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Abstract. Rolling stock optimization is a task that naturally arises by
operating a railway system. It could be seen with different level of details.
From a strategic perspective to have a rough plan which types of fleets
to be bought to a more operational perspective to decide which coaches
have to be maintained first. This paper presents a new approach to deal
with rolling stock optimisation in case of a (long term) strike. Instead of
constructing a completely new timetable for the strike period, we propose
a mixed integer programming model that is able to choose appropriate
trips from a given timetable to construct efficient tours of railway vehicles
covering an optimized subset of trips, in terms of deadhead kilometers
and importance of the trips. The decision which trip is preferred over
the other is made by a simple evaluation method that is deduced from
the network and trip defining data.

Keywords: mixed integer programming, railway rolling stock optimiza-
tion, operations research

1 Facing Capacity Limitations

Planning rolling stock rotations in industrial railway applications is a long-term
process that starts with a coarse plan and gains accuracy the closer the day of
operation comes. This process is affected by all kinds of unusual events such
as natural disasters (floods or snow), technical problems (track or fleet break-
downs), or man-made impediments (strikes). For example, during autumn 2014
and spring 2015, Germany’s largest union of train drivers called for not less than
nine strikes of varying intensities. In Germany it is possible that different unions
for the same class of employees exist such that only a subset of such a class is
actually on strike where the other part is still working. Consequently, a strike
of a single union is a heavy decrease of capacity than a complete lock down of
the railway system. Such events have widespread repercussions on the operation
of a railway system: The timetable, the rolling stock rotations, the maintenance
plans, and the crew schedules for the personnel in trains and maintenance facil-
ities all have to be changed.
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Finding new or revised rolling stock rotations, i.e., cyclic tours of rolling stock
vehicles covering parts of the timetable, after disruptions is a well studied topic
in the literature on railway optimization, see [1] for an overview.

In this paper we consider a different, more integrated approach which, to
the best of our knowledge, has not been described in the literature before. The
idea is to compute revised rolling stock rotations in order to “sparsify” a given
undisturbed timetable. The goal is to construct rolling stock rotations that have
minimum operational costs while using the limited capacities, in case of a strike
the train drivers, as efficient as possible. The balance between these two objec-
tives is controlled by an Analytic Hierarchy Process (AHP) that was developed
in cooperation with our industrial partner DB Fernverkehr AG. The AHP can
be seen as a key performance indicator (KPI) of the trips in the railway network,
which is widely used in economy and operations research. [2] and [3] are exam-
ples for applications of KPIs in airline tail assignment. Using the train drivers
as efficiently as possible directly leads to a decrease of deadhead trips and dead-
head kilometers, since drivers for these kind of movements could not be used for
passenger trips.

The paper is organized as follows. The next section deals with the evalua-
tion process of the trips via the Analytic Hierarchy Process (AHP). The main
contribution of this paper, the concept to sparsify the timetable according to
ensure optimal rotations via mixed integer programming is part of Section 3. In
Section 4 the performance of the algorithm is demonstrated via a case study for
the strike period in May 2015 in Germany. Finally, we summarize the results in
Section 5.

2 Defining Priorities by an Analytic Hierarchy Process

Before tackling the problem how to construct optimized rolling stock rotations,
we deal with a subproblem of our optimization procedure. Recall that we want to
choose the subset of trips to be operated from all trips of the timetable. Hence,
some kind of criterion or evaluation of the trips is necessary to choose the right
ones. The idea is to guide the sparsification of the timetable by a prioritization of
each trip in terms of certain criteria. Afterwards optimal rolling stock rotations
are constructed that cover (,i.e., collect) as many trips as possible taking the
trip priorities into account.

We use the Analytic Hierarchy Process (AHP) by [4] in order to compute trip
priorities as described in [5]. The AHP involves several steps. First, criteria that
describe different aspects of a trip are identified. Then weights for the importance
of one criterion over every other are defined. This information is used to construct
a weighting of the criteria that is used to prioritize the trips. In [5] a set of such
criteria including weights for their pairwise comparison was defined as well as
a sequential approach. The results were reviewed by our industrial partner DB
Fernverkehr AG.

The input criteria for the AHP are defined as follows: The passenger capacity
of the planned railway vehicle for the operation of the trip; the line coverage ratio
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of stops of the trips and stops of the line the trip belongs to; the median of the
number of lines that pass each stop of the trip called network importance; and
the median of the number of transfer opportunities at each stop in an time
interval after the stop.

These four criteria have the big advantage that they are completely indepen-
dent from other data sources. Furthermore, it is possible to deduce them directly
from existing timetable and network data. The final priority of the trip is then
given by pt ∈ Q+ for all trips t ∈ T .

3 Trip Collecting Rolling Stock Rotation Optimization

In this section we consider the Rolling Stock Rotation Problem (RSRP) and ex-
tend a hypergraph-based integer programming formulation to our setting. We
focus on the main modeling ideas and refer the reader to the paper [6] for tech-
nical details including the treatment of maintenance and capacity constraints.

We consider a cyclic planning horizon of one standard week. The set of
timetabled passenger trips is denoted by T . Let V be a set of nodes repre-
senting timetabled departures and arrivals of vehicles operating passenger trips
of T . Trips that could be operated with two or more vehicles have the appropri-
ate number of arrival and departure nodes. Let further A ⊆ V × V be a set of
directed standard arcs, and H ⊆ 2A a set of hyperarcs. Thus, a hyperarc h ∈ H
is a set of standard arcs and includes always an equal number of tail and head
nodes, i.e., arrival and departure nodes. A hyperarc h ∈ H covers t ∈ T if each
standard arc a ∈ h represents an arc between the departure and arrival of t. Each
of the standard arcs a represents a vehicle that is required to operate t. We define
the set of all hyperarcs that cover t ∈ T by H(t) ⊆ H. By defining hyperarcs
appropriately, vehicle composition rules and regularity aspects can be directly
handled by the model. Hyperarcs that contain arrival and departure nodes of
different trips are used to model deadhead trips between the operation of two
(or more if couplings are involved) trips. The RSRP hypergraph is denoted by
G = (V,A,H). We define sets of hyperarcs coming into and going out of v ∈ V
in the RSRP hypergraph G as H(v)in := {h ∈ H | ∃ a ∈ h : a = (u, v)} and
H(v)out := {h ∈ H | ∃ a ∈ h : a = (v, w)}, respectively. Let finally k ∈ N denote
a capacity and δt the respective capacity consumption of a trip t ∈ T , e.g., a
maximum number of trips allowed to be included in the sparsified timetable, a
maximum number of aggregated kilometers, or hours of length of the included
trips. This number results from the estimate how many employees might be not
on strike and thus could drive a train. The Trip Collecting Rolling Stock Rotation
Problem (TCRSRP) is to find a cost minimal set of hyperarcs H0 ⊆ H such that
the capacity k is not exceeded by the trips t ∈ T covered by a hyperarc h ∈ H0

and
⋃

h∈H0
h ⊆ A is a set of rotations, i.e., a packing of cycles (each node is

covered at most once).

Using a binary decision variable for each hyperarc and a slack variable for
each trip, the TCRSRP can be stated as an integer program as follows:
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min
∑

h∈H

chxh +
∑

t∈T

ptst, (1)

∑

t∈T

∑

h∈H(t)

δtxh ≤ k, (2)

∑

h∈H(t)

xh = 1− st ∀ t ∈ H, (3)

∑

h∈H(v)in

xh −
∑

h∈H(v)out

xh = 0 ∀ v ∈ V, (4)

xh ∈ {0, 1} ∀ h ∈ H, (5)

st ∈ Q+ ∀ t ∈ T. (6)

The objective function of model (1) minimizes a sum consisting of the total
cost of the chosen hyperarcs and the priorities of the uncovered trips. For each
trip t ∈ T the covering constraints (3) assign one hyperarc of H(t) or a slack
variable to t. Inequality (2) stipulate the capacity consumption of operated trips.
(4) are flow conservation constraints for each node v ∈ V that induce a set of
cycles of arcs of A. Finally, (5) and (6) state the domains of the decision variables.

The RSRP, and therefore also the TCRSRP, isNP-hard, even if constraints (3)
are trivially fulfilled, i.e., |H(t)| = 1 for all trips t ∈ T , see [7].

4 A Case Study at DBF: Strike Period 2015

The proposed model was implemented in our algorithmic framework ROTOR (see
[6]) that is integrated in the IT environment of DB Fernverkehr AG. The im-
plementation makes use of the commercial mixed integer programming solver
Gurobi 6.5 as an internal LP solver to support a customized column genera-
tion and branch and bound procedure. The computations are stopped a after
optimality is proved, a fixed number of branching nodes is reached or the LP-IP
gap is below 1%.

Our implementation is tested on real-world instances provided by our in-
dustrial partner. There are four instances related to the 2014–2015 strike each
representing a different fleet of ICE trains, i.e., ice1, ice2, ice3, and iceT . Each
fleet has different sizes, vehicle characteristics, and different underlying networks
which cover wide parts of Germany. To compare our solution approach we run
ROTOR without the trip cancelling approach on instances that contain a lim-
ited number of trips of the normal DBF timetable. This list of trips was created
by planners of DBF with a rough guess which drivers are on strike to offer a
maximum customer friendly timetable as possible. Although this list is the result
of the planning at DBF there were some changes made before really operating
the trips during that period. Reasons for that are a larger number of employ-
ees on strike than expected or fine tuning of the rotations by adding additional
passenger trips to reduce deadhead kilometres. Nevertheless, these rotations are
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very close to the operated ones and therefore a most appropriate candidate to
compare to. Table 1 shows the main characteristics of the solution process and
its outcome. The first three columns show the instance name,respectively fleet,
the number of trips, and hyperarcs that were required to model all possible train
movements, couplings, and deadhead trips in the hypergraph model. Columns
four and five give the sum of the trip and deadhead trip distance of all used
vehicles of the solution. Since the costs are confidential column Cost shows only
a factor of the operational cost of the computed solution. The next two columns
Gap and CPU present the LP-IP gap and the run time of the optimization pro-
cess. The last column gives the sum of the pt values for all trips included in the
solution.

Table 1. iceDB : Instance with ≈ 50% manually cancelled trips by planners of DBF.

Name |T | |H|(×106)
∑
δt (km) Dh (km) Cost(×10x) Gap(%) CPU(s)

∑
pt

ice1DB 379 0.9 296094 8777 1.74 0.14 70 1.82
ice2DB 456 4.8 165906 13506 1.00 0.04 622 2.42
ice3DB 335 1.6 186653 6279 1.42 0.11 489 2.41
iceTDB 232 1.9 131899 9370 0.69 0.47 441 1.16

Table 2 shows the results of the optimization runs with integrated timetable
sparsification. We applied a capacity limit for each instance, respectively fleet,
equal to the aggregated trip length of all trips included in the corresponding
instance with manually canceled trips. Hence, optimized rotations of both ap-
proaches have an amount of comparable working hours of the train drivers.
Again, columns four and five give the sum of the operated trips and deadhead
trips kilometres of all used vehicle of the solution. The aggregated deadhead
trip length of the optimized solutions save between ≈ 41% and ≈ 74% of the
aggregated deadhead km. Also the operational costs of the optimized solutions
decrease which is a consequence of the decreased number of deadhead kilome-
tres. Comparing the last columns of the two tables shows that the approach with
the included trip cancelling leads to better values for the sum of the pt values
over the trips contained in the solution. Note that the solutions found in the ice·
case are most likely not in the solution space of the ice·DB instances, whereas
solutions of the ice·DB instances are potential solutions for the ice· instances.
The reason for that is the preselection of trips in the ice·DB case. In [5] it was
shown that a preselection via the ordering computed with the AHP but without
integration into the MIP approach is not sufficient.
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Table 2. Instances with AHP priorities and integrated trip cancelling no vehicle cost.

Name |T | |H|(×106)
∑
δt (km) Dh (km) Cost(×10x) Gap(%) CPU(s)

∑
pt

ice1 700 1.4 299154 2314 1.71 0.21 519 2.15
ice2 973 5.2 155219 6470 0.95 1.21 5381 2.46
ice3 922 3.4 166250 3676 1.03 1.00 494 2.22
iceT 915 3.1 132798 4413 0.64 1.00 2116 1.32

5 Conclusion

We presented the integration of a timetable sparsification method into a mixed
integer programming approach to solve the TCRSRP. The timetable sparsifica-
tion is guided by a fast and from external data independent evaluation of the
trips. The proposed approach leads to promising results for situations with an
heavily decreased offer of passenger railway trips, like strike periods.
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