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Zusammenfassung

Spectral deferred correction (SDC) Methoden, vorgestellt von Dutt, Greengard und
Rokhlin in [17], sind iterative Verfahren zur numerischen Losung von Anfangswert-
problemen fiir gewohnliche Differentialgleichungen. Wenn diese Methoden konvergieren,
dann wird unter Verwendung von Zeitschrittverfahren niedriger Ordnung eine Kollo-
kationslésung berechnet. Die Losung von steifen Anfangswertproblemen ist eine rele-
vante Problemstellung in der numerischen Mathematik. SDC-Methoden, speziell fiir
steife Probleme, werden von Martin Weiser in [55] konstruiert. Die Theorie und die
Experimente beziehen sich dabei auf Probleme, die aus raumlich semidiskretisierten
Reaktions-Diffusions-Gleichungen entstehen.

In dieser Arbeit werden die Ansétze aus [55] auf Konvektions-Diffusions-Gleichungen
angewendet und das resultierende Konvergenzverhalten von SDC-Methoden untersucht.
Basierend auf einem einfachen Konvektions-Diffusions-Operator, dessen spektrale Eigen-
schaften umfassend studiert werden, wird ein Schema zur Verbesserung dieses Verhaltens
entwickelt. Numerische Experimente zeigen, dass eine Verbesserung der in [17] eingefiihr-
ten SDC-Methoden mdglich ist. Die Untersuchungen ergeben weiterhin, dass das auch
fiir komplexere Konvektions-Diffusions-Probleme gilt.
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1 Introduction

... Around 1960, things became completely different and everyone became
aware that the world was full of stiff problems.

(G. Dahlquist in Aiken 1985) [32, p. 2]

The numerical solution of initial value problems (IVPs) for systems of ordinary differ-
ential equations (ODEs) has been an essential task in numerical mathematics for a long
time. This thesis concerns spectral deferred correction (SDC) methods, as introduced
by Dutt, Greengard and Rokhlin in [17], for solving IVPs. These methods are iterative
schemes which compute an approximate solution to a collocation solution by applying a
low order time stepping scheme in each iteration step. Actual research areas involving
SDC methods are the construction of efficient time-parallel solvers [4], [5], [8], [20], [22],
[43] and solving IVPs with an inexact right hand side [57]. SDC methods function as
preconditioners for collocation systems and Krylov subspace methods can be used to
solve these systems efficiently. This is applied to construct appropriate methods for the
solution of differential algebraic equation IVPs [6], [33], [34], [36]. A further numerical
research field is the modeling of multiscale problems, where a spatio-temporal adaptivity
can be a promising approach. An application for the cardiac electro-mechanical coupling
model can be found in [58].

In all of these applications, we are confronted with stiff ODEs. A definition of a stiff
problem is that for this type of differential equation, the implicit Euler method is more
suitable than the explicit Euler method. By using implicit methods, in each step a
linear system has to be solved and the Jacobian of the ODE has to be computed. The
resulting increase of computational cost makes the numerical solution of stiff problems
more challenging compared to the solution of non-stiff problems. The derivation of
approaches and efficient algorithms for stiff problems is a crucial topic in the numerical
treatment of ODEs.

The construction of SDC methods for stiff problems is addressed in, for example, [2],
[17], [48] and [55]. With the aim of obtaining specific convergence properties, Martin
Weiser [55] introduces new SDC methods using implicit Runge-Kutta (DIRK) sweeps.
These methods are based on simple linear algebraic considerations. The study of [55]
formulates convergence objectives and presents approaches on how to achieve them.
SDC methods are interpreted as fixed point iterations and their construction is based
on linear collocation systems resulting of Dahlquist’s equation. The motivation there
is the numerical solution of time dependent partial differential equations (PDEs) which
are before semi-discretized in space. The considered class of PDEs are reaction-diffusion
equations.

More challenging in the numerical treatment are convection-diffusion equations, which
arise in numerous physical problems, for example, in models of flow, models of semicon-
ductor devices or other transport phenomena of physical quantities. In this thesis, we



apply the approaches of [55] to convection-diffusion equations and introduce a frame-
work for constructing specific SDC methods for this type of PDEs. In Chapter 2, SDC
methods are derived as in [17] and considered as fixed point iterations for solving linear
collocation systems. Chapter 3 summarizes the results of [55] to prepare the study of
convection-diffusion equations, which is covered in Chapter 4. After an introduction to
these equations, a treatment of their spectral properties is presented. The obtained in-
sights are used for the following construction of SDC methods with special convergence
properties. Several numerical experiments are carried out for different convergence ob-
jectives. Finally, Chapter 5 provides numerical experiments to SDC methods for systems
of ODEs resulting from convection-diffusion problems.



2 SDC methods from the perspective of
linear algebra

This chapter provides an introduction to SDC methods. In the first Section 2.1, these
methods are derived with standard concepts of numerical mathematics. As a preparation
for the following chapters and for a better understanding of the SDC framework, SDC
methods are then regarded as Runge-Kutta methods. The Section 2.2 leads to a matrix
formulation and in Section 2.3, SDC methods are considered as fixed point iterations and
a condition for their convergence is derived. We assume some background knowledge on
the numerical solution of ODEs. A detailed treatment to this specifically can be found
in [31] and [32]. For numerical analysis in general, we refer to the book series [11], [12],
[13] and to the theoretical treatise [1].

2.1 SDC methods for solving ODEs

SDC methods can be used for solving IVPs for systems of ODEs. They are iterative
schemes and in each iteration step a correction of an approximate solution is computed.
Dutt, Greengard and Rokhlin introduced SDC methods in [17]. This approach for de-
ferred correction methods is based on the Picard integral equation.

2.1.1 Derivation of SDC methods with the Picard integral equation

This work concerns the numerical solution of the IVP

y'(t) = fy(®)), te[0,7],

4(0) = yo 1)

where y(t),y0 € CN and f : CV — CN. Tt is well known that a unique solution y(t)
exists if the right hand side f satisfies some simple regularity conditions, see Theorem
110C in [7] or Theorem 2.7 in [11]. To find a numerical solution of (2.1), we consider
the error

61(t) = y(t) - y1%(2) (2.2)

with a given approximate solution y%(t) where y°/(0) = yo. Differentiation of (2.2)
yields



and by that the new IVP for the error is given by

o) = 1 (1) +69w) -y @), tefol,

2.3
51%(0)) = 0, =

where the right hand side f is from the IVP (2.1). The solution of (2.3) can be written
as a Picard integral equation

() = 6%(0) + / 7 (16) +81()) = 4 (5)] s

s=0

To achieve a numerical solution, the given time interval [0, 7] is discretized by the points
0=ty <t1 <...<t,=r, hence
ti—1 t;

30 = [ [£ (596 +89)) =) ds+ [ [ (59 +59) — 4 )] s

s=0 s=t;_1

/

=0000(t;_1)
at these time points. Rearranging this equation yields the formula

t;

500 (t;) = 600(t;_1) + / 7 (5°(s) +89(s)) = 1 (4(s)) | as

s 1—1
t;

+ [ 1 (96) s (40 - ¥t

s=ti—1

which has two integrals. The first one is approximated with a simple numerical time
stepping scheme of low order, see Definition 1.2 in [30]. For the approximation of the
second integral, a spectral integration is applied [26], [27].

Definition 2.1. The matrix S € R™TDX(+1) which coefficients are defined by
0, if1 =0,
[ L, ifi>o,
where L(t) is a Lagrange basis polynomial, will be called the spectral integration matriz

for the time points tg,...,t,. If all these time points are interpolation nodes, the La-
grange basis polynomial is defined by

L (1)

1T tt — tj'. (2.4)



Spectral integration matrices with interpolation nodes from quadrature formulas were
introduced in [17]. In the next subsection, such nodes are covered in detail. Further
information on polynomial interpolation can be found in Section 7.1 in [12].

Possible low order time stepping schemes are, for example, the explicit and implicit
Euler method. A detailed treatment of these Euler methods can be found in Section
20 and 21 in [7]. Using the explicit Euler method as time stepping scheme yields the
approximation

ol =% 4o, [f( Ay a) = 1 ()]

+ Tikzzo Six f (y,[f]) - (yl[ol - y}‘ﬂl) : i=1,....n (2.5)

for the time step 7; = t; —t;_1, where 51[0] ~ §l0l (t;) and yz[o] = y[0] (t;), starting at 5([)0] = 0.
With this equation it is possible to compute the errors (5%0], e 6,[9 I, Approximating the
first integral with the implicit Euler method yields

o = 47 [1 (o7 +0) = £ (5)]
+ Tikznjzo Sik. f (y,[co}) (yz[o} yz[o_} ) , i=1,...,n. (2.6)

0]

To solve this equation for 52[ , we consider the first order Taylor polynomial

F) s () (0 =) = 7 (o) 1)

[0]

as a linear approximation of f at the point g, . From this linearization follows

) () 3 (071 (4

and inserting this into equation (2.6) leads to the linearly implicit scheme

( —7if' ( )> 5[0] [(1]1 +Ti§:Sikf (yl[go]) - ( g yz[(l] ) , i=1,...,n, (2.8)
k=0

which can be solved for 51[0]. For this scheme, the derivative of the right hand side f, the
so-colled Jacobian Jy = 0f/0y, has to be available.

Adding the error (5Z[0] resulting from the explicit scheme (2.5) or the linearly implicit
(0] e

scheme (2.8) and the given approximate solution y;

;| yields a new discrete corrected
solution

ylH =y 4 500 i=0,...,n (2.9)

This usually leads to a better approximate solution

il )+ Za[%



realized by a polynomial interpolation. Iteration of the scheme (2.9) yields
gt = bl sU1 i=0,....n, j=0,.... (2.10)

This correction scheme employing the explicit Euler method was introduced in [17] as
one of several SDC methods. Besides explicit and linearly implicit Euler formulations as
presented here, SDC methods with other low order time stepping schemes are feasible.
The choice of an implicit approach can be a reasonable way to solve ODEs, while explicit
methods are not satisfactory in some case. Such problems are called stiff ODEs, see
Subsection 112 in [7] or Subsection 4.1.3 in [11] for additional explanations.
Furthermore, the choice of the nodes for the Lagrange interpolation plays an important
role for the construction of SDC methods. The selected nodes can enable desirable
qualities, for example, a high order of SDC methods and reasonable stability properties.
This is covered in the next subsection.

Remark 2.2. Without loss of generality, in this work, we regard autonomous ODEs
y' = f(y) as from the IVP (2.1), where the right hand side f does not explicitly depend
on the time ¢. Considering a non-autonomous ODE ¢’ = ¢g(¢, ¢), the autonomous ODE
v = fly) = [g(t,0)T,1]T where y = [pT,t]7 can be introduced.

2.1.2 SDC methods as Runge-Kutta methods and the collocation solution

A common approach that was also applied in [17] is to use a time discretization for SDC
methods arising from quadrature rules. In the following, this application of quadrature
nodes is motivated and the view of SDC methods as Runge-Kutta methods is presented.
A detailed analysis of Runge-Kutta methods can be found in [30], [31] and [32].

Definition 2.3. (Definition 1.1 in [30]) An s-stage Runge-Kutta method for the IVP (2.1)
on the time interval [0, 7] is defined by the real numbers b;, a;; where ¢, = 1,...,s. The
numerical solution of this Runge-Kutta method at the time point ¢ = 7 is given by

S
Yyr =yo+7 Y _ biki,
i=1

S S
ki=f y0+72aijkj and Ci:Zaij, 1=1,...,s.
J=1 j=1

A common way to display the coefficients b; and a;; is the Butcher tableau

€1 | a1 -+ Q1s
Cs Ag1 ... Qgg
‘ by --- bs

Runge-Kutta methods are one-step methods for the numerical solution of IVPs. The
explicit and the implicit Euler method are 1-stage Runge-Kutta methods of order one.
Due to a certain choice of the coefficients of a Runge-Kutta method, it is possible to
construct methods of higher order.



Definition 2.4. (Definition 1.2 in [30]) A Runge-Kutta method has the order p if
yr —y(t) = 0P as 70

holds for all sufficiently regular IVPs (2.1), where y is the exact solution of an IVP and
yr is the numerical solution of the Runge-Kutta method at the end point of the time
interval [0, 7].

For SDC methods, the ODE’s right hand side is interpolated with Lagrange polynomials
of the degree s — 1. In Definition 2.1, for example, there holds s = n + 1, and the
regarded ODE is solved with an integration of the resulting interpolation polynomial.
Assuming that an SDC method converges, the corresponding numerical solution is also
a polynomial which satisfies the ODE in certain time points. Thus, SDC methods are
iterative methods for the solution of collocation systems.

Definition 2.5. (Definition 1.3 in [30]) A collocation method for the IVP (2.1) is a
numerical method which gives a polynomial approximation. This collocation polynomial
yc(t) satisfies (2.1) in the collocation discretization, i.e., in the s distinct collocation points

C1T, ..., csT € [0, 7], where ¢q,. .., cs are real numbers. Thus, there holds
Yeleit) = f(yeleir)), i=1,...,s,
yc(o) =%

for the IVP (2.1).
The Definitions 2.3 and 2.5 are the basis for the next lemma.

Lemma 2.6. (Theorem 1.4 in [30]) A collocation method of Definition 2.5 is an s-stage
Runge-Kutta method of Definition 2.3. The coefficients of this Runge-Kutta method are
given by

c; 1
aij:/o Lj(t)dt, bi:/o Li(t)dt

where ¢y, ..., cs define the collocation discretization of Definition 2.5. The polynomial
L;(t) is the Lagrange polynomial with L;(t) =[], ;(t — a)/(ci — a1).

Proof. See proof of Theorem 1.4 in [30]. O

This reveals the link between SDC and Runge-Kutta methods. If an SDC method with
the collocation points ¢17,...,cs7 € [0, 7] converges, it converges to the solution of an
s-stage Runge-Kutta with coefficients of Lemma 2.6. Additionally, an SDC method with
a fixed number of iterations is a Runge-Kutta method.

Definition 2.7. We call an SDC method with j iterations an SDC-j method. This
method is a Runge-Kutta method where the Butcher tableau depends on the collocation
points, the low order time stepping scheme and the number of iterations.



Common choices for the collocation discretization of Runge-Kutta methods are quadra-
ture nodes from the Gauss, Radau or Lobatto quadrature with order 2s, 2s—1 and 2s—2,
respectively, see Subsection I1.1.3 in [30]. These quadrature rules represent methods for
numerical integration and they are exact for polynomials up to a certain degree. The
so-called order of such a quadrature rule is the maximum order of the polynomials being
integrated exactly.

Lemma 2.8. (Theorem 1.5 in [30]) Consider an s-stage Runge-Kutta method of Def-
inition 2.3 where the coefficients a;; and b; are from Lemma 2.6. Let the collocation
discretization be given by the nodes of a quadrature rule. The order of this Runge-Kutta
method is the same as from the underlying quadrature rule.

Proof. See proof of Theorem 1.5 in [30]. O

For this work, more details on quadrature rules are not necessary and we refer for further
information to Chapter 9 in [12]. Radau-Ila quadrature rules with s nodes have the order
2s — 1 and a Runge-Kutta method with Radau-Ila nodes is L-stable, see Theorem 6.46
in [11]. An L-stable method is A-stable, which means that the method is stable on
the entire left half-plane of the complex plane. For an L-stable method further holds
lim,_,o R(2) = 0 for the stability function R(z), see Definition 3.7 in [32]. Therefore,
the collocation with Radau-Ila nodes can be a reasonable way for constructing SDC
methods. For a general meaning of these concepts and, in particular, of stability and the
stability function, the reader is referred to Subsection 350 in [7], Subsection 6.1.2 in [11]
or Section IV.3 in [32]. Furthermore, a detailed discussion of the choice of quadrature
nodes for SDC methods is presented in [40].

At this point, a condition for the convergence of SDC methods is still missing. In the
remaining part of this chapter, SDC methods are introduced as fixed point iterations in
a matrix form and based on this, a condition for their convergence is derived.

2.2 Matrix formulation

In the same manner as in [55], we now introduce the view of SDC methods from the
perspective of linear algebra. A linearly implicit formulation (2.8) is chosen for the
construction of the SDC methods. The time interval is discretized with Radau-ITa nodes,
where the left interval end point ¢g is not included. Therefore, all entries of the first
column of the spectral integration matrix S are zero. Reducing this matrix by the
first row and the first column yields a new integration matrix S” € R™*"™. To get a
matrix formulation, we start with the linearly implicit Euler scheme (2.8) and define the

bidiagonal approximate differentiation matrix
T .
Dik = f(ai,k_éi,k+l)a Zak: 17"‘7”7 (211)

Ti

where §; ; is the Kronecker-§. Using the matrices S” and D and multiplying (2.8) with
7/7; yields the matrix form

(IveD -2 (Iy@8§)) " = - (Iy © D) + (Ix © $7) F(5) + Tllyo ® e1, (2.12)

10



where D, S, 5" € R™" the matrix Iy € RN*Y is the identity matrix and ® is the
Kronecker product. The matrix Z € CN™*N" is composed of the matrices Z;, € C**",
where

(Jp)ik (yt[?})
Zl’k =T

(Jf)ik (l/l?})
with the Jacobian Jy € CN*N and the vector valued approximations yt[?], . ,yg eCcN
at certain time points. The vector yg € C¥ is the initial value of the IVP (2.1) and
e1 =[1,0,...,0]" € R"™. This leads to the vectors §l%, 6%, (%)) € CN" and their com-
ponents are the entries of the vectors yl, 60, f (y[o]) € CV, successively evaluated at
the time points t1,...,t,. Using the linearly implicit Euler scheme leads to S = I,
where I, € R™*" is the identity matrix. This matrix takes on the role of an approximate
integration matrix and thus it is an approximation of the spectral integration matrix
S”. Due to the Lagrange interpolation with s collocation points, the spectral integration
with S” is exact for polynomials up to a degree of s — 1. If another low order time
stepping scheme is chosen, the matrix S has to be replaced by another matrix. Taking,
for example, the explicit Euler scheme as low order time stepping method yields

A~

Sikzéi,k:-l—l i,kzl,...,n.

2.3 SDC methods as fixed point iterations for solving linear
collocation systems

In the following, SDC methods are considered as fixed point iterations yli+1 = F(ym)
with the mapping F' : C* — C" and their convergence towards the collocation solution
is analyzed. The principles of iterative methods can be found in almost all books of
numerical linear algebra. See, for example, [53] for fundamental ideas and [25] as an
encyclopedic treatise with further details. The textbook [49] covers iterative methods
for linear systems in monograph form. Furthermore, for advanced techniques of iterative
methods, we refer to [42], where an extensive study of Krylov subspace methods is
presented.

Considering an ODE system with constant coefficients, i.e., its Jacobian is constant,
the system can be decoupled if the Jacobian is diagonalizable. Each equation of the
decoupled system can be solved independently and after this, the solutions can be su-
perposed so that a solution of the ODE system is obtained. Thus, the behavior of the
ODE system can be described by the separated solutions of the decoupled system. For
a non-diagonalizable Jacobian, there exists such an approach using a Jordan decompo-
sition. We refer to Section .12 in [31] for more information on these approaches. Based
on this, the approach for the following chapters is to regard simple one-dimensional
IVPs which offer an insight into many properties of SDC methods. Furthermore, in this
work, semi-discretized linear PDEs are of interest and thus the considered ODEs are
also linear.

11



Definition 2.9. The IVP of Dahlquist’s equation is given by
y'(t) = fly(t) = Ay(t), t€10,7],
y(O) =7 =1,

where y(t),70 € C and f : C — C is linear with A € C.

(2.13)

There is a scalar Jacobian, where J; = A, thus the derived linearly implicit scheme
(2.8) can be readily applied. With the linear right hand side f the matrix form (2.12)
simplifies to

(D - zS‘) 60 = — (D — 28m) 40 4 Tlfyo el, (2.14)
1

where z = A7. Combining this matrix form of one SDC iteration step, in the follow-
ing referred to as SDC sweep, with the correction scheme (2.10) yields the fixed point
iteration

. . N\ —1 .
M E) (D_ZS) (D =28y Tg e
1

= [I — (D — z,§'>_1 (D — er)] ym + (D — zS’) - %’70 e1,

provided D — 2S is invertible. In the following, only invertible matrices D — 28 are
constructed. The next definition is based on this fixed point iteration.

Definition 2.10. Let the matrix D — zS be non-singular. An SDC fized point iteration
for the linear IVP of Dahlquist’s equation of Definition 2.9 on a collocation discretization
where the left interval end point ¢y is not included is given by

y[j+1]:Gy[j]+g, =0,1,...,
N\ 1 Nl T (2.15)
GzI—(D—zS) (D —25"), gz(D—zS) T—lfyoel,

where yUl, g € C", 2 = A\ € C and y¥ is an arbitrary starting vector. The matrix
G € C™*" is the iteration matrix of the fixed point iteration. The matrix S” € R™*™
is a spectral integration matrix of Definition 2.1 which is reduced by the left interval
end point 9. The matrix D € R"*" (2.11) is an approximate bidiagonal differentiation
matrix and S € R " takes on the role of an approximate integration matrix and is
determined by the low order time stepping scheme of the SDC method.

As described in Subsection 2.1.2, SDC methods give a collocation solution of the corre-
sponding IVP if they converge. The same insight is obtained by considering the equation
(2.14) with an error 61 = 0. This leads to the linear system of equations

(D - ZST)?J[O] = 170 e1.
71

Considering a y% satisfying this equation leads to a collocation solution of the IVP of
Dahlquist’s equation of Definition 2.9 which is given by

Ye(t) = v0Lo(t) + Z yLO]Lk(t)-
k=1

12



The polynomials Lg(t), where k = 0...,n, are the Lagrange basis polynomials for the
nodes tg,...,t,. This leads to the next lemma.

Lemma 2.11. If the matrix D — 25" is non-singular, then the unique fixed point of a
corresponding SDC fixed point iteration of Definition 2.10 is given by

T
Ye = (D — 25") 1—7061.
T1

Proof. Let y. be a fixed point of an SDC fixed point iteration of Definition 2.10 and let
D — 25" be non-singular. This leads to

Ye=Gye+g = [I— (D—ZS)_l (D—ZS”)] Yo + (D—z5’>_1 %7061

& (D-28) = [(D-28) - (D - 28" e+ Lnoes (2.16)

~
& (D—258")ye= —el
T1
& ye= (D —25) " Zyger,
T1

O]

For a certain start approximation y%, the convergence behavior of such an iteration

depends only on the properties of its iteration matrix GG. In the following part of this
section, two important properties are covered, based on which we present conditions for
the convergence of SDC fixed point iterations of Definition 2.10. Furthermore, quantities
for the convergence speed and the error reduction of these SDC methods are introduced.
For the beginning, consider the spectral radius p(G) of an iteration matrix G.

Definition 2.12. The spectral radius p of a matrix G € C™*" is defined by

p(G) := max |A(G)],

1<i<n
where \; are the eigenvalues of G.

This leads to the following theorem, which gives a necessary and sufficient condition for
the convergence of SDC fixed point iterations of Definition 2.10.

Theorem 2.13. An SDC fixed point iteration of Definition 2.10 converges to its unique
fixed point y. = (D — zST)_l TLI’YO e; for any start point y if and only if there holds
p(G) < 1, where G is the iteration matrix of the SDC method.

Proof. Consider an SDC fixed point iteration of Definition 2.10. Then, we know from
Lemma 2.11 that the collocation solution y. = (D — zS”)f1 70 €1 is the unique fixed
point of this iteration. For the j-th iteration, we obtain

-y =G (y[j_” - yc)

=¢ (Gy[H] — 9~ (Gye — g)) == (y[O] _ yc> 7 (217)
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where y[¥ is an arbitrary starting point.

From Theorem 7.1.9 in [25] or Section 16.2 in [41] we know that a Jordan decomposition
G = XJX ! exists for the matrix G € C™", where X € C™ " is non-singular and
J =diag(Jy,,...,Ji,,) € C"*". The Jordan blocks are defined as

N1

1

i

where l1 + ... 4+ I, = n. The complex numbers Ay, ..., A, are eigenvalues of G, which
do not need to be pairwise distinct. The dimensions and the number of the Jordan
blocks are unique. Forming the product of G yields G/ = (XJX1)7 = X JI X1 If the
iteration (2.17) converges to y., it has to satisfy

lim y¥! — y, = lim &7 (y[o] - yc> = lim XJ/Xx~! (y[o} — yc) =0. (2.18)
We obtain the block diagonal matrix J7/ = diag <Jjjl, ce Jljm> and the j-th power of the

Jordan blocks can be derived with induction. From the result of this induction follows
immediately that (2.18) holds for any 3 if and only if p(G) < 1. O

A sufficient condition for the convergence of SDC fixed point iterations of Definition 2.10
is given in the next lemma.

Lemma 2.14. If |G| < 1 for some matrix norm ||-||, then the corresponding SDC fixed
point iteration of Definition 2.10 converges for any starting point y[% to its unique fixed
point y, = (D — 28") " el

Proof. Consider an SDC fixed point iteration of Definition 2.10. Then, we know from

Lemma 2.11 that the unique fixed point is given by y. = (D — z:S”)f1 0 e1. Consid-

ering the error yUl — y. in some consistent norm ||-|| for an arbitrary starting vector y!*)

leads to
9] - - <10 o -
and using ||G|| < 1 yields

tim ||y~ ye| < tim GIP o =y = 0
fad

Jj—00
= lim y[j] = Ye.
J—o0

d

Equally important as the stated results about the existence of convergence is knowledge
on the convergence speed of an SDC method.
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Definition 2.15. (Section 4.2 in [49]) The asymptotic contraction factor of an SDC
fixed point iteration of Definition 2.10 is defined by

. o — v\
D, = ]lgglo y[%]lgéj(n m s (2.19)

where y, is the unique fixed point of the SDC method and yUl — 4, is the error in the
j-th iteration.

Lemma 2.16. The asymptotic contraction factor @, of an SDC fixed point iteration
of Definition 2.10 is equal to the spectral radius p(G), where G is the iteration matrix
of the SDC method.

Proof. Inserting yl/! —y. = G7 (y[o] — yc), where 9. is the unique fixed point of the SDC
method, into (2.19) yields

J (40 _ 1
b, = lim (max HG (y yc)H)

gm0 \yblecr |y =y
= lim || 67",
Jj—o0
where the definition of an induced matrix norm ||-|| is used, see Subsection 4.2.1 in [49].
From Theorem 1.12 in [49] we know that p(G) = lim;_ HGjHl/j and therefore the
equality @, = p(G) holds. O

The asymptotic contraction factor determines the behavior of SDC methods in the limit
case of j — 0o SDC sweeps. A further important objective is to have a high error reduc-
tion in the first few SDC sweeps. Performing just a few iterations and hereby obtaining a
good approximation is one motivation for using iterative methods. Considering a certain
starting point y° and the bound

Hy[j] _ yCH < HGHJ Hy[ol — e

of the proof of Lemma 2.14 offers the insight that the norm ||G|| gives information on the
error reduction in each SDC sweep, which includes the first few SDC sweeps. Considering
the error at all time points t1,...,t, leads to the next definition.

Definition 2.17. The local pre-asymptotic contraction factor of an SDC fixed point
iteration of Definition 2.10 with respect to a matrix norm ||-|| is defined by

q)l = HGH )
where G is the iteration matrix of the SDC method.

We can also regard the error at the end point ¢,, of the time interval, which determines
the overall quality of the computed solution y[j].

15



Definition 2.18. The global pre-asymptotic contraction factor of an SDC fixed point
iteration of Definition 2.10 with respect to a matrix norm ||-|| is defined by

g = [lentll

where G is the iteration matrix of the SDC method and e, =[0,...,0, 1]T € R™ is the
n-th cartesian unit vector.

Finally, we have conditions for the convergence and a quantity for the convergence
speed of SDC fixed point iterations of Definition 2.10. There are different meanings
for “convergence speed”, “fast convergence” and “accelerating the convergence” in the
literature. If these terms are used in the next chapters, the asymptotic contraction factor
®, is considered. Furthermore, the local and global pre-asymptotic contraction factor
are quantities for the error reduction in the first few SDC sweeps. In the next chapter,
all these factors are used for the study of the asymptotic and pre-asymptotic behavior
of SDC methods for different IVPs of Dahlquist’s equation (2.13).

Remark 2.19. For the derivation of the linearly implicit Euler scheme (2.8), we consider
a linearization of the ODE’s right hand side, see the Taylor polynomial (2.7). Dahlquist’s
equation itself is linear and therefore this linearization is not necessary in this special
case. Evaluating the right hand side leads to the same implicit scheme.
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3 Faster SDC convergence for
reaction-diffusion equations

The main focus of this thesis is in the convergence behavior of SDC methods for the
problem class of convection-diffusion equations. Thus, we are interested in the numerical
solution of these PDEs with respect to the time variable. After spatial discretization
of a PDE, the resulting IVP can be solved with the SDC framework presented in the
previous chapter. The Jacobian of the right hand side of the corresponding ODE is equal
to the discretized partial differential operator. An application-oriented introduction to
the numerical solution of PDEs can be found in [28] and [35] gives an overview of the
numerical treatment of time dependent PDEs. The reader is further referred to [21] for
important topics in the theory of PDEs.

To study the SDC convergence behavior, SDC fixed point iterations of Definition 2.10
are considered. These iterations are constructed for Dahlquist’s equation (2.13) on the
interval [0, 7]. The Jacobian of this one-dimensional IVP has a spectrum which consists
of one eigenvalue A\. Furthermore, an SDC fixed point iteration of Definition 2.10 only
depends on z = 7A. In Chapter 4, the approach is to choose such specific z so that 7
is a common time interval length and A is usually in the spectrum of discretized partial
differential operators of convection-diffusion equations. This leads to different iteration
matrices G(z) of SDC fixed point iterations of Definition 2.10 and we will study their
properties based on the previous chapter.

This approach is presented in [55], where the convergence behavior of SDC methods
for reaction-diffusion equations is covered. The following chapter contains numerical
experiments of [55] in order to prepare the study of SDC methods for convection-diffusion
equations in Chapter 4. The steady-state case of reaction-diffusion equations has a
self adjoint partial differential operator with a real spectrum, see [10] and [15] for a
theoretically analysis of such operators. A treatment of the discrete Laplace operator
determining discrete reaction-diffusion systems can be found in [28]. Applying this
problem class with a negative spectrum to an SDC fixed point iteration of Definition
2.10 and thereby restricting to real Jacobians Jy = A < 0 yields 0 > 7A = z € R. For
the SDC methods, Radau-ITa nodes are chosen as the collocation discretization. These
nodes are a reasonable choice because the restriction 0 > z € R includes z — —oo,
which is the limit case of stiff problems. The L-stable Radau-Ila collocation methods
have a damping property in the case of z — —oo so that oscillations can be prevented.
For further information on corresponding stability properties, the reader is referred to
Section IV.3 in [32].

The first Section 3.1 provides a treatment of the asymptotic contraction factor of Def-
inition 2.15 in the limit cases of z — 0 and z — —oo. This factor is quantified by the
spectral radius p(G(z)), see Lemma 2.16. The Subsection 3.1.2 covers a modification of
the iteration matrix G(z) for an acceleration of the convergence in the case of z — —oc.
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In Section 3.2, a direct optimization approach is applied to get a faster convergence and
a better local and global pre-asymptotic contraction factor of Definition 2.17 and 2.18,
respectively, for other ranges of z.

3.1 SDC convergence of the limit cases

At first, the focus is on the two limit cases z — 0 and z — —oo, which lead to non-stiff
and stiff problems, respectively.

3.1.1 Non-stiff problems

The SDC convergence behavior of problems with 7 — 0 and a fixed A is studied, i.e.,
z — 0 as the limit case of non-stiff problems is considered. The following result concerns
the order of SDC-j methods.

Theorem 3.1. Consider an SDC fixed point iterations of Definition 2.10. Performing
j iterations leads to an SDC-j method of Definition 2.7. The order p of this SDC-j
method is at least p = min{j, ¢}, where ¢ is the order of the underlying quadrature rule.

Proof. Let 3% be an arbitrary starting point and y. the unique fixed point of an SDC
fixed point iteration of Definition 2.10. This fixed point is the collocation solution of the
considered IVP from Dahlquist’s equation of Definition 2.9, see Lemma 2.11. For the
solution y! of the corresponding SDC-j method, there holds

W =y = G (1570 =) = = @ (40— )

0= () = (1= (-58) " 1p-20) (5 )
_ <<D _ ZS)*1 <(D _ ZS) —(D- zsr)))j (y[‘” - y)
~((p-=8)"+(5-5)) (o )
o ((-28) "A(57-8)) (s - u).

Thus, we get the result

Yl — g =77 (D_l)\ (ST — S’))J (y[o} - yc) as 7 — 0.

For the order of a method, see Definition 2.4, we consider the error

el (48— y) =79l (DA (57 - S))J (v = ye) + el (e —y) asT—0
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at the end point ¢, of the time interval, where el = [0,...,0,1] € R and y is the exact
solution of the IVP we want to solve. Considering a consistent norm of this error with
the triangle inequality leads to the bound

) < (s 9)

Lemma 2.8 yields Heg (Ye — y)H = O(79t1) if 7 — 0, where ¢ is the order of the under-
lying quadrature rule. Furthermore, we have y([JO] = 79 with 7o the initial value of the
IVP of Dahlquist’s equation and y[% the starting point of the fixed point iteration. As

a consequence, |lyl% — ye|| = O(7) if we let 7 — 0 and hence

H <y[0] - yc) H + e (ve —w)|| as T —0.

Heg (ym — y) H <Oyt 4 Corttt as 1 — 0,

where C7 and Cy are some constants. By Definition 2.4 regarding the order of a
Runge-Kutta methods, we obtain the result that the SDC-j method has at least the
order p = min{j, ¢}. O

This theorem gives a result for an SDC-j methods and 7 — 0. Furthermore, con-
sidering SDC fixed point iteration of Definition 2.10, where j = 1,2,..., there holds
G(z — 0) — 0 and therefore p(G(z — 0)) — 0, i.e., the iteration converge to the collo-
cation solution for sufficiently small 7. Figure 3.1 provides some numerical examples for
the asymptotic contraction factor for SDC methods on equidistant and Radau-Ila grids
with different numbers of collocation points. These first examples are for SDC methods
for Dahlquist’s equation which apply the linearly implicit Euler method as low order
time stepping scheme.

Definition 3.2. SDC fixed point iterations of Definition 2.10 with an approximate
integration matrix S = I will be called Ful-SDC methods. These methods have the
linearly implicit Euler method as low order time stepping scheme.

Remark 3.3. Using equidistant nodes yields a collocation discretization including the
first interval point ¢y. In this case, the spectral integration matrix is not reduced by the
first row and column, as described in Section 2.2. Thus, for the computation of G(z), a
matrix S € ROFDX(+1) of Definition 2.1 is obtained. This leads to a new formulation
of the fixed point iteration.

Remark 3.4. Similar results as in Theorem 3.1, but with other proofs, can be found in
[29] and [33]. The main theorem of the first paper gives a detailed proof and information
on the increasing order of SDC methods.

3.1.2 Stiff problems and the LU decomposition approach

In the following, problems with |[A| > 77! are regarded. For A — —oc and usual step
sizes T, this leads to z — —oo the limit case of stiff problems. Using Eul-SDC methods,
we obtain G(z — —o0) — I — S" and therefore, in general, a non-vanishing spectral
radius p(I — S") > 0. Figure 3.1 illustrates this result for equidistant and Radau-Ila
nodes. In these experiments the SDC methods have a faster convergence on equidistant
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Fig. 3.1: Spectral radius p(G(z)) of linearly implicit Euler based SDC methods for Dahlquist’s
equation on equidistant (left) and Radau-Ila grids (right) with s collocation points.

than on Radau-Ila grids if the problem becomes very stiff and the number of collocation
points is s > 2. Thus, in this subsection, the acceleration of the SDC convergence on
Radau-IIa grids for stiff problems is covered.

As derived in Chapter 2, different low order time stepping schemes for SDC methods
can be used by simply replacing the approximate integration matrix S in (2.14). The
idea in [55] is to choose S first and then interpret the SDC sweeps

<D—z5’>5[k]:—(D—zST)y[k]—i—l’yoel, k=0,....,57—1
1

of an SDC-j method as the steps of a Runge-Kutta method, see Subsection 2.1.2 and
Definition 2.7. If the lower triangular shape of S with non-vanishing diagonal entries
is retained, the matrix D — 29 is lower triangular as well. Thus, SDC-j methods are
obtained which are diagonally implicit Runge-Kutta methods, see Section IV.5 and IV.6
in [32] and Section 6.2 in [11]. This allows an efficient implementation where the system
of equations in each SDC sweep is easier to solve. The evaluation of the iteration matrix
G(z) needs less computational effort compared to the use of a dense matrix 5’, ie.,
using fully implicit Runge-Kutta methods. The choice of S has no influence on the limit
behavior of the fixed point iteration for z — 0 and thus for the asymptotic contraction
factor, there still holds p(G(z — 0)) — 0.

The aim is now to get a faster SDC convergence for the other limit case z — —oo. For
such problems, G(z — —o0) — I — 87187 holds. As in [55], the matrix S is selected
based on an LU decomposition (S7)? = LU, where L is a unit lower triangular matrix,
i.e., in particular, all diagonal entries are equal to one, and U is an upper triangular
matrix. Choosing S=yuT yields the limit iteration matrix

Gz = —oc0) = I —UTUTLY =1 - LT,

see Lemma 3.1 in [55]. Due to the unit diagonal of the lower triangular matrix L, the
spectral radius satisfies p(I — LT) = 0. With this choice of S it is possible to enforce a
faster convergence for the limit case of stiff problems, as demonstrated in Figure 3.2. The
numerical experiments further show that the asymptotic contraction factor improves for
all values of z compared to the Eul-SDC methods.
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Fig. 3.2: Spectral radius p(G(z)) of Eul-SDC and LU-SDC methods on Radau-IIa grids with
s =2 (left) and s = 4 (right) collocation points.

Definition 3.5.. SDC fixed point iterations of Definition 2.10 with an approximate inte-
gration matrix § = U7 where the matrix U is from the LU decomposition (S")? = LU
will be called LU-SDC methods.

This special LU decomposition, introduced by Martin Weiser in [55] and colloquially
known as LU trick or St. Martin’s trick [4],[5],[48], has become a known approach in
scientific research on SDC methods for stiff problems. Numerical experiments for the
resulting LU-SDC methods demonstrate a superior convergence behavior for z — —oo.
This motivates the proof of the next theorem, where we show that there always exists a
unique LU decomposition of S™7. This means that pivoting is never necessary for this
decomposition and this is of relevance because pivoting would lead to a modification of
the spectral integration matrix. This can be essentially done, but it would also lead to
a modification of the whole SDC sweep structure and the resulting LU-SDC methods
would not longer run forward in time, see Remark 3.1 in [55].

Theorem 3.6. Let the spectral integration matrix of Definition 2.1 be reduced by the
left interval end point tg and let the time points t1,...,t, be collocation points. This
leads to the spectral integration matrix S™ € R™*", as introduced in Section 2.2. For
ST exists a unique LU decomposition such that S™7 = LU, where L € R™ " is a unit
lower triangular matrix and U € R™*™ is an upper triangular matrix.

Proof. From Theorem 3.2.1 in [25] we know that there exists a unique LU decomposition
for the matrix S” if the determinants det (S"(1: k,1: k)) # 0 for k= 1,...,n. We simply
write in the following S}, for S"(1: k,1: k). The matrices S}, where k =1,...,n—1, are
the leading principal submatrices of S™ and 5] = S”. The stated condition holds if and
only if Sz =0« x=0for k=1,...,n, where x € R*, see Theorem 1.3 in [53]. The

21



corresponding k-th system of equations is given by

r t1 t1 t1 T 7
1 x
= [Lit)dt & [La(t)dt ... L [Li(t)dt 1
to to to
to to to
LfLi(tydt L [Lotydt ... L [Ly(t)dt | [*2
S; T = 2 t1 2 t1 2 t1
1 t’“ 1 s 1 i
o S Li)dt = [ La(t)dt ... - [ Ly(t)dt .
L trk— te—1 te—1 1 LYk

and we show with a proof by contradiction that

t; k
/ > aiLy(t) | dt =0, i=1,...,k (3.1)
j=1

1

Ti
ti—1

holdsif and only if 1 = ... =z =0forall k=1,... n.

Let z # 0 and k& € {1,...,n} where z € R¥. Then, the interpolation polynomial

p(t) = Z§:1 x;L;(t) is of degree n — 1, which follows immediately from the definition of

the Lagrange basis polynomials (2.4). From the fundamental theorem of algebra follows

that this polynomial has n — 1 roots. The Lagrange basis polynomials Lj ..., Ly are
by construction zero at tgi1,...,t, and thus the interpolation polynomial p(¢) has also
roots at txi1,...,t,. From this follows that p(t) has at most k — 1 roots in the interval

(to,tx). Furthermore, if the i-th equation of (3.1) holds, then the interpolation polyno-
mial p(t) has a root in the interval (t,_1,¢;). Assuming without loss of generality that
the equations (3.1) hold for 4 = 1,...,k — 1, then p(t) has k — 1 roots in (to,tx—1). If
this is the case, then p(t) has no root in (tx_1,%;) and thus the k-th equation of (3.1)
can not be satisfied by an x # 0.

This result and that x = 0 = S; o = 0 with z € R*, which is trivial, lead to the conse-
quence that S;z =0 o =0for k =1,...,n, where z € R*. Thus, S” has a unique
LU decomposition. From Subsection 2.1.6 in [25] we know that det (S}) = det (S,ZT).
Therefore, det (SET) #0for k=1,...,n and it follows that the matrix S"7 has also a
unique LU decomposition. ]

3.2 Direct optimization for a faster contraction

In the previous subsection, an approximate integration matrix S is selected to accelerate
the convergence of SDC methods for the stiff problems. The next reasonable step is
now to choose different matrices S to achieve another desirable behavior of SDC fixed
point iterations. We can even go a step further away from the classical SDC framework.
The equations (2.16) show the possibility to replace not only the matrix S as before,
but also take a matrix D — 25 with free selectable matrices D and S. Regarding SDC
methods as Runge-Kutta methods gives the same insight because replacing D and S
yields a different Butcher tableau, but the same collocation solution. Thus, we obtain a
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Fig. 3.3: Spectral radius p(G(z)) of Eul-SDC, LU-SDC and Opt-SDC methods on Radau-IIa
grids with s = 4 collocation points (left) and Opt-SDC methods on Radau-Ila grids
with different numbers s of collocation points (right). Opt-SDC methods based on the
optimization problem (3.3).

more flexible formulation

W = G(2) Y + g,

for SDC fixed point iteration of Definition 2.10. As in the previous subsection, we want to
interpret the SDC-j methods as diagonally implicit Runge-Kutta methods and therefore
D — 28 is restricted to be a lower triangular matrix. For a certain starting point yl*,

the choice of D — 25 determines the behavior of the fixed point iterations.

One possibility to select D and S is their optimization with respect to convergence ob-
jectives. The reduction of the maximum of p(G(z)) for z < 0 is an example for such
an objective. The following subsections present results of numerical experiments of such
optimizations for the parameters D and S, as in [55], thereby demonstrating possible im-
provement. Due to the ease of use, we optimize D and S with the nonlinear programming
solver fminsearch from MATLAB®. This minimizer works with a derivative-free method.
The objective functions are computed on a logarithmic grid for z € [-10% —107*] with
100 points and with initial matrices from the LU decomposition approach, as described
in Subsection 3.1.2. The resulting minima are not necessarily global minima.

Definition 3.7. SDC fixed point iterations of Definition 2.10 which are modified as in
(3.2) and where D and S are the result of a direct optimization approach will be called
Opt-SDC methods.

3.2.1 Asymptotic contraction factor

For LU-SDC methods, a small spectral radius can be observed for non-stiff and stiff
problems, see Figure 3.2. The new objective is to get a smaller p(G(z)) for intermediate
values of z and this leads to the optimization problem

min J(D, S) := I]Zrlgaécp(G(z)). (3.3)
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Fig. 3.4: Norm ||G(2)||, of Eul-SDC, LU-SDC and Opt-SDC methods on Radau-IIa grids with
s = 4 collocation points (left) and Opt-SDC methods on Radau-Ila grids with different
numbers s of collocation points (right). Opt-SDC methods based on the optimization
problem (3.4).

Considering s = 4 collocation points, this local optimization already yields a visible re-
duction of the maximum of p(G(z)) compared to LU-SDC methods, see Figure 3.3 (left).
The trade-off for this improvement is a worse convergence speed in the limit cases z — 0
and z — —oo. The results for different numbers of collocation points are presented in
Figure 3.3 (right), showing that more collocations points lead to a higher asymptotic
contraction factor. The same behavior can be found in Figure 3.1 for Eul-SDC methods
and in Figure 3.2 for LU-SDC methods.

3.2.2 Local pre-asymptotic contraction factor

In this subsection, the local pre-asymptotic contraction factor of Definition 2.17 is cov-
ered and the objective is again to reduce its maximum. To this end, we consider the
optimization problem

min J(D, S) := max ||G(2)]| (3.4)
2<0
with a matrix norm ||-||. Numerical experiments for the 2-norm are presented in Figure

3.4. The norm [|G(z)|, for the iteration matrix of Opt-SDC, LU-SDC and Eul-SDC
methods is shown in the left plot. Compared to the original implicit Kuler approach,
a significant improvement by the LU decomposition is observed. The optimization ap-
proach leads to an additional reduction of the maximum of ||G(z)l,, but z — 0 and
intermediate values of z yield a worse local pre-asymptotic contraction factor than for
the LU-SDC or Eul-SDC methods. For two or three collocation points, the optimized
matrices D and S of the Opt-SDC methods are nearly equal to that from the LU-SDC
methods, see Figure 3.4 (right). In that case, the used optimizer yields no remarkable
reduction of the maximum of ||G(z)|]2. Note that another setting of the optimizer or an
entirely different programming solver could give greater improvement at this point.
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Fig. 3.5: Norm HeTG of Eul-SDC, LU-SDC and Opt-SDC methods on Radau-Ila grids with

J®
s = 4 collocation points (left) and Opt-SDC methods on Radau-Ila grids with different

numbers s of collocation points (right). Opt-SDC methods based on the optimization
problem (3.5).

3.2.3 Global pre-asymptotic contraction factor

The next objective is to get a smaller maximum of the global pre-asymptotic contraction
factor of Definition 2.18. This leads to the optimization problem

min J(D, S) := max HegG(z)H (3.5)
2<0
with a matrix norm ||-|| and the n-th cartesian unit vector e, = [0, ...,0,1]7 € R™. Due

to the collocation with s Radau-Ila nodes, there holds n = s. Experiments for the
2-norm are presented in Figure 3.5. In the left plot, Opt-SDC, LU-SDC and Eul-SDC
methods for s = 4 collocation points can be compared. Several Opt-SDC methods with
different numbers of collocation points are shown in the right plot. Compared to the
Ful-SDC methods, the LU decomposition approach leads to a vastly improved global
pre-asymptotic contraction factor for very stiff problems and for intermediate values of
z with no disadvantage for z — 0. The Opt-SDC methods have a lower maximum of
HeTG H2, but again the beneficial properties in the limit cases z — 0 and z - —o©
are sacrificed. As observed before for the other contraction factors, a higher number of
collocation points leads to a higher global pre-asymptotic contraction factor.

3.2.4 Sweep blocks

The aim is now to obtain matrices D and S which are optimal with respect to the
resulting approximation after a certain number m of successively performed SDC sweeps,
in the following referred to as SDC' sweep blocks. For this, we formulate the optimization
problem

min J(D, S) —maXHeTG mHl/m (3.6)

The objective is the same as for the problem (3.5) and the new relevant error reduction
for a certain number of SDC sweeps leads to other optimal matrices D and S. In Fi igure
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Fig. 3.6: Norm HeZG(z)mH;/m for Opt-SDC methods on Radau-IIa grids with s = 4 collocation

points. Opt-SDC methods based on the optimization problem (3.5) (left) and (3.6)
(right).

3.6 (left), we first optimize the approximate matrices D and S for one SDC sweep as
in problem (3.5) and after this form the product of the iteration matrix G'(z). This
represents the execution of several SDC sweeps with optimization with respect to just
one SDC sweep. In Figure 3.6 (right), the sweep block size m is first determined and
then the product HeZG(z)mHUm is optimized.

It can be observed that there is better global error reduction per SDC sweep if the
number of sweeps is given and optimization is done with respect to an approximation
after these sweeps. Furthermore, increasing m leads to a worse global error reduction
per sweep. The reason for this observation is that the consideration of just few SDC
sweeps give deceptive results. By considering just one sweep, the values in the rows
1,...,n — 1 of G(2) have no influence on the global error at ¢, and thus they can be
chosen arbitrarily. But for increasing SDC sweeps, a worse error reduction for g, ..., t,—1
leads to increasingly larger errors at ¢, because of the iteration process with a product
of iteration matrices. For additional numerical experiments to SDC sweep blocks for the
local and global pre-asymptotic contraction factor, we refer to [55].

This chapter can be summarized as follows: The modification of the iteration matrix
G(z) for 0 > z € R is promising. With the LU decomposition approach it is possible
to accelerate the SDC convergence significantly and to improve the local and global
pre-asymptotic contraction factors compared to the original linearly implicit Euler ap-
proach. Furthermore, numerical experiments show that the direct optimization approach
can lead to an improvement for a specific range of z.
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4 Convection-diffusion equations

In the previous chapter, the strategy to obtain special convergence properties of SDC
fixed point iterations of Definition 2.10 was carried out for a special class of PDEs,
namely reaction-diffusion equations. In Section 4.4, the approaches are studied for
convection-diffusion equations. Precedingly, in Section 4.1, a physical background is pre-
sented, mainly based on [19] and [44]. Two examples for common spatial discretization
techniques are regarded in Section 4.2. Hereafter, in Section 4.3, the spectral properties
of a simple one-dimensional convection-diffusion problem are covered.

4.1 Physical background and typical problems

Convection-diffusion equations are PDEs that arise in numerous physical problems, in-
cluding the large area of modeling flows. In this work, we cover the convection-diffusion
equation

@:aAu—quu—&—r (4.1)

ot
with the common simplifications of an incompressible vector field w(z,t) € RN ie., it is
divergence free with V-w = 0, and a constant diffusion coefficient @ € R*. The function
u(z,t) € C is the solution at position z € 2 C RY and time ¢ € [0,7]. The vector field w,
also called the wind, describes a velocity that the solution is moving with and the function
r(u,x,t) € C can be interpreted as sources or sinks of the variable of interest. The term
aAu, with the Laplace operator A = V2, describes the diffusion and w-Vu the convection
or advection of the problem. A standard example for a function that satisfies equation
(4.1) is a concentration of a pollutant which is moving within an incompressible stream
and diffusing into its environment. Considering the heat equation with the temperature
of a fluid as the variable of interest and assuming that this fluid is moving yields another
convection-diffusion problem. If we are interested in the physics of a vector-valued flow
velocity of a moving fluid where the fluid is a Newtonian fluid, i.e., it has a linearly
viscous behavior, then we have to deal with the Navier-Stokes equations. Convection
and diffusion terms are important parts of them. The diffusive effects arise from the
viscosity and the diffusion coefficient o becomes the kinematic viscosity of the fluid.
Considering the Navier-Stokes equations for incompressible fluids, the incompressible
vector field w from equation (4.1) becomes the flow velocity of the fluid itself. Due to
the ability of Navier-Stokes equations to cover the important phenomena of boundary
layers and turbulence, they have large areas of applications, for example, the modeling
of the flow around an airplane, the weather or the flow of water in a pipeline. The
reader is referred to [3] for an introduction to fluid dynamics and to its Section 5.7
for a physical treatment of boundary layers. Chapter 12 of the textbook [50] gives an
application-oriented introduction to boundary layers.
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In many physical problems, the effect of convection is more significant than the effect
of diffusion, thus implying a@ < ||w]||. However, for the following applications, we want
to introduce, as in Chapter 6 from [19], a more meaningful measure of the quantitative
relationship between these two mechanisms. For this, the steady-state version of (4.1),
i.e., Qu/0t = 0, is considered and normalized. If z € Q C RY are elements of the domain
where the solution wu(z) lives in, then let £ = /L be elements of a normalized domain.
For this new coordinate £, the new functions u.(§) = wu(z),w.(§) = (1/W)w(x) and
r«(€) = (L%/a)r(z) are defined. The measure L denotes a characterizing length scale for
the domain 2 and W € R™ is a constant, such that ||w,|| has the value unity in some
norm ||-||. This leads to the convection-diffusion equation

S 0= 2 Acu(6) - %w*(f) Teu(€) + 157e(6)

for a normalized domain, see equation (6.5) in [19]. We now have all information about
convection and diffusion in a dimensionless number

pe = VL (4.2)

e

which is called the Peclet number. It provides a simple measure of distinction between
the diffusion dominated case of Pe < 1 and the convection dominated case of Pe > 1
and allows to select appropriate methods accordingly.
Convection-diffusion equations combine both parabolic and hyperbolic PDEs. We refer
to Chapter 1 in [28] for an introduction to the classification of PDEs and to [21] for a
theoretical treatment of PDEs. When diffusive effects are dominating as Pe — 0, the
convection term of equation (4.1) can be neglected and thus the second order parabolic
PDE

ou
— =alAu+r
ot *
is obtained. On the other hand, if Pe — oo, i.e., convection is much more significant,
the diffusion term can be neglected and this yields the first order hyperbolic PDE
ou
— =—w-Vu+r,
e w +
which is the linear transport equation. This equation leads to the simplest example for
the meaning of convection. For this, consider a corresponding homogeneous IVP
0
£+w-vU:o in R x (0,00),
u(x,0) = g(z) at R x 0

(4.3)

where w € R is constant. It is easy to see that the function w:R x [0,00) — R,
u(z,t) = g(xr — tw) satisfies the problem (4.3) for an at least once differentiable func-
tion g : R — R. This solution can be interpreted as follows: Some initial data g will
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Fig. 4.1: Solution of the linear transport equation for a probability density function of a pollutant
in a stream at the time ¢ =0 and t = 2.

be transported in time in the positive x-direction with the velocity w. Now, the ex-
ample from above is picked up and a pollutant without diffusion in a one-dimensional
stream which flows in the positive x-direction is considered. The variable of interest
could be a relative quantity of this pollutant. For this, a probability density function
g(z) = (1/ (ov2r)) exp (—(z — 1)?/(20?)) of a Gaussian distribution is considered as
the initial value. A standard deviation ¢ = 1 and a mean u = 0 lead to the solution
u(z,t) = (1/v2m) exp (—(z — tw)?/2). Measuring the time in seconds and the distance
of the moving pollutant in meter yields a movement of two meter downstream within
two seconds with a velocity of w = 1m/s. Figure 4.1 illustrates this convection effect.

4.2 Common spatial discretizations

This section presents a short overview of finite difference methods and the finite element
method, which can be used for the numerical solution of boundary value problems for
PDEs. Later, their discretization techniques are used to semi-discretize the considered
convection-diffusion operators in space.

4.2.1 Finite difference methods

The following considerations are mainly based on [28]. The basic idea of finite difference
methods is to approximate partial derivatives with finite differences. To explain this
idea, the equation (4.1) in a one-dimensional and steady-state case is considered. This
leads to the convection-diffusion boundary value problem

—au”(z) +wu(z) = r(z) in (0,0), u(0) =u(d) =0 (4.4)
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with homogeneous Dirichlet boundary conditions and applying Taylor’s theorem around

the point z yields

h2 3

u(z + h) = u(z) + h'(z) + ?u"(a:) + 5
2 3

u(x —h) = u(z) — hi'(z) + h—u"(:r) _h

2 6

The addition of these two equations leads to

1

u' () = — (u(z — h) = 2u(z) +u(z + h)) + O(h?).

h

Thus, we get an approximation of the second derivative by

1

u’(z) ~ — (u(z — h) — 2u(z) + u(x + h)).

h2

h—u'"(aj) + (’)(h4),

2w (@) + O(hY).

Furthermore, this approach can be used to derive three different possibilities to approx-

imate the first derivative, which are given by

1
central differences U (1) =~ o

1
forward differences u(z) ~ 7

1
backward differences v (z) ~ -

Based on these considerations, the domain (0,d

~—

can be approximated at a finite number of N — 2 points.
1 < x9 < ...< xy_g with the boundary o = 0 and z_1 = ¢ is called the grid or mesh
and h; = x; —x;_1 is a so-called grid size. Such a discretization and the approximation of
the derivatives result in a linear system. By using a backward difference approximation

and an equidistant grid, i.e., a constant grid size h, we obtain, for example,

[—1 0 0 [0 0 0
1 -2 1 -1 1 0
(6% w
2 . . + N R .
1 -2 1 -1 1 0
i 0 —1] i 0 0 0

(u(z +h) —u(z)),

(u(x) —u(z —h)).

Uug
U1
Uz

LUN—1

(u(z +h) —u(z —h)),

is discretized so that the derivatives
The set of these points

[ (a/h?) uo
r

rN-2
[(a/h?)un—1]

With such a linear system the discretization is complete and solving it with an ap-
propriate solver leads to a numerical solution of (4.4), given by u; ~ wu(z;), where

i=1,...,N — 2. For this, the common compact notation is
Lpup = 13,

where Ly, € RV*N and r; = r(z;) fori=1,...,N — 2.

It is straightforward to apply this framework to other types of PDEs or boundary con-
ditions, which is subject of almost all introductory textbooks to the numerical treat-
ment of PDEs. There is a common approach for the numerical solution of steady-state
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convection-diffusion equations with finite difference methods. Depending on the sign
of the wind w, i.e., its direction, reasonable choices for the approximation of the first
derivative are either forward or backward differences. If the sign is positive in (4.4),
the point = — h is at the upstream side of 2 and thus the approximation of v'(z) with
backward differences provides a benefit. The transport of information has the direction
of the wind and backward differences consider then the information of the convection
effect. If the sign of the wind is negative, forward differences are a reasonable choice.
This approach is called upwind scheme in the literature. In Section 5.1, it is applied for
numerical experiments.

Finite difference methods are a popular choice for the discretization of PDEs. Above
all, their implementation is straightforward and their theoretical foundation is easy to
understand. The idea of a one-dimensional discretization can often be extended to a
higher dimension. Consistency estimates and stability bounds are easily derived with
Taylor series, although this leads to high requirements on the smoothness of the solu-
tion. Furthermore, general domains can reduce the order of consistency and convergence
and adding a new point for the discretization can cause a larger effort than for other
discretization techniques. The reader is referred to [28] for further information on finite
difference methods.

4.2.2 Finite element method

The following introduction to the finite element method is based on [13], [19] and [56]
and we refer to [59] for a detailed treatment of the finite element fundamentals. One
disadvantage of the formulation (4.4) with a second order PDE is the consideration of
an at least twice differentiable function u(x).

To handle this problem, we introduce the concept of weak solutions. For this, consider
the two-dimensional steady-state case of (4.1) with the boundary value problem

—aAu+w-Vu=1r in,

4.5
u=g¢gp onddp and gu:gN on 9y, (4:5)
n

where 99 = 0Qp U 00y is the boundary of the domain @ C R?. There are Dirichlet
boundary conditions on 9Q2p and Neumann boundary conditions on 92x. The direc-
tional derivative Ou/0n is in the normal direction of the boundary 9Qy. A function u
which satisfies this problem is called a classical solution. Multiplying the PDE with test
functions v and integrating yields

/ (aAu —w-Vu+r)vde = 0. (4.6)
Q
Integration by parts and the divergence theorem lead to

—a/UAudm:a/Vu-Vvdx—a/V-(vVu) dz
Q Q Q

:a/Vu-Vvd:U—a/ ’U@dx,
9) o On
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see Section 1.2 in [19]. For the following considerations, the choice of the test functions
v is essential. If the functions v and v live in the Sobolev space

{ ou Ou

HY(Q) = u:Q%R:u,&C,E)yELQ(Q)},

where Ly(2) is the Lebesgue space defined by

Ly(Q) = {u:Q—)R:/Quzdx<oo}, (4.8)

then the integral [, Vu-Vuv dz of equation (4.7) is well defined. Furthermore, if r € Ly (9)
and gy € Lo(98y), the integrals [, vrdz and faQN vgn dx are also well defined. Let
the solution and test spaces be defined by

Hp ={ueH' (Q):u=gp ondQp},
’H}EO ={veH (Q):v=0 ondQp},

respectively. For correctness, the solution space H}E is no linear space because it is not
closed under addition. These definitions and substituting (4.7) into (4.6) lead to the
weak formulation as follows: Find a function u € ’H}E such that

a/Vu-Vvdx+/(w~Vu)vdm:/vrdm—i—a/ vgn dz (4.9)
Q Q Q QN

for all v € ’H}EO, see (6.11) in [19]. This function u is a weak solution of the problem
(4.5). Compared to a classical solution, the required smoothness of a weak solution is
reduced. A short notation of (4.9) is given by

a(u,v) =b(v) Yuve HEO(Q), (4.10)
where
a:H Q) xHY Q) =R, a(u,v) = a/ Vu-Vovdx —|—/ (w-Vu)vdz
Q Q

is an unsymmetric bilinear form and

b:HY Q) =R,  bv) :/vrdx+a/ vgn dx
Q QN

is a linear functional.

In this work, we are interested in the numerical solution of PDEs. To this end, a
finite-dimensional trial space Vj, g C ’H}E and test space V}, o C 7—[]150 is considered. This
leads to the discrete weak formulation:

Find a uy, € Vi, g such that  a(up,vy) = b(vr) Yoy, € Vi (4.11)

The restriction of (4.10) to finite dimensional spaces is called Galerkin discretization,

see Section 1.3 in [19] and Section 1.4 in [56].
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Now, let Vj o be an N-dimensional vector space of test functions and the functions
(¢i)1<i<n the basis of this space. As in Section 1.3 in [19], this basis is extended by

the functions (9i),<;<, so that gp is interpolated by Z;V:al d;¢; on the boundary 092p,
where d1<;<n, are suitable coeflicients. With the coefficient vector uf € RY we obtain

N Ny
up =y _(uf)je; + > 585 (4.12)
=1 j=1

This representation of uj, € Vj g and the discrete weak formulation (4.11) lead to the
system of linear equations

Lypuf, = b7 (4.13)
with

(Ln)ij = alpj i),  i,§=1,...,N,
No

(b;f)i:b(@i)OZZ(SJ'/QV@J"VQOZ'CLI, i=1,...,N.
j=1

The linear system (4.13) is called Galerkin system und the solution uy,, defined by (4.12)
with u} resulting from (4.13), is called Galerkin solution.

The last step for the derivation of the finite element method, which is also the reason
for its name, is the construction of the finite-dimensional trial space V}, g and test space
Vh,0 with the corresponding basis (¢;); ;<. Different spaces and bases could be used,
for example, polynomial and trigonometric functions, radial basis functions or finite
elements, see Chapter 1 in [56]. Finite elements are piecewise polynomial functions
which are continuous in the domain 2. One of the main ideas of the finite element
method is that for the linear system (4.13), the matrix Lj should be extremely sparse.
This reduces the computational costs in the step of solving the linear system. To achieve
this, the domain €2 is decomposed in, for example, triangles or rectangles and the basis
functions are constructed such that they have an as small as possible support in the
domain 2. For more information on the mesh generation for the finite element method,
we refer to [23].

One specific approach for solving convection-diffusion problems with the finite element
method is the streamline diffusion method. The solution resulting from (4.13) can be
unsatisfactory if the mesh does not resolve boundary layers. The streamline diffusion
method can be seen as a parameterized weak formulation for convection-diffusion equa-
tions, see (6.40) in [19]. A further term is added to the weak formulation (4.9) and
depending on the element, this weighted term introduces additional diffusion in the di-
rection of the wind. The streamline diffusion method can be interpreted as an upwind
scheme for the finite element method, see Section 9.2 in [38]. The Peclet number is used
to choose the weights and thus, this method takes into account the fact that the solution
u depends mainly on its behavior along the streamlines if the Peclet number is large.
We refer to the Subsection 6.3.2 in [19] or Section 9.2 in [38] for a detailed derivation of
the streamline diffusion method.
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The mesh Peclet number

Pep, := Wh (4.14)

@

plays an important role for this derivation and in general for the numerical treatment
of convection-diffusion equations. As before, a is the diffusion coefficient, W € RT
describes the wind in some sense, see 4.2, and h is the grid size. As an example, consider
the one-dimensional problem (4.4) with a constant W = |w|. Then, the mesh Peclet
number describes the relation between the numerical diffusion, which depends on h, and
the real physical diffusion depending on «. To achieve reasonable accurate solutions, the
numerical diffusion has to be small compared to the real diffusion and thus Pej;, has to
be small.
In Section 6.4 in [19], error bounds can be found which use this mesh Peclet num-
ber. Without applying the streamline diffusion method, Theorem 6.4 in [19] implies
that ||V (v —up)|| S (1/2)Pey, h, where h is the length of the longest element edge, see
Remark 6.8 in [19]. On the other hand, using the streamline diffusion method yields
|[wh -V (u—up)|| S ((1/2)Pex)"/? b, where w' is the crosswind, see Remark 6.8 in [19].
This remark contains the conclusion that if Pe, > 2, the application of the stream-
line diffusion method is more reliable than the consideration of the introduced weak
formulation (4.9).
To summarize, the finite element method is widely used for the discretization of PDEs
and has a solid theoretical background [56]. The implementation is not as straightforward
than for finite difference methods, but the consideration of more irregular domains is
possible without a loss of the order of consistency and convergence.

4.3 Spectral properties

After introducing spatial discretization techniques, the next aim is to gain an insight into
the spectral properties of convection-diffusion problems. We consider the steady-state
case of the equation (4.1) and study the spectrum of the resulting partial differential
operator £L = oA — w - V. For simplification, a one-dimensional operator with homoge-
neous Dirichlet boundary conditions and constant coefficients «,w is considered. This
convection-diffusion operator is a linear operator and we refer to the three volume trea-
tise [14], [15], [16] of Dunford and Schwartz for an extensive discourse on linear op-
erators and for the mathematical tools which are needed in the following. Based on
this study, we want to choose eigenvalues A which are usually in the spectrum of such
convection-diffusion operators. These specific A are the basis for the work on the conver-
gence behavior of SDC fixed point iterations of Definition 2.10 in the next Section 4.4.
At first, a continuous convection-diffusion operator L is considered. Afterwards, discrete
convection-diffusion operators are covered which result from a discretization techniques
for PDEs, see the previous Section 4.2.

The convection term w - Vu from equation (4.1) leads to crucial differences in the nu-
merical treatment of convection-diffusion problems compared to pure parabolic PDEs.
In such problems with just diffusion, for example, reaction-diffusion equations as con-
sidered before in Chapter 3, we deal with the Laplace operator A, which in general is
unbounded, linear and elliptic. This partial differential operator has special properties
which enable the application of a powerful spectral theory.
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Definition 4.1. Let X,Y be complex Hilbert spaces and £ : D; — Y a linear operator
where D1 C X. Furthermore, consider the linear operator £* : Do — X where Dy C Y
is the subspace which consists of y for which f(x) = (Lz,y) is continuous on D; and
(Lx,y)y = (x,L*y)x for all x € Dy. This operator L* is the adjoint operator of L and
it fulfills

(Lx,y)yy = (z,L'Y)x Vxe Dy and VYy€ Do,

where (-,-)x and (-,-)y are the inner products on X and Y, respectively. If X =Y and
L = L*, then L is called self-adjoint, see the first definition in Section 1.2 in [10] and
Definition II.7.1 and Remarks I1.7.2 in [24].

Definition 4.2. Let £ : D — H be a linear operator on the complex Hilbert space H
where D C H is a subset. The operator L is called symmetric with respect to the inner
product (-, ) if

(Lx,y)g = (x,Ly)g Vx,y € D.

Lemma 4.3. Let D = C2°(Q2) be the space of smooth functions with compact support
on the open and non-empty subset Q@ C R™ and let H = L2(Q2) be the Hilbert space of
quadratically integrable functions on €2, see (4.8). Consider cartesian coordinates and
the corresponding Laplace operator A : D — H,

i i
A= —.
2
= Oz}
This partial differential operator is symmetric with respect to the inner product defined

by <907¢>L2(Q) = fmf’(x)l/’(x)d% where ¢, 9 € LQ(Q)

Proof. Let p,9 € C°(2). Due to the compact support of the considered functions on
the open set €2, the functions are zero on the corresponding boundary 0f). Thereby and
with integration by parts we obtain the result

- " 20(x n 20 (x
o tham = [Sp@iwie = [ TG =3 [T A @

Q o J=1 J i=1g J
| [P ] [0e() %)
_jz; |: axj ¢( ):|8Q 2 8:1/‘]' al‘j d

=0

3 () O*p()
= o(x) + 4+ [ e(x) dz

= [ 837]' 59 ! 8x§

=0
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The ellipticity and symmetry of the Laplace operator and Corollary 3.5.4 of [10] leads
to the result that its spectrum is real. This was used in Chapter 3 to choose A for
Dahlquist’s equation in the reaction-diffusion case. It can be proven that the Laplace
operator is also essentially self-adjoint and there is a well developed spectral theory
about self-adjoint operators in Hilbert space, see, for example, [10] and [15]. This theory
is based on the important result that the spectrum of any self-adjoint operator is real
and non-empty, see Theorem 1.2.10 in [10].

But we are interested in convection-diffusion operators, as, for example, £L = aA —w -V
from (4.1), and these operators are generally not self-adjoint and more complex. Thus,
the theory of them is less developed. Additionally, we have to deal with the concept of
pseudospectra by considering non-self-adjoint operators.

Definition 4.4. Let A(L) be the spectrum of a closed linear operator £ in Hilbert
space. A value A is in the spectrum of £ if the resolvent (Al — L’)_l is unbounded or
nonexistent. In this case, A is called eigenvalue of L. The e-pseudospectrum of L, where
€ > 0, is a subset of the complex plane and it is defined as

AL)={NeC:AeAL+E) | €]l < e},

where &£ is a perturbation of the operator £. The norm |[-|| is induced by the inner
product on the Hilbert space.

We refer to the book [54] for a detailed treatment of pseudospectra or to the paper [52]
for a shorter discussion with some interesting examples, including a convection-diffusion
problem. The Section 7.9 in [25] also provides a short overview of the topic of pseu-
dospectra.

Definition 4.5. A normal operator L is one that satisfies LL£L* = L*L, where L£* is the
adjoint operator of L.

Equivalently, a normal operator has a complete set of orthogonal eigenvectors. In partic-
ular, self-adjoint operators are normal. If convection-diffusion operators with constant
coefficients are defined on an unbounded domain, then they are also normal. But by
applying boundary conditions or variable coefficients, the convection-diffusion operators
become non-normal, see Section 12 in [54].

If the interest is in the general behavior of a PDE, the spectrum of the corresponding
operator can lead to useful information, see Chapter I in [54] for some illustrative exam-
ples. However, the spectrum of a non-normal operator can also give misleading results.
To explain this, we consider perturbations of an operator, which arise, for example,
due to inexact arithmetic in the numerical solution of PDEs. The spectrum of the per-
turbed operator £ + £ is a subset of the e-pseudospectrum of the unperturbed operator
L where € = ||£||. The e-pseudospectrum provides an information about the distance
from the spectrum of the unperturbed to the spectrum of the perturbed operator. The
e-pseudospectrum of a normal operator is composed of the corresponding e-balls around
its eigenvalues, see Theorem 2.2 in [54]. Thus, the spectrum of a perturbed operator is
not far away from the spectrum of the unperturbed operator if the perturbation is small.
This means that the results from the spectral theory of normal operators can be applied
in the case of perturbed normal operators as well. On the other hand, by considering
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convection-diffusion problems, a non-normal partial differential operator can be obtained
and the eigenvalues of a non-normal operator are more sensitive to perturbations, see
[37]. The e-pseudospectrum of such an operator can cover a large region despite a small
perturbation and thus the eigenvalues of a perturbed non-normal operator can be far
away from the eigenvalues of the corresponding unperturbed operator. Therefore, the
additional study of the pseudospectra of non-normal operators can be more meaningful
than considering just the spectrum.

Remark 4.6. An unbounded linear operator L is self-adjoint if £ is symmetric and
the domains of £ and L* are equal. There is no difference between symmetry and
self-adjointness for bounded linear operators, see Section 1.2 in [10].

4.3.1 Pseudospectra of the simplest one-dimensional
convection-diffusion operator

At first, a continuous convection-diffusion operator is regarded. Based on [45], we con-
sider N : D — H,

Nuy = Auy + Vu, = ull +ul, ux(0) = uy(d) =0, (4.15)

acting in the Hilbert space H = L?([0,d])). The domain D = C?((0,d)) is the space of
twice differentiable functions which fulfill homogeneous Dirichlet boundary conditions.
The constant diffusion and convection coefficients are equal to one in this case. Thus,
the Peclet number Pe = WL/ (4.2) only depends on the characteristic length scale
L, which is equal to the length d of the domain. An increase of d leads to stronger
convective effects.
Theorem 1 from [45] leads to the spectrum A(N) = Upso{\n} of N, with
2,2

)\n:—i—%, n=1,23 ... (4.16)
This discrete spectrum is real and negative. With the considerations above regarding
perturbations of non-normal operators, we investigate the pseudospectra of £ in the
following. This is also the main topic of [45] and its leading Figure is presented here in
Figure 4.2. The dots are the first 27 eigenvalues of N and the parabolas are the contours
of its pseudospectra due to more or less perturbations of the operator. For example, the
values inside the contour nearest to the eigenvalues of A/ are the possible eigenvalues of
a perturbed A due to perturbations & where [|€]| < 1077.
The dashed line is the critical parabola

Re(\) = —(Im(}))?

and with the theoretic case of d = oo we obtain the spectrum A(N') = II which is the
region inside the critical parabola. Furthermore, the e-pseudospectrum is then given by
A(N) =11+ A, for all € > 0, where A, = {\ € C: |\| < €}, see Theorem 3 in [45]. We
refer to [45] for the meaning of the applied sum of two sets. If we consider a perturbation
& with a possible eigenvalue of the corresponding perturbed operator outside the critical
parabola, then the distance from this eigenvalue to the critical parabola grows linearly if
|€|| increases linearly with a constant equal to one, see Theorem 4 in [45]. On the other
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At each point \ in the interior of the region I1 (shaded), |[(AM — L£)7!|| grows ezponentially as
d — oo. Equivalently, the figure can be interpreted as a depiction of e-pseudospectra of L for
e=10"1,10"2,..., 10-7.

Fig. 4.2: From Pseudospectra of the Convection-Diffusion Operator by Satish C. Reddy and
Lloyd N. Trefethen [45].

hand, considering a certain region of an e-pseudospectrum which is inside this parabola,
and then letting d — oo, then e decreases exponentially for this fixed region, see Theorem
5 in [45]. Furthermore, we have a continuous change for A¢(N) — II+ A, as d — oo for
all € > 0, see Theorem 6 in [45]. Thus, as a first heuristically idea of the critical parabola,
the perturbation has to be quite large so that the spectrum of a perturbed operator is
far out of the critical parabola. For small perturbations, the spectrum of a perturbed
operator stays inside the critical parabola. It further requires no large perturbations to
get the whole region inside the critical parabola as the e-pseudospectrum if we consider
large interval lengths d. From Theorem 7 in [45] follows a more general bound

AW) € {re e my)| < e}

for the e-pseudospectrum than obtained by the critical parabola. The e-pseudospectrum
from the operator (4.15) is contained in a strip of finite width equal to ce¥/? ie., the
eigenvalues of a perturbed operator A’ 4+ £ change by at most e%? ||£||. This bound is
known as the Bauer-Fike Theorem, compare with Theorem 7.2.2 in [25].
The results from [45] are stated for the simplest one-dimensional convection-diffusion
operator (4.15). All these results carry over to the more general operator

Lu = aAu+ wVu = au” + wi/, u(0) = u(0) =0 (4.17)

where a and w are constant coefficients. By following the Appendix in [46], we start
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with the dimensional equation

9%u ou

EU:Q@—FM%,

u(0) =u(d) =0
and by substituting u(z) = u.(§) on a kind of normalized domain with £ = wz/a, we
obtain

w? 0%us  w? Ous w

ux(0) = ux(—0) = 0.

Lu="0%e & o o

With £ = w?A/a and the further substitution d = wd/a we get the dimensionless
equation

O%u,  Ouy

ux(0) = ux(d) =0,

compare with equation (4.15). This transformation shows that all convection-diffusion
problems with £ = aA + wV on the interval [0, d] are equivalent to the problem with
the dimensionless operator £ = A + V on the interval [0,wd/a]. By comparing the
parameter d = wd/a with the definition of the Peclet number, we see that they are
equal. Thus, for the consideration of different convection-diffusion problems we need
just the simplest operator (4.15) and a dimensionless number. In this way, the results of
[45] can be simply applied to a more general operator. For example, the critical parabola
Re(\) = —(Im()))? becomes the parabola

Re()\) = —% (Im(\))?. (4.18)
If the e-pseudospectrum is now inside this parabola, then e decreases exponentially as
wd/a — 0o. Meaning that Theorem 5 of [45] now concerns the limit case of wd/a — 0o
by considering the more general operator (4.17), see the Appendix in [46].

4.3.2 Pseudospectra of the discrete operators

Until now, a continuous linear operator £ is considered. For the numerical solution of
PDEs, such an operator has to be discretized and this yields a matrix L, € RV*N as
a discrete convection-diffusion operator. Section 4.2 provides an introduction to spa-
tial discretization techniques, which are now used for the study of the pseudospectra of
different matrices Lj. Such matrices are approximations of £ and thus the pseudospec-
tra of a matrix L; approximate the pseudospectra of the continuous operator £. The
deviation between these pseudospectra depends on the discretization.

We want to illustrate the connection between the critical parabola and the pseudospectra
of a discrete convection-diffusion operator L; with a simple numerical example. Consider
the one-dimensional convection-diffusion boundary value problem

au” +u' =1 in (0,6), u(0) =u(d) =0 (4.19)

with the convection-diffusion operator £L = a«A+V. By decreasing « or increasing 9, it is
possible to construct a convection dominated boundary value problem. The continuous
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Fig. 4.3: Exact solution of a one-dimensional convection-diffusion boundary value problem with
different diffusion coefficients o and a convection coefficient w = 1. Increasing convec-
tion domination from the left to the right.

operator L is discretized by a finite difference method where central difference approx-
imations are applied for the first derivative and an equidistant grid {@}f\; 61 is used on
the interval [0,8]. Thus, we obtain the approximations u”(x;) &~ (u;+1 — 2u; + u;_1)/h>
and u/(z;) ~ (ujy1 — ui—1)/(2h) with the grid size h = z; — x;—1 and u; =~ u(x;), see
Section 6 in [45]. The exact solution of the convection-diffusion problem (4.19) is given
by u(x) =2 —4¢ (e(‘s_m)/o‘ - 65/0‘) /(1— eé/a). For a« — 0, at = 0 we get the simplest
case of a singularly perturbed differential equation, see Figure 4.3. The pseudospectra of
Ly, are obtained by the computation of the minimal singular value of the matrix zI — Ly,
for complex numbers z, see Section 4 in [52] for an explanation. After this, a contour
plotter is used for the singular values. The lines in the resulting plots correspond to
the contours of the pseudospectra of Lj. For the singular value decomposition, we use
the MATLAB® function svd. Figure 4.4 contains pseudospectra of different matrices
Ly, that arise from problem (4.19). There, we select combinations from o = {0.1,0.2}
and 6 = {10,20} and set the mesh Peclet number (4.14) to Pej, = 1. For o = 0.2 and
§ = 10, the e-pseudospectrum where € = 10716 is so small that it is not shown. The pseu-
dospectra of the matrices L, are bounded by the critical parabola Re()\) = —a (Im()))?
if a domination of convection is forced by an increase of § or a decrease of a. If the
interval length § is increased, the pseudospectra move closer together and tend towards
the critical parabola.

The pseudospectra of the continuous operator £, which have a parabolic contour, are
shown in Figure 4.2. The discrete operators L;, with homogeneous Dirichlet boundary
conditions are tridiagonal Toeplitz matrices and a property of such matrices is that they
map circles about the origin onto ellipses, see [45] or [47]. Thus, the pseudospectra of
the discrete operators Ly have an elliptical contour.

For the next numerical example, consider the convection-diffusion operator

Lu=Au—Vu=u"—1, u(0) = u(d) = 0. (4.20)

The change of sign of the convection term leads to another spectrum and other pseu-
dospectra of £ than before, but the theory of Section 2 in [45] can be easily applied for
this case, too. The operator is discretized with a uniform grid and central difference
approximations again. For this example, we use the MATLAB® function eig to com-
pute the spectra of the discrete operators Lj. These computed spectra are not the exact
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Fig. 4.4: e-pseudospectrum of discrete convection-diffusion operators Ly based on £ = aA + V
with homogeneous Dirichlet boundary conditions and different interval lengths § and
diffusion coefficients «. The convection coefficient is w = 1 and there holds Pe;, = 1.

spectra of the matrices Ly, they can be seen as the spectra of some perturbed matrices
with perturbations depending on the accuracy of the MATLAB® function eig. The com-
puted spectra Acig(Lyp) on different intervals [0, 6] with Pe, = 1 are shown in the plots
of Figure 4.5. With increasing d, i.e., the Peclet number Pe increases, the computed
spectra of Ly approach the critical parabola. The reason for this is that in the case of
a larger Peclet number the matrices L, are more sensitive to perturbations and despite
the high accuracy of the MATLAB® function eig the errors in the computation of the
eigenvalues can be quite large.

4.3.3 The j-parabola-region

As motivated in the previous subsections, we follow the idea of considering the pseu-
dospectra instead of the spectrum of a convection-diffusion operator £. The ultimate
aim of this work is the numerical solution of unsteady convection-diffusion problems with
SDC methods. Thus, the pseudospectra of the matrices Lj,, which arise due to a spatial
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Fig. 4.5: Computed spectra Ac;q(Ly) of discrete convection-diffusion operators Ly, resulting of
the problem (4.20) with @ = 1, w = 1 and different interal lengths . The grid size is
fixed with A = 1 and thus Pey, = 1.

discretization, are of interest. These pseudospectra depend on the discretization, but
we want to derive an independent framework. The idea is that the existence of highly
accurate spatial discretizations is assumed so that the pseudospectra of the discrete oper-
ators approximate the pseudospectra of the continuous operators in such a way that the
results of the continuous case can be applied to the discrete case, at least approximately.
Thus, in the remaining part of this work is assumed that the considerations regarding
the critical parabola (4.18) carry over to the matrices Lj. The numerical experiments
in the last Subsection 4.3.2 support this assumption.

Furthermore, for simplification, the following study is based on the one-dimensional
convection-diffusion operator £ = aA + wV defined on (0, d) with homogeneous Dirich-
let boundary conditions and constant coefficients a, w, see Remark 4.8. From Subsection
4.3.1 we know that for small perturbations the possible eigenvalues of a correspond-
ing perturbed convection-diffusion operator are somewhere inside the critical parabola
Re()\) = —(a/w?)(Im(X))2. If Pe — oo, the pseudospectra of the operator £ become the
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whole region II inside this parabola, also with very small perturbations. For smaller Pe,
the pseudospectra are subsets of II which are also bounded by parabolas and for Pe — 0
these parabolas become narrower with the limit case of the negative real axis in the
complex plane. However, in the following, it is assumed that there are such large Peclet
numbers and possible perturbations of the operators so that the whole region inside the
critical parabola is considered as their e-pseudospectrum.

After a spatial discretization of the operator £ with some grid size h, an IVP for the
convection-diffusion equation (4.1) is obtained. Thus, we need a temporal discretization
with a time step size for solving this IVP in time. In our SDC framework, this time step
size is equal to the time interval length 7 of Definition 2.9. We want to investigate the
behavior of SDC fixed point iterations of Definition 2.10 for z = 7\ where A € II C C, as
described above, and 7 > 0. This and the critical parabola Re()\) = —(a/w?)(Im()))?
lead to the next definition.

Definition 4.7. We call the set
II,(8) = {z € C: Re(z) < —B(Im(z))Q}

the B-parabola-region for the convection-diffusion problem (4.1), where 8 = a/(tW?).
The value W € RT is a parameter for the wind w(z) where |w(z)/W| = O(1) in
some norm ||-||. The scalar ( is a kind of parameter for unsteady convection-diffusion
problems.

To get a more general framework in this work, it is assumed that the idea of the
B-parabola-region can be also applied to more general convection-diffusion operators. For
the numerical experiments in Section 5.2, we consider, for example, a two-dimensional
problem, inhomogeneous Dirichlet boundary conditions and a non-constant wind w(zx).

Remark 4.8. At this point, we have to mention that by changing the type of boundary
conditions or the spatial dimension of the problem, the results of the critical parabola
(4.18) will probably change. For non-constant coefficients o and w, this is also the case,
compare Theorem 10.2 in [54] with [9].

4.4 Faster SDC convergence for convection-diffusion
equations

With the S-parabola-region of Definition 4.7 we can make an appropriate choice of the
parameter z = 7 for SDC fixed point iterations of Definition 2.10 so that A is usually in
the spectrum of a convection-diffusion operator. As in the previous chapter concerning
reaction-diffusion problems, the SDC methods are constructed with L-stable Radau-Ila
collocation discretizations. Highly accurate spatial discretizations of convection-diffusion
problems, as assumed in this work, can lead to stiff components in the discretized partial
differential operators. These are the eigenvalues with a large negative real part. With an
L-stable Radau-IIa method, these stiff components can be damped out and oscillations
in the numerical solution can be prevented. On the other hand, the damping property of
Radau-ITa methods can also lead to disadvantages if components with a large imaginary
part are damped out. Gauss or Lobatto collocation discretizations, which are A-stable,
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Fig. 4.6: Spectral radius p(G(z)) of Eul-SDC and LU-SDC methods on Radau-IIa grids with
s = 2 collocation points. Bounds of S-parabola-regions are marked with white lines.
Re(z) and Im(z) are scaled logarithmically.

but not L-stable, can be reasonable choices if the S-parabola-region is determined by a
very large 8 and the operators have no very stiff components. For a detailed treatment
of the stability properties of collocation discretizations, the reader is referred to [31] and
[32].

The following section covers SDC fixed point iterations of Definition 2.10 for z € II,(5)
and different convergence objectives as in the last chapter. There, the function fminsearch
from MATLAB® is applied for the direct optimization approach. This derivative-free
programming solver does not lead to satisfying results for z € II,(/). Thus, in the fol-
lowing, the programming solver fminunc from MATLAB® is used, which works with the
approximation of derivatives. The objective functions are computed on a logarithmic
grid for values of z with —10* < Re(z) < —10~* and —10* < Im(z) < 10*. We use 50
points for the real part and 100 points for the imaginary part. The initial matrices arise
from the LU decomposition approach, see Subsection 3.1.2, and the objective functions
are approximated with the I norm ||-|[4, as in [55].
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Fig. 4.7: Spectral radius p(G(z)) of Eul-SDC and LU-SDC methods on Radau-IIa grids with
s = 4 collocation points. Bounds of S-parabola-regions are marked with white lines.
Re(z) and Im(z) are scaled logarithmically.

4.4.1 Asymptotic contraction factor

At first, we study the asymptotic contraction factor ®,, of Definition 2.15, i.e., the
spectral radius p(G(z)) of SDC fixed point iterations of Definition 2.10 is considered for
values of z in the complex plane.

In the Figures 4.6 and 4.7, Eul-SDC and LU-SDC methods with s = 2 and s = 4
collocation points can be compared. The first discovery for the Eul-SDC methods is
that p(G(|]z| — 0)) = 0 and p(G(|z| — 00)) # 0, see the top plots in the Figures 4.6
and 4.7. Furthermore, p(G(z)) grows for larger |z| as the number of collocation points s
increases. In the previous chapter, we observed the same behavior for reaction-diffusion
problems, where 0 > z € R. The LU-SDC methods for reaction-diffusion problems
have a superior convergence behavior in the limit case z — —oo. The experiments for
LU-SDC methods with z € C where Re(z) < 0 shows this behavior as well, see the
bottom plots of Figure 4.6 and 4.7. The maximum of the asymptotic contraction factor
p(G(z)) reduces and we obtain further the property of a vanishing p(G(z)) in the limit
case |z| — oo. This includes Re(z) — —oo the limit case of stiff problems. The next
theorem summarizes this result.
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Fig. 4.8: Spectral radius p(G(z)) of LU-SDC and Opt-SDC methods on Radau-Ila grids
with s =4 collocation points. The optimizations (4.21) are performed for different
B-parabola-regions. Re(z) and Im(z) are scaled logarithmically.

Lemma 4.9. Considering an LU-SDC method of Definition 3.5 and complex-valued
z € C, then there holds p(G(|z| — o0)) = 0, where G(z) is the iteration matrix of the
LU-SDC method.

Proof. By the LU decomposition ™1 = LU, see Theorem 3.6, we obtain a unit lower tri-
angular matrix L and an upper triangular matrix U. We take an approximate integration
matrix $ = U7 and this leads to the iteration matrix G = I — (D — zUT)_1 (D — zUTLT).
In the limit case, there holds G(|z| = 00) =1 — U~ TUTLT =T — LT. This matrix is
an upper triangular matrix where all diagonal entries are equal to zero and therefore
p(G(|z] = 00)) = 0, see Lemma 7.1.1 in [25]. O

For LU-SDC methods with s = 4 collocation points, see the bottom plots of Figure
4.7, the spectral radius p(G(z)) reaches maximum values in the regions of approxi-
mately [Im(z)| = 10 and —10 < Re(z) < 0. We observe that these regions are not in the
B-parabola-region I, (5 = 1), but they increasingly become part of I1,(3) as 5 — 0. This
leads to the presumption that the benefit of using LU-SDC methods is much higher for
convection-diffusion problems with a larger 8. Nevertheless, the numerical experiments
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Fig. 4.9: Norm ||G(2)||, of Eul-SDC and LU-SDC methods on Radau-Ila grids with s = 4
collocation points. Bounds of S-parabola-regions are marked with white lines. Re(z)
and Im(z) are scaled logarithmically.

show that the LU-SDC methods have an asymptotic contraction factor which is at least
as good as the one from the Eul-SDC methods.

For the next considerations, we regard [-parabola-regions II,(3) for different 5. The
numerical experiments demonstrate that the direct optimization approach

min J(D, S) := zé%azcﬁ) p(G(2)) (4.21)

can lead to a reduction of the maximum of p(G(z)). However, this comes at the expense
of a worsened asymptotic contraction factor for |z| — oo compared to the LU-SDC
methods and this trade-off has the most impact for z with Re(z) — —oo. If there is
a convection-diffusion problem so that the observed regions of the highest p(G(z)) are
somewhere in the S-parabola-region I1, (), then the optimization can lead to a significant
improvement of this maximum of p(G(z)). Figure 4.8 compares experiments for LU-SDC
and Opt-SDC methods using s = 4 collocation points.
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Fig. 4.10: Norm [|G(z)|l, of LU-SDC and Opt-SDC methods on Radau-Ila grids with
s = 4 collocation points. The optimizations (4.22) are performed for different
B-parabola-regions. Re(z) and Im(z) are scaled logarithmically.

4.4.2 Local pre-asymptotic contraction factor

In this subsection, we study the norm ||G(z)||, which is the local pre-asymptotic con-
traction factor ®; of Definition 2.17. This quantity determines the error reduction at
all collocation points of an SDC fixed point iteration of Definition 2.10. The following
numerical experiments are for the 2-norm. For Eul-SDC methods with s = 4 colloca-
tion points, they demonstrate that the local pre-asymptotic contraction factor takes its
maximum at |z| — oo, see the top plots of Figure 4.9. The aim is now to reduce ®; and,
in particular, its maximum with the LU decomposition and optimization approach.
The first observation is that improvements by LU-SDC methods are possible, see Figure
4.9. In these experiments, the local pre-asymptotic contraction factor of the LU-SDC
methods is at least as good as the one of the Eul-SDC methods and its maximum is much
smaller than the one of the Eul-SDC methods. Compared to the asymptotic contraction
factor, the local pre-asymptotic contraction factor does not vanish for |z| — oo by
considering LU-SDC methods. The direct optimization approach

min J(D, S) := T 1G(2)]], (4.22)
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Fig. 4.11: Norm H.eZG(z)H2 of Eul-SDC and LU-SDC methods on Radau-IIa grids with s = 4
collocation points. Bounds of S-parabola-regions are marked with white lines. Re(z)
and Im(z) are scaled logarithmically.

see Figure 4.10, leads to an additional reduction of the maximum of ®; with no disad-
vantages. A vanishing ®; can be observed for |z| — 0 because only the approximate
integration matrix S changes due to the optimization. The approximate differentiation
matrix D remains the same, which is reasoned by the selected settings of the program-
ming solver fminunc from MATLAB®.

4.4.3 Global pre-asymptotic contraction factor

The covered objective of this subsection is to improve the error reduction at the right
time interval end point %,, i.e., to reduce the global pre-asymptotic contraction factor
o, = HegG (2) H of Definition 2.18. We consider s = 4 collocation points and the 2-norm
for the numerical experiments. Figure 4.11 compares Eul-SDC methods and LU-SDC
methods with z € C where Re(z) < 0. The LU decomposition approach leads to an

improvement of ®, for all values of z and to a vanishing ®, for |z| — oo.

Lemma 4.10. Considering an LU-SDC method of Definition 3.5 with complex-valued
z € C and the global pre-asymptotic contraction factor ®, of Definition 2.18, then there
holds ®,(G(|z| = 00)) = 0, where G(z) is the iteration matrix of the LU-SDC method.
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Fig. 4.12: Norm HeZG(z)H2 of LU-SDC and Opt-SDC methods on Radau-Ila grids with
s = 4 collocation points. The optimizations (4.23) are performed for different
B-parabola-regions. Re(z) and Im(z) are scaled logarithmically.

Proof. As in the proof of Lemma 4.9, we have the limit matrix G(|z| — c0) = I — LT
The last row of this matrix is given by el (I — LT) and with a unit upper triangular
matrix LT we obtain e} (I — L) = 0. This leads to the result ||l G(|z| — c0)|| =0. O

As in Subsection 4.4.1, the factor ®, of LU-SDC methods with s = 4 collocation points
takes its maximum at intermediate values of z. Thus, we also presume here that LU-SDC
methods have a greater benefit for the global pre-asymptotic contraction factor if the
convection-diffusion problems have a larger 5. In the presented experiment with s = 4
collocation points, this is the case for approximately 5 > 1.

The direct optimization approach

min J(D, S) := max H64TG(Z)H (4.23)
Zenz(ﬂ)
leads to a reduction of this maximum of ®4, see Figure 4.12. The trade-off is given
by a worse global pre-asymptotic contraction factor for |z| — co. As in the previous
subsection, the optimization does not affect the approximate differentiation matrix D
and this leads to a vanishing ®, for |z| — 0.
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We summarize this section concerning Eul-SDC, LU-SDC and Opt-SDC methods of the
Definitions 3.2, 3.5 and 3.7, respectively, as follows: The LU decomposition and the
optimization approach are promising for SDC fixed point iterations of Definition 2.10
for the problem class of convection-diffusion equations. One of the main results is that
the LU decomposition approach shows a superior convergence behavior for problems
where |z| — 0o. Considering LU-SDC methods yields regions in the complex plane of
worse asymptotic and global pre-asymptotic contraction factors, see the bottom plots
of the Figures 4.7 and 4.11, respectively. Each convection-diffusion problem has a cer-
tain SB-parabola-region and depending on S, the regions of worse contraction factors lie
more or less inside the S-parabola-region. With the optimization approach for different
[B-parabola-regions a further improvement can be achieved, see the bottom plots of the
Figures 4.8 and 4.12.
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5 Numerical experiments

The previous chapters dealt with SDC methods for the scalar IVP of Dahlquist’s equa-
tion 2.9. The next step is to test SDC methods for ODE systems where the correspond-
ing discrete convection-diffusion operators have pseudospectra in the complex plane.
The present chapter covers numerical experiments for ODE systems resulting from
convection-diffusion problems (4.1) where different spatial discretization techniques are
applied. In Section 5.1, we first study the behavior of SDC methods for a one-dimensional
problem with constant coefficients which is discretized by finite differences. This exam-
ple is very similar to the problems in Subsection 4.3.2. Then, the example in Section
5.2 concerns a two-dimensional convection-diffusion problem with a variable wind. It is
based on an example of [19] and discretized by the finite element method.

5.1 One-dimensional finite difference discretization

Consider the one-dimensional convection-diffusion initial boundary value problem

Z:aAu—w-Vu+r in (0,9) x (0,7,

w(0,t) = u(0,t) =0, u(x,0) =up(x)

(5.1)

where w = r =1, § = 10 and ugp = 0. There are homogeneous Dirichlet boundary con-
ditions and the initial solution ug satisfies them. Before this problem is solved in time,
the convection-diffusion operator is semi-discretized in space with a finite difference
method. We apply an upwind scheme with backward differences for the first deriva-
tive, see Subsection 4.2.1. This and an approximation for the second derivative lead to
’LL”(.TZ') ~ (1/h7,+1) ((UZ'+1 — ui)/hH_l — (’LLZ - ul_l)/hl) and u’(xl) o (’LLZ — ui_l)/hi, where
u; ~ u(x;) and {xi}fial is a general mesh with the grid size h; = x; — x;—1. Equidistant
grids are sometimes acceptable discretizations, but in the convection-diffusion case it is
often a better choice to use an irregular grid. For example, consider the analytical so-
lution u(z) =z — 9 (e(z_‘;)/o‘ - e_l/a) /(1- 6_1/"‘) of the steady-state version of (5.1),
i.e., Ju/ot = 0. For a — 0, equation (5.1) becomes the simplest case of a singularly per-
turbed differential equation in # = §, compare with Figure 4.3. A reasonable approach
is to have finer grids in regions of rapid change of the solution. Following this idea, we
discretize the interval [0, §] with the piecewise-uniform Shishkin grid, where more points
are placed near the upcoming singularity as ae — 0, see [39]. The transition point of this
piecewise-uniform mesh is set to 0 = 1 — min{(4«a/J) In(N),1/2}, see Subsection 6.4.1
in [19] with the description of Table 6.3. In particular, this leads to a uniform mesh if
o=1/2.

The resulting finite difference matrix L, € RV*Y depends on a and N and once the
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Fig. 5.1: Contraction factor p; (5.4) of implicit Euler, LU decomposition and optimization
based SDC methods for convection-diffusion problems (5.1) depending on 3 = o/ (Tw?).
Changing the problem by varying o where 7 = 0.1 (left), and varying 7 where o = 0.001
(right). Forcing a constant Pep < 1 in the part of the finer Shishkin discretization.

The optimization problem is given by (4.21).

spatial discretization has been done, we obtain the IVP

Oup (1) .
=1L t 0, T
o pun(t) +rn in (0,7), (5.2)
up(0) = upp,
where 1, = [0,1,...,1,0/7 € RN and up = [0,...,0]7 € RY. The vector up(t) € RY

approximates the solution w(xp,t) at the grid points x = [zg,...,2y_1]7. The ma-
trix Ly and the vector r, are modified for the homogeneous Dirichlet boundary con-
ditions. To apply the SDC framework as derived in the last chapters, the large time
interval [0,7] is subdivided and the IVP (5.2) is solved on the resulting subintervals
[0,7],[r,27],...,[T = 7,T]. The SDC matrix formulation (2.12) with the constant Jaco-
bian J¢ = Lj, and exploiting the linearity of the right hand side of (5.2) lead to the SDC
fixed point iteration -

u™M=a(z)d + g,

G(Z) = [IN®In _ ([N®f)—Z<1N®S))_1(IN®D—Z(IN®S’“))] 53
. R
g:<IN®D—Z(IN®S)> <7_1Uh,0®€1+T(IN®ST)(Th®1n)>

on the first subinterval [0, 7], where Z = 7L, ® I,, € RVN"*N"_ The vector u%] e RNV,
which is arranged as described in Section 2.2, approximates the solution wu(z,t) at a
certain spatial grid {z;} ;' and time grid {r;}?_,. The vector 1, = [1,...,1]7 € R®
and the identity matrix I,, € R™ arise from the Radau-IIa discretization with s collocation
points. In the following, the j-th approximation of this SDC fixed point iteration at the
right interval end point ¢, = 7 is denoted by the vector uLj’L € RV,

In the following, the Shishkin grids are constructed so that the matrices L; have a
dimension of 10001 x 10001 for all experiments. Due to the variable transition point
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of these grids, a constant mesh Peclet number with Pe /= 0.03 is obtained in the finer
discretized part, i.e., near the singularity. Based on this, we assume that the spatial
discretizations for the convection-diffusion problems are highly accurate.

The first experiments concern the asymptotic behavior of the SDC methods where the
SDC sweeps are performed with the abort condition ||u£fjl] - u%}THh < 10710, The norm
|||, is a discrete L2-norm and takes the large differences in the Shishkin grid sizes into
account, see Section 2.1 and, in particular, Definition (1.5) in [28]. This leads in the last
performed SDC sweep to the contraction factor

j+1]
Huh‘r

L o
h,t

which is an approximation of the asymptotic contraction factor ®, of Definition 2.15.
For the left plot of Figure 5.1, the diffusion coefficient « is varied, which leads to different
B-parabola-regions, and 7 = 0.1 is fixed. The results of the experiments match with
the study of Section 4.4. Due to the small grid sizes, the resulting matrices L;, have
eigenvalues with a large negative real part. For implicit Euler based SDC methods,
these stiff components of Lj combined with the moderate time interval length 7 lead
to a worse contraction factor p; compared to LU decomposition based SDC methods.
The direct optimization (4.21) is the best approach. The resulting SDC methods consist
of matrices which take the S-parabola-region of the convection-diffusion problems into
account, see Figure 4.8. It can be further discovered that the convergence of the LU
decomposition based SDC methods become slower if 5 decreases. We observed this
before in bottom plots of Figure 4.7 as the regions of maximum p(G(%2)).

Similar results can be observed in the right plot of Figure 5.1, where we vary the time
interval length 7 and set a = 0.001. The results for 7 — 0 can be explained as follows:
The B-parabola-regions become narrower by decreasing 7. Furthermore, by considering
the fixed point iteration (5.3), there holds Z(7 — 0) — 0 and thus G(Z) — 0 as 7 — 0.
By decreasing 7, the stiff components of L, have less influence on the convergence
behavior of the fixed point iterations and this finally leads to p; — 0 as 7 — 0.

A greater practical relevance than the asymptotic contraction factor may be that of the
relative global error of SDC methods in the first few SDC sweeps. In the following,
we consider two different settings for this. In the first experiments, SDC-7 methods
are constructed, i.e., seven SDC sweeps are performed. The implicit Euler, LU decom-
position and optimization approach is applied for different 8 by varying « and setting
7 = 0.1. This leads to different convection-diffusion problems. For all experiments, the
reference solution is the collocation solution. The optimization approach is based on
(4.23) with SDC sweep blocks of the size m = 7, see Subsection 3.2.4. For each 3, the
maximal global pre-asymptotic contraction factor is minimized after seven successively
performed SDC sweeps. Thus, the minimized variable is ||e] G( Hz/ for z € IL,(B).
The results of the SDC-7 methods are presented in the left plot of Figure 5.2. The
smallest relative global errors can be observed in the case of the optimization approach.
Furthermore, the implicit Euler approach leads to significantly worse results compared
to the LU decomposition approach.

The second experiments consider one certain convection-diffusion problem with a fixed
6 =0.01 where o = 0.001 and 7 = 0.1. For this problem, we construct SDC-j methods
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Fig. 5.2: Relative global error of SDC-7 methods for convection-diffusion problems (5.1) depend-
ing on B = a/(trw?) where « is variable and 7 = 0.1 (left). Relative global error of
SDC-j methods where 8 = 0.01 with & = 0.001 and 7 = 0.1 (right). Forcing a constant
Pejp, < 1 in the part of the finer Shishkin discretization and the reference solution is
the collocation solution. The optimization problem is given by (4.23) with SDC sweep
blocks of size m = 7 (both plots), see Subsection 3.2.4.

and study the behavior of the relative global error. The results of these SDC-j methods
are presented in the right plot of Figure 5.2. For j > 2 iterations, the LU decomposition
and optimization based SDC methods have a lower relative global error than the implicit
Euler based SDC methods. The direct optimization is the most promising approach for
all SDC-j methods.

Remark 5.1. Considering inhomogeneous Dirichlet boundary conditions, only the vec-
tor fj, will change and the iteration matrix G(Z) remains the same. Thus, the studies
on G(Z) are independent of the values of the Dirichlet boundary conditions and also of
possible sources or sinks quantified by ry,.

Remark 5.2. Once there is a sufficient approximate solution on the first subinterval
[0, 7], we can easily go to the next subintervals and start the SDC fixed point iteration
again. For this, the last result of the SDC method at the end point of the current
subinterval can be used as the initial solution for the new subinterval. A common choice
for the initial guess uf] is a constant initial solution for all grid points.

5.2 Two-dimensional finite element discretization

The following experiments cover a problem from Chapter 10 in [19]. This two-dimensional
convection-diffusion problem is given by

ou .

E:aAu—w-Vu in Q x (0,7) (5.5)
where 2 = (—1,1) x (—=1,1) is a square domain. The wind w(x,y) is recirculating on
this domain and is of the form w(z,y) = W[2y(1 — 22), —22(1 — 3?)]*, where we added a
scalar parameter w € RT. There are no sources or sinks present and Dirichlet boundary
conditions are imposed everywhere. From the limit ¢ — oo follows the steady-state case
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Fig. 5.3: The 2-norm of the wind at each element (top) and the steady-state finite element
solution of the convection-diffusion problem (5.5) (bottom) for & = 1 and @ = 10.
Isolines are shown in the left plots and a 64 x 64 stretched mesh is used.

with w(z, —1,t) = u(z,1,t) = u(—1,y,t) =0 and u(l,y,t) = 1, see Chapter 6 in [19]
with the example 6.1.4. The initial condition is given by u(z,y,0) = 0 and the Dirichlet
boundary conditions change in time by the factor 1 — e~1% so that the values of the
boundary conditions smoothly go to the values of the steady-state case. This problem,
the so-called double-glazing problem, can be interpreted as follows: The solution could
be a temperature field in a cavity with a hot wall at x = 1. The wind distributes the
heat in the cavity in a recirculating way. There are two discontinuities at the hot wall
in x =1 and y = +1 and they lead to boundary layers. For further information on this
problem and in particular on the mathematical meaning of its boundary layers we refer
to Chapter 6 in [19].

In this section, the convection-diffusion operator is semi-discretized in space by finite
elements. For this, the open-source software package IFISS [18],[51] is applied. This
MATLAB® implementation is developed by the authors of [19]. The meshes consist of

rectangular elements, see Subsection 1.3.2 in [19], and they are stretched so that there
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Fig. 5.4: The 2-norm of the wind at each element (top) and the steady-state finite element
solution of the convection-diffusion problem (5.5) (bottom) for o = 1 and @ = 100.
Isolines are shown in the left plots and a 64 x 64 stretched mesh is used.

are more elements near the boundaries. If the mesh Peclet number Pej, becomes too large
for some elements, the streamline diffusion method is applied, see Subsection 4.2.2. We
refer to the Sections 6.2 and 6.3 of [19] for further information on the functionality of the
IFISS code for convection-diffusion problems. Two specific examples of finite element
solutions, which are computed by the IFISS software, are plotted in the Figures 5.3 and
5.4. The 2-norm of the wind w(z,y) = @[2y(1 — z?), —22(1 — y?)]” at each element and
furthermore, the steady-state finite element solution for a fixed o = 1 and different w
are presented. In Figure 5.3, where o = 1 and w = 10, the diffusion has a large enough
influence to prevent visible recirculating flows in the bottom plots. In Figure 5.4, the
convection effect becomes stronger by setting @w = 100. This leads to plots which are
more typical for a double-glazing problem. The implementation of the SDC methods is
done a way analogous to the previous section, i.e., the discrete operator Lj obtained by
the IFISS software is applied for fixed point iterations, which are similiar to (5.3). We
set a = 1 for all following experiments.
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Fig. 5.5: Contraction factor p; (5.4) of implicit Euler, LU decomposition and optimization based
SDC methods for convection-diffusion problems (5.5) depending on . Changing the
problem by varying @ where 7 = 1 and o = 1 (left). Varying 7 where @w = 100 and
a =1 (right). The optimization problem is given by (4.21).

The first experiments address the asymptotic behavior of SDC methods. For this, the
contraction factor p; (5.4) is computed where the SDC fixed point iterations have the

U+ D)

abort condition [|uy, = — ;" [|n < 10712 in the last SDC sweep. For the computation
of B = a/(tW?), see Definition 4.7, we set W to the mean of ||w(z,y)|, for (z,y) € €.
The results of varying w are presented in the left plot of Figure 5.5. As for the ex-
periments regarding the finite difference discretization, a significant benefit by the LU
decomposition and optimization approach is obtained compared to implicit Euler SDC
methods. The optimization approach leads to the best results for 3 — 0 and § — 1, but
for intermediate values, there is a slower convergence speed than for LU decomposition
based SDC methods. A possible reason for this is the choice of the scalar value W for
the B-parabola-region. The problem (5.5) has a variable wind w(x,y) and thus the com-
putation of 8 with the mean of ||w(z,y)||, is not the optimal choice for all possible £3.
A further observation is that in both cases of the LU decomposition and implicit Fuler
approach decreasing 3 leads to worse contraction factors p;. We assume again that the
reason for this are the regions of maximum p(G(z)), which are observed before in Figure
4.7. For the right plot of Figure 5.5, we vary 7 and this results in p; — 0 as § — 1,
which was already discovered in the last section.

The next experiments cover the relative global error of different SDC methods for the
double-glazing problem (5.5). Compared to the implicit Euler based SDC methods, the
LU decomposition and optimization based SDC methods have a smaller relative global
error after seven performed SDC sweeps, see the left plot of Figure 5.6. The direct
optimization approach is the most promising approach and this holds for all . As in the
previous section, the maximal global pre-asymptotic contraction factor is minimized for
SDC sweep blocks of size m = 7. In the right plot of Figure 5.6, the relative global error
is presented over the number j of SDC sweeps. In this experiment, the S-parabola-region
is fixed with 5 ~ 0.0001 where oo = 1, @ = 100 and 7 = 1. We optimize again for a fixed
SDC sweep block size m = 7. The LU decomposition and optimization approach lead to
smaller relative global errors than the implicit Euler approach, for all SDC-j methods.
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Fig. 5.6: Relative global error of SDC-7 methods for convection-diffusion problems (5.5) depend-
ing on  where w is variable, 7 = 1 and « = 1 (left). Relative global error of SDC-j
methods where § ~ 0.0001 with & = 1, 7 = 1 and & = 100 (right). The reference
solution is the collocation solution. The optimization problem is given by (4.23) with
SDC sweep blocks of size m = 7 (both plots), see Subsection 3.2.4.

Remark 5.3. To get different convection-diffusion problems for the experiments con-
cerning the finite element discretization, we vary the wind w by choosing w. Forcing
a stronger convection by decreasing a leads to the result that for all £, a similar con-
vergence behavior is obtained. It makes no difference whether using implicit Euler, LU
decomposition or optimization based SDC methods. The reason for this observation is
that the matrices Lj, have no stiff components for very small o and reasonable fine dis-
cretizations. This leads to the interesting result that all the constructed SDC methods
for problems with [|wl|, = O(1) seem to work very well for a large range of o. For the
two-dimensional case in Section 5.2, the use of very small grid sizes leads to very large
linear systems. It can be difficult to solve these systems.
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6 Conclusion

The approaches in [55] with application to the problem class of reaction-diffusion equa-
tions work for convection-diffusion problems as well. Several experiments demonstrate
that it is possible to accelerate the convergence speed and to improve the error reduction
in the first few SDC sweeps. In addition to this experimental study, a contribution of
this thesis is the derivation of a framework for constructing suitable approximate differ-
entiation and integration matrices of SDC methods for convection-diffusion problems.
This framework uses the [-parabola-region of Definition 4.7 and is the basis for the
direct optimizations (4.21), (4.22) and (4.23). Although the -parabola-region is based
on a simple one-dimensional convection-diffusion operator with constant coefficients, the
numerical solution of more realistic convection-diffusion problems in Section 5.2 leads to
promising results. The direct optimization with respect to SDC sweep blocks is the best
approach compared to linearly implicit Euler and LU decomposition based SDC meth-
ods. The direct optimization approach applies a local optimization with initial matrices
from the LU decomposition approach.

On the other hand, the LU decomposition approach and its implementation are very
simple. The experiments show significant benefits compared to implicit Euler based
SDC methods, most of all for problems with very stiff components in the eigenvalues
of the partial differential operator. In the limit case of stiff problems, the asymptotic
contraction factor of the LU decomposition based SDC methods is equal to zero, see
Lemma 4.9. Furthermore, we prove in Theorem 3.6 that the LU decomposition of the
spectral integration matrix is unique and thus pivoting never has to be considered. This
guarantees that the SDC methods run forward in time.

If a convection-diffusion operator £ = oA + w - V has non-constant coefficients, there is
more than one possibility to compute the S-parabola-region for the considered problem.
To achieve a satisfying framework for this, other experiments and considerations are
necessary. Further improvements are conceivable by applying the direct optimization
approach with such a resulting [S-parabola-region. Additionally, the analysis of the
arising approximate differentiation and integration matrices is a reasonable next step.
This offers a deeper insight into the SDC sweep structure, which is a worthwhile goal in
its own right, and it is also the basis for an efficient implementation of SDC methods.
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