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Abstract
Introduction – Many biological structures show recurring tiling patterns on
one structural level or the other. Current image acquisition techniques are able to
resolve those tiling patterns to allow quantitative analyses. The resulting image
data, however, may contain an enormous number of elements. This renders
manual image analysis infeasible, in particular when statistical analysis is to
be conducted, requiring a larger number of image data to be analyzed. As
a consequence, the analysis process needs to be automated to a large degree.
In this paper, we describe a multi-step image segmentation pipeline for the
automated segmentation of the calcified cartilage into individual tesserae from
computed tomography images of skeletal elements of stingrays.
Methods – Besides applying state-of-the-art algorithms like anisotropic diffu-
sion smoothing, local thresholding for foreground segmentation, distance map
calculation, and hierarchical watershed, we exploit a graph-based representation
for fast correction of the segmentation. In addition, we propose a new distance
map that is computed only in the plane that locally best approximates the
calcified cartilage. This distance map drastically improves the separation of
individual tesserae. We apply our segmentation pipeline to hyomandibulae from
three individuals of the round stingray (Urobatis halleri), varying both in age
and size.
Results – Each of the hyomandibula datasets contains approximately 3000
tesserae. To evaluate the quality of the automated segmentation, four expert
users manually generated ground truth segmentations of small parts of one
hyomandibula. These ground truth segmentations allowed us to compare the
segmentation quality w.r.t. individual tesserae. Additionally, to investigate the
segmentation quality of whole skeletal elements, landmarks were manually placed
on all tesserae and their positions were then compared to the segmented tesserae.
With the proposed segmentation pipeline, we sped up the processing of a single
skeletal element from days or weeks to a few hours.
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Introduction
Over the past decade, image acquisition techniques like computed tomography
have developed to allow visualization of biological structures at a level of de-
tail previously possible only in industrial or synchrotron scanners. Moreover,
computed tomography has become affordable and efficient enough to permit
scanning of a large number of specimens in a short period of time, thus enabling
quantitative statistical analyses beyond qualitative descriptions. As a result of
these advancements, allowing ever-faster generation of ever-larger amounts of
data, there is a growing need for automation of image analysis tasks. However,
even though most computed tomography-based research on geometric structures
in biology (e.g. individual morphological features) demands image segmentation
– the process of assigning a class label to voxels of the image in order to digitally
isolate them – no general purpose image segmentation method exists for similar
types of data. Although there are common strategies that can be routinely
applied, often a single algorithm is not sufficient to solve a specific image seg-
mentation task. Instead, a sequence of image analysis methods including image
filters, binary segmentation, and object separation is needed to achieve the
desired results and commonly, such a pipeline needs to be adjusted to the specific
kind of data.

In this paper, we present a pipeline for the semi-automatic segmentation and
geometric reconstruction of repeating sub-units in volumetric data, a common
structural motif in biology [1]. The segmentation workflow can be tailored for
different data types. For the development of our pipeline, however, we investigate
the skeletons of sharks and rays, which pose particular challenges for segmentation.
Shark and ray skeletons are made of unmineralized cartilage wrapped in an outer
layer of mineralized polygonal blocks called tesserae (Fig 1) [2–5]. Although this
‘tessellation’ has been known for over a century as a defining feature of all shark
and ray skeletons, the complex 3-dimensional morphologies and arrangements
of tesserae (Fig 1E) and their small size (typically less than 500 µm in all
dimensions) have limited any efforts at quantification of tesseral morphologies
and networks. Tesserae, however, can be beautifully resolved in micro-computed
tomography (e.g. [5,6]), making them a useful system to test tools for automatic
or semi-automatic segmentation of challenging biological data.

The automation of segmentation depends on the ability to reliably isolate
objects of interest (foreground) from the background, as well as from one
another. In many segmentation workflows, this is accomplished by exploiting
gray value differences between foreground and background (e.g. via thresholding
or watershed transform on an edge image) and/or by measuring the distance of
foreground to background voxels (e.g. via distance transforms) to detect object
boundaries. Conventional pipelines employing these techniques, however, are
not effective for this system due to the complex ultrastructure of tesserae.

First, tesserae are not easily separated by gray values, because the gaps
between them (low gray value inter-tesseral joints; see Fig 2 for our terminology
throughout this paper) are smaller (less than 2 µm) than the voxel size of our
scans. As a result, these joints often disappear in µCT scans (Fig 2B) and
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Figure 1. Tessellated cartilage of the stingray Urobatis, at multiple
levels of structural organization. (A) The skeleton is visible in CT scans
due to the mineralization of the cartilage. (B,C) The hyomandibula, a skeletal
element connecting cranium and jaws. (D) Transverse section of the
hyomandibula – the outer layer of mineralized, tessellated cartilage (tesserae, t)
is visible, surrounding an inner core of unmineralized, radiolucent cartilage (uc).
(E) Surface view of the hyomandibula; note the variation in the shape of
tesserae and the size of pores (p). Tesserae can be demarcated by connecting
the pores between adjacent tesserae. Specimens: (A) Urobatis concentricus
(USNM87539), medical CT; (B-E) Urobatis halleri, µCT.

tesserae appear joined, although higher resolution techniques (e.g. synchrotron
µCT or scanning electron microscopy) show that this is not the case. Such
high-resolution techniques, however, sacrifice field of view for resolution and
can only capture a small number of tesserae, not a whole skeletal element
with thousands of tesserae. Hence, for the segmentation task described in this
paper, the scans have resolutions comparable to that shown in Fig 2B, to allow
large-scale segmentations over entire pieces of the skeleton.

To avoid problems that some materials pose for gray value-based segmen-
tations, several works have used combinations of the watershed transform [7]
and a distance transform [8] to segment objects in contact based on their shape:
soil particles [9–13] and glass beads [14,15], but also biological objects, such as
clustered nuclei [16] and neuron somata [17]. Some aspects of tesserae, however,
complicate their segmentation via conventional shape-based methods that use a
3D distance transform to segment objects according to their geometry. Tesserae
are relatively thin, and therefore, the width of the inter-tesseral connections
(i.e. the distance between two pores; Fig 2B) may be larger than the height of
the tesserae. That is, the third dimension (here, the height) might be smaller
than the other two dimensions and is therefore inadequate for object separation
(i.e. the other two dimensions should be used). Furthermore, tesserae are per-
forated by many small cavities (cell lacunae) [5, 18] (Fig 2A) that can further
complicate the designation of foreground and background. We have found that
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Figure 2. µCT images of tesserae acquired with different resolutions.
Images (A) and (B) show a single tessera surrounded by neighboring tesserae.
(A) Synchrotron µCT image with voxel size 0.678 µm. In the center of the
tessera, many cell lacunae (cl) are visible. The close-up shows an inter-tesseral
joint consisting of inter-tesseral contact zones (icz) with direct contact between
adjacent tesserae and fibrous zones (fz) without direct contact. (B) Voxel size:
4.89 µm. This image shows the native resolution of the µCT scans used in this
paper, before being downsampled for analysis to 9.78 µm (see ‘Input Data’
below). Note that the inter-tesseral contact zones and small fibrous zones
cannot be seen since the resolution is not high enough. Hence we use the
following terminology throughout this paper: Inter-tesseral connection (co) for
the entire connection between tesserae, including both contact and fibrous zones
and appearing as areas of high intensity (high gray values) between tesserae,
unmineralized pores (p) for areas of low intensity between tesserae, and tessera
center (c) for the region around the center of a tessera.

4



Figure 3. Overview of the segmentation pipeline. (A) Volume rendering
of input µCT image; (B) Preprocessing result: volume rendering of input image
smoothed with anisotropic diffusion to maintain edges. Differences to (A) are
not visible here, but smoothing the image improves the segmentation
significantly; (C) Surface representation of foreground segmentation, now
tesserae are separated from the background using local thresholding; (D) 2D
distance map measuring distances to pores between tesserae; (E) Segmentation
result after applying hierarchical watershed transform; (F) Postprocessing result:
segmentation after manual error corrections, the arrows in (E) and (F) highlight
a segmentation error due to a hole inside a tessera which is corrected by
merging two segments.

these structural features of tesserae, in conventional segmentation workflows (e.g.
when a hierarchical watershed transform is applied to a 3D distance map), often
result in tesserae being segmented into several pieces (oversegmented) rather
than being separated from each other.

Overview of the segmentation pipeline
We circumvent these problems by combining traditional and modified segmenta-
tion tools in a five-stage pipeline (Fig 3), which takes into account the specific
morphological and ultrastructural aspects of tesserae discussed above. In par-
ticular, we implement a specialized 2D distance transform, which addresses the
segmentation issues caused by the flatness of tesserae, limiting the measurement
of voxel distances to two dimensions, thereby avoiding issues traditional 3D
distance maps may cause. The result is a high-quality segmentation of the
mineralized layer of whole skeletal elements comprising several thousand tesserae.
Compared to a fully manual segmentation, we speed up the processing of a
single skeletal element from days or weeks to a few hours. The segmentation is
performed using fast automatic algorithms, which can be followed by manual
error corrections to enhance the segmentation result. The pipeline is modular and
can be modified for the segmentation of other biological tissues. The individual
steps are listed below.

1. Anisotropic diffusion: Remove intra-tesseral holes (cell lacunae) using
anisotropic diffusion to avoid oversegmentation of tesserae.
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2. Local thresholding: Apply local thresholding based on a region of interest
around every voxel, in order to generate a binary foreground image of
the tessellated layer. The local thresholding stage accounts for variations
in mineral distribution across skeletal elements. Not all tesserae possess
the same range of mineral densities [5]; the gray values of the mineralized
cartilage therefore vary between different regions of the skeletal element,
making a binary segmentation using global thresholding infeasible.

3. 2D distance transform: Compute a 2D distance map on the binary fore-
ground image, measuring the distances to adjacent pore spaces and trans-
forming the binary image into a scalar field. This allows shape-based –
rather than gray value-based – separation of tesserae in the following step.

4. Hierarchical watershed transform: Separate the tesserae by applying a
hierarchical watershed transform to the 2D distance map. Since the
interconnections between tesserae are narrower than the tesserae are wide
(Fig 2B), and voxels near inter-tesseral joints are close to background voxels
(within pores), the 2D distance map enables automatic separation of most
tesserae from one another, even when no inter-tesseral joint space is visible.

5. Manual proofreading: Clean up segmentation results using custom tools
for proofreading and interactive enhancement that allow easy correction of
segmentation issues, such as over- and undersegmentation or inaccurate
splits between adjacent tesserae. To aid with this, we create a graph repre-
sentation of the tesseral network, where each tessera center is represented
by a single node, linked to neighboring tesserae nodes by edges (connecting
elements). This graph enables the detection of segmentation errors, while
also allowing comfortable user interaction.

We describe each stage of the pipeline in detail in the following ‘Materials &
Methods’ section, followed by a discussion of practical steps for implementation
of the method in ‘Practical application and parameters’, and then a quantitative
assessment of individual pipeline stages in ‘Evaluation’.

Materials and methods

Input data
We apply the segmentation pipeline to hyomandibulae (rod-like skeletal ele-
ments linking the jaw and cranium) harvested from specimens of round stingray
Urobatis halleri, donated from another study [19]. Specimens were all sub-
adults/adults and collected by beach seine from collection sites in San Diego and
Seal Beach, California, USA. Hyomandibulae were mounted in clay, sealed in
ethanol-humidified plastic tubes and scanned with a Skyscan 1172 desktop µCT
scanner (Bruker µCT, Kontich, Belgium) in association with another study [5].
Scans for all samples were performed with voxel sizes of 4.89 µm at 59 kV source
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voltage and 167 µA source current, over 360° sample rotation. For our segmenta-
tions, the datasets were resampled to a voxel size of 9.78 µm to reduce the size
of the images and speed up processing.

In all datasets, tesserae appear as flat, thin, 3D objects covering the surface
of the hyomandibulae (Fig 1C-E). The width of tesserae, in general, is larger
than the width of their inter-tesseral connections (see Fig 2B). The workflow is
tailored to tessellated cartilage, but in general will work for 3-dimensional (3D)
gray-scale images containing objects that may be connected to each other with
respect to the gray values but whose connections are smaller than the size of the
objects in at least one dimension. The correct boundary between two objects
has to be the thinnest part of their connection (thin according to the chosen
dimension). As a further prerequisite for our input data, we require that the
size of the objects in any dimension should be at least a few voxels, see Fig 2.

Segmentation pipeline
In order to formally describe all steps of our image processing pipeline, we define
a 3D image I as a scalar function I : R3 ⊃ Ω → R of intensity values over a
compact domain that is discretized via a regular grid Ω. Furthermore, if x is a
grid node and l is a scalar value, then we denote by B(x, l) the set of all grid
nodes in a cube with edge length l around center x.

The goal is to segment individual tesserae in the input image I. Tesserae are
mineralized and the surrounding tissues are not. We exploit voxel intensities to
separate tesserae voxels from background voxels and tesseral shape (their narrow
connections and pores) to separate tesserae from one another.

Anisotropic diffusion

As a preprocessing step, we apply anisotropic diffusion [20] to effectively smooth
the image and remove holes appearing inside tesserae. In contrast to the inter-
tesseral pores that separate the tesserae from one another, the intra-tesseral
holes (cell lacunae) are much smaller in size and have lower gray value differences
compared to the surrounding mineralized material. Hence, anisotropic diffusion
will preserve pores while smoothing away (most of) the intra-tesseral holes.

The diffusion equation is given as

∂I(x, y, z, t)

∂t
= ∇ · (D(‖∇I(x, y, z, t)‖)∇I(x, y, z, t))

where t is the time of the diffusion process andD is a diffusion function controlling
the diffusion process. We use a modified GPU-based version from Bernard et
al. [21] where the diffusion coefficient assigned to each face between adjacent
voxels is equal to 0 or 1 depending on the corresponding gray value difference.
Therefore diffusion stops between neighbored voxels with an intensity difference
larger than a user-defined threshold Ts. We denote the smoothed image by Is.
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Figure 4. Neighborhood for local thresholding. (A) Slice through
smoothed image Is with S highlighted in yellow and B(x, l) in red, the blue
point denotes the voxel x; (B) Close-up of box in (A) with N(x) := B(x, l) ∩ S
highlighted in orange.

Local thresholding

In the next step, we want to separate the mineralized cartilage comprising all
tesserae, subsequently called foreground, from the unmineralized cartilage and
the region outside the skeletal element, which we subsequently call background.

Let F ⊂ Ω be the set of all foreground voxels. Tesserae voxels have larger
intensity values than background voxels. But due to varying intensities across Is
(e.g. due to mineral density variation within tesserae), simple global thresholding
fails. Therefore we use a local thresholding algorithm with

x ∈ F ⇐⇒ x ∈ S ∧ Is(x) >
Tn

|N(x)|
∑

y∈N(x)

Is(y) ,

where N(x) is the neighborhood around x defined as

N(x) := B(x, l) ∩ S ,

and S is an area around the tesserae layer (see Fig 4). Finally, background voxels
completely surrounded by foreground voxels are included into the foreground. So
the value of Is at position x is compared to the average value in a neighborhood;
the ratio is controlled by threshold parameter Tn. The neighborhood comprises
all voxels in a cube B(x, l) around x that are also inside the user-defined area
S. The region S is used to exclude large regions that obviously belong to
the background. It prevents background voxels far away from the mineralized
cartilage to be classified as foreground voxels. S is generated by region growing
starting from a tolerant global thresholding. The edge length l has to be large
enough to include at least some background voxels when centered at a tesserae
voxel. It also needs to be large enough to include some tesserae voxels when
centered at a voxel in S not belonging to the mineralized cartilage.
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Two-dimensional distance map

The distance map should measure the distance of a voxel to the nearest porespace.
Hence, we propose to utilize a two-dimensional (2D) distance map that, for each
foreground voxel, restricts the distance computation to the plane that locally
best approximates the tesseral layer. For a foreground voxel x ∈ F , let Hx be
this best-fitting plane. Then, we define the 2D distance map D2D as

D2D(x) =

{
miny∈(Ω\F )∩Hx

‖x− y‖ , if x ∈ F

0 , if x /∈ F .

In order to compute the best-fitting plane Hx at voxel x ∈ F , we shoot n equally
distributed rays in all directions in three-dimensional space (see Fig 5B). We
compute the first intersection points of these rays with Ω \ F . Let P 3D

x be the
set of all these intersection points for rays starting in x. Then, we define H̃x as
the plane with minimal squared Euclidean distances to all points in P 3D

x , that is

H̃x = arg min
H

dist(H,P 3D
x ) = arg min

H

∑
q∈P 3D

x

dist(H, q)2.

Hx then is the plane parallel to H̃x with x ∈ Hx (see Fig 5C for Hx). In order
to compute D2D(x), we have to compute the intersection of Ω \F and Hx. Since
this is computationally expensive we instead approximate D2D(x) by again using
ray casting. In particular, we cast m equally distributed rays in Hx starting from
x. For each of these rays, we measure the distance to the nearest background
voxel. The shortest of these distances is then used for the 2D distance map at
voxel x. Let P 2D

x be the set of closest intersection points of the m rays with
Ω \ F . Then, the approximate 2D distance map D̃2D is defined as

D̃2D(x) =

{
miny∈P 2D

x
‖x− y‖ , if x ∈ F

0 , if x /∈ F .

For the calculation of the intersections points with the background, the rays are
traversed using the Bresenham algorithm [22].

Hierarchical watershed transform

The watershed transform [23] is named for the analogy of flooding a landscape,
since gray values in an image can be thought of as topography. If a hole is
drilled through the bottom of all basins of the landscape (i.e. the local minima
of the gray-scale image), the rising water will fill the basins from the bottom.
While the water continues to rise, water from different basins will meet at the
edges, with the watersheds acting to keep basins separate. In this way, an
image can be divided into distinct regions. The original watershed transform
(first presented by Beucher and Lantuéjoul [23] with later improvements in
speed, applicability and generality in [24–28])]), however, usually results in
an oversegmentation, separating the image into too many small regions. To
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Figure 5. Plane approximation for 2D distance map computation.
(A) The red point shows the position of the voxel x for which the plane
approximation should be computed. The mineralized cartilage (foreground) is
shown as transparent surface. (B) Rays starting from x and intersection points
P 3D
x . (C) Rotated view showing the best fitting plane Hx (green) for the points

shown in (B). The mineralized cartilage has been cut in order to visualize the
orientation of the plane.

overcome this, a hierarchical watershed transform was proposed [29,30], which
starts from an oversegmentation and merges neighbored regions depending on
different criteria, leading to a hierarchy of segmentations.

In order to separate the tesserae from one another, we apply a hierarchical
watershed transform on the inverted 2D distance map −D̃2D(x). In −D̃2D(x),
the local minima are those foreground voxels with locally maximal distance
to the background. In general, the local minimum will be at the centers or
close to the centers of the tesserae. This is where the basins have their deepest
points and from where the watershed transform starts. The watersheds itself
are not explicitly created, instead neighbored basins are directly connected.
Basins are flooded from each local minimum leading to an oversegmentation
of I. The hierarchical watershed transform overcomes this oversegmentation
problem by gradually merging neighbored regions. Several criteria can be used
for merging. We employ a persistence-based approach by comparing the minima
of the two neighbored regions with the value at the points where the two regions
meet first during flooding. We call those points the saddle points. Merging is
applied in ascending order of minimal value of the saddle points. Two regions are
merged if the difference between the saddle point and either of the two minima
is smaller than a user-defined persistence threshold Tp. Additionally, regions
are merged during the merging process if their number of voxels is lower than
a predefined number of voxels threshold Tv. Smaller persistence values lead to
finer segmentations (see oversegmentation in Fig 6A) while higher persistence
values lead to coarser segmentations (Fig 6B-D). The result of this segmentation
step will be called hierarchical watershed segmentation throughout this paper.

Proofreading

Even though the hierarchical watershed transform with a carefully chosen per-
sistence value produces good results, as demonstrated later in the Evaluation
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Figure 6. Illustration of the hierarchical watershed segmentation
results. Different persistence thresholds were used: 0 (A); 10 (B); 30 (C);
50 (D). While (A) shows an oversegmentation, (B) represents an almost perfect
segmentation. In (C) and (D), the chosen persistence thresholds were too large,
resulting in undersegmented regions that comprise several tesserae.

Figure 7. Graph representation of the segmentation. (A) Transparent
surface and graph; (B) Only the graph. In the close-ups, the layer of vertices on
the backside has been removed.

section, some errors will always remain. We developed manual proofreading
tools that allow easy and quick removal of the occurring errors.

For this, we create a graph containing one vertex for each label (the red balls
at the center of each tessera in Fig 7) and one edge (white linear elements in
Fig 7) connecting two vertices if their corresponding label regions are in contact.
This graph is used for three main purposes: First, it enables easy identification of
segmentation errors because the tesserae network is usually highly regular. Any
irregularity in the network might indicate an error. Second, it allows comfortable
user interaction. The user can select regions by selecting the corresponding graph
vertices. Third, it is a useful representation to depict statistical data – such as a
tessera’s volume, number of neighbors, or surrounding surface curvature – which
can be directly mapped onto the vertices or edges. This functionality is vital for
multi-variate, quantitative analysis of the biological data that will be presented
in a further publication.

The error correction works on an inter-region level of detail, that means, the
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user does not have to deal with individual voxels but can select label regions
via the graph representation and start error correction methods directly on
the regions. There are mainly three kinds of errors: First, one tessera is split
incorrectly into multiple regions (oversegmentation). Here the user selects the
regions belonging to a single tessera and merges them into one. Second, two
or more tesserae are represented by one label (undersegmentation). Here, the
user can select this label region and apply a split operation. Currently two
split operations are available: (1) watershed-based; (2) spectral clustering-based
(see [31] for a good introduction). In both cases, only voxels belonging to the
selected region are taken into account. Third, tesserae share a badly shaped
boundary. Here, a merge operation followed by a split can be used to correct the
problem. Fig 8 shows how to efficiently resolve a complex problem created by a
missing pore space between tesserae by combining a merge step with a split step.
Such methods are necessary because we are working with complex biological
data and not all parts of the input image follow our idealized flat tesserae shape
with gaps between them.

For error detection we use two further possibilities next to the already
mentioned graph irregularities. First, we can simply look for errors by visually
comparing the segmentation with the image I. Second, we use statistical
information based on the segmentation. For each label we compute the volume,
number of neighbors, distance of a vertex to its nearest vertex, width, height
and curvature, where the curvature is computed using the mesh structure of
the graph. Labels with unusual values (i.e. labels with very large or very small
volume) contain potential segmentation errors. Since tesserae can have large
differences regarding their size and shape, we do not apply correction algorithms
automatically but rely on automatically-guided manual corrections supported
by the mentioned split and merge operations.

The segmentation resulting after this postprocessing step will be called final
pipeline segmentation throughout this paper.

Computational costs and parameters
All segmentation steps are performed in the visualization software Amira [32]
with either off-the-shelf modules or modules specifically implemented for this
task.

Remarks on implementation and computational costs

Let |I| be the overall number of voxels in image I, |S| the number of voxels
belonging to the user-defined region S, and |F | the number of foreground voxels.
Then, the computational costs for each step of our pipeline can be given as
follows.

1. Anisotropic diffusion: In each timestep, we have a complexity of O(|I|)
(big O notation for time complexity, see, for example, [33]). We use CUDA
to parallelize the computations in each timestep.
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Figure 8. Example for manual error correction using a combination
of merge and split operations. Additionally, the graph representation is
shown with vertices inside a transparent surface. (A) There are three tesserae
without pores between them, this leads to a bad watershed segmentation result;
(B) Merge the three labels into one large label; (C) Use spectral-clustering-based
split to resolve the error. Note how the corrected graph is more regular
regarding edge lengths and vertex positions compared to (A) and (B).

2. Average computation for local thresholding: We only need to consider voxels
belonging to the user-defined area S. For those voxels, we compute the
neighborhood average values for the first xy-slice. Then we iterate over
increasing z-values in parallel on the CPU, i.e. with one thread for one
pair of x and y coordinates. Here, we reuse the result of the computation
at voxel (x, y, z − 1), if available, for the computation at (x, y, z). In this
case, the computational cost for a voxel in S reduces from O(l3) to O(l2),
where l is the cube length of B(x, l).

3. 2D distance transform: We iterate over all foreground voxels, which is done
in parallel on the CPU. For each foreground voxel, we shoot m 3D and n
2D rays in the foreground. Since the rays terminate early, in practice the
costs for each voxel are O(m) and O(n), respectively. Hence, the overall
complexity is O((m + n) · |F |).

4. Hierarchical watershed transform: In the initialization, which is only per-
formed once, we need to sort all foreground voxels. This step has a
complexity of O(|F | · log |F |). It is the most costly step in computing the
Watershed transform. Afterwards, for watershed segmentations on the
same data but with different persistence values, we only have to iterate
over the label regions created for a persistence value of 0.

5. Graph computation for manual proofreading: We iterate over all foreground
voxels, which again is done in parallel on the CPU. This has a complexity
of O(|F |).

Parameters

In this section, we describe how suitable parameters can be found for the
respective steps of our pipeline.

13



1. Anisotropic diffusion

• Diffusion stop threshold Ts: Calculate the range of gray value differ-
ences between tessera voxels and adjacent background voxels, and
between tesserae and intra-tesseral holes. Choose a value smaller than
the former values and larger than the latter values.

• Time t: Choose a small timestep and check whether intra-tesseral
holes have been removed. Otherwise increase the value and repeat
the procedure.

2. Local thresholding

• Box length l: Set l to approximately two to three times the average
tessera thickness. In this way the box B(x, l) around a voxel x in
the center of a tessera will contain a sufficient number of background
voxels.

• Strip S around tesserae: Generate a strip S containing foreground
voxels and near background voxels such that boxes B(x, l) around
x ∈ S contain foreground and background voxels. That means x ∈ S
cannot be further away than l/2 from the nearest tessera voxels.
To compute S, perform a rough foreground segmentation by simple
thresholding. The resulting label region should contain all foreground
voxels. Now perform region growing to reach the desired size of S.

• Threshold Tn: Test multiple values near 1 and visually evaluate the
foreground segmentation quality. For the results presented in this
paper, we used T=1.

3. 2D distance transform

• Number n of 3D rays to compute the plane Hx: Set n large enough
to deal with outliers; for the results presented in this paper, we used
n=1214, but a smaller number should already suffice. Enlarge n if
the resulting plane is inaccurate.

• Number m of 2D rays shot in the plane Hx: Set m large enough to hit
pore space; for the results presented in this paper, we used m=361,
but a smaller number should suffice.

4. Hierarchical watershed transform

• Number of voxels threshold value Tv: Estimate the number of voxels
in the smallest tesserae and take a value for Tv smaller than that.

• Persistence value Tp: Plot the number of labels versus the persistence
value (Fig 9). As can be seen in such plots, the number of labels drops
off rapidly initially at low persistence values, before leveling off at a
certain inflection point (shown as red dot). The persistence thresholds
after this first sharp turn are good candidates. The final persistence
value can be found by visually inspecting the segmentation results
and comparing it with an isosurface or volume rendering of I.
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Figure 9. Number of labels created by hierarchical watershed
segmentations plotted against persistence values. Computations are
done for three hyomandibula datasets with increasing hyomandibula size for
persistence values from 0 to 100. The green lines indicate the persistence value
we chose for the hierarchical watershed segmentations (A: 10, B: 18, C: 20).
Note how the values increase with hyomandibula size.

Table 1. Hyomandibula dataset information.
Dataset Disc width in cm Size in voxels Image resolution in µm

I 11.0 558 x 495 x 1385 9.78
II 14.4 785 x 535 x 1873 9.78
III 19.0 875 x 893 x 2477 9.78

Disc width is a common measure for stingray size and age.

Evaluation
For the evaluation, we applied our segmentation pipeline to µCT scans of the
right hyomandibulae of three ages of stingray that were already described in the
‘Input Data’ section of ‘Materials and Methods’. These hyomandibula datasets
are called I, II and III throughout this section, increasing in physical size from
I to III. They each consist of thousands of tesserae and have a voxel size of
9.78 µm after resampling. For further information see Table 1.

Calculations were carried out on a desktop PC with two Intel Xeon E5-2650
processors (each 8 cores with 2.6 GHz), 128 GB RAM, and a GeForce GTX 780
Ti. Dataset I required approximately the following computation times (pure
running times of the algorithms without user interaction and parameter finding):
Anisotropic diffusion: 17 s; Average computation for local thresholding: 26 s; 2D
distance transform: 12 min; Initialization of hierarchical watershed transform: 20 s;
Graph computation for manual proofreading: 3 s. Including parameter finding,
the creation of the hierarchical watershed segmentation required approximately
one hour of work. The time for the manual corrections depends on the required
segmentation quality. We were able to create high-quality segmentations in
approximately two hours starting from a well-chosen hierarchical watershed
segmentation.
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For the datasets I, II, and III, we computed the hierarchical watershed
segmentations for persistence values from 0 up to 80 in single steps using a
minimum number of voxels threshold Tv of 50 for datasets I and II, and a value
of 100 for dataset III. We used a persistence value of 10 for I, of 18 for II and of
20 for III (Fig 9) to create the initial hierarchical watershed segmentations that
we improved in our last pipeline step to create the final pipeline segmentations.
Additionally, we computed hierarchical watershed segmentations on the standard
three-dimensional (3D) distance map D3D, defined as

D3D(x) =

{
miny∈Ω\F ‖x− y‖ , if x ∈ F

0 , if x /∈ F ,

to allow a quantitative comparison with the segmentation results obtained using
the 2D distance map.

Qualitative evaluation
Visual comparison of the segmentation result with an isosurface, a volume
rendering or slices of the µCT image allowed qualitative evaluation. This
was mainly used during the postprocessing part of the pipeline for fast error
correction.

Quantitative evaluation
Quantitative evaluation of the segmentation pipeline was performed in two ways:
(1) by comparing hierarchical watershed segmentations for varying persistence
values and the final manually improved pipeline segmentation with manually
placed landmarks; (2) by comparing the final pipeline segmentation with regions
manually segmented by several users.

Landmark-based evaluation

For the first part of the evaluation, landmarks were placed manually near the
centers of all tesserae on isosurface renderings of the three datasets I, II, and III;
for several thousand tesserae per hyomandibula, this required approximately five
hours per dataset. Regions with little or no mineralization (e.g. the area where
a tendon inserts into a large anterior fossa in the hyomandibula) were excluded
from the analysis, because even for domain experts (i.e. researchers very familiar
with the tissue), it is not possible to identify individual tesserae, see Fig 10. The
number of created tesserae and the number of manually placed landmarks are
stated in Table 2.

In order to evaluate a segmentation, we compute precision and recall values
with the help of the landmarks. A label region that is hit by at least one manually
placed landmark is a true positive, a region with n hits leads to n − 1 false
negatives (an n-cluster that requires a split operation) and a region with zero
hits is a false positive (oversegmentation that requires a merge operation). Let
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Figure 10. Manual landmarks for evaluation. (A) Isosurface of dataset I
with one manually placed landmark per tessera but without landmarks on low
mineralized areas. (B) Rotated close-up of the region where the tendon is
connected to the hyomandibula. Here, no landmarks were created because it is
very difficult or impossible to distinguish the tesserae in this region. (C) Same
close-up as in (B) but without the low mineralized regions. The backside of the
hyomandibula was removed for this image.

Table 2. Number of tesserae in 2D distance map-based final pipeline
segmentations.
Dataset Final pipeline segmentation Final pipeline segmentation Number of manual landmarks

excluding low mineralized areas
I 3081 2769 2746
II 2759 2385 2364
III 3488 3048 3032
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tp, fn, and fp be the number of true positives, false negatives and false positives,
respectively, then precision and recall can be computed as follows:

precision =
tp

tp + fp
and recall =

tp
tp + fn

.

Since manual creation of thousands of landmarks is error-prone, we double-
checked the correctness of all landmarks belonging to false positive and false
negative regions.

Fig 11 shows the precision-recall plots for the 2D and 3D distance map.
The hierarchical watershed segmentation used to generate the final pipeline
segmentation is shown by a magenta star, whereas the final pipeline segmentation
is indicated by a red star. Note that for the chosen hierarchical watershed
segmentation, a slightly better recall value is preferable compared to the precision
value because errors leading to a worse precision value can usually be corrected
by merge operations, which are easier to perform than split operations. Fig 11
shows that the 3D distance map results in very bad segmentations for datasets I
and II (for chosen persistence values no precision/recall pair with both values
higher than 0.8 in I and only two such pairs in II where the precision values are
smaller than 0.85). In III the 3D distance map leads to better values compared
to I and II (14 precision/recall pairs with both values higher than 0.8) but the
results are still inferior to the 2D approach. On the other hand, the 2D distance
map leads to multiple precision/recall pairs with values higher than 0.95 for all
three regions.

Furthermore, we want to highlight the importance of anisotropic diffusion
as a preprocessing step. Fig 12 compares the precision-recall values for the
2D distance map with and without anisotropic diffusion. ‘Without anisotropic
diffusion’ means that we skipped the preprocessing step and started the pipeline
with the local thresholding working on image I instead of Is. While there is
no improvement in dataset I, the results for datasets II and III considerably
improve by applying anisotropic diffusion.

Region-based comparison with manual segmentations

Landmark-based evaluation does not detect errors concerning the shape of
tesserae. Therefore, in the second part of the evaluation, we compared one
final pipeline segmentation with manual segmentations independently created by
four persons whereby two of them were domain experts. Correct ground truth
segmentations are not available for our problem. We used the RAND index [34]
and the variation of information (VI) [35] measure for comparison. Because
manual segmentation of a whole dataset would have been too time-consuming, we
chose three regions which were representative of different types of tesserae seen in
our datasets (see Fig 13). Each of those regions could be manually segmented in
approximately one to three hours, which would lead to an extrapolated manual
segmentation time between 33 and 100 hours for one complete hyomandibula
(assuming the region contains 90 tesserae and the hyomandibula consists of
3000 tesserae). The first region is flat with regularly-shaped tesserae (Fig 13A),

18



Figure 11. Precision-recall plots for datasets I, II and III. Persistence
values range from 0 to 80 in single steps. Each fifth persistence value is written
at the top right position next to the respective green dot in case of the 2D
distance map and at the bottom left position of a yellow triangle in case of the
3D distance map. The final pipeline segmentation is highlighted with a red star
(I: precision 0.9888, recall 0.9964; II: 0.9899, 0.9987; III: 0.9898, 0.995), the
watershed segmentation used to generate this final pipeline segmentation is
highlighted with a magenta star (I: precision 0.9786, recall 0.9822; II: 0.9643,
0.9949; III: 0.9583, 0.9864).
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Figure 12. Precision-recall plots for datasets I, II, and III with and
without preprocessing (anisotropic diffusion). Each fifth persistence
value is written at the top right position next to the respective green dot in case
of a 2D distance map with preprocessing and at the bottom left position of a
yellow triangle in case of a 2D distance map without preprocessing. The final
pipeline segmentation is highlighted with a red star, the watershed
segmentation used to generate this final pipeline segmentation is highlighted
with a magenta star.
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Figure 13. Selected regions for manual segmentations. (1) Flat
regularly-shaped tesserae with bounding box size of 120 x 84 x 178 taken from
dataset I containing 99 tesserae; (2) Edge region with bounding box size 94 x
195 x 254 taken from dataset I containing 83 tesserae; (3) Flat region with thin,
irregularly-shaped tesserae, perforated by large pores and intra-tesseral holes
with bounding box size 215 x 126 x 228 taken from dataset II containing 85
tesserae.

the second region contains an edge region (region with high curvature) of the
hyomandibula (Fig 13B), and the third region is also flat but thinner and consists
of less mineralized, irregularly-shaped tesserae (Fig 13C).

In this evaluation step we were not interested in differences between fore-
ground and background. Thus only voxels belonging to the foreground in all
segmentations were taken into account. This is a safe assumption because the
manual segmentations used a threshold to separate foreground from background
and if necessary it is easy to enlarge a given segmentation to include more
background voxels near the label boundaries by using region growing.

The RAND and VI values are shown in Tables 3, 4 and 5. We compared the
final manually corrected pipeline segmentation with all manual segmentations
and also all manual segmentations with each other. Region 1 fulfills our dataset
conditions, that means it is a flat area where the thinnest part of the inter-tesseral
connection determines the correct border. Here, the differences between the
final pipeline segmentation and the manual segmentations are insignificantly
larger or in some cases even smaller (i.e. final pipeline segmentation with manual
segmentation 2 compared to manual segmentation 1 with manual segmentation
3) compared to the differences among the manual segmentations. Because region
2 is an edge region (not flat, problematic for the 2D distance map) and region 3
consists of irregularly-shaped tesserae (thinnest parts of inter-tesseral connections
are not always determining the correct border), the differences between the final
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Table 3. VI / RAND values for region 1 consisting of flat
regularly-shaped tesserae.

Final Manual 1 Manual 2 Manual 3
Final - - - -

Manual 1 0.230 / 99.8764 - - -
Manual 2 0.209 / 99.8826 0.205 / 99.8826 - -
Manual 3 0.207 / 99.8844 0.223 / 99.8628 0.176 / 99.9037 -
Manual 4 0.206 / 99.8696 0.228 / 99.8484 0.174 / 99.8809 0.183 / 99.8758

Table 4. VI / RAND values for region 2 (edge region).
Final Manual 1 Manual 2 Manual 3

Final - - - -
Manual 1 0.252 / 99.7975 - - -
Manual 2 0.202 / 99.8405 0.197 / 99.8526 - -
Manual 3 0.248 / 99.7978 0.235 / 99.8122 0.180 / 99.8645 -
Manual 4 0.221 / 99.8158 0.219 / 99.8235 0.166 / 99.8679 0.203 / 99.8460

pipeline segmentation and the manual segmentations are larger compared to
region 1, but the values still indicate a good segmentation result. As an example,
in Fig 14 we show the two labels that contribute the largest error (the two
labels that add the largest value to the sum over all label pairs) into the VI
computation in region 1 and region 3 for the comparison between the final
pipeline segmentation and manual segmentation 1. For region 1, the algorithmic
segmentation is even better, the VI value rises because of errors in the manual
segmentation (see Fig 14A,B). Fig 14C,D highlights the irregularity of region 3.

Discussion
We have presented a pipeline for the semi-automatic segmentation of complex
3D structures tiled by repeating elements, demonstrating the pipeline’s efficiency
and utility in the segmentation of the endoskeletal tesserae of sharks and rays
and allowing the first quantification of the number of tesserae covering entire
skeletal elements. The pipeline allows the rapid and tailorable computation of a

Table 5. VI / RAND values for region 3 consisting of flat tesserae
with thin, irregularly-shaped tesserae, perforated by large pores and
intra-tesseral holes.

Final Manual 1 Manual 2 Manual 3
Final - - - -

Manual 1 0.458 / 99.7084 - - -
Manual 2 0.422 / 99.7463 0.321 / 99.7995 - -
Manual 3 0.401 / 99.7610 0.295 / 99.8152 0.266 / 99.8509 -
Manual 4 0.398 / 99.7542 0.288 / 99.8294 0.272 / 99.8357 0.192 / 99.8888
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Figure 14. Close-up showing the worst VI label pair for region 1
(A/B) and region 3 (C/D). (A) Final pipeline segmentation of region 1; (B)
Manual segmentation 1 of region 1; (C) Final pipeline segmentation of region 3;
(D) Manual segmentation 1 of region 3.

variety of variables over multiple large datasets (e.g. entire skeletal elements),
producing results nearly as accurate as manual approaches, but with significant
improvements in speed. Our pipeline builds off of the central idea of using
a watershed segmentation on a distance transform, and is highly modular,
consisting of interchangeable steps that were fine-tuned to deal with tessera-
specific problems. Because tessellated structures are common in biology, the
following paragraphs will outline possibilities to adapt pipeline steps for other
tessellated data, while also highlighting reasons behind specific tessera-related
choices used in the current analysis.

Scan data from both plant and animal tissues regularly exhibit porosity due
to embedded cells and vasculature. Anisotropic diffusion as a preprocessing
step is useful for porous data where problematic gray value differences inside
of objects can be removed while keeping sharp outer edges. More sophisticated
filters like non-local means [36] are able to smooth the data while maintaining
important fine structures. The removal of problematic gray value differences is
particularly important, since distance transforms are vulnerable to false gaps.
This can exemplarily be seen for tesserae in Fig 15. Note that even though
the effect of anisotropic diffusion can hardly be seen in the volume rendering
of the gray-scale image (Fig 15A,E), it has an immense effect on the binary
segmentation highlighted by the red arrows in Fig 15B.

A high-quality foreground segmentation is crucial for a successful distance
map computation. For many datasets, global thresholding is sufficient. However,
for datasets with varying intensity values for similar materials, a local thresholding
approach is required. We employed our own special-purpose algorithm; for an
overview about common local thresholding methods see [37].

The choice of distance map depends strongly on the shape and morphology
of the objects to be separated. The most common one is the standard 3D version,
for which we have shown in Fig 11 that the segmentation results are inferior
to our proposed 2D distance map in the case of tesserae segmentation. This
is due to the following reasons. First of all, the 3D distance map bears some
fundamental problems if the size of the interconnections is larger than one of the
dimensions of the objects themselves. In this case, the 3D distance map measures
the extension of the object regarding this dimension, but not the distance to the

23



Figure 15. Comparison of results without (top row) and with
(bottom row) anisotropic diffusion. (A,E) Volume rendering of original
scalar field (A) and scalar field after anisotropic diffusion (E). (B,F) Surfaces of
binary segmentations using the same parameters for local thresholding. The red
arrow indicates intra-tesseral holes that appear in the binary segmentation if no
anisotropic diffusion is applied. (C,G) Maximum intensity projections of 2D
distance maps generated from binary segmentations. (D,H) Surfaces of
segmentation results using comparable persistence parameters. Wrong
segmentations are highlighted with outlines. In rare cases, the application of
anisotropic diffusion might break tesserae (H), but these broken tesserae are
usually easy to fix with a simple manual merge operation.
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Figure 16. Illustration of segmentation problems: 3D distance map
(top row) compared to 2D distance map (bottom row).
(A-C) Segmentation based on 3D distance map for different cross sections. Only
for (A) it is possible to generate the desirable segmentation. (B) The 3D
distance map has only one maximum, hence no separation is possible. (C) The
3D distance map has several maxima but the separation appears at the wrong
place, that is, where the object is thinnest. (D-E) Segmentation based on 2D
distance map. Segmentation is successful for all three cross sections.

nearest pore. Two problems are illustrated in Fig 16B,C. Fig 16B shows a case
in which no separation is possible because the height of the tesserae is smaller
than the width of the interconnections and the tesserae cannot be separated by
considering the height alone. In Fig 16C, the tesserae are separated at the wrong
position, because the smallest height is not at the interconnection of the tesserae.
In contrast, the 2D distance map results in a correct separation in all cases.

Both cases illustrated in Fig 16B,C occur in actual datasets. Fig 17 examines
these effects, showing segmentation results based on the 3D distance map in
comparison to the 2D distance map. Note how the segmentation completely fails
for the 3D case in Fig 17C, with errors that cannot be corrected by simple region
merging. This is mainly due to the fact that the 3D distance map measures the
height of the tesserae instead of the distance to the pores.

In the edge regions of the hyomandibulae that have high values for the
primary principal curvature (e.g. region 2 in Fig 13), the tesserae geometries
do not meet the shape assumptions underlying the use of the 2D distance map.
Therefore, in those regions the number of oversegmentations compared to the
number of correct segmented labels is higher than in the remaining regions of
the hyomandibula. However, since oversegmentations can be easily corrected by
our postprocessing tool, this is not problematic.

The plate-like tessera shape suggested the usage of a 2D approach but
biological data consisting of different geometries might require another type of
distance map. For example, Baum and Titschack [38] used an average distance
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Figure 17. Comparison of 3D (A) and 2D (B) distance maps and
resulting hierarchical watershed segmentations (C, D). (A) and
(B) show maximum intensity projections of the 3D and 2D distance maps,
respectively. Two zoom-in levels are provided to better illustrate the differences.
(A) The 3D distance map tends to create large plateaus (i.e. areas with equal
values), in particular in the regions of inter-tesseral connections, where
projections of mineralized tissue are narrow in two dimensions. (C) These
plateaus can span inter-tesseral joints, leading to inaccurate separation of
individual tesserae. (B) By comparison with the 3D distance map, the 2D
distance map has much more gradual contours and does not show any plateaus.
Instead, the distance values decrease toward the inter-tesseral connections,
allowing tesserae to be accurately separated well from one another, even when
joint spaces are not evident (D).
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for the segmentation of coral cavities in a µCT scan, since the cavities to be
segmented were elongated rather than roundish or flat, and showed that the
results were also superior to those from the 3D distance map.

When applying the watershed segmentation, there are different possibili-
ties how to handle the often occurring oversegmentations. We used a hierarchical
watershed scheme based on dynamics, in particular the size and depth of basins.
This choice must be adjusted to the segmentation problem at hand. For example,
Zanoguera et al. [39] used depth, area and volume dynamics for interactive
segmentation.

The last step in our pipeline is the postprocessing based on the graph
structure defined by the tesserae network. It is an optional step that can
be omitted if the automatic segmentation results are sufficiently accurate. If
necessary, a postprocessing tool should be tailored to correct the most common
and most important errors in a fast and comfortable way.

Conclusion
We have developed a semi-automatic segmentation pipeline to segment complex,
biological tessellations in µCT data. Our pipeline allows successful segmentation
of a single dataset in only a few hours, instead of days typically required for
manual segmentation. The application of our pipeline is straightforward, and we
provide tools to guide the easy determination of the necessary parameters. Our
pipeline allows for semi-automatic segmentation of tiled flat objects by offering
a new distance map that prevents many of the errors occurring in the commonly
used 3D distance map and thereby greatly improves segmentation results. The
remaining errors can be quickly and easily resolved with the proposed interactive
tool, which makes use of a graph-based representation of the segmentation.
Overall, our pipeline enables high-quality segmentations of complex volumetric
(or image) data, of a type relevant to biological study, as demonstrated for
the tesserae of whole skeletal elements. In the future, we will use our pipeline
to characterize the tessellation of skeletal elements across multiple individuals
and ages, creating a rich, quantitative perspective on how tiling varies inter-
individually and across ontogeny (e.g. with respect to the morphometrics of
tiles), that can then be related to more global properties of skeletal elements, like
surface curvature. These and similar analyses of biological structure permitted
by our pipeline open opportunities for flexible, quantitative exploration of large
tomographic datasets, which are increasingly within reach through laboratory
scanning facilities and open access data hosting.
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