ∆v)− T (v̄ +
∑
k

bkpk)||2 + γ ·
∑
k

bk2

λk
) (4)

with the mean shapes vertices v̄ and the eigenvalues λk of the SSM as well as a factor
controlling regularization γ ∈ R+

0 . This regularization penalizes shapes that are far away from
the mean shape and thus favors configurations that are in a normal range of anatomical variation.

In a compromise between accuracy, robustness and with respect to the sparsity of the
navigation data, of the 183 SSM-modes only the first third of the most significant modes
were adjusted (approx. 98.9% variability). Between the SSM and the point cloud data the RMS
surface distance was calculated, serving as a stopping criterion. The choice of regularization is
important for the fitting accuracy. Studying the sensitivity with respect to this parameter showed
that γ < 0.05 yields an anatomically incorrect fit. Choosing γ < 2 regularizes too strong towards
the mean shape and hardly adjusts the SSM at all. Tests showed that regularization with γ = 0.5
improved the mean results slightly by approx. 0.05 mm compared to parameters between 0.1
and 1.

3) Adjusting the SSM to point cloud data via GMM: In a recent study a GMM-based
algorithm outperformed the ICP algorithm for fitting an SSM to a sparse set of points [4].
That algorithm adjusted the modes of the SSM with a probabilistic approach considering
anisotropic covariances, which are oriented according to the surface normal, however, without
simultaneously optimizing the transformation. The expected amount of anisotropy is chosen
with the parameter , usually in the range of 2-8 (c.f. [4]). In this study, we used η = 2.

We deployed the aforementioned method to adjust the shape modes of our SSM. To optimize
both, transformation and shape modes, in the GMM-based method the initial alignment and the
adjustment of shape modes were executed in an iterative manner. Acknowledging the sparsity
of the point cloud, we brought in a strong regularization towards the mean shape. Due to
implementation details, this was achieved through scaling of the SSM-eigenvalues by a factor
of 0.025 before applying the GMM-based fitting procedure in order to match the SSM to
the sparse data. The GMM approach uses regularization similar to the ICP approach and this
scaling is similar to a regularization with factor γ = 40 in the aforementioned ICP setup.
However, the remaining objective functions of ICP and GMM cannot be compared directly.
Again, we evaluated the sensitivity of fitting accuracy to the choice of regularization. Reasonable
regularization was found for γ in the interval from 20 to 100. The chosen factor γ = 40
improved the mean results slightly by 0.02 mm compared to parameters in this interval.
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B. Validation

The final SSM fits were further analysed in AmiraZIBEdition. The quality of the generated
models was evaluated visually (Figure 3) and quantitatively with the help of mean surface
distance, RMS surface distance, and maximum surface distance between the fitted SSM and
the ground truth surface. Additionally, to evaluate the robustness of the proposed methods w.r.t.
sparsity, we performed a series of tests on randomly reduced landmark sets. We always used
the trochlear center and both epicondyles. The remaining landmarks were reduced to 100%,
75%, 50%, 25%, 15%, 5% and 0% of their original amount. Reduction was done in different
regions (anterior cortex, distal medial and lateral femoral condyles, posterior medial and lateral
femoral condyles) independently and three mentioned landmarks which are crucial for the fitting
process were not considered for reduction and thus were included in every landmark set used
for testing. To take randomness into account we performed five tests for every reduction level.
The average number of landmarks per reduction level is given in Table II.

Fig. 3. Surface distance with isolines (1 mm, 3 mm and 5 mm) between the ground truth surface and the ICP-based
fitted SSM to the point cloud for case 3. (Mean surface distance = 1.20 mm)

TABLE II
AVERAGE NUMBER OF LANDMARKS USED FOR SPARSE FITTING.

100% 75% 50% 25% 15% 5% 0%
352 ± 29 262 ± 22 176 ± 14 87 ± 7 53 ± 5 16 ± 2 3 ± 0

III. RESULTS

Using the SSM generated femurs that were fit to the navigation data and then compared to
the MRI ground truth, the ICP-based approach performed slightly better on average but not
significantly (significance level: 0.01) better than the GMM approach with respect to the mean
and RMS surface distance (Figure 4). Case 3 had a mean surface distance of 1.20 mm (ICP)
and 1.37 mm (GMM), which is close to the mean surface distance averaged over all 10 cases
(1.19 mm for ICP and 1.38 mm for GMM). Since case 3 in this way represents a typical result,
its surface distance is shown in Figure 3.
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Both methods achieve good results in the experiments with a reduced number of landmarks
(Figure 5). We performed pairwise t-tests between the results using all landmarks (100%) and
the results using a reduced number of landmarks (75%, 50%, 25%, 15%, 5% and 0%) for ICP
and GMM, respectively. We found significant differences between 100% and 5% (ICP, GMM:
p < 0.001) and between 100% and 0% (ICP, GMM: p < 0.001).

For the 10 patients the average computing time for reconstructing the anatomy was approx.
20 seconds (ICP) and ca. 25 seconds (GMM) on a standard personal computer (Intel Xeon
E5-2650 v2; 8 cores; 2.60 GHz).

Fig. 4. Mean surface distance between the SSM fit to the point clouds and the ground truth surfaces. The plot showing
mean value ± std. devivation with Whisker bars at min and max value.

Fig. 5. Averaged Mean (left) and RMS surface distances (right) between the SSM fit to the point clouds and the ground
truth surfaces for the two methods. For each reduction level (apart form 100% and 0%) five runs were performed.
Boxplots showing mean value ± standard deviation with Whisker bars at minimal and maximal value.
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IV. DISCUSSION

This study evaluated the accuracy of two methods for fitting an SSM to digitized surgical
navigation data. As measured with the mean surface distance, RMS surface distance and
maximum surface distance the errors between the two methods are similar, although the ICP-
based approach performed slightly better on average than the GMM approach. We hypothesise
that the reason for ICP perfoming slightly better is the challenging and sparse distribution
of navigation landmarks. This should be subject to investigation in future studies. The two
methods did not only achieve acceptable error measures, given that postoperative prosthesis vs.
preoperative bone distances of up to 6 mm have been reported even in well-functioning patients
[6], but the maximum errors occurred in less clinically-relevant areas such as the intercondylar
notch and the superomedial edge of the articular surface. Beyond that, the error within the
results stayed acceptable even for a reduced number of landmarks, showing the robustness of
using an SSM for surface reconstruction.

One of the major limitations of this work is the accuracy of the MRI segmentation. Although
we used this as our ground truth, there can be relatively large errors associated with using this
technique. However, MRI is an excellent image modality for the assessment and segmentation
of cartilage. It was attempted to only use areas of clinical interest to perform our comparison
(e.g. the femoral condyles and trochlea); but due to difficulty in predictably determining the
transition between condyle and osteophyte it was decided to use the entire distal femur despite
the relatively large errors this resulting thereof.

Both methods of SSM fitting are fast enough to allow for intraoperative feedback with respect
to computation time, although the implementations were not optimized for run time yet. Please
note, that for a given point cloud the SSM fitting is deterministic for both approaches and
uniquely determined.

As TKA evolves, a patient-specific approach will be demanded by patients. Patient-specific
implant design and positioning could be a strategy to improve function post-operatively, whereby
surgical navigation allows the surgeon to place the components with high precision in any
position.

V. CONCLUSION

The results of this study show that even with the relatively sparse dataset available from
routine navigated TKA, the SSM can provide a reasonably accurate approximation of the
distal femur. These models can be used retrospectively to compare native anatomy with
implant positioning, providing valuable insight into patient function and satisfaction. This could
potentially allow for optimization of implant selection and position for a given patient and
potentially improve patient satisfaction and function.
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