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Abstract

This paper gives a concise synopsis and some new insights concern-

ing four affine invariant globalizations of the local Newton method. The

invariance classes include: affine covariance, affine contravariance, affine

conjugacy, and affine similarity. In view of algorithmic robustness, each of

these classes of algorithms is particularly suitable for some corresponding

problem class.
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Introduction

In 1972, in his thesis, the author constructed a first algorithm of the kind later
called affine invariant Newton methods (see [4]). Already with this first algo-
rithm, hard problems (mostly from NASA) could be solved that could not be
solved by the standard techniques in use then. Early on, Georg Bock joined
this algorithmic line, see the series of papers [1, 2, 3] starting from 1981. Next,
in 1979, the author [5] extended his approach to continuation methods and for-
malized it. On this basis, the author wrote a first research monograph on the
topic and distributed it among colleagues who used it in their lectures. How-
ever, in 1993, his PhD student A. Hohmann [12] introduced so-called affine

contravariant Newton methods, at the same time renaming affine invariant to
affine covariant Newton methods. Once the door had been opened, two fur-
ther invariance classes were introduced: affine conjugacy by the author and M.
Weiser [11]) and affine similarity by the author himself. With these now four

affine invariance classes at hand, the author again started to write a research
monograph [6] that appeared in 2004. Today, this book contains most of the
present state of the art about the topic.

The present article gives a concise survey on affine invariant Newton algo-
rithms from the pure point of view of the (“grand”) four invariance classes. For
reasons of clarity, the presentation is mainly restricted to the simplest case of
exact Newton methods. The aim is to deepen structural insight and, as will turn
out, gain certain new algorithmic tools that are not included in the monograph
[6]. In Section 1, affine covariance is treated, which involves iterative natural

monotonicity and affine covariant computational estimates of Kantorovich quan-

tities as a theoretical basis for some adaptive trust region strategy. In addition,
continuation methods with local Newton methods as correctors are treated. In
Section 2, affine contravariance is worked out. It merely requires iterative mono-
tonicity of nonlinear residual norms and allows for computational estimates of
the affine contravariant counterparts of the Kantorovich quantities, again as a
theoretical basis for an adaptive trust region strategy. Here, an inexact Newton
method with GMRES as inner iteration is inserted. Next, in Section 3, the case
of nonlinear elliptic PDEs is treated in the framework of affine conjugate New-
ton methods, requiring functional monotonicity and corresponding Kantorovich
quantities as well as their computational estimates. Finally, Section 4 deals with
affine similar Newton methods, often called pseudo-continuation methods, which
apply to steady state problems. Special attention is paid to those problems that
originate from time dependent problems with implicit conservation properties:
they cause singular Jacobians, so that standard Newton methods are bound to
fail. In this class of algorithms, a rather recent update beyond [6] is presented.
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1 Affine covariance: error oriented approach

Let F (x) = 0 with F : D ⊂ R
n → R

n denote a system of n nonlinear equations.
For ease of presentation, we here focus on the finite-dimensional case. The
extension to Banach spaces is for most cases straightforward. In the affine
covariant approach, the underlying idea is that the problem at hand is equivalent
to any problem out of the class

G(x) := AF (x) = 0 where A ∈ GL(n) . (1)

Obviously, the choice of the nonsingular matrix A does not affect the local

Newton iteration
xk+1 = xk +∆xk , k = 0, 1, . . . , (2)

defined by the ordinary Newton corrections ∆xk via

AF ′(xk)∆xk = −AF (xk) . (3)

1.1 Global Newton method

Based on the principle of affine covariance, the so-called Newton path x(λ) may
be obtained by intersection of all level sets

G(x|A) := {z ∈ D| ‖AF (z)‖2 ≤ ‖AF (x)‖2} .

to yield

G(x) :=
⋂

A∈GL(n)

G(x|A) = {x| F (x(λ)) = (1− λ)F (x0) , λ ∈ [0, 1]} . (4)

By construction, the Newton path is an affine covariant mathematical object,
which starts at an initial guess x0 = x(0) and ends at some solution point x∗ =
x(1). It may also end at a point where the Jacobian is singular, from where there
is no possible continuation of the Newton path. An efficient algorithm should,
of course, take this possible occurrence into account. In view of globalization,
the property

ẋ(0) = ∆x0 ,

i.e. the Newton direction is just the tangent direction at the Newton path.
Hence, the direction of the Newton correction is right, but the iterative step
may be “too large”. This geometrical insight directly leads to the construction
of the global Newton method

xk+1 = xk + λk∆xk , 0 < λk ≤ 1, k = 0, 1, . . . . (5)

The values of the selected damping factors λk will depend on the choice of the
matrix A in the general monotonicity test

‖AF (xk+1)‖ ≤ ‖AF (xk)‖ . (6)
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Note that this class of tests includes the standard test in terms of the nonlinear
residual

‖F (xk+1)‖ ≤ ‖F (xk)‖ (7)

which is typically found in classical textbooks. A comparative analysis of the
class (6) of tests (as given in [4]) reveals that the worst case damping factors
look like

λk ∼ 1/cond(AF ′(xk)) . (8)

This means that the above monotonicity test (7) may be of little help in global
Newton methods for problems with ill-conditioned Jacobian.

Natural monotonicity test. The above undesirable occurrence (8) moti-
vates the choice A = F ′(xk)−1, which leads to the so-called naturalmonotonicity
test

‖∆x
k+1‖ ≤ ‖∆xk‖, (9)

where ∆x
k+1

denotes the simplified Newton correction defined via

F ′(xk)∆x
k+1

= −F (xk+1) . (10)

Observe that the linear system (10) uses the same matrix as in (3), but a
different right hand side. By construction, it is also independent of any choice
the matrix A. Experience shows that, in most and especially in challenging cases
of boundary value problems for ordinary and partial differential equations, this
natural monotonicity test is much more efficient than the standard test (7).

Affine covariant Lipschitz condition. Following the paper [9] by the au-
thor and G. Heindl , let us introduce some Lipschitz constant ω ≥ 0 via

‖F ′(x)−1 (F ′(x̄)− F ′(x)) (x̄− x)‖ ≤ ω‖x̄− x‖2 . (11)

Note that this kind of condition is independent of the choice of the matrix A as
can be seen from

G′(x)−1 (G′(x̄)−G′(x)) (x̄− x) = F ′(x)−1A−1A (F ′(x̄)− F ′(x)) (x̄− x)

In passing we note that with this choice of Lipschitz condition, the traditional
convergence theorems for local Newton methods, such as the ones by L. Kan-
torovich [13] or by I. Mysovskikh[16], can be shown by proofs much simpler than
usual. Here, however, we are interested in the convergence analysis for global

Newton methods, which will follow next.

Affine covariant convergence analysis. For the global Newton algorithm
we need to study the local convergence of the natural level functions, which is
obtained as

‖ ∆x
k+1

(λ)‖ ≤
(
1− λ+ 1/2 λ2hk

)
‖∆xk‖ , hk := ‖∆xk‖ω , (12)
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in terms of the quantity hk, which we call Kantorovich quantity in view of the
original paper [13]. For the optimal choice of damping factor we obtain

λopt
k = min

(
1,

1

hk

)
. (13)

Clearly, whenever hk < 1, then λopt
k = 1, i.e. we are in the local contraction

domain of the ordinary Newton method. Whenever hk > 1, then the damping
factor depends on the computationally known ordinary Newton correction and
the unknown Lipschitz constant ω. Hence, this result seems to be useful only
for theoretical purposes.

Affine covariant adaptive trust region strategy. In 1979, the author
introduced the notion of computational estimates (see [5])

[hk] ≤ hk , (14)

which are lower bounds for Kantorovich quantities. Insertion of these bounds
into (13) supplies an adaptive trust region strategy defined by

[λopt
k ] := min

(
1,

1

[hk]

)
.

The geometric situation can be seen in Fig. 1.

xk

xk+1

ρk

x∗

G(xk+1)

G(xk)

Figure 1: Geometrical interpretation: Newton path G(xk) and Newton
step with locally optimal damping factor λopt

k . Note that ‖xk+1−xk‖ = ρk, the
radius of the local Kantorovich ball, which is the adaptive trust region.

The relation (14) induces that

[λopt
k ] ≥ λopt

k ,

which means that the suggested algorithmic damping factors may be too large.
As a consequence, any damping strategy will have to be realized in two parts,
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a prediction strategy and a correction strategy.

Prediction strategy. In 1975, the author had made a first suggestion. This has
been slightly improved in [6] to yield

[ωk] :=
‖ ∆x

k −∆xk‖
λk−1‖∆xk−1‖‖∆x

k‖
≤ ωk .

For Newton step k > 0, the idea is to pick some λk = [λopt
k ] for [hk] = ‖∆xk‖[ωk].

For k = 0, an ad hoc value must be determined. If, for the selected value λk,
the natural monotonicity test fails, then a corrected value should be chosen as
to be shown next.

Correction strategy. In 1983, H. G. Bock [2] suggested

[hk] := [ωk]‖∆xk‖ :=
2‖∆x

k+1
(λ)− (1− λ)‖∆xk‖
λ2‖∆xk‖

∣∣∣
λ=λk

.

All terms in this expression are computationally available, as soon as the natu-
ral monotonicity test had failed (or otherwise been evaluated). This combined
prediction/correction strategy works efficiently even in rather challenging prob-
lems, in most cases already without the necessity of a correction step.

Codes. The here presented algorithm is realized in the code NLEQ-ERR, which
is publicly available, see the software page in [6]. It is suitable for moderate size
nonlinear systems. For large scale, but still finite dimensional systems, the
inexact Newton codes GIANT-GBIT (GIANT: Global Inexact Affine invariant
Newton Techniques) with inner iteration by some “good Broyden method” GBIT
for linear systems with general non-symmetric matrix is applied (see [8] by the
author together with R. Freund and A. Walter).

1.2 Discrete continuation by local Newton methods

A different globalization exploits more specific properties of the nonlinear map-
ping under consideration. Rather than just solving F (x) = 0, we now solve the
problem family

F (x, λ) = 0 , λ ∈ [λ0, λ
∗] (15)

in terms of the embedding parameter λ. Numerically, this means to solve a
sequence of problems

F (x, λν) = 0 , λν+1 = λν +∆λν , (16)

a process often called discrete continuation or numerical pathfollowing. Of
course, in this approach, the control of the stepsizes ∆λν is crucial.
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Newton continuation methods. The principle here is to construct a se-
quence of problems (16) such that the ordinary Newton method converges locally
in each continuation step. Geometrically speaking, we construct some known
prediction path x̂(λ) substituting the unknown solution path x(λ). Following
the classification from [5], we define the order p of a continuation method by

‖x̂(λ)− x(λ)‖ ≤ ηp ∆λp, p > 0 . (17)

The associated convergence analysis (see [6, Section 5]) leads to a feasible step-
size bound

∆λν ≤ ∆λmax :=

(
2

ωηp

)1

p
, (18)

where ω represents some affine covariant Lipschitz constant. In the spirit of
the preceding Section 1.1, we replace the unknown theoretical quantities by
available computational estimates [·] so that computational estimates

[∆λmax] :=

(
2

[ω][ηp]

)1

p

arise as a basis for an adaptive stepsize strategy. The quantities [ω] ≤ ω and
[ηp] ≤ ηp are easily obtained in the course of the algorithm. Due to the relation
[∆λmax] ≥ ∆λmax again a prediction and a correction strategy for the stepsizes
is needed.

x

λ

x(λν)

λν λν+1

x̂

x̂(λν+1)

x(λν+1)

x

Figure 2: Classical continuation method (p = 1).

Classical continuation method. In the most popular approach, the prediction
path is defined by just keeping the “old” solution as the initial guess for the
next local Newton iteration:

x̂(λ) = x(λν), λ ≥ λν .
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This approach is geometrically represented in Fig. 2 from [5, 6].

Tangent continuation method. Another also popular choice is to continue along
the local tangent direction so that

x̂(λ) = x(λν) + (λ− λν) ẋ(λν) , λ ≥ λν ,

wherein
Fx

(
x(λν), λν

)
ẋ(λν) = −Fλ

(
x(λν), λν

)
.

The geometrical interpretation is given in Fig. 3, again from [5, 6].

x

λ

x(λν)

λν λν+1

x̂

x̂(λν+1)

x(λν+1)

x

Figure 3: Tangent continuation method (p = 2).

Polynomial extrapolation method. In 1985, H. G. Bock [3] extended the above
continuation methods towards polynomial extrapolation, for details see also [6,
p.241]. With standard polynomial extrapolation, one obtains p = 1, while
Hermite extrapolation yields p = 2. Both approaches are affine covariant by
construction.

Example. Space shuttle problem (NASA). In this example, the param-
eter λ represents the maximum temperature of the space shuttle shield. The
effect of the various affine covariant Newton algorithms can be illustrated by an
optimal control problem concerning a space shuttle from NASA, see Table 1.

In passing we note that NASA had wanted (in vain) to reduce the maximum
heating temperature of the shield of the shuttle from 2850◦F to 2000◦F . This
has for the first time been achieved in [10] by the author together with J. Pesch
and P. Rentrop using a simple modification of the tangent continuation method.
The finally achievable temperature of 1700◦F has been computed by H. G. Bock
in [1] - showing that below that temperature an optimal solution no longer exists.
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htb

Continuation method Newton method work

classical residual monotonicity failure
(NASA)

classical natural monotonicity, ∼ 340
empirical damping

classical natural monotonicity, 114
adaptive trust region

tangent natural monotonicity, 18
adaptive trust region

Table 1: Space Shuttle problem: Fixed continuation step from λ = 0.0085
to λ = 0.0080. Comparison of different Newton and continuation methods
counted in numbers of trajectories needed in a multiple shooting algorithm.
The Gauss-Newton continuation iteration to be given below would result in a
further computational speed-up by a factor of at least 2.

Gauss-Newton continuation methods. This most sophisticated continua-
tion method has been worked out in the paper [7] by the author, B. Fiedler and
P. Kunkel. Here the equation (15) is understood as an underdetermined system
of equations for the extended variable y = (x, λ) ∈ R

n+1, i.e.

F (y) = 0 . (19)

Linearization leads to the underdetermined system

δy ∈ L := {δy|F ′(y)δy + F (y) = 0} .

Note that any such solution δy is defined in affine covariant terms. A special
role is played by the (normalized) tangent t(y) ∈ R

n+1, a basis for the null space
of the Jacobian, i.e.

F ′(y)t(y) = 0 .

With these definitions, a prediction path in R
n+1 can be determined as

ŷ(s) = yν + st(yν), s > 0 . (20)

As local correction a Gauss-Newton iteration is conveniently applied via

∆y := −F ′(ŷ)+F (ŷ) ⊥ t(ŷ) .

Note that ∆y is the “shortest” solution in the subspace L. In local combination
with a special quasi-Newton method, this quasi-Gauss-Newton iteration can be
restricted to some hyperplane H ⊥ t(ŷ) and thus be simply interpreted as quasi-
Newton iteration in H. The geometric situation is depicted in Fig. 4. Following
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y(0)
s · y(0)

H

y(s)

ŷ(s)

t(ŷ(s))

t(y(s))

Figure 4: Discrete tangent continuation in y = (x, λ).

the same line of thoughts as before, an adaptive trust region strategy based on
computational estimates for theoretical quantities can be derived, details are
left to the original paper [7] or the monograph [6, Section 5.2].

Code. The algorithm as described here is realized in the code ALCON, which
is publicly available, see also the software page in [6]. By construction, this
algorithm has no problem around turning points. Moreover, it includes an
extension to bifurcation analysis.

2 Affine contravariance: residual approach

In most textbooks, global Newton methods are presented with the iterative
standard monotonicity test (7) in terms of the nonlinear residual norm ‖F (x)‖.
However, as pointed out in the thesis of A. Hohmann [12], there is some arbi-
trariness in the domain space of F so that the problem F (x) = 0 is equivalent
to the class of problems

G(y) := F (Bx) = 0 where y = Bx, B ∈ GL(n) . (21)

Note that G′(y) = F ′(x)B. Obviously, the choice of the nonsingular matrix
B affects the local Newton iteration in a contravariant form (which gives the
name)

y0 = Bx0, yk+1 = yk+∆yk ↔ Bxk+1 = Bxk+B∆xk , k = 0, 1, . . . , (22)

defined by the ordinary Newton corrections ∆xk via

F ′(xk)∆xk = −F (xk) ↔ G′(yk)∆yk = −G(yk) . (23)
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Affine contravariant Lipschitz condition. In our context, we define some
affine contravariant Lipschitz constant ω [12] by

‖ (F ′(x̄)− F ′(x))BB−1(x̄− x)‖ ≤ ω‖F ′(x)BB−1(x̄− x)‖2 . (24)

Note that this ω is independent of the choice of the matrix B. With this
type of Lipschitz condition, local convergence in the spirit of the theorem of
I. Mysovskikh can again be proven, here in terms of the residuals only, which
excludes questions of uniqueness of the solution.

Affine contravariant convergence analysis. In order to analyze the con-
vergence properties of the global Newton method

xk+1 = xk + λk∆xk, 0 < λk ≤ 1, k = 0, 1, . . .

we may conveniently use the above Lipschitz constant to obtain

‖F (xk+1(λ))‖ ≤
(
1− λ+ 1/2 λ2hk

)
‖F (xk)‖ , hk := ‖F (xk)‖ω , (25)

which defines the residual counterpart hk for the Kantorovich quantity. In this
framework, the optimal damping factor arises as

λopt
k = min

(
1,

1

hk

)
. (26)

The above value of the damping factor supplies the theoretical basis for some
global convergence theorem - unlike the situation in the affine covariant case.

Affine contravariant adaptive trust region strategy. Proceeding as in
Section 1.1, we may equally identify computational estimates [hk] to be eval-
uated in the course of the algorithm. Thus, we again arrive at some adaptive
trust region strategy, both in the form of a prediction and a correction strategy.

Prediction strategy. As a slight modification from [12], the one suggested in [6,
Section 3.2] seems to be the most simple one:

[hk] :=
‖F (xk(λ))‖
‖F (xk−1)‖ [hk−1] ≤ hk . (27)

This estimate is easily available in the course of the global Newton iteration and
defines

[λopt
k ] := min

(
1,

1

[hk]

)
≤ λopt

k .

Correction strategy. Once the residual monotonicity test has been performed,
the information for a further computational estimate is available as

[hk] :=
2‖F (xk+1)− (1− λ)F (xk)‖

λ2‖F (xk)‖
∣∣∣
λ=λk

≤ hk . (28)

If the test failed, the above value could be used to define some better damping
factor.
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Inexact Newton-GMRES method. The main reason for A. Hohmann to
introduce the affine contravariant Newton method in his thesis [12] had been
that he wanted to construct an adaptive inexact Newton method with inner
iteration by GMRES, the most robust and popular linear iterative solver for
general unsymmetric matrix. In this solver, the exact linear system (23) is
replaced by the inner iteration

F ′(xk)δxk
i = −F (xk) + rki , i = 0, 1, . . . , i∗ with δxk

0 = 0, rk0 = F (xk)

and the exact Newton iteration by the outer iteration

xk+1
i = xk + λkδx

k
i .

The index i∗ is determined by the threshold criterion

‖rki ‖
‖F (xk)‖ ≤ ηk . (29)

Affine contravariant convergence analysis and trust region strategy.
A careful affine contravariant convergence analysis in [12, 6] shows that the
theoretically optimal damping factors and their computational estimates arise
as

λopt
k = min

(
1,

1

(1 + ηk)hk

)
, [λopt

k ] = min

(
1,

1

(1 + ηk)[hk]

)
≥ λopt

k .

Since in GMRES the property ηk+1 ≤ ηk holds, a criterion of the kind

ηk ≤ η , for k ≥ k∗

can be easily realized in (29), which means that the number of inner iterations
can be conveniently controlled. Details of the associated prediction/correction
strategies are omitted here.

Codes. The above combined prediction/correction strategy for the exact New-
ton method is realized in the public domain code NLEQ-RES for moderate size
systems. The presented affine contravariant prediction/correction strategy for
the inexact Newton method is realized in the code GIANT-GMRES, see the soft-
ware page in the monograph [6].

Comparative numerical results. In order to compare the affine covariant
and contravariant algorithms (as realized in NLEQ-ERR and NLEQ-RES), let us
demonstrate their performance for a set of general partial differential equations
as given in [6, Section 8.2.1]. The set consists of the four examples:

• an artificial test problem atp1 of dimension n = 961,

• two driven cavity problems (dcp1000, dcp5000), one for laminar flow (with
Re = 1000, n = 1922), one for turbulent flow (with Re = 5000, n = 7983),
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• a supersonic transport problem sst2 of dimension n = 10404.

In all cases, exact Newton methods were realized, using direct solvers for the
moderate size discretized systems. The results are presented in Table 2. The
parameter itmax means termination after more than 75 Newton iterations,
while λ-fail indicates termination due to ’too small’ damping factor λk < 10−4.
The code NLEQ-RES/L represents some (left) preconditioned version of NLEQ-
RES, where the preconditioner is obtained from an ILU -decomposition with
pentadiagonal structure. It should be mentioned that this preconditioner will
change from step to step, so that the norms ‖CL(x)F (x)‖ in the monotonicity
test (7) as well as the above prediction strategy (27) and the correction strategy
(28) must be handled with care. Intuitively speaking, the algorithm behind
NLEQ-RES/L is half-way between NLEQ-RES and NLEQ-ERR.

Name NLEQ-RES NLEQ-RES/L NLEQ-ERR

atp1 4 (0) 4 (0) 4 (0)
dcp1000 itmax 10 (5) 8 (4)
dcp5000 itmax itmax 11 (7)
sst2 λ-fail 12 (11) 13 (8)

Table 2: Performance of various global exact Newton codes: adaptive trust re-
gion control via residual norm (NLEQ-RES), (left) preconditioned residual norm
(NLEQ-RES/L), and error norm (NLEQ-ERR).

Examination of the above table shows:

• The easy problem atp1 is solved by all three versions, it even converges
for the local Newton method with the prescribed initial guess.

• The code NLEQ-ERR clearly outperforms the other versions.

• Preconditioning in the residual version does indeed help, but not in the
most difficult problem.

Though based on few examples only, the overall picture obtained from this small
set has also been experienced in a larger class of problems.

Remark 1. The reader may be puzzled to learn that this residual based New-
ton method is successful in the cases, where damping factors are expected to
show the behavior

λk ∼ 1/cond(F ′(xk)) ,

as indicated in (8). However, the whole affine contravariant approach only
worked, since A. Hohmann changed the mapping F by reformulating the bound-
ary value problems, where possible, as Fredholm integral equations of the 2nd
kind, see [12, Section 5.2]. In the discretization of this operator formulation, the
Jacobian is no longer ill-conditioned.
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Remark 2. In his popular textbook [14], Tim Kelley reports satisfactory al-
gorithmic performance based on nonlinear residual criteria. It may be worth
mentioning that he has two key examples: (a) a 2D convection-diffusion equa-
tion, see [14, (6.21), p. 108], in a mild (C = 20) and a more challenging version
(C = 100); for the mild version already a local Newton method converges,
while the more challenging version requires a global strategy, at best with pre-

conditioning, in agreement with our results in Table 2; (b) the Chandrasekhar
H-equation, [14, (5.21), p.87], which is a Fredholm integral equation of the 2nd
kind, in agreement with Remark 1 above.

3 Affine conjugacy: convex optimization

Assume that we have a strictly monotone functional

f(x) = min, f : D ⊂ X → R . (30)

to be minimized over some Banach space X. In order to find some inner min-
imum, we have to solve the nonlinear system (in function space: differential
equations)

F (x) = f ′(x)T = 0, x ∈ D ⊂ X .

For the global Newton method, we have as usual

xk+1 = xk + λk∆xk, 0 < λk ≤ 1, k = 0, 1, . . . ,

where

F ′(xk)∆xk = −F (xk) , here with F ′(x) = f ′′(x) symmetric positive .

In this context it is natural to require functional monotonicity, i.e.

f(xk+1) ≤ f(xk) .

Following invariance considerations of [11, 6], we see that problem (30) is equiv-
alent to the whole class of problems

g(y) = min, y = Bx, B injective . (31)

As a consequence, we would get

G(y) = B∗F (Bx) = 0 , G′(y) = B∗F ′(x)B ,

where B∗ denotes the adjoint of B. Observe that the transformation from F ′(x)
to G′(y) is affine conjugate (which gives the name).

13



Affine conjugate Lipschitz condition. Under the assumption that the
functional f is strictly convex all G′(y)1/2 exist. So we are able to define the
Lipschitz condition

‖G′(y)−1/2 (G′(y)−G′(y)) (y − y)‖ ≤ ω‖G′(y)1/2(y − y)‖2 ,

which, cancelling the transformation B, is equivalent to

‖F ′(x)−1/2 (F ′(x)− F ′(x)) (x− x)‖ ≤ ω‖F ′(x)1/2(x− x)‖2 . (32)

As in the preceding sections, the thus defined Lipschitz constant ω is invariant
under any such transformation.

Affine conjugate convergence analysis. Under mild assumptions on D we
obtain the upper bound [11]

f(xk + λ∆xk) ≤ f(xk)− tk(λ)ǫk , (33)

where

tk(λ) = λ− 1

2
λ2 − 1

6
λ3hk

in terms of the affine conjugate quantities

hk = ‖F ′(xk)1/2∆xk‖ω , ǫk = 〈∆xk, F ′(xk)∆xk〉 = ‖F ′(xk)1/2∆xk‖22 .

Observe that, by mere invariance considerations, the local energy product and
thus the function spaces H1 and W 1,p for 1 < p < ∞ appear naturally. The
optimal damping factor comes out to be

λopt
k =

2

1 +
√
1 + 2hk

≤ 1 . (34)

With these estimates, a global convergence theory is possible. However, as in
the preceding sections, the damping factors are of theoretical value only, since
the quantity ω is unknown.

Affine conjugate trust region strategy. In order to derive an adaptive
algorithm from the theoretical results above, we replace the Kantorovich quan-
tities hk by computational estimates [hk]. As presented in [11], there are three
possibilities to identify computational estimates. The least expensive one is the
most unstable one against rounding errors, while the most expensive one, which
reads

E1(λ) := 〈∆xk,
(
F ′(xk + λ∆xk)− F ′(xk)

)
∆xk〉 ≤ λhkǫk ,

is best suited for computational evaluation. From this one obtains the Kan-
torovich estimate

[hk] :=
|E1(λ)|
λǫk

≤ hk .
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For the optimal damping factor we obtain

[λopt
k ] =

2

1 +
√

1 + 2[hk]
≤ 1 ,

which is the basis for corresponding affine conjugate adaptive prediction and
correction strategies (skipped here).

Codes. On the basis of this algorithmic derivation, the code NLEQ-OPT for
moderate size nonlinear systems has been constructed, which is public domain,
see the software page in [6]. For large scale, but still finite dimensional systems,
the inexact Newton code GIANT-PCG with some PCG as inner iteration and for
arbitrary preconditioner is available. Note that the linear iterative solver PCG
is also affine conjugate. Other choices of inner iterations should be avoided! For
general elliptic PDEs, the derivation scheme is extended to an inexact Newton
method in function space. This leads to the adaptive multilevel FEM code
NEWTON-KASKADE.

4 Affine similarity: steady state problems

This invariance class has been introduced as the most recent one by the author.
The presentation here is an improvement over Section 6.4 in the monograph [6].
Assume you want to compute the steady state of a dynamical system

ẋ = F (x) = 0 . (35)

Then, following the usual invariance considerations, this problem is equivalent
to the whole class of problems (with y = Bx)

ẏ = Bẋ = BF (x) = BF (B−1y) = 0, , (36)

where B ∈ GL(n). Clearly, in this problem class, the domain and the image
space of F are equivalent. Thus one obtains

G(y) = BF (B−1y) = 0, G′(y) = BF ′(x)B−1 ,

which obviously is a similarity transform of the Jacobian (giving the name).

Fixed point iteration. The simplest affine similar scheme for the solution of the
steady state problem certainly is the fixed point iteration

∆xk = F (xk), xk+1 = xk + τk∆xk , (37)

which, in the field of numerical ODEs, is well-known as explicit Euler discretiza-
tion. The parameter τk is just the local timestep. This scheme is known to work
satisfactorily only in the non-stiff case.
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Pseudo-transient continuation. For the stiff case, the following also affine similar
scheme is quite popular (see, e.g., C.T. Kelley and D. Keyes [15])

(I − τkF
′(xk))∆xk = F (xk) , xk+1 = xk + τk∆xk . (38)

In the field of numerical ODEs, this scheme is known as the linearly implicit

Euler discretization, applicable to stiff ODEs and differential-algebraic equa-
tions (DAEs). It looks like a linear combination of (37) with Newton’s method.
In fact, for τk → ∞ and nonsingular Jacobian, the scheme approaches New-
ton’s method. In real life dynamical systems, however, the Jacobian is rarely
nonsingular, as will be shown below.

Dynamical invariants. In the modelling of chemical dynamical systems,
mass conservation occurs quite often, which can be written as

eTx(t) = eTx0, where eT = (1, . . . , 1) . (39)

Time differentiation of this relation leads to

eT ẋ = eTF (x(t)) ≡ 0 .

Differentiation with respect to x then yields

eTF ′(x)F (x) ≡ 0 for F (x) 6= 0 .

Summarizing, the Jacobian will be necessarily singular, whenever the dynamical
system contains some (explicit or hidden) dynamical invariants. In this case,
Newton methods will not work. Let

P⊥ = I − eeT

eT e

define the orthogonal projector characterizing the just shown property, then

P⊥ẋ = P⊥F (x) = 0 ⇒ P⊥F ′(x) = 0 .

Upon inserting the orthogonal operator into (38), the iterates can be seen to
satisfy

P⊥∆xk = 0 .

Assuming P⊥x0 = 0, then all iterates can be seen to remain in the subspace

S := {u | P⊥u = 0} .

Affine similar Lipschitz conditions. As shown above, the dynamical sys-
tem underlying the steady state problem (35) should be regarded as a DAE
system. That is why (unlike [15]) we do not employ a first-order Lipschitz con-
dition for F (x), which is known to characterize the non-stiff case only. Recalling
the above introduced subspace S, the following two Lipschitz conditions appear
to be useful:
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• first-order one-sided Lipschitz condition

〈u, F ′(x)u〉
‖u‖2 ≤ ν < 0 , for u ∈ S ,

• second-order Lipschitz condition

‖ (F ′(x)− F ′(x)) (x− x)‖ ≤ L2‖x− x‖2 .

Remark 3. Note that, for singular Jacobian, ν ≥ 0 would necessarily occur,
unless the above argument u were restricted to the subspace S.

Affine similar convergence analysis. For both the analysis and the algo-
rithmic realization, we may define the local one-sided Lipschitz constant

ν̂(τ) :=
〈∆x, F ′(x)∆x〉

‖∆x‖2 ≤ ν < 0 . (40)

Note that, if ν̂(τ) ≥ 0 appeared during the iteration, then the algorithm should
be terminated.

We are now ready to address the main question, what kind of monotonicity test
should be selected in the pseudo-continuation method. The following auxiliary
result helps to decide this question:

d

dτ
‖F (x(τ))‖2

∣∣∣
τ=0

= 2〈F (x(τ)), F ′(x(τ))ẋ〉
∣∣∣
τ=0

= 2ν̂(0)‖F (x0)‖2 . (41)

From this, it can be clearly seen that the residual monotonicity test can be
applied. However, it will be successful only, if ν < 0. In this case the residual
norm will have some local timestep interval, where it decreases, i.e.

‖F (x(τ))‖ < ‖F (x0)‖ for τ ∈ [0, τ∗] .

As for monotonicity in terms of corrections, the estimate

‖∆x‖ ≤ ‖F (x0)‖
1− ντ

. (42)

shows, why this is not a good idea.

With these preparations, the following theoretical result can be obtained:

‖F (x(τ))‖ ≤
(
1 +

1

2

L0L2τ
2

1− ντ

)‖F (x0)‖
1− ντ

, (43)

where L0 = ‖F (x0)‖ denotes the Peano constant. The above assumption ν < 0
can be specified in more detail as

ν +
(1
2
L0L2 − ν2

)
≤ 0 ⇒ ‖F (x(τ))‖ < ‖F (x0)‖ .

Under this specification, the optimal timestep in (43) is achieved as

τopt =
|ν|

L0L2 − ν2
(44)
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Affine similar trust region strategy. We now proceed as in the preced-
ing sections and replace the unknown theoretical quantities by computationally
available quantities [·] thus obtaining

[τopt] :=
[|ν|]

L0[L2]− [ν]2
(45)

As for the one-sided Lipschitz constant, we may simply use definition (40) in
the convenient form

[ν]τ := ν̂(τ) =
〈∆x,∆x− F (x0)〉

‖∆x‖2 ≤ ντ .

In view of the necessary condition (41), the algorithm should be terminated, as
soon as ν̂ > 0 occurs. For the other Lipschitz constant L2 we may exploit

[L2] :=
‖F (x(τ))−∆x‖

τ2‖∆x‖2 ≤ L2 . (46)

These estimates can be easily obtained in the course of the iteration and in-
serted into (44) for the estimated optimal timestep.

A perhaps preferable choice would be obtained via the implicit reformulation

τopt =
|ν|(1− ντopt)

L0L2
,

from which, using (42), we obtain

‖∆x(τopt)‖L2τopt ≤
L0

1− ντopt
L2

|ν|(1− ντopt)

L0L2
= |ν| .

From this relation, a computationally available optimal timestep would be the
root of the scalar equation

g(τ) = ‖∆x(τ)‖τ − [|ν|]
[L2]

= 0 . (47)

In order to compute this root, one may construct the fixed point iteration

τk+1 = τk
[|ν|]

[L2]‖∆x(τk)‖τk . (48)

The latter algorithmic tool has not been tried yet.
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Conclusion

The present article on affine invariant Newton methods concisely surveys the
contents of the author’s book [6], yielding at the same time some new structural
insight as well as a few new algorithmic details. In terms of robustness, the
affine covariant Newton techniques appear to be well-suited for discrete bound-

ary value problems in ODEs and general PDEs. The class of affine contravariant

Newton methods fits particularly well to Fredhom integral equations of the 2nd
kind. Affine conjugacy applies naturally to elliptic PDEs. Finally, for steady

state problems in time dependent differential equations, the class of affine sim-

ilar Newton methods seems to be appropriate. For this latter case, several new
theoretical as well as algorithmic results beyond the book [6] are presented.

Acknowledgements. The author remembers with joy the early company of Georg
Bock on the road to affine invariant Newton methods.
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Chemical Reaction Systems, pages 102–125. Springer-Verlag, Berlin, Hei-
delberg, New York, 1981.

[2] H.G. Bock. Recent Advances in Parameter Identification Techniques for
ODE’s. In P. Deuflhard and E. Hairer, editors, Numerical Treatment

of Inverse Problems in Differential and Integral Equations, volume 2 of
Progress in Scientific Computing, pages 95–121. Birkhäuser, Boston, Basel,
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