
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

JAN SKRZYPCZAK

Weakening Paxos Consensus Sequences for
Commutative Commands

This work was submitted and accepted as master’s thesis at Humboldt University of Berlin in partial fulfilment of the requirements for the degree of Master of Science.

ZIB Report 17-64 (November 2017)

Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +49 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

I

Abstract

Consensus (agreement on a value) is regarded as a fundamental primitive in
the design of fault tolerant distributed systems. A well-known solution to the
consensus problem is Paxos. Extensions of the Paxos algorithm make it possible
to reach agreement on a sequence of commands which can then be applied on a
replicated state. However, concurrently proposed commands can create conflicts
that must be resolved by ordering them.

This thesis delivers an in-depth description of a Paxos-based algorithm to
establish such command sequences, called Paxos Round Based Register (PRBR). In
contrast to conventional approaches like Multi-Paxos, PRBR can manage multiple
command sequences independently. Furthermore, each sequence is established
in-place, which eliminates the need for managing multiple Paxos instances.

PRBR is extended as part of this thesis to exploit the commutativity of
concurrently proposed commands. As a result, conflict potential can be greatly
reduced which increases the number of commands that can be handled by PRBR.
This is shown for a number of workloads in an experimental evaluation.

II

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 1

I Background and Related Work 3

2 Distributed System Abstraction 3
2.1 Processes . 3
2.2 Interprocess Communication . 4
2.3 Messages . 5
2.4 Failures . 5

2.4.1 Process Failures . 5
2.4.2 Link Failures . 6

3 The Consensus Problem 7
3.1 Problem Statement . 8
3.2 Impossibility of Asynchronous Consensus 8

4 Paxos 9
4.1 Process Roles . 9
4.2 Quorums . 10
4.3 The Algorithm . 11
4.4 Correctness . 13
4.5 Liveness . 13

5 Consensus Sequences 14
5.1 Replicated State Machines . 15
5.2 Requirements for Consensus Sequences 16
5.3 Strong Consistency . 17
5.4 Paxos in Replicated State Machines 18
5.5 Commutative Commands . 19

6 Scalaris 20
6.1 Architectural Overview . 20

II Paxos Consensus Sequences 23

7 Paxos Round Based Register 23
7.1 Preliminaries . 23

7.1.1 Register of Consensus Sequences 23
7.1.2 Consistent Quorums . 25

Contents III

7.1.3 Commands . 26
7.1.4 Rounds . 27

7.2 The Algorithm . 27
7.2.1 Phase 1: round_request 28
7.2.2 Phase 2: read . 31
7.2.3 Phase 3: write . 33
7.2.4 WriteThrough . 37

7.3 Execution Examples . 40
7.4 Fast Writes . 43
7.5 Double Application of Write Commands 44
7.6 Implementation Considerations 45
7.7 Protocol Complexity . 45

8 Weakening Consensus Sequences 46
8.1 Interfering and Commutative Commands 46
8.2 Commutative Reads . 47

8.2.1 Identifying Avoidable Conflicts 48
8.2.2 Modifying PRBR . 48
8.2.3 Impact . 50

8.3 Reads Commuting with Writes 50
8.3.1 Identifying Avoidable Conflicts 50
8.3.2 Modifying PRBR . 55
8.3.3 Impact and Further Optimizations 55

8.4 Commutative Writes . 57
8.4.1 Identifying Avoidable Conflicts 58
8.4.2 Command Sets . 59
8.4.3 Sequence of Command Sets 60
8.4.4 Modifying PRBR . 65
8.4.5 Impact and Further Optimizations 67

8.5 Summary . 69

III Evaluation 71

9 Comparison with other Approaches 71
9.1 Generalized Paxos . 71
9.2 Egalitarian Paxos . 72

10 Experimental Evaluation 73
10.1 Hardware Setup . 73
10.2 Methodology . 74
10.3 Measurements . 74

10.3.1 Commutative Reads . 74
10.3.2 Commutative Writes . 76
10.3.3 Mix of Commutative and non-Commutative Writes 78

10.4 Mix of Read and Write Commands 79
10.5 Summary of the Results . 81

Contents IV

IV Conclusion and Future Work 82

11 Conclusion 82

12 Future Work 82

V

List of Figures

2.1 Hierarchy of process failure models (based on [19, p. 30]). 6

5.1 Replicated state machine architecture [35]. 15
5.2 An execution exhibiting read-write concurrency [41]. 17

7.1 Proposing a command for key k3 in PRBR. 24
7.2 State of k-acceptors with sequential append commands. 35
7.3 Synchronizing k-acceptor state with WriteThrough (WT). 39

8.1 Responses to p form a k-quorum Q of size n sorted by write rounds. 53

10.1 Commutative reads with an increasing number of concurrent clients. 75
10.2 Commutative writes with different c-set size limits and an increasing

number of concurrent clients. 77
10.3 Mix of commutative and non-commutative writes using four con-

current clients. 79
10.4 Mix of reads and writes using four concurrent clients. 80

VI

List of Execution Examples

7.1 Example workflow in PRBR. 40
7.2 k-acceptor states with sequential write and read. 41
7.3 k-acceptor states with inconsistent read rounds. 42
7.4 k-acceptor states with inconsistent write rounds. 43
7.5 A proposer chaining write commands using fast writes. 43
7.6 Command cmdA is applied twice due to WriteThrough. 44

8.1 Concurrent, conflicting read commands. 48
8.2 After PRBR’s modification, both pA and pB receive consistent

rounds and can deliver the read. 49
8.3 Concurrent read and write commands. 51
8.4 Start of two concurrent, conflicting write commands 58
8.5 First phase of write commands making use of command classes. . 60
8.6 Example of proposers receiving inconsistent c-sets. 61
8.7 Example of proposers receiving inconsistent read rounds. 63
8.8 Example of proposer starting a new c-set. 64
8.9 Example of WriteThrough in combination with c-sets. 64

VII

List of Code Listings

4.1 Pseudocode of the basic Paxos algorithm. 12

7.1 Pseudocode of PRBR’s round_request phase. 29
7.2 Pseudocode of PRBR’s read phase. 32
7.3 Pseudocode of PRBR’s write phase. 34

8.1 Pseudocode of PRBR’s modified round_request phase. 49
8.2 Modifications in PRBR’s round_request phase to support reads

commuting with concurrent writes. 56
8.3 Modifications in PRBR’s write phase to support reads commuting

with concurrent writes. 56
8.4 Modifications in PRBR’s round_request phase to support commu-

tative write commands. 66
8.5 Modifications in PRBR’s write phase to support commutative write

commands. 67

1

1 Introduction

1.1 Motivation

The consensus problem is one of the most fundamental challenges in distributed
systems. In its simplest form, it requires a number of processes to agree on a single
data value in spite of possible process failures and unreliable communication links.
A number of approaches that solve the consensus problem exist – one of them
being the Paxos algorithm.

The basic Paxos algorithm can be extended to achieve consensus on a sequence
of values. Such a consensus sequence can be used as a component in the design of
a replicated data storage. Clients submit commands that operate on the replicated
data, which are then ordered by the algorithm and applied on each replica in the
same order.

Traditional approaches, for example Multi-Paxos, establish a total order of
the submitted commands over all replicas. Conflicts can occur if commands are
submitted concurrently. These have to be resolved first before the respective
commands can be applied. Naturally, any conflict resolution mechanism introduces
additional computational and communication overhead. Thus, a large number of
conflicts negatively affects the system’s performance.

A strict ordering of commands is often not necessary. Often, a large set of
independent data objects is managed by the storage system. Two commands that
modify or access different objects do not interfere with the result of each other. In
other words, they commute. Other examples of commutative commands include
commands that only read the state of data objects or commands that modify
independent parts of a more complexly structured object.

The result of commutative commands is independent of their execution order.
Therefore, replicas might apply them in arbitrary order without introducing
inconsistencies to the systems. The commutative properties of commands can be
exploited by the consensus algorithm to reduce the overhead required ordering
them, which in turn should have a positive impact on the system’s performance.

1.2 Contribution

The contribution of this thesis is twofold. First, providing the first textual
description of PRBR (Paxos Round Based Register) and second, extending PRBR
for making use of commutative commands.

Documentation of PRBR PRBR is a Paxos-based protocol with the capabilities
of establishing a register of consensus sequences. Development of PRBR
started end of 2012 in the context of Scalaris, a distributed key-value store,
which is an ongoing research project at Zuse Institue Berlin. No textual
documentation of PRBR’s current state exists. Chapter 7 provides a detailed
description of PRBR, along with a number of informal proof sketches to
give an intuition about PRBR’s correctness. In addition, a number of minor
modifications were made to PRBR in the preparation of this thesis.

Chapter 1. Introduction 2

Exploiting Commutative Commands A key property of PRBR is it to establish
independent consensus sequences for separate data objects. By doing so,
it can establish consensus of commands targeting different objects without
ordering them. However, a strict sequential order of commands targeting the
same object is still required. The main contribution of this thesis constitutes
the extension of PRBR to weaken the ordering constraints within a consensus
sequence by exploiting the commutative relationships between submitted
commands. These modifications are discussed in Chapter 8. Afterwards,
the resulting protocol is evaluated by comparing its performance to PRBR’s
unmodified state under different workloads in Chapter 10.

3

Part I

Background and Related Work

2 Distributed System Abstraction
A typical distributed system consists of multiple physical machines that interact
with each other over a communication network to achieve some common goal.
Depending on the scale of such system, the number of machines involved can be
large. Each machine has the potential to fail at any given time since no hardware
or software of a non-trivial complexity is free of fault. In addition, failures of
the communication network must be considered as well. Information transferred
via the network can get lost, duplicated, corrupted or simply delayed for a long
period of time before reaching its destination. Therefore, it is important to design
a distributed system in a way that is resilient to failures of different kinds.

A distributed algorithm is an algorithm designed to run on independent,
interconnected components, which are typically (but not necessarily) spread across
multiple physical machines. The behavior of such an algorithm depends strongly on
the environment it is used in. The manner components act, how they communicate
with each other, and what types of failures are possible are only some of the factors
that must be considered. To make a distributed algorithm transferable, using
system abstractions is important to provide certain guarantees about the behavior
of a distributed system.

2.1 Processes

In the context of this thesis, a process is considered to be an abstract unit
that is able to perform computations. A distributed system consists of a number
of different processes, which can communicate with each other by exchanging
messages via communication links (further specified in Section 2.2). Every process
has a process id (PID), which is unique across all processes in the system. A PID
is sufficient to identify its corresponding process in the system and can be used to
send messages to it.

A physical machine can contain an arbitrary number of processes. It is
important to note that the notion of a process as described here is independent
to actual processes used by an operating system or runtime environment. Unless
stated otherwise, no particular mapping between the two concepts is assumed.

A computation which can be executed by a process is called an action. A
process must fulfill certain requirements before it can execute one of its actions. If
those requirements are fulfilled, the action is called enabled. The requirements of
an action are typically that a message, or a set of messages with certain content
must have been received by the process containing this action. Once an action is
enabled, it is executed immediately. Actions can be of arbitrary complexity and
can contain any kind of instructions, including sending messages to other processes.

Chapter 2. Distributed System Abstraction 4

In the context of this thesis, however, processes are not allowed to receive messages
during the execution of an action. That way, a process can only execute at most
one action at any given time. The set of messages expected by a process (and
by extension the actions that can be triggered by these messages) are called its
interface.

During normal operation, every process p executes the following loop: The
process waits for an incoming message to receive. Once p receives a message,
it checks if its arrival enables an action. If an action is enabled p executes it
immediately. After p completed all computations, it waits for a new message in
the next iteration of the loop.

Processes can execute this loop at an arbitrary speed. Furthermore, the speed
of a single process can change during its lifetime as well. Therefore, no assumption
about the time required to complete an action can be made.

Processes also have an internal state, which consists of a collection of values
stored and which is accessible by the process across its actions. The memory of
a process is assumed to be unbounded. The internal state of a process p can be
only directly observed or modified by p itself. Only if the interface of p permits it,
other processes might access p’s state by sending messages to it.

2.2 Interprocess Communication

Processes communicate with each other by sending messages over an asyn-
chronous network. The network consists of a set of point-to-point connections
called links. Two processes can communicate with each other if there exists a link
connecting the two. A link is not equal to a physical connection between two
machines. Depending on the underlying network topology, it might be necessary
for a message to traverse multiple physical machines before reaching its destination
(or none at all if both processes exist on the same machine). For the sake of
simplicity, links are considered to be bi-directional. Furthermore, it is assumed
that all pairs of processes are connected via links. This means any process can
send messages to all other processes in the system.

Links provide send and receive actions that processes can use to send or receive
messages, respectively. Process p sending message m to q is denoted as send(m)p,q.
Analogously, receive(m)q,p means that p receives m sent by q. If the sender and
receiver of m is clear by context, only send(m) or receive(m) might be used. Since
the network is asynchronous, no fixed communication rounds exist. Processes can
use send and receive actions at any time, if they choose to do so.

Similar to processes, links operate at arbitrary speed. Messages can be delayed
indefinitely before being delivered to their destination. It is important to note
that a message arriving at a process does not equate to the process calling receive.
Messages delivered by a link, but not yet fetched by the process are stored in a
FIFO (first in, first out) message buffer with unbounded memory. As soon as a
message is stored in a process’s message buffer, the process can retrieve it by using
receive.

Send actions are non-blocking, which means a process sending a message
immediately continues its next instruction and does not wait until the message
has been delivered or received. A receive action immediately returns the oldest

Chapter 2. Distributed System Abstraction 5

delivered message to the calling process. If no such message exists, receive will
block the process and wait for it.

To simplify the description of the algorithms in the later parts of this thesis, it
is assumed that the receiving process of a message always knows the sender of the
message. This can be achieved simply by adding the sender’s PID to all messages.
Often, processes communicate with each other via a request-response scheme. If a
process receives a response, it is assumed to always know for which request this is
the reply for. This applies independently to the number of requests the process
sent previously.

2.3 Messages

In the context of this thesis, messages are considered to be tuples, i.e., finite
ordered lists of elements. Each element in a message can be of arbitrary structure
and size.

By convention, the first element of a message is reserved for its type. Messages
of the same type have the same number of elements, with each element representing
the same kind of information. A message of type t consisting of elements e0, e1, .., en
is denoted as ⟨t, e1, .., en⟩ (with t = e0).

2.4 Failures

Many distributed systems used in practice involve a large number of components
interacting with each other. In such a setting, failures become unavoidable.
Amazon’s Dynamo paper [11] describes the situation fittingly:

”Dealing with failures in an infrastructure comprised of millions of
components is our standard mode of operation; there are always a
small but significant number of server and network components that
are failing at any given time.”

The number and types of failures a distributed algorithm must be able to handle
has a big influence on its design. This section aims to give a short (and incomplete)
overview over some important classes of failures relevant to this thesis.

2.4.1 Process Failures

Every process in a distributed system is supposed to faithfully execute the
actions assigned to it. In general, a process which processes an infinite number of
messages in such manner is called correct. It might also diverge from its expected
behavior. In this case, the process is faulty. Depending on the environment a
process lives in, different kind of failures must be considered.

Various criteria to classify failures can be found in literature. Typically, classes
of failures are grouped into hierarchically ordered failure models. A failure model in
such a hierarchy covers at least all failures included in any hierarchically lower level.
Failure models commonly found in literature [19, pp. 29-34][12][1] are: crash-stop,
omission, crash-recover, and arbitrary. Although different or more fine-granular
classifications exist (e.g. in [6, pp. 24-30] and [2]), only these four will be briefly
discussed in this section.

Chapter 2. Distributed System Abstraction 6

Crash-Stop
Omission

Crash-Recovery
Arbitrary

Figure 2.1: Hierarchy of process failure models (based on [19, p. 30]).

Crash-Stop This failure model covers crash failures. When a process crashes, it
does not receive or send any messages and also stops executing any local
instructions. Once crashed, it never recovers. In this model, a process is
correct if it never crashes.

Omission A slightly more general kind of failure is omission. An omission occurs
when a process deviates from its behavior by not receiving or sending a
message when it was supposed to do so. Crashes are a sequence of omission
failures where a process stops receiving and sending any messages after a
certain time.

Crash-Recovery In some environments, it is possible for a crashed process to
recover and to continue operating normally. All messages send to the process
in the mean time are lost and it stops all local computations during its crash.
The process might forget its internal state after its recovery. In fact, it is
possible for the process to recover with any internal state it held at one point
in the past. A process is called correct in this model as long as it crashed
only a finite number of times and always recovers in a finite amount of time.
However, when reasoning about a specific time or time interval, e.g. during
the execution of an algorithm, a crashed process is considered faulty if it
does not recover during this time.

Arbitrary As implied by its name, the arbitrary failure model is the most general
one. It covers all deviations of a process from its expected behaviour. No
assumptions about the behaviour of a faulty process in this model can be
made. These kind of failures are also called Byzantine, or malicious, because
processes might actively try to sabotage the whole system. Tolerating
Byzantine failures is typically very costly, but is the only viable option in
scenario in which there is a risk that some processes are controlled by a
malicious users.

The later parts of this thesis focus mostly on the crash-recovery model. While
omission and crash faults are covered by this model as well, Byzantine faults will
not be taken into consideration.

2.4.2 Link Failures

In an ideal environment, all messages sent over a link are eventually delivered to
a process. However, this is not always a realistic assumption. Unreliable networking
hardware might lose or duplicate some messages. A severe failure might even

7

cause the network to split into multiple parts which cannot communicate with
each other. This is known as a network partition.

In order to argue about the behavior of an algorithm in a distributed system,
the message delivery guarantees of the links used must be known. Link abstractions
are used to define properties of links independent of the underlying hardware. The
fair-loss link and reliable link abstraction are introduced briefly in this section.
Both are commonly used in literature and are covered in more detail at [19,
pp. 35-43]. For the course of this section, it is assumed that both the sending and
receiving process do not crash and that the network is not partitioned.

Fair-Loss Links Essentially, a fair-loss link guarantees that any message sent
is delivered with a non-zero probability. Messages are not systematically
dropped. More precisely, the fair-loss property of such a link states, that if
message m is sent infinitely often, then m is delivered an infinite number of
times. Furthermore, a message sent a finite number of times is not delivered
infinitely often (finite duplication) and any message delivered by the link was
previously sent by some process (no creation).

Reliable Links A reliable link, sometimes also called perfect link, is the link
abstraction most commonly assumed (often implicitly) in research literature
[32, p. 459]. Its reliable delivery property guarantees that any message m
sent will be eventually delivered, and m will be delivered no more than once
(no duplication). As with fair-loss links, any message delivered was previously
sent by some process (no creation).

Both link abstractions do not specify the order in which sent messages are
delivered. If messages can arrive in any order, then the link is called unordered. A
link delivering messages in the order they were sent is an ordered link.

Examples of implementations of both reliable and fair-loss links can be found in
the internet protocol suite. TCP follows the idea of ordered reliable links, whereas
UDP can be roughly seen as an implementation of unordered fair-loss links.

The applicable link abstractions usable for a distributed algorithm is not always
obvious. As described later, Scalaris is using TCP for the communication between
Scalaris nodes. Nevertheless, reliable links cannot be assumed in later parts of this
thesis. The reason for that lies within Scalaris’ underlying architecture and will be
described in Section 6.1.

3 The Consensus Problem
The consensus problem is one of the most fundamental problems in distributed
computing. It requires a number of processes to agree on a single value or action
to take. An algorithm solving this problem is called a consensus protocol1.

This work focuses on the asynchronous consensus problem, a variation in which
processes can only communicate with each other by sending asynchronous messages
(see Section 2.2).

1The distinction between a distributed algorithm and a protocol in literature is vague. Both
terms are used interchangeably in this thesis.

Chapter 3. The Consensus Problem 8

3.1 Problem Statement

The traditional consensus problem is often described as a single set of processes
reaching some kind of agreement [15][16]. Leslie Lamport, however, argues in [25]
that the problem is better described in terms of a set of proposer and learner
processes. The proposers can propose values independent from each other and
the learners must agree on a single proposed value. Note that the set of learner
and proposer processes does not have to be disjunct. Lamport states three safety
requirements that a solution to the consensus problem must fulfill:

Nontriviality Any value learned must have been proposed.

Stability A learner can learn at most one value.

Consistency Two different learners cannot learn different values.

These requirements must hold under certain failure assumptions. In the context of
this thesis, this means that any number of failures under the crash-recovery model
must be tolerated. However, a process which has recovered from a crash is not
allowed to forget its internal state.

In addition to the safety requirements, fulfilling the following liveness require-
ment guarantees that eventually an agreement is reached:

Liveness(v, l) If value v has been proposed, then eventually learner l will learn
some value.

In contrast to the safety requirements, liveness is parametrized by learner l and
value v. This is because it must hold under the assumption that the proposer of v,
learner l and a sufficient number of other processes are correct. The exact number
of correct processes required depends on the algorithm in use. For example, the
basic version of the Paxos protocol (covered in Chapter 4) requires a majority of
so-called acceptor processes to be correct.

Simply put, fulfilling the safety requirements ensures that nothing incorrect
ever happens despite any number of failures, whereas fulfilling liveness ensures
that eventually something correct happens if not too many failures occur.

3.2 Impossibility of Asynchronous Consensus

In spite of its fundamental nature, the asynchronous consensus problem is not
an easy problem to solve. In fact, it was proven by Fischer, Lynch, and Paterson
in [16] that there cannot exist a consensus protocol in a fully asynchronous setting
that always reaches a consensus in finite time.

This result was achieved using a very weak form of the consensus problem.
Processes communicate with each other using unordered reliable links and can
fail according to the crash-stop model. Furthermore, only some of the correct
processes are required to agree on the value 0 or 1. Despite these simplifications,
they could show that even with only one faulty process, there exists for any
arbitrary consensus protocol a message delivery order for which the protocol fails
to reach an agreement.

9

This result, also known as the “FLP result”2, settled a year-long ongoing dispute
in the distributed systems research community. Solutions for the synchronous
consensus problem already existed to this time, even when considering Byzantine
failures, but it was unknown if a solution in the asynchronous case was possible
[16].

The critical difference between the two variations is that process failures can
be reliably detected in the synchronous case. Any process that does not reply
within a certain time frame can be assumed to have crashed. But no upper
limit for the response time of a process exists in a fully asynchronous setting.
Therefore, a process that is just very slow (or is connected via very slow links) is
indistinguishable from a crashed process [9].

Due to the FLP result, no consensus protocol can fully satisfy the liveness
requirement described in the previous section without further assumptions. Some
approaches require the correctness of certain processes or assume an upper bound
for communication delays. Other protocols are designed so that any undecided
state is unstable. As time goes on, the probability of reaching an agreement
approaches 1 asymptotically. One such protocol is Paxos. It will be described in
the following chapter.

4 Paxos
This chapter introduces the Paxos algorithm discovered by Leslie Lamport. It
solves the asynchronous consensus problem described in the previous chapter.
Lamport introduced his algorithm first 1998 in [29], using a fictional parliament
on the Greek island Paxos as an allegory. He later realized that this was a mistake,
as many were so distracted by the setting that the significance of the algorithm
was lost [28]. Lamport then republished his idea 2001 in [26].

Today, a number of Paxos variations exist which optimize various properties
of the original proposal. Examples include the number of message delays needed
to reach a consensus (Fast Paxos [24]), the types of failures tolerated (Byzantine
Paxos [23]) and the number of failures tolerated (Cheap Paxos [31]). Protocols of
the Paxos family are used internally in many different distributed systems. These
include the lock service Chubby [5], the database Spanner [10], the file system
XtreemFS [22] and the key-value store Scalaris [38].

The following sections focus on the basic, unmodified version of Paxos, as it
is described in [26]. Most of the concepts introduced here are later reused in the
Paxos variation used in Scalaris, PRBR (Paxos Round Based Register), which will
be described in Section 7 of this thesis.

4.1 Process Roles

Paxos uses three roles to describe the interaction between processes: proposers,
learners and acceptors. Every process in the system may perform one or multiple
roles. The actual mapping from processes to roles is implementation dependent
and has no effect on the correctness of the protocol.

2Named after its discoverers: Fischer, Lynch, and Paterson

Chapter 4. Paxos 10

In a typical setting, a client submits a request to the distributed system by
sending a message to one of the proposer processes. The proposer receiving the
request then tries to convince a sufficient number of acceptors to agree on the
proposed value. Acceptors are sometimes referred to as voters. Each acceptor
keeps track of its own vote and can deny or accept any new arriving proposals. At
any given time, an acceptor has voted for at most one value, but it can change its
vote if a new proposal arrives. Acceptors act independent from each other and
might accept different proposals at the same time. Once a sufficient number of
acceptors agree on the same value, it is possible for a learner process to learn this
value and notify the client of its result.

4.2 Quorums

To satisfy the Liveness(v, l) requirement of consensus, a sufficient number of
acceptors, in addition to the proposer of v and learner l, must be correct during
the execution of the protocol. Any set of acceptors that is large enough is called
a quorum. If less than a quorum of correct acceptor processes remain, then the
protocol can not learn any value. At the same time, quorums maintain the safety
requirements by ensuring that at least some acceptors retain knowledge of any
previous result. Therefore, any two quorums must share at least one acceptor. Let
Quorum be the set of all quorums.

Definition 1 (Quorum). A quorum is a set of acceptors large enough to learn
a value. The Quorum Property states that any two quorums must have a non
empty intersection:

Q1 ∩Q2 ≠ ∅, ∀Q1, Q2 ∈ Quorum (4.1)

To understand why this is important without further knowledge of the algorithm,
assume a case in which there exist two quorums Q1 and Q2 with an empty
intersection. Now, two concurrent proposals, made by different proposers, might
each convince quorum Q1 and Q2 respectively to vote for their proposal. In fact,
both proposals do not know the existence of the other because there exists no
process involved in both proposals. Since both proposals happen at the same time,
two learners might learn different values. This violates the consistency requirement
of consensus.

In the context of basic Paxos, the quorum property is typically satisfied by
defining a quorum to be any majority of acceptors. This definition will be also
adopted in this thesis. Let N be the number of acceptors in the system.

∣Q∣ ≥ ⌊N/2⌋ + 1, ∀Q ∈ Quorum (4.2)

Quorums can be chosen to be larger than this without changing the correctness
of the protocol. Although this will reduce the protocol’s performance since the
quorum size has a direct influence on the minimal number of messages sent before
a decision can be made.

More importantly, the size of quorums impacts the number of faulty processes
that can be tolerated. If the system is required to survive F failures, at least
2F + 1 acceptors must be used.

Chapter 4. Paxos 11

When reasoning about the behavior of Paxos, it is sometimes useful to reason
about sets of acceptors which are not large enough to constitute a quorum. Such
a set is called a minority.

Definition 2 (Minority). A minority of acceptors is a set of acceptors which is
not a quorum.

This definition of minority has a slightly different meaning than its conventional
usage, i.e., forming less than half of something. Depending on the minimum size
of quorums used, a minority of acceptors can also contain half or more than half
of all acceptors.

4.3 The Algorithm

The basic Paxos algorithm proceeds over several rounds. A successful round
has two phases. The first phase of a round starts with a client c sending a proposal
with an arbitrary value valc to a proposer p. Code Listing 4.1 depicts the following
algorithm and can be used as a reference.

Any proposer might receive multiple proposals at the same time. Therefore,
p first chooses a proposal number n, which should be greater than any number
chosen previously by p. Proposal numbers are used to distinguish concurrent
proposals during the execution of the algorithm. They are required to be unique,
but they are not required to be natural numbers as long as they can be totally
ordered. A possible way to ensure unique proposal numbers across proposers is
to express them as a 2-tuple {i, pid}, where i is a natural number and pid the
respective proposer’s process ID. Since process IDs are unique, all proposal number
are unique as long as a process does not choose the same natural number twice. If
proposal number n is selected, then this execution of the algorithm is referred to
as round n.

Once p has chosen n, it sends a prepare message containing n to all acceptors
(line 1-2). All acceptors keep track of the highest proposal number received in
prepare messages, as well as the latest value with its corresponding proposal
number the acceptor has voted for. Any acceptor a receiving p’s message checks
if it already received a different prepare message with a higher proposal number
(line 3). If this is the case, a will ignore the message3. Otherwise, a replies to p
by sending a promise, which includes the value a currently voted for, as well as
the round in which a voted for this value. By sending this promise, a effectively
agrees to not accept any proposals executed in a lower round than n (line 4-5).
This concludes the first phase.

Once p has received promises from any quorum of acceptors, it starts the second
phase of the algorithm. In this phase, p chooses a value which will be hopefully
learned by the learners. If any of the received promise messages contain a value an
acceptor has previously voted for, then p chooses the value of the highest received
round. Otherwise, p can choose its own value valc (line 7-10). p now sends an
accept message with the chosen value and n back to all acceptors. Note that it is
implicitly assumed that p remembers both n and valc across its actions.

3For the sake of optimization, a can notify p that a higher numbered proposal exists so that
p can abandon the current proposal and retry with a higher number. However, this is not part
of the algorithm.

Chapter 4. Paxos 12

Proposer
On receive(⟨request, valc⟩
from client c:

1: n← chosen proposal number
2: send(⟨promise, n⟩) to all acceptors

On receive(⟨promise, nq, valq⟩) from
all q of any quorum Q:

7: val ← valq for q with max(nq)
8: if val = ⊥ then
9: val ← valc

10: end if
11: send(⟨accept, n, val⟩) to all acceptors

Learner
On receive(⟨learn, nq, valq⟩) from
all q of any quorum Q with equal nq:

17: Learn value valq

Acceptor
Initial state:
npromise = 0; naccept = 0; val = ⊥

On receive(⟨prepare, np⟩) from
proposer p:

3: if np > npromise then
4: npromise ← np

5: send(⟨prepare, naccept, val⟩) to p
6: end if

On receive(⟨accept, np, valp⟩) from
proposer p:

12: if np ≥ npromise then
13: naccept ← np

14: val ← valp
15: send(⟨learn, np, val⟩) to learners
16: end if

Code Listing 4.1: Pseudocode of the basic Paxos algorithm.

Any acceptor a receiving the accept message will again check if it has given
a promise for a higher numbered proposal (line 12). In this case, a ignores the
message. Otherwise, a will change its vote to the received value and updates its
respective proposal number accordingly (line 13-15). Afterwards, a notifies all
learners of its new vote.

If at any point in time, a quorum of acceptors has voted for the same value in
the same round, then this value will be learned eventually (under the assumption
that the liveness requirement is fulfilled). Such a proposal is called chosen. A
learner learns this value if it has received a message from a quorum of acceptors in
the same round (line 17). This concludes the algorithm.

Notifying each learner whenever an acceptor has changed its vote requires
a high number of messages. The message count to learn a value is at least the
product of the number of acceptors and learners. An alternative approach uses
a distinguished learner, which will be the only learner receiving messages from
acceptors. Once this learner learned a value it notifies the other learners in the
system. This approach requires an extra message delay. It is also less reliable since
the distinguished learner could fail. However, this approach requires only the sum
of acceptor and learner processes of messages.

What it means for learner l to learn a value depends on the context the algorithm
is deployed in. In some case, l simply notifies the client c of the chosen value. In a
more elaborate setting, the set of learners might act as a distributed storage. The
learned value is persisted and returned upon request. This is especially useful when
Paxos is employed to learn a sequence of values, for example when implementing

Chapter 4. Paxos 13

a replicated state machine. Both sequences of consensus and replicated state
machines will be further discussed in Chapter 5.

4.4 Correctness

The structure of Paxos is simple. However, it is not obvious to see how the
algorithm satisfies the safety requirements of consensus. The section aims to give
some insights about the correctness of Paxos. It is not intended as a proof of
correctness. A more rigorous line of reasoning can be found in [26] or [29].

Nontriviality is easy to see. Before any learner can learn a value v, a quorum
of acceptors must agree on v in any round. Since an acceptor will only vote for v if
it was proposed by a proposer and Byzantine faults (which may alter the proposed
value) are not covered, nontriviality will not be violated.

Once an acceptor voted for a proposal, it will never vote for a lower numbered
proposal. Due to the quorum property, once a proposal numbered n with value
v is chosen, it is impossible for a lower numbered proposal to be chosen. This is
because only a minority of acceptors which are voting for a lower proposal than n
remain. To satisfy consistency and stability it therefore suffices to ensure that any
chosen proposal with a higher number than n will also contain v.

Any proposer starting a new round after the proposal containing v was chosen
will receive at least one reply containing v in its promise messages.

It is also not possible that any acceptor has voted for a higher numbered
proposal than n with a different value than v before proposal n was chosen. This
would imply that a proposer received promises with a proposal number higher
than n from a quorum of acceptors that have not already accepted the proposal
with v. But this leads to a contradiction because there would not exist a quorum
of acceptors anymore which could accept proposal numbered n.

Therefore, at the time proposal n was chosen, no acceptor voted for a value
of a higher numbered proposal with a different value. This means the highest
accepted value returned in promise messages for all new rounds will be v. This
causes all proposers to choose v in any subsequent higher numbered proposals.
Since no value other than v will be proposed, no learner will ever learn a value
different from v.

4.5 Liveness

The liveness requirement operates under the assumption that a proposer, learner
and a quorum of acceptors are correct. However, liveness cannot be guaranteed
without further considerations and assumptions.

The first problem which must be considered is message delivery. Paxos can be
used using fair-loss links. This means a message can be lost with some non-zero
probability. If too many messages are lost, a proposer or learner might not receive
a sufficient number of replies from acceptors to continue with the algorithm. In
this case, no further progress can be made (unless some proposer starts a new
round of the algorithm).

Since communication is asynchronous, the proposer has no way of knowing
whether the message is delivered very slow or if it is lost completely. This problem
can be solved when assuming an upper bound for communication delays by having

14

the proposer to retry with a new Paxos round after a certain amount of time.
Due to delivery guarantees of fair-loss links, there will be eventually a round in
which enough messages will be delivered. When perfect links are used, this is not
necessary since all messages will be delivered eventually.

The second problem is known as dueling proposers. Concurrent proposals of
two or more proposers can block each other indefinitely in the following scenario:

Proposer p1 completes phase 1 with a proposal number n1. A second proposer
p2 also completes phase 1 with a higher proposal number n2. p1’s accept messages
will now be denied or ignored in phase 2. Therefore, p1 begins in phase 1 again in
a round with a higher proposal number, thus blocking p2 from succeeding. In this
scenario, no value is ever learned.

Fortunately, this state is unstable. If proposers, acceptors, or links operate
at slightly varying speeds, then one proposal will be eventually chosen. The
probability of such a sequence of denied proposals can be further reduced by
introducing randomness for retrying a proposal. Proposers can simply wait for
slightly different intervals before starting a new round or use techniques such as
exponential back-off. However, this is not enough to guarantee liveness. Especially
in settings with many concurrent proposals, the probability to never recover from
dueling proposers is non-zero.

A solution to this problem is introduced by Lamport in [26, p. 7]. A distin-
guished proposer called leader must be selected, which is the only proposer allowed
to issue proposals. Other proposers must communicate with the leader which in
turn coordinates all incoming proposals.

This approach has some drawbacks. First, the leader becomes a bottleneck. A
slow leader might slow down the system if too many proposals arrive in a short
period of time. Second, the leader is a single point of failure. Once the leader
crashes, a new leader must be elected. However, leader election is a specific kind
of consensus problem and is thus subjected to the FLP result [13]. If the leader
election fails and more than one leader is elected, the protocol can still operate
normally, but dueling proposers are still possible in this case.

In summary, guaranteeing liveness requires that a single leader, a quorum of
acceptors, and a learner do not fail. In addition, when using fair-loss links an
upper bound for communication must be assumed.

5 Consensus Sequences
The previous chapters focused on a single instance of the consensus problem. That
is, achieving agreement of multiple processes on a single value. While this is
useful, many scenarios require it to establish a sequence of values – one of the
most prominent examples being replicated state machines.

The replicated state machine approach was first proposed by Lamport 1984 in
[30] and was further elaborated in 1990 by Fred Schneider in [36]. Examples of
current systems making use of replicated state machines include ZooKeeper [21]
and Chubby [5] and Scalaris [38].

Chapter 5. Consensus Sequences 15

Figure 5.1: Replicated state machine architecture [35].

5.1 Replicated State Machines

A state machine, also known as automaton, is a computational model. It
consists of a set of state variables and transition functions. The state variables
describe the current state of the state machine, whereas transition functions
manipulate the state variables, thus causing the state machine to transition into
another state [32, pp. 200-204].

Processes, as they are described in Section 2.1, are also state machines. The
collection of variables held by the process describes the state of an analogous state
machine. The process’s actions can be mapped to transition functions.

In the context of distributed systems, servers can provide services by imple-
menting state machines. Clients can interact with servers by issuing commands.
Commands are executed by a server by applying the respective transition function
of its state machine. A command can change the server’s state (writes), produce
output (reads), or both. Commands are executed atomically with respect to other
commands. They are either applied in full or not at all [36].

When providing a reliable service it is important to ensure that the failure of a
single server has no or only minor impact on the service quality experienced by
clients. This can be achieved by introducing redundancy to the system. Instead
of having only one instance of the state machine on one server, identical state
machines are deployed on multiple servers. This is called a replicated state machine.
A single instance of a state machine in a replicated state machine is called a replica.
If two replicas on two servers are in the same state, executing the same command
on both servers will lead to the same result. Naturally, this requires all commands,
and by extension the state machine, to be deterministic (i.e. there is no randomness
involved in the execution of a command).

Figure 5.1 depicts the typical architecture of a replicated state machine [35].
Clients issue requests by sending a command to the consensus module of one of
the servers implementing the replicated state machine (step 1). The consensus
modules of all server instances communicate with each other and are implementing
an arbitrary consensus protocol, e.g., basic Paxos. Each server typically stores the
learned commands in a replicated log (step 2). Due to the properties of consensus
protocols, all logs contain the same commands in the same order. Once a command

Chapter 5. Consensus Sequences 16

is included in a log, the respective state machine can execute it (step 3). If required,
the command log can be persisted on a local stable storage. This allows the server
to recover with a previously known state. If it missed some commands in the mean
time, it can fetch them from the other instances [8].

An explicit command log is not necessarily required. Some systems, including
Scalaris, do not keep such a log. Instead, they apply any learned command directly
as soon as it is learned.

Since state machines and commands act deterministic, each replica will traverse
the same states and produce the same sequence of outputs. Any server can therefore
return the result to the client who issued the respective command (step 4). From
a clients perspective, the whole system acts as a single entity.

A replicated state machine can tolerate as many failures as the consensus
protocol in use. When using Paxos, each server typical contains a learner, proposer,
and acceptor process. Therefore it can tolerate at most F failures if 2F + 1
replicated servers are used. Due to Paxos’ properties, a specific command will be
learned as soon as a quorum of acceptors (i.e. a majority of replicas) has agreed on
it. Therefore, any instance in this quorum can return the result of the command
before the remaining minority has learned it.

5.2 Requirements for Consensus Sequences

Section 3.1 defines the requirements of a consensus protocol for learning a single
value. These must be generalized when reasoning about learning an increasing
sequence of values. Because all further chapters of this thesis focus on consensus
sequences in replicated state machine, the term command instead of the more
generic term value will be used henceforth.

In the conventional state machine approach, some learners might learn com-
mands out of order. This might happen because of lost, or out of order delivered
messages. A learner might learn the 5th command before learning the 3rd command.
But it knows that the respective command is the 5th one. However, it cannot execute
the 5

th command immediately, because all replicas must apply all commands in
the same order. Therefore, it is convenient to define that a learner can only learn
a command if it has already learned all previous commands. This way all learners
always learn a gapless, ever increasing sequence of commands [25].

The safety requirements can now be generalized as follows [25]:

Nontriviality Any learner has always learned a sequence of proposed commands.

Stability The sequence of commands a learner has learned at any time is a prefix
of the learned sequence at any later time.

Consistency For any two learners, it is always the case that one of the learned
sequences is the prefix of the other.

Note that the prefix relation is reflexive: Any sequence is the prefix of itself.
The safety requirements must hold under the same assumptions as discussed 3.1.
To reiterate, any number under the crash-recovery must be tolerated, with the
additional restriction that no recovered process forgets its internal state.

Analogous, the liveness requirement can be generalized as:

Chapter 5. Consensus Sequences 17

Liveness(c, l) If command c has been proposed, then learner l’s learned sequence
will eventually contain c.

Again, to satisfy liveness in Paxos, at least the proposer of c, leaner l and a quorum
of acceptors must be correct during the execution of the protocol until c is learned.

In contrast to the original liveness requirement, where any proposed command
must be learned, all proposed commands must be learned now. Although the order
in which commands can be learned is arbitrary, as long as the order is consistent
across all learners.

5.3 Strong Consistency

A consensus protocol that satisfies the safety requirements stated above allows
it to implement a replicated state machine which adheres to the strong consistency
model. Strong consistency, also known as linearizability, was first defined by
Herlihy and Wing in [20] and is often regarded as the “ideal” correctness condition
a distribution storage should aim for [41].

Roughly speaking, strong consistency requires that each operation must appear
to be applied instantaneously at some point in time between its invocation and
response [41]. This point in time is also known as linearization point, whose
existence was first postulated by Lamport in [27]. The precise location of the
linearization point during the execution of an operation is not known from the
outside. Is a write and read operation executed concurrently, the read operation
may return the state without application of the write. However, once any read
has observed the new state, all subsequent reads are not allowed to return the old
state. This also includes reads submitted by different clients.

Figure 5.2 gives an example of strong consistency by using a register holding
a single value. The register is initialized to 0. PC ’s read is concurrent to both of
PA’s writes. The read is allowed to return either 0 or 1. It can not return 2 since a
subsequent read executed by PB has not seen the application of the second write.
Would PB’s read return 2 or would it be executed concurrently to PC ’s read, then
it would be possible for PC ’s read to return 2 as well.

The concept of linearization points can be easily applied to many Paxos variants.
In the basic algorithm, as described in Section 4.3, acceptors could vote for a
number of values in ascending rounds. Once a quorum of acceptors voted for the
same value in the same round, this value was considered to be chosen. This is the
exact point in time at which the consensus decision was made since the chosen
value will be eventually delivered and no value is delivered before a chosen value
exists. As will be seen throughout this thesis, extending Paxos to a consensus
sequence usually entails learning a sequence of chosen commands. The moment

Figure 5.2: An execution exhibiting read-write concurrency [41].

Chapter 5. Consensus Sequences 18

such a command is chosen coincides with the linearization point of the respective
commands under the strong consistency model.

5.4 Paxos in Replicated State Machines

The basic Paxos algorithm can only be used to get agreement on a single
command. Lamport originally described in [26] how Paxos can be used as a
building block to achieve consensus on a sequence. This extension is commonly
referred to as Multi-Paxos [8].

In Multi-Paxos, a new instance of basic Paxos is used whenever a new command
needs to be learned. Each Paxos instance is assigned to a slot. If a server wants
to learn the i

th command, it will use the Paxos instance in slot i. Since Paxos
satisfies the safety conditions of consensus, at most one command can be learned
for every slot. As noted in Section 5.2, a command is only considered to be learned
if all previous commands have been learned before. By this definition of learned, a
command can be executed immediately as soon as it is learned.

It is easy to see that Multi-Paxos fulfills safety for command sequences, since
each instance of Paxos fulfills these requirements for choosing a single command.
As soon as a slot is filled, the learned command will never change. Because
previously learned commands never change and only the next empty slot can be
learned next, stability is ensured. An analogous argument can be applied for
consistency and nontriviality.

If a proposer proposes a value for a specific slot, its proposals might fail due to
a concurrent proposal with a higher round number. In this case, the proposer can
simply retry its proposal for a higher slot. Under consideration of the additional
assumptions made for the basic Paxos algorithm in Section 4.5, the proposer will
eventually have success with its proposal, thus satisfying liveness.

The setup described above requires that every Paxos instance completes both
phases of the algorithm. Therefore, at least four message delays are needed (or more
if there are dueling proposers). This can be improved by electing a distinguished
leader as coordinator across multiple Paxos instances. When a new leader is
elected, it executes phase 1 of the algorithm. But instead of executing it for a
single Paxos instance, this exchange is valid for infinitely many instances following
the current instance. As long as the leader does not change, the first phase can
be skipped now for all following instances by using the same proposal number
every time. If another server wants to be the leader (e.g. because the previous
leader failed), it can simply execute phase 1 of the protocol himself with a higher
proposal number. Due to this optimization, only two message delays are needed to
learn a command as long as the leader does not fail. However, the command must
be first transmitted to the leader, which adds a message delay. In addition, the
same drawbacks as discussed in Section 4.5 in respect to a distinguished leader
apply here as well.

Solving the problem of a consensus sequence by chaining multiple instances
of Paxos sounds simple in theory. However, a number of non-trivial challenges
arise when trying to implement Multi-Paxos – most notably in the management
of Paxos instances. Every new instance of Paxos created takes up some amount
of resources. Therefore, it is important to eventually remove old instances for
commands that have been learned by all replicas. It is, however, not obvious when

Chapter 5. Consensus Sequences 19

any given instance can be removed safely. It is not safe for any given replica to
remove a Paxos instance just because the learner process for this instance has
learned the command, since it is possible that the learners of the other replicas
were unable to learn it, e.g., due to message loss. Removing the state of one of the
acceptors might cause a quorum of acceptors to exist which does not know the
existence of the proposed command. Furthermore, once a quorum of replicas has
freed their instance, it is not clear how the remaining minority can reliably learn
that their instance can be removed as well.

The management of separate Paxos instances adds an additional level of
complexity and subtlety to the system. However, instance management is a
topic rarely discussed in literature. Lamport’s original description of Multi-Paxos
[26] only sketches a possible approach and no widely agreed-upon algorithm of
Multi-Paxos exists. The creators of Raft (a different consensus algorithm) argue
that these are some of the main reasons that Paxos is widely considered to be hard
to understand and implement [35].

The algorithm used in Scalaris uses a different approach than Multi-Paxos.
Instead of using multiple Paxos instances for different slots, PRBR (Paxos Round
Based Register) tries to establish a sequence of commands using only a single
Paxos instance. This way, no Paxos instances have to be dynamically created and
destroyed, thus preventing the problems and overhead caused by Paxos instance
management. PRBR’s general idea is it to only propose a new command (i.e.
start phase 2 of the basic algorithm) if the proposer is certain that the previous
command has been learned already. How this is achieved will be discussed in more
detail in Chapter 7.

5.5 Commutative Commands

Conventional implementations of the consensus module in replicated state
machines bring all arriving commands in a strictly sequential order. However, this
is not always necessary.

Usually, state variables, henceforth referred to as values, held in a replicated
state machine are not dependent on all other values. In some instances, values are
independent to all other values stored. This can be the case if, for example, the
replicated state machine is used as a foundation for implementing a distributed
key-value store. As opposed to relational databases, a key-value store does not
maintain relationships between values. Assume a scenario in which two clients
concurrently submit commands c1 and c2, respectively. The commands access
different values. If both values are independent of each other, it does not matter
if c1 or c2 is executed first. In both cases, the end result for the client and the
state machine is the same. By extension, individual instances of the replicated
state machine can execute the commands in either order. During the execution of
the commands, the internal states might not be the same for all instances. But
after all instances have executed both commands their internal states match again.
Since the replicated state machine acts as a single entity in respect to the clients,
they do not notice any inconsistencies.

In the scenario described above, c1 and c2 are said to commute with each other.
In converse, two commands interfere with each other if they must be applied in the
same order by all replicated state machine instances . A more rigorous definition of

20

commuting and interfering commands is given in Section 8.1. A common example
for commutative commands is two concurrent reads. A read does not change the
internal state of a state machine instance. Therefore, any two reads are commuting.

The rate of interfering commands is often low for practical systems. For
example, over 90% of requests handled by Chubby deal with lease renewal traffic
[33]. Leases grant clients exclusive access to resources over a restricted time
frame. The client must periodically renew the lease if it does not want to lose
access. Because only the client owning a lease can renew it, two concurrent lease
renewals by different clients must target different leases. Therefore all lease renewal
commands commute with each other.

Strictly ordering commutative commands in a sequence causes coordination
overhead. This effect is especially pronounced when using Paxos without a coordi-
nated leader, since two concurrent requests can cause dueling proposers. Chapter
8 of this thesis focuses on taking advantage of the commutative relationships of
concurrent commands in PRBR by not requiring a strict sequential execution order
for all commands of a replicated state machine.

6 Scalaris
Scalaris [38] is a distributed key-value store featuring ACID (Atomicity, Consistency,
Isolation, Durability) compliant multi-key transactions. While traditional SQL
based relational databases always provide such transactions, many comparable
distributed databases have to relax the ACID properties in order to accomplish
full decentralization.

The CAP theorem [18] states that any distributed system can only achieve at
most two of the following properties: strong consistency (C), availability (A) and
partition tolerance (P). Scalaris provides strong consistency and partition tolerance
at the expense of availability. This is achieved by using a replicated state machine
approach with a modified version of the Paxos consensus protocol (PRBR) on
top of a structured overlay. In case of a network partition, the partition with a
quorum of replicas (and thus acceptors) can still provide consistent transactions.
However, the minority partition cannot answer any requests until the partitions
are reconnected. Therefore, the availability property of the CAP theorem is not
fulfilled. The focus on strong consistency and multi-key transactions sets Scalaris
apart from other distributed key-value stores like Amazon’s Dynamo [11], which
only implement weaker consistency properties in favor of better availability.

Scalaris is an ongoing research project at Zuse Institute Berlin [3] and is written
in Erlang4. It is fully open-source and is published under the Apache Licence 2.0.
The source code is available on GitHub5.

6.1 Architectural Overview

In a typical setup, Scalaris is deployed across multiple machines. An instance
of Scalaris running on a machine is called a node. Each node consists of a number

4http://www.erlang.org/
5https://github.com/scalaris-team/scalaris

http://www.erlang.org/
https://github.com/scalaris-team/scalaris

Chapter 6. Scalaris 21

of processes as described in Section 2.1. The total number of Scalaris nodes used
is denoted by N .

A node can be divided into four layers [4], which will be briefly described in
this section.

Unstructured Peer-to-Peer Layer The bottom layer handles communication
between processes of any two nodes. TCP is used as the transmission protocol,
thus providing reliable links. Since Erlang’s communication model is based on
message passing, processes can communicate with each other in a similar manner
as described in Section 2.2.

Structured Overlay Network This layer provides an implementation of a dis-
tributed hash table (DHT). A DHT allows storage and lookup of key-value pairs
similar to a conventional hash table. When accessing an item in a hash table, a
globally known hash function is used to map the item’s key to the key space of
the hash table. The hashed key represents the location of the item in the table
and can be used to retrieve or modify it. For the sake of conciseness, the term key
will be used for an item’s key as well as its hashed counterpart.

Unlike hash tables, the key space of a DHT is split into multiple partitions
of arbitrary size, which are then each assigned to a process. A process can only
directly handle requests concerning some key k if it has ownership of the partition
containing k. Otherwise, it must forward the request to another process by using
a routing protocol. The number and size of partitions can change over time, e.g.,
due to processes joining or leaving the DHT.

The structured overlay network layer hides the management of the key space
from all upper layers. It provides a generalized lookup mechanism for sending
messages to nodes responsible for a given key. In the context of this thesis, this
layer can be seen as the implementation of a link abstraction. Due to the routing
of messages, a number of intermediate Scalaris nodes might have to examine a
message before it reaches its destination. If a node crashes, all messages it is
currently processing for routing purposes are lost. Therefore, the fair-loss link
abstraction must be assumed for all layers on top of this layer.

The DHT implementation used in Scalaris by default is based on Chord [39]
which models the key space as a ring structure and provides a routing mechanism
with logarithmic worst time complexity. Although other DHT implementations such
as Chord# [37] and Flexible Routing Tables [34] exist, all following explanations
assume Chord as the DHT used.

Replication Layer To improve availability in case of a node failure, each value is
replicated and stored in multiple locations (i.e. keys) on Chord’s ring. For that,
Scalaris uses a configurable replication degree R to store each item R times using
R keys. The keys are calculated using a symmetric replication scheme [17]. To
reduce the probability that the crash of a single node is affecting multiple keys of
the same item, practical configurations use N > R.

Section 5.1 introduced the concept of replicated state machines as an architec-
tural design to replicate a set of value across multiple, independent processes. In
Scalaris, this approach is used on a per-key basis. Every stored item is managed in
its own replicated state machine. A Scalaris node which is responsible for n keys

Chapter 6. Scalaris 22

can therefore contain up to n replicas belonging to potentially n different state
machines.

To ensure consistency across replicas, the aforementioned extension of the Paxos
protocol, PRBR, is used. Arbitrary write and read commands can be submitted to
read or modify the value of a single key. PRBR establishes a separate consensus
sequence of commands for every key. Therefore, any two concurrent commands
targeting different keys will not interfere with each other by default. In addition,
PRBR can restrict valid follow-up commands based on the current state of the
consensus sequence by using a so-called ContentCheck. This makes it possible to
define conditional writes, which are useful when storing more complexly structured
data in PRBR.

Transaction Layer Since PRBR can handle arbitrary commands, it can be used
as basis for any replicated data type. Most commonly, PRBR is used as a basis
for an optimistic transaction protocol providing ACID compliant transactions.

In contrast to pessimistic methods, an optimistic transaction protocol operates
under the assumption that transactions can be completed without interference
in the majority of cases. While running, transactions can read multiple keys
and perform modifications on them locally. Before committing the resulting
modifications to the system, it is verified that no conflict to other finished or
validating transactions arose. During commit of the transaction’s result, the
accessed keys are briefly locked to ensure atomicity when modifying multiple keys
in a single transaction.

The transaction protocol requires that each key maintains some meta infor-
mation (read locks, write locks, version) in addition to the actual value. PRBR’s
interface allows it to submit read and write commands that only access or modify
parts of a value. This allows the implementation of operations such as lock
manipulation without unnecessary data transfer costs.

The transaction layer defines an interface which allows arbitrary applications
to use Scalaris as a consistent, fault-tolerant backend which can scale at runtime
by adding or removing Scalaris nodes if required.

23

Part II

Paxos Consensus Sequences

7 Paxos Round Based Register

7.1 Preliminaries

Paxos Round Based Register is an extension of the basic Paxos algorithm which
allows establishing a consensus sequence of proposed commands. The algorithm
aims to satisfy the safety requirements of such sequences as stated in Section
5.2 and aims to provide strong consistency. In contrast to Multi-Paxos, PRBR
establishes sequences of consensus decisions in-place. This means only a single
PRBR instance is needed, which eliminates the need for instance management and
all related implementation challenges.

PRBR is still work in progress. At the current time, no publications related
to PRBR exist. One goal of this thesis is it to provide a first description of the
protocol, including a sketched argumentation about its correctness. The primary
sources of information for this chapter are PRBR’s implementation in Scalaris6,
along with a drafted, currently unpublished document about Scalaris’ architecture
and numerous discussions with Dr. Florian Schintke, one of the creators of PRBR.

7.1.1 Register of Consensus Sequences

The basic Paxos algorithm uses the roles of proposer, acceptor, and learner to
describe the interaction between processes in the system: The proposers propose
commands, a quorum of acceptors must agree on a command, and the learners
learn the agreed upon command. The state machine approach in conjunction
with Multi-Paxos described in Section 5.4 extended the single consensus to a
consensus sequence by using multiple chained Paxos instances. But since only a
single consensus sequence is used to manage a set of values, coordination overhead
is necessary for concurrent commands even if they access independent values.

PRBR solves this problem by managing an independent consensus sequence for
each key. This is achieved by splitting the set of acceptors into multiple disjunct
subsets. Each subset is responsible for agreeing on commands for a given key.

Definition 3 (k-acceptor). A k-acceptor is an acceptor which can vote for proposals
regarding the item with key k.

When sending a message to a k-acceptor regarding a key other than k, it can
ignore the message or respond with an appropriate deny message. A command
proposed for key k can be learned as soon as a k-quorum of k-acceptors has agreed
on it.

6https://github.com/scalaris-team/scalaris/tree/master/src/rbr

Chapter 7. Paxos Round Based Register 24

. . .

k1-Acceptor

k1 = . . .

k1

k2-Acceptor

k2 = . . .

k2

k3-Acceptor

k3 = . . .

3. Apply c

k3

k4-Acceptor

k4 = . . .

k4

. . .

ProposerClient

1. ⟨request, k3, c⟩

5. ⟨result, . . .⟩

2. Establish consensus for c

4. Return result of c

Figure 7.1: Proposing a command for key k3 in PRBR.

Definition 4 (k-quorum). A k-quorum is a set of k-acceptors large enough to
learn a proposal regarding the item with key k. The k-Quorum Property states
that any two k-quorums must have a nonempty intersection.

As with quorums of basic Paxos, the size of k-quorums can be freely chosen
as long as the k-quorum property is fulfilled. In the context of this thesis, any
proper majority of k-acceptors is considered to be a k-quorum. Since the set of
k-acceptors is disjunct from the set of j-acceptors for all k ≠ j, no k-quorum will
intersect with a j-quorum. Therefore, two concurrent proposals for different keys
cannot lead to dueling proposers anymore.

Analogously to k-acceptor and k-quorum, the term k-minority is defined as:

Definition 5 (k-minority). A k-minority of acceptors is a set of k-acceptors which
is not a k-quorum.

Figure 7.1 sketches the execution of PRBR during normal operation: A client
wants to execute a (read or write) command c for the item identified by key k. It
sends a message to any proposer p with content c and k. Depending on k, p will
now exchange messages with the corresponding k-acceptors in the system. The
algorithm executed here is similar to basic Paxos as described in Section 4.3 and
will be described in Section 7.2 in detail. Each k-acceptor acts as an instance of a
replicated state machine which only contains the value of key k. As part of the
exchange with p, any k-acceptor which has voted for c will apply the command to
the value. Once a k-quorum has voted for c it is considered to be chosen as the
next command in the consensus sequence. Only then it is possible for p to learn
the result of the command. Once p has learned the result, it notifies the client.

As long as p is able to keep track of multiple concurrent proposals, it can
establish multiple commands for different keys at the same time without interference.
Of course, one or multiple proposers might try to concurrently establish a command
for the same key. In this case, the proposals will create a conflict that has to be
resolved first before the respective k-acceptors are able to choose a command.

Note that there is no separate learner process involved. Due to the design
of PRBR, the roles of learner and proposer cannot be easily detached from each
other. Therefore, each proposer in PRBR functions as a learner at the same time.

Chapter 7. Paxos Round Based Register 25

7.1.2 Consistent Quorums

Before the command sequence of a given item can be extended by a new
command proposed by a proposer p, it is necessary for p to know whether the
currently newest command in the sequence was chosen or not. Let cprop be the
command p wants to propose, cnew the most recent command at least one k-acceptor
has voted for, and cprev the predecessor of cnew in the consensus sequence.

If a k-quorum has voted for cnew, then it is chosen. In this case, cprop must be
proposed as the command following cnew in the sequence. Otherwise, the stability
requirement of consensus sequences would be violated. If, however, cnew was not
chosen yet, then p is allowed to propose cprop as the follow-up to cprev. In fact,
depending on the messages p receives, it might not even know of the existence of
cnew.

The following example might help to understand this better: Consider a setting
in which an item with key k is replicated seven times. Therefore, the system
contains seven k-acceptors. The state of a k-acceptor who has not voted for cnew
yet, i.e. the old state, is denoted by . is used for k-acceptors who have already
voted for cnew. Consider the following configuration of k-acceptors:

1 2 3 4 5 6 7

Only the k-acceptors numbered 5 and 6 have voted for the new command. A
k-quorum has a size of at least four, because a proper majority of k-acceptors is
needed. Therefore, cnew has not been chosen yet. p can read any given k-quorum
as part of the protocol. Naturally, p only knows the state of a k-acceptor if it is
part of this quorum. The state of all other k-acceptors is unknown. An unknown
state is denoted by . Assume p now reads k-acceptors 1-4:

1 2 3 4 5 6 7

p has received a k-quorum with state . This is called a consistent k-quorum.

Definition 6 (Consistent k-Quorum). A consistent k-quorum is a k-quorum Q,
for which all k-acceptors q ∈ Q have the same state.

p now knows that command cprev was chosen as part of the sequence, but it
does not know if there exists a k-acceptor which has voted for a newer command.
However, p can be certain that cprev is the newest chosen command because at
most three k-acceptors can be in state , which is a k-minority. p can therefore
safely propose its new command cprop as successor of cprev.

Another possibility for p is it to read k-acceptors 2-5. In this case, p sees the
following state:

1 2 3 4 5 6 7

The state p sees in this case is not consistent. It is possible for both and
to exist in a k-quorum. Since might exist in a k-quorum, p cannot propose

Chapter 7. Paxos Round Based Register 26

cprop as follow-up for cprev without risking to violate the stability requirement. If
exists in a k-quorum, a concurrent proposal from another proposal could read

this k-quorum and propose a different command on top of cprev. Therefore, p can
also not safely propose its command as successor of cnew. p’s only option when
reading an inconsistent state is it to try help reaching a k-quorum. Only then
can p safely propose its own command. How this is done is described further in
Section 7.2, where the algorithm of PRBR is discussed in detail.

7.1.3 Commands

Commands are structured data send by clients to the consensus system. In
the context of PRBR, a command consists of so-called filters. Every filter is a
function that is applied at a certain point during the execution of the protocol.
Furthermore, commands are issued for a specific key.

Definition 7 (Command). A command is a 3-tuple {k, vwrite, F ilters}, where k
is the key of the item accessed or modified by this command, vwrite the value to
write, and Filters an n-tuple of filters.

In most cases, vwrite does not simply indicate the new value that will be stored
in the acceptors after the command was applied. Commands can operate on only
parts of the existing value and use vwrite as an additional argument. For example,
the filters of a command can be used to model an append operation. Here, vwrite

would indicate the element that would be appended. The following three types of
filter exist in PRBR:

ReadFilter In PRBR’s equivalent to Paxos phase 1, acceptors apply a ReadFilter
on their currently stored value val. The result vread is used for the remainder
of the protocol instead of val. If values consist of multiple elements, for
example when using Scalaris’ transaction protocol, the ReadFilter can be
used to retrieve only the needed parts of the value, e.g. the locks. If the
whole value is needed for the execution of a command, then val = vread.
Then the ReadFilter is called a no-op. In use cases where values are large,
ReadFilters can significantly reduce the size of the exchanged messages. The
application of a ReadFilter does not modify the stored value of the respective
acceptor.

ContentCheck Once a proposer has received a consistent k-quorum in the equiva-
lent to the beginning of Paxos phase 2, the ContentCheck is used to verify
if this command is a valid successor to the latest established consensus
based on vread. As continuation of the transaction protocol example, the
ContentCheck can test if the required locks are present to modify the
value. If the ContentCheck fails, the protocol can terminate early and
the proposer can notify the respective client that its command is not valid.
A ContentCheck returns a 2-tuple: A boolean value indicating whether the
check was successful or not, and so-called UpdateInformation i that can
provide additional information to the WriteFilter.

WriteFilter Once an acceptor has voted for a command, it applies the WriteFilter
of the command. Based on val, vwrite and i, the WriteFilter returns a new

Chapter 7. Paxos Round Based Register 27

value vnew. The acceptor stores vnew as the new state of this replica. In
addition to vnew , the WriteFilter returns a return value vret that is send to
the proposer and which in turn sends it to the respective client.

In contrast to Multi-Paxos, PRBR differentiates between read and write
commands. This distinction allows PRBR to terminate the protocol early when
processing read commands.

As implied by its name, a read command will return the value of given key
(or part of it) without modifying it. Since no modification takes place, reads do
not need vwrite, a ContentCheck or a WriteFilter. Let ⊥ denote an empty or
non-existing value.

Definition 8 (Read Command). A read command is a command with vwrite = ⊥

and Filters = {rf }, where rf is a ReadFilter.

A write command modifies the value and returns the result of the modification
to the client. Therefore, a write command uses all three types of filter.

Definition 9 (Write Command). A write command is a command with Filters =
{rf , cc,wf }, where rf is a ReadFilter, cc a ContentCheck and wf a WriteFilter.

For conciseness, ce denotes element e of command c. For example, ck denotes
the key and crf the ReadFilter of c. By convention, the abbreviations rf , cc and
wf are used for ReadFilter, ContentCheck and WriteFilter, respectively.

7.1.4 Rounds

Rounds in PRBR are the equivalent to Paxos’ proposal numbers. Similar
to Paxos, rounds are required to be unique to distinguish messages regarding
different proposals. This is achieved by defining rounds to be 2-tuples, consisting
of a round number and a round ID. The round number is a non-negative integer,
whereas the composition of the round ID can be chosen arbitrarily depending on
the implementation, as long as its uniqueness can be guaranteed. For example,
one valid strategy could be to include the proposer’s process ID in the round ID,
to ensure that no other proposer can generate the same round ID.

Two rounds a and b are equal if both their round number and round ID match.
a is only greater than b, if a’s round number is larger than b. If their round number
matches, but their round ID not, then a ≠ b and a ≯ b.

7.2 The Algorithm

PRBR can be divided into three phases: round_request, read and write phase.
The read and write phase are quite similar to the phases of Paxos, whereas the
round_request is an optimization of the read phase by letting acceptors chose the
round number for a proposer. This section covers all phases in detail and is followed
by some example executions of PRBR. Understanding any non-trivial algorithm
solely by reading its textual description or pseudocode is difficult. Therefore, some
executions examples will be provided in Section 7.3.

Chapter 7. Paxos Round Based Register 28

Internal State of Acceptors

Every k-acceptor holds four state variables.

k The key of the item this acceptor is responsible for.

val The current value of the item this acceptor is responsible for. If no value exists
yet, then ⊥ will be used to denote a nonexisting value.

rread The highest round in which a ReadFilter was applied to val. As an initial
value any round can be chosen that is smaller than any round a proposer
would choose. For example, the round number can be set to 0 and an
arbitrary round ID part can be used. Will be also referred to as read round.

rwrite The highest round in which a WriteFilter was applied to val. It has the
same initial value than rread. Will be also referred to as write round.

Note that there does not exist an explicit command log. As soon as an acceptor
votes for a command, it applies the respective WriteFilter immediately. The
command sequence is established implicitly by the sequence of values an acceptor
holds during its lifetime.

7.2.1 Phase 1: round_request

The round_request phase is the first phase and entry point of PRBR. It starts
as soon as a proposer p receives a request message with a command cmd from
client c. As described earlier, cmd consists of k – the key of the item which will be
accessed by the command – and a list of filters. It is assumed that the proposer
has some means to remember cmd and c across its actions and knows when this
information can be removed safely. Code Listing 7.1 depicts the pseudocode of the
round_request phase and can be used as a reference for the textual description.

In basic Paxos, the first phase begins with p choosing a round number (proposal
number in Paxos terminology). However, how does p know what round number
is high enough to be successful with its proposal? If p chooses a round number
which is too small, then it will only get denies from acceptors and has to try again,
thus wasting the time of two message delays. Therefore, PRBR lets the acceptors
choose the round number as part of this phase.

The proposer begins by choosing only the round ID part of the round, rID . To
reiterate, it consists of p’s PID and some unique request ID. Afterwards, p sends
the round ID along with the key and the ReadFilter of cmd to all k-acceptors (line
1-2).

Upon reception of the message, each k-acceptor increments its read round
rread and replaces the round ID part with rID (line 3). In Paxos terminology, the
acceptor has now promised to not vote for a new command with a round smaller
than the new rread. If there are any proposals still in progress for the old value of
rread, then the acceptor will deny them. The acceptor now applies the received
ReadFilter on val and sends the result to p along with both of its rounds rread and
rwrite (line 4).

The second goal of this phase is to verify if there is still an unfinished proposal
in progress. Once p received a reply from a k-quorum of acceptors, it checks if
this k-quorum is consistent. For that, p checks if all received read rounds and all

Chapter 7. Paxos Round Based Register 29

Proposer
On receive(⟨request, cmd⟩) from client c:

1: rID ← choose round ID
2: send(⟨rr, cmdk, rID, cmdrf⟩) to all

k-acceptors

On receive(⟨rr_reply, rrq , rwq
, valq⟩)

from all q of some k-quorum Q:
5: if cons(rrq) ∧ cons(rwq

) then
6: q

′
← any q

7: if type(cmd) = read then
8: send(⟨result, valq′⟩) to c
9: else

10: send(⟨wStart, rrq′ , rwq′
, valq′⟩)

to self
11: end if
12: else if ¬cons(rwq

) then
13: send(⟨write_through, c, cmd)⟩)

to self
14: else
15: rnew = inc(max(rrq))
16: send(⟨rStart, rnew⟩) to self
17: end if

k-Acceptor

On receive(⟨rr, k, rID, rf) from
proposer p:

3: rread ← inc(rread, rID)
4: send(⟨rr_reply, rread, rwrite, rf(val)⟩) to

p

Code Listing 7.1: Pseudocode of PRBR’s round_request phase.

received write rounds are consistent. Note that p does not have to compare the
received values for consistency. As will be shown later, two k-acceptors with the
same write round will always have the same value (see property P3). p’s behavior
depends on whether the quorum was consistent and the type of command received
by c:

(1) First, consider the case of a consistent k-quorum (line 5-11).
(1.1) If cmd is a read command (line 7-8), then p does not have to continue

with the next phases of the protocol and can deliver the received value to the
client. That way read commands are not explicitly included in the command
sequence – the command is not chosen by k-acceptors in the same manner a write
command would be. Therefore, the read command will not be appended to the
command sequence and thus will not be learned by a proposer. This means the
safety requirements established in Section 5.2 are not applicable. However, read
commands must still adhere to strong consistency. To be more precise, this means
that a read command is never allowed to return an older state than any previous,
non-concurrent command.

P 1. Once a read command has returned some result based on a command sequence
seq, all subsequent reads return a result based on a command sequence with seq as
prefix.

Since writes also return results to clients, they must be considered here as well.
Once a write has been completed, all subsequent read commands must return the

Chapter 7. Paxos Round Based Register 30

new state. However, the state modifications done by writes are handled in the
write phase of PRBR. Therefore, some knowledge must be presumed here:

The write phase behaves similar to Paxos’ second phase. Most importantly,
a k-quorum must vote for a write command in the same round before it can be
learned. In other words, a write command must be chosen before its result can be
delivered to a client. This will be further discussed in Section 7.2.3.

This means that the round_request phase can return the result of read command
at this point in the protocol, if the following property is satisfied:

P 2. Once a write command cmdw has been chosen, all subsequent reads include
cmdw.

Proof sketch. It was already established in Section 7.1.2 that no newer chosen
command can exist if p reads a consistent k-quorum, because this implies the
existence of two k-quorums with an empty intersections. Therefore, p can safely
return the result here without violating P2.

P1 holds if no read returns an older state than a previous read command.
Because p has seen a consistent k-quorum, all later reads made by any proposer
will see at least one k-acceptor in this state (or a newer state) due to the k-quorum
property. Therefore, any later read will either (a) see the same (or newer) state as
a consistent quorum, or (b) see an inconsistent state. In the case of (a), the read
result can be returned without violating P1. In the case of (b), the proposer does
not return a result. This will be covered in (2.1).

(1.2) If cmd is a write command (line 9-10), then p can proceed to the write
phase of the protocol. It does so by sending a wStart message to itself which
contains the seen read round, write round and value. Again, due to the consistent
k-quorum, p can be certain the seen state can be safely used as the basis for a new
command.

(2) Next, consider the case of an inconsistent k-quorum (line 12-17).
(2.1) If the received write rounds are inconsistent (line 12-13), then p is in

the same scenario as described in Section 7.1.2. p can not propose its command
safely (and can also not return a read without violating P1). Because the original
proposer of the command might have crashed, p can also not wait until someone
else has finished the started consensus. Therefore, p starts a repair process called
WriteThrough. Basically, a WriteThrough uses a special command that reads the
complete value (and thus effectively reading the complete command sequence)
and overrides any existing state with its WriteFilter. Afterwards, p re-initiates its
original request. The specifics of WriteThroughs are covered in Section 7.2.4.

(2.2) If the received read rounds are inconsistent (line 14-17), then either (a)
a read is in progress or (b) a write is in progress but has not established a full
consensus yet. For (b), the proposer has no way of knowing if there already exists
a k-acceptor which has voted for the new command. In contrast to (1.2), p cannot
simply propose its own command even if it is clear that no newer command can
be chosen:

Every k-acceptor which has received a message from p increments its read
round. If the read rounds are inconsistent before the increment, then chances are
that they are inconsistent after they have processed p’s message. Let rhighest be
the highest read round seen by p. Due to the inconsistencies, it is not certain that

Chapter 7. Paxos Round Based Register 31

there is a k-quorum with rhighest as its read round. Therefore not enough acceptors
might have given a valid promise.

To solve this, p starts a read with an explicit round number. The round number
p chooses is rhighest incremented by one. This way p can be sure that a k-quorum
exists that can give a promise using this round (under the assumption that no
concurrent command exists). This is done in the read phase of PRBR, which is
described in the following section.

7.2.2 Phase 2: read

The read phase will only be executed if there are concurrent commands for the
same key, or some messages of a previous proposal were lost or delayed. The phase
fulfills a similar purpose to the round_request phase, with the exception that p
now knows a round which it can choose to likely succeed with its proposal. Thus,
the structure of the round_request and read phase are similar, as can be seen by
comparing the pseudocode of the round_request phase (Code Listing 7.1) with
the pseudocode of the read phase (Code Listing 7.2).

The phase starts with proposer p receiving a rStart message from itself. The
message includes a round r, which is the highest read round received in the
k-quorum of the previous phase incremented by one. It is assumed that p still
remembers the original request, thus having access to c and cmd. Alternatively,
this information can be included in the rStart message.

First, p creates a new round r
′ with the same round number as r but a newly

chosen round ID (line 1-2). This is a preventive measure because there might
already exist some k-acceptors with r as read round. To provide a simple example,
assume that three k-acceptors exist with read round numbers 1, 2, 3, respectively.
This can happen since an arbitrary number of round_requests can be executed
concurrently. During the execution of the round_request phase, p reads the first
two k-acceptors. Now their read round numbers are 2, 3, 3. p saw an inconsistent
k-quorum and proceeds to the read phase with a round with round number 4
(due to the increment). However, a delayed message from p’s round_request can
still reach the third k-acceptor. Now, this acceptor also has a read round with
round number 4. If p would not change the round ID in the following read phase,
then this new request’s round would be indistinguishable from an already existing
round. To prevent potential problems for certain interleaving of messages when
handling concurrent proposals caused by some unknown subtlety of the protocol,
p therefore changes the round ID.

p then sends a read message to all k-acceptors with the key and ReadFilter
of the command submitted by c and the new round r

′ (line 3). Each k-acceptor
receiving the message behaves in a similar manner than in basic Paxos during
phase 1. If the acceptor’s read round is higher than the received round, then it
denies the request. Note that the pseudocode does not depict deny messages for
better readability. Deny messages include the acceptor’s read round.

If r′ is larger than rread, then the k-acceptor sets rread = r
′, thus preventing any

proposals with smaller rounds from being accepted by it in the future. Afterwards,
the acceptor applies the received ReadFilter and replies to p with rread, rwrite and
the result of the ReadFilter in a read_ack message (line 4-7).

Chapter 7. Paxos Round Based Register 32

Proposer
On receive(⟨rStart, r⟩) from self :

1: rID ← choose new round ID
2: r′ ← set_id(r, rID)
3: send(⟨read, cmdk, r

′
, cmdrf⟩) to all

k-acceptors

On receive(⟨read_ack, rrq , rwq
, vreadq⟩)

from all q of some k-quorum Q:
8: if cons(rwq

) then
9: q

′
← any q

10: if type(cmd) = read then
11: send(⟨result, vreadq′⟩) to c
12: else
13: send(⟨wStart, rrq′ , rwq′

, vreadq′⟩)
to self

14: end if
15: else
16: send(⟨write_through, c, cmd⟩)

to self
17: end if

k-Acceptor

On receive(⟨read, k, r′, rf⟩) from
proposer p:

4: if r
′
> rread then

5: rread ← r
′

6: send(⟨read_ack, rread, rwrite, rf(val)⟩)
to p

7: end if

Code Listing 7.2: Pseudocode of PRBR’s read phase.

p waits until it has received a k-quorum of read_acks. Here, p might also
realize that its request failed due to receiving too many denies. To be more precise,
p knows that its request failed if it has received a k-quorum of denies. In this case,
there is only a potential k-minority of acceptors left from which it could receive
read_acks. p therefore has to restart the read phase with the highest received
round in deny messages.

Once p has received the k-quorum of read_acks, it is presented with similar
options than in the previous phase. First, p checks if the seen k-quorum is
consistent. For that, it checks if all received write rounds are the same (line 8). It
is not necessary for p to compare read rounds since they are equal to the round
sent to the acceptors in the beginning of this phase.

If the k-quorum is inconsistent (line 15-17), this means a write is in progress
and at least one k-acceptor has voted for this command. As with the previous
phase, p has no way of knowing if the new command was already chosen or not.
Thus, p has no other option than starting a WriteThrough (see Section 7.2.4).

If the k-quorum is consistent (line 9-14), then p can deliver the result of the
ReadFilter to the client c if cmd is a read command. Otherwise, cmd must be a
write and p can proceed to the write phase by sending a wStart message to itself.
This message includes the same information than in the round_request phase: the
seen read round, write round and the read value.

Due to the similar structure of the round_request and read phase, an identical
argument for p’s decision can be applied here.

Chapter 7. Paxos Round Based Register 33

7.2.3 Phase 3: write

The write phase starts with p receiving a wStart message from itself. In
addition to the message’s type, it contains three elements rr, rw and vread. To
summarize the previous phases, p can infer the following information from the
content of the message:

rr The round used by p to receive promises from a k-quorum. A least a k-quorum
has rread ≥ rr, because an acceptor never decreases its rounds. If there is no
concurrent request for the same key, then at least a k-quorum has rread = rr.
The remaining k-minority of acceptors can have either a higher or lower read
round. As will be explained in this section, the write phase follows the same
basic principles as basic Paxos. Therefore, no write will succeed with a round
smaller than rr.

rw The write round of the latest chosen command. There cannot be a chosen
command with a higher write round r

′
w, since this would imply that a

k-quorum with rwrite = r
′
w exists. Then p would have read an inconsistent

k-quorum in an earlier phase because any two k-quorums have a non-empty
intersection. However, p proceeds only to the write phase after receiving
a consistent k-quorum. Thus, assuming the existence of a higher chosen
command leads to a contradiction.

vread The result of cmdrf (val), where val is the state of the item with key k in
write round rw. As already mentioned, all k-acceptors with the same k and
rw always have the value for val (see property 3). Since rw is the write round
of the latest chosen command, val is the most recent state of the item. No
client has received a result which is based on a newer state yet.

Analogously to the read phase, it is assumed that p still has access to c and
cmd: The client and its proposed command, respectively. cmd must be a write
command because all reads are delivered in an earlier phase.

At the beginning of the write phase, which is depicted in Code Listing 7.3, p
uses the ContentCheck of cmd to verify if this write command is a valid successor
to the current state of the consensus sequence (line 1-2). For example, when using
Scalaris’s transaction protocol, the ReadFilter of cmd might have read the write
lock of an item. If the correct transaction has acquired the lock, cmd is a valid
command. Otherwise, the transaction is not allowed to manipulate the value, in
which case the command will be denied.

If the command is not valid, p notifies the client with a write_deny message,
which includes a reason for the deny given by the ContentCheck (line 6). If the
command is valid, then p sends a write message to all k-acceptors. The message
includes the key, WriteFilter, and write value vwrite of cmd, as well as both rounds
rr, and rw. In addition, the UpdateInformation of the ContentCheck are included
as well (line 4).

Every k-acceptor receiving the message checks if it can vote for the received
WriteFilter (and by extension cmd) in round rr. For that, two conditions must be
fulfilled: (1) rr ≥ rread and (2) rw = rwrite (line 8).

If both conditions are satisfied (line 9-13), the acceptor sets both read round
and write round to rr (the read round is updated because this acceptor might not

Chapter 7. Paxos Round Based Register 34

Proposer
On receive(⟨wStart, rr, rw, vread⟩) from
self :

1: cc← cmdcc
2: {valid, i}← cc(vread, cmd)
3: if valid then
4: send(⟨write, cmdk, rr, rw,

cmdwf , i, cmdvwrite
⟩) to all

k-acceptors
5: else
6: send(⟨write_deny, i⟩) to c
7: end if

On receive(⟨write_ack, vretq⟩) from all q
of some k-quorum Q:

15: q′ ← any q
16: send(⟨result, vretq′⟩) to c

k-Acceptor

On receive(⟨write, k, rr, rw, wf, i, vwrite⟩)
from proposer p:

8: if rr ≥ rread ∧ rw = rwrite then
9: rread ← rr
10: rwrite ← rr
11: {vnew, vret}← wf(val, vwrite, i)
12: val ← vnew
13: send(⟨write_ack, vret⟩) to p
14: end if

Code Listing 7.3: Pseudocode of PRBR’s write phase.

have received the messages of the previous phases). Then it applies the received
WriteFilter. Recall from Section 7.1.3 that WriteFilter return two values vnew and
vret. vnew is the new state of this acceptor, whereas vret will be returned to the
proposer. Depending on the WriteFilter, both values might be identical. However,
vret is simply an ok or true in many cases that indicates that the command
was applied successfully. Once val is set to vnew, the acceptor has voted for the
command. It then sends a write_ack message to the proposer and includes vret.

Is (1) or (2) not satisfied, then the acceptor does not vote for this command
and sends a write_deny message to p.

Condition (1) is analogous to basic Paxos’ second phase. It prevents an acceptor
from voting for a command with a lower round than it has already given a promise
for in previous phases. Condition (2) has no such equivalent because here acceptors
vote for a growing sequence of commands in-place (i.e. without allocating new
resources for each new command). (2) is necessary to ensure that all acceptors
apply all commands without omissions. The following scenario illustrates how
omissions of commands might happen:

Assume an item that is replicated three times is used to store a list. An append
command is provided to clients to append elements to the list. Three append
commands are issued sequentially to append element A, B and C, respectively.
They will be referred to as cmdA, cmdB and cmdC .

All k-acceptors complete the round_request phase and vote for cmdA. Since a
k-quorum has voted for the command, cmdA is now the newest chosen command.

Afterwards, a client submits a request with cmdB. But one of the k-acceptors
is unavailable. This can happen due to various reasons: The acceptor might have
crashed, links might have lost messages, or the relevant messages might simply be
delayed for a long time. However, two k-acceptors are a proper majority and thus
a k-quorum. The protocol can proceed normally and both available k-acceptors
vote for cmdB as the next command in the consensus sequence. cmdB is therefore

Chapter 7. Paxos Round Based Register 35

(a)
a1 ⊥ [A] [A,B]

a2 ⊥ [A] [A,B]

a3 ⊥ [A]

append A append B

append A append B

append A

(b)
a1 ⊥ [A] [A,B]

a2 ⊥ [A] [A,B]
consistent quorum

a3 ⊥ [A]

append A append B

append A append B

append A

(c)
a1 ⊥ [A] [A,B] [A,B,C]

a2 ⊥ [A] [A,B] [A,B,C]

a3 ⊥ [A] [A,C]

append A append B append C

append A append B append C

append A deny append C

Figure 7.2: State of k-acceptors with sequential append commands.

chosen. This state is depicted in Figure 7.2a.
Now, the third command cmdC is submitted to a proposer. In every step of the

protocol, proposers send their messages to all k-acceptors, but wait only until they
receive responses from a k-quorum. Then the proposer acts immediately because
it does not know if more correct k-acceptors exist. All messages arriving later are
irrelevant. As shown in Figure 7.2b, the proposer receives a consistent quorum if
the replies of a1 and a2 arrive first. Because of that, the proposer can proceed to
the write phase of the protocol. As with the previous command, a1 and a2 vote
for the cmdC , thus choosing the command. However, a3 can also receive the write
message. If a3 has not received any additional messages, its read round cannot
be higher than the read round of a1 or a2. Therefore, condition (1) is satisfied.
But condition (2) is not. Round rw included in the write message is that of cmdB
because a1 and a2 voted for this command. a3’s write round must be equal to the
round cmdA was chosen in. Since rounds are unique for every request they cannot
be the same. Thus, a3 does not vote for cmdC .

Without condition (2), a3 would have voted for cmdC . Since it skipped the
second command, a3’s value would be [A,C], whereas the other replicas value
is [A,B,C]. Since the last command all k-acceptors voted for is the same, their
write round is the same as well. This would be problematic. Any subsequent
read would see consistent rounds and therefore might deliver either [A,C], or
[A,B,C]. This clearly violates the stability requirement. Even if the protocol
explicitly compares the values and detects an inconsistent state, the proposers
have no means of knowing which value encodes the complete sequence. This leads
to the following property the protocol must satisfy:

P 3. Any two k-acceptors that vote for a command in the same write round rwrite

hold the same value val.

Chapter 7. Paxos Round Based Register 36

Proof sketch. Property P3 can be shown by inductive argument. As the base
case, all k-acceptors are initialized with the same write round and value. Due to
condition (2), all k-acceptors that vote for the same (n + 1)th command have also
voted for the same n

th command in the same write round. Since only a single
proposer sends write message for a specific command and all those message contain
the same rounds, all k-acceptors that vote for the same (n + 1)th command have
the same write round. Furthermore, two different commands cannot be proposed
using the same write round since every proposer chooses a unique round ID at the
beginning of the protocol.

It is important to note at this point, that the update of an acceptors’ state
variables (line 9,10 and 12) within its action in the write phase must occur
atomically. Otherwise, an acceptor that crashes and recovers at the wrong time
might only update part of its state. For example, it might update its write round
but crashes before its value can be updated, which can cause a violation of property
P3.

Once p has received a k-quorum of write_ack replies it has learned the result
of cmd (line 15-16). In other words, p learned a sequence of write commands with
cmd as the last element in this sequence. Due to property P3, all k-acceptors that
have voted for the command return the same result. Thus, p can forward the
result to c. This concludes the protocol.

It is also possible for p to receive a k-quorum of write_deny messages. p knows
that its write failed since only a k-minority remains that can vote for the command
in this round. Therefore, p has to retry its proposal in a higher round. For that
purpose, it is useful to include the reads rounds of the acceptors sending denies.
That way, p can use the highest received round to retry starting with the read
phase.

Analogously to reads, it must be shown that writes satisfy the safety require-
ments for consensus sequences.

Nontriviality is easy to see. Acceptors only vote for commands that have been
proposed by a proposer and proposers propose only those commands that have been
send by a client. Since Byzantine failures are not considered, no process deviates
from the protocol and the content of messages are not corrupted. Therefore, a
command is only included if it has been proposed before.

Stability requires that a fixed proposer (which doubles as a learner in PRBR)
always learns an increasing sequence of commands. Once a command is included
in the learned sequence, it must be included whenever the proposer learns the
sequence in a higher round. Since a command can be learned only after it was
chosen, PRBR must exhibit the following property:

P 4. Once a write command cmdw has been chosen, it is included in the command
sequence of all write commands chosen in a higher write round.

Proof sketch. Once a write command cmdw has been chosen, a k-quorum has voted
for it. A k-acceptor never discards its vote for cmdw

7. – all subsequent write

7It will be shown later that a k-acceptor, in fact, can discard its vote for a command as part
of a WriteThrough. However, this is only possible if the command is not chosen.

Chapter 7. Paxos Round Based Register 37

commands are applied on top of it Therefore cmdw will be always included in the
command sequence of at least a k-quorum. Due to P3, no acceptor can skip a
chosen command in its command sequence. Therefore, cmdw is included in all
votes of any k-acceptor in a higher write round once it has been chosen.

In addition to P4, the order of chosen commands must not ever change to fulfill
stability.

P 5. Once write command cmdw has been chosen as the newest element in command
sequence seq, the command sequence of all later chosen write commands contains
seq as prefix.

Proof sketch. Due to P4, once a command is chosen it will be never removed from
any command sequence it is included in. The only manipulation of a command
sequence performed as part of the protocol is to append command at the end of
them. Therefore, the order of already chosen commands remains unchanged.

Consistency is closely related to stability. For any two proposers p1 and p2,
one proposer must always learn a command sequence which is a prefix of the
others learned command sequence. This is a direct consequence of P5, because a
proposer learns the state of the command sequence only if its proposed command
was chosen.

7.2.4 WriteThrough

The description of the protocol so far focused on the execution path in which the
proposer received a k-quorum of consistent write rounds in either the round_request
or read phase. However, if there are concurrent write commands for the same key
or one of the acceptors recovered from a previous crash, then it is possible for a
proposer to receive an inconsistent state.

This problem can be illustrated by the continuation of the example shown in
Figure 7.2 on page 35. To reiterate, a sequence of append commands were issued
for an item replicated three times. The third k-acceptor did not receive messages
of the second command and thus denied the third command. Figure 7.3a shows
the state of the k-acceptors at the end of the example. As with the explanation of
PRBR’s phases, some fixed key k is assumed for the remainder of this section.

When a new command is issued for the item, then the proposer either receives a
consistent k-quorum if the replies from a1 and a2 arrive first in the round_request
phase, or an inconsistent k-quorum if a3’s message arrives earlier. The consistent
case is covered in the write phase of the protocol. However, a3 will never vote for
any new commands because it knows that it is missing a chosen command in its
sequence.

Eventually, some proposer p will see an inconsistent k-quorum. Even in
scenarios in which the communication links to a3 are systematically slower than
all other links, p will definitely see such a quorum if a1 or a2 crashes. If this
happens, p starts the WriteThrough process by sending a write_through message
to itself containing the current command cmd and the client c that has issued the
command. For reference, see Figure 7.1 line 15 or Figure 7.2 line 16 for a proposer
triggering a WriteThrough in the round_request or read phase, respectively.

Chapter 7. Paxos Round Based Register 38

Basically, a WriteThrough is a special write command that attempts to
synchronize the states of all k-acceptors. It is executed like any normal write
command with two exceptions: First, a WriteThrough proceeds to the write phase
even if the proposer receives inconsistent write rounds in a previous phase. Second,
k-acceptors will always vote for a WriteThrough if it is in a higher round than the
highest round they have given a promise for (which means that they ignore the
condition rw = rwrite in Figure 7.3 line 8).

Since a WriteThrough is a write, it has a ReadFilter, ContentCheck and
WriteFilter. As will be seen later, the write value vwrite of the command does
not matter and is therefore the empty value ⊥. The filters perform the following
operations:

ReadFilter Acceptors do not store their command sequences explicitly. When
they vote for a new command, only their stored value val will change. Its
current value is the result of the sequence of commands they voted for.
The ReadFilter of a WriteThrough reads the complete value stored in the
respective acceptor (vread = val). Therefore, this can be seen as implicitly
returning the full command sequence to the proposer.

ContentCheck A WriteThrough is always a valid follow-up command. Therefore,
the ContentCheck will always pass. The UpdateInformation i returned by
the ContentCheck is the unmodified value vread.

WriteFilter Recall from Section 7.1.3, that a WriteFilter returns a tuple {vnew, vret}
based on i, val and vwrite. A WriteFilter which is part of a WriteThrough will
always return {ok, i}. This means the new state of an acceptor is independent
of its previous state. After it has voted for the WriteThrough command
val = i. Here, ok denotes some arbitrary value that indicated that the
command was applied successfully.

A WriteThrough is executed as follows:
Once p has received the write_through message, it starts a round_request with

the aforementioned write command and itself as the client. It proceeds through
the round_request phase (and potentially the read phase if p saw inconsistent read
rounds) normally. However, if p receives inconsistent write rounds and consistent
read rounds, then it will use the reply of the k-acceptor with the highest write
round to start the write phase.

In the context of the example depicted in Figure 7.3, p has received the
replies from k-acceptor a3 and a2 first. a2’s write round must be higher than a3’s,
because a3’s command sequence is a prefix of a2’s sequence. Therefore, p sends
the wStart message with a2’s read round, write round and value [A,B,C] (see
round_request’s pseudocode in Code Listing 7.1 on page 29).

In the beginning of the write phase, p applies the content check, which passes
and returns the value of the highest previously received reply as UpdateInformation
– in this case [A,B,C]. p then sends a write message as depicted in Code Listing
7.3 (page 34).

As already mentioned, any k-acceptor receiving the message only checks if the
command is proposed in a high enough round. Since this command’s round is the
highest received round in the previous phase, at least a k-quorum votes for the

Chapter 7. Paxos Round Based Register 39

(a)
a1 ⊥ [A] [A,B] [A,B,C]

a2 ⊥ [A] [A,B] [A,B,C]

a3 ⊥ [A]

append A append B append C

append A append B append C

append A

(b)
a1 ⊥ [A] [A,B] [A,B,C]

a2 ⊥ [A] [A,B] [A,B,C]

a3 ⊥ [A]
inconsistent quorum

append A append B append C

append A append B append C

append A

(c)
a1 ⊥ [A] [A,B] [A,B,C] [A,B,C]

a2 ⊥ [A] [A,B] [A,B,C] [A,B,C]

a3 ⊥ [A] [A,B,C]

append A append B append C WTWT

append A append B append C WT

append A WriteThrough

Figure 7.3: Synchronizing k-acceptor state with WriteThrough (WT).

WriteThrough command under the assumption that no concurrent command for k
exists. Therefore, the WriteThrough is chosen.

Once p has received a k-quorum of write_acks, it knows that a consistent
k-quorum currently exists. The WriteThrough is completed and p can therefore
try to establish the original command cmd again, as described in the previous
sections.

The main idea of WriteThroughs is that the resulting acceptor state is indepen-
dent of the previous state this acceptor held. This way, the old command sequence
of the acceptor is effectively replaced by the command sequence of the acceptor
with the highest seen write round.

In addition to the effect seen in Figure 7.3, this can lead to acceptors discarding
their vote of their newest command. For example, acceptor a1 might have already
received another command which appends value D. Nevertheless, a1’s value
would be still [A,B,C] after the WriteThrough. Since a1 was not included in the
k-quorum, p has no information that a newer command might exist. Due to the
WriteThrough a1 has effectively forgotten its vote for the new command.

However, it is not possible for an already chosen command to be discarded that
way. A newest chosen command cmd must exist in at least a k-quorum of acceptors.
p receives also a k-quorum in the first phase of processing a WriteThrough. The
k-quorum property dictates that both quorums have a non-empty intersection.
Thus, p receives at least one reply from a k-acceptor that has voted for cmd. As a
consequence of property P3, a k-acceptor can only vote for a command if it has
already voted for all previously chosen commands. Therefore, no chosen command
can be discarded due to a WriteThrough, which means that property P4 is not
violated. A WriteThrough only copies an existing command sequence to other
acceptors. No reordering of commands takes place. Therefore, P5 holds as well.

Chapter 7. Paxos Round Based Register 40

7.3 Execution Examples

PRBR is considerably more complex than basic Paxos. It might be hard to
develop an understanding of the behavior of the protocol with just the textual
description. This is especially true without previous experience with other quorum
based protocols. Therefore, this section provides some basic examples to highlight
some common cases in PRBR. The examples will be illustrated using the following
format:

step prop. cmd a1 a2 a3

1 − − {0, 0,⊥} {0, 0,⊥} {0, 0,⊥}
2 pA cmdA {1A, 0,⊥} {1A, 0,⊥} {0, 0,⊥}

Example 7.1: Example workflow in PRBR.

The figure depicts the state of three k-acceptors a1, a2, a3 for some fixed key k.
Each 3-tuple shows the read round (rread), write round (rwrite) and value (val) of
the respective k-acceptor at a specific time. For rounds, 1A denotes a round with
round number 1 and round ID A. The key is not included because a fixed key is
assumed.

In every step, each acceptor might receive a message from a proposer (ab-
breviated as “prop.” due to space constraints). The acceptor changes its state
accordingly to the protocol and immediately responds to the proposer. Acceptors
are highlighted if their response is included in the k-quorum. All surplus messages
are ignored by the proposer as per protocol. For the sake of clarity, quorums in
the round_request or read phase are colored green (dashed), and quorums in the
write phase are colored red (dotted). If an acceptor does not receive any message
for any reason (crash, message delay or loss) it is grayed out. The second and
third columns are used to distinguish which proposer sent the message to establish
which command.

For example, in step 2 of Example 7.1, k-acceptor a1 and a2 have received a
round_request message and their replies are included in the proposers k-quorum,
whereas a3 has not received the message (yet). The message was send by proposer
pA to establish the command cmdA.

For simplicity, all write commands used in the execution examples are simple
append commands that append a single element to a list. This way, the order in
which the commands are applied can be easily seen for each acceptor.

Sequential Write and Read

The easiest example is that of sequentially processed commands. Example 7.2
shows the state changes of the k-acceptors in this case.

The example begins with all k-acceptors in their initial state. Some proposer pA
receives a write request to append the value A. pA starts the round_request phase.
In step 2, k-acceptor a1 and a2 have received pA’s message, thus incrementing their
read rounds and setting the round ID’s according to the ID provided by pA. a3
is temporarily unavailable and does not receive the message. At the end of step
2, pA receives the messages from a1 and a2 and thus sees a consistent k-quorum.

Chapter 7. Paxos Round Based Register 41

step prop. cmd a1 a2 a3

1 − − {0, 0,⊥} {0, 0,⊥} {0, 0,⊥}
2 pA cmdA {1A, 0,⊥} {1A, 0,⊥} {0, 0,⊥}
3 pA cmdA {1A, 1A, [A]} {1A, 1A, [A]} {1A, 1A, [A]}
4 pB cmdB {2B, 1A, [A]} {2B, 1A, [A]} {2B, 1A, [A]}

Example 7.2: k-acceptor states with sequential write and read.

pA can now proceed to the write phase with rr = 1A, rw = 0 and val = ⊥
8. The

ContentCheck passes and pA sends a write message to the k-acceptors in step 3.
a3 is available again and receives the message along with a1 and a2. Since both
write conditions (rr ≥ rread and rw = rwrite) are fulfilled for all acceptors, they all
vote for the command. The replies of a2 and a3 arrive first at pA. The received
state is consistent and pA can notify c that its write was successful by sending the
return value of the WriteFilter to c. The reply from a1 arrives last and is discarded
by p because it already executed its action.

In step 4, a second request was submitted for this key. This time it is a read
command. The proposer which has received the request sends the corresponding
round_request message and receives a consistent k-quorum from a1 and a3. The
submitted ReadFilter might have returned the whole list, the first element of the
list, or just its length. In any case, the proposer can send the read value to the
client.

Inconsistent Read Rounds

If two or more commands that modify the same key are submitted to PRBR
concurrently, then it is likely that at least one proposer will see inconsistent read
or write rounds. In the example shown in Example 7.3, two concurrent write
commands cmdA and cmdB are submitted which try to append the value A or B
to list, respectively. Command cmdA is handled by proposer pA and command
cmdB by pB.

All k-acceptors begin in their initial state. In step 2, pA sends its round_request
message to a1 and a2. However, the message to a3 is delayed or lost. Before
pA starts its write phase, pB’s round_request messages arrive at a2 and a3. pB
therefore receives replies with read rounds 2B and 1B, which is an inconsistent
k-quorum. Therefore, pB will continue to PRBR’s read phase (step 3) with round
number 3.

Afterwards, pA’s write message arrives at a1. Because this acceptor has not yet
received any message from pB, it votes for cmdA (step 4). Shortly later, a3 receives
the pB’s delayed round_request message. But pB already received a k-quorum.
Therefore, a1’s reply is ignored (step 5).

In step 6, pB’s read message arrives at all three k-acceptors. The replies from
a2 and a3 arrive first. Thus pB sees a consistent k-quorum and proceeds to its

8In these examples, an append command is always a valid follow-up. Therefore, the ReadFilter
can always return ⊥ to minimize the size of the reply messages.

Chapter 7. Paxos Round Based Register 42

step prop. cmd a1 a2 a3

1 − − {0, 0,⊥} {0, 0,⊥} {0, 0,⊥}
2 pA cmdA {1A, 0,⊥} {1A, 0,⊥} {0, 0,⊥}
3 pB cmdB {1A, 0,⊥} {2B, 0,⊥} {1B, 0,⊥}
4 pA cmdA {1A, 1A, [A]} {2B, 0,⊥} {1B, 0,⊥}
5 pB cmdB {2B, 1A, [A]} {2B, 0,⊥} {1B, 0,⊥}
6 pB cmdB {3C , 1A, [A]} {3C , 0,⊥} {3C , 0,⊥}
7 pB cmdB {3C , 1A, [A]} {3C , 3C , [B]} {3C , 3C , [B]}
8 pA cmdA {3C , 1A, [A]} {3C , 3C , [B]} {3C , 3C , [B]}

Example 7.3: k-acceptor states with inconsistent read rounds.

write phase. Because a1’s reply arrives too late, pB has no knowledge that there is
an k-acceptor which has voted for command cmdA.

In step 7, pB’s write messages arrive at all three k-acceptors. a2 and a3 vote for
cmdB and reply to pB accordingly. a1 denies the write because round rw in pB’s
write message is 0 and this does not match with a1’s rwrite which is 1A. However,
the deny from a1 does not matter because two k-acceptors already voted for cmdB.
pB can therefore notify its client that the write was completed.

In step 8, pA’s delayed write messages arrive at a3 and a2. But due to pB’s
intermediate messages, their read and write rounds are too high to vote for the
command. Thus, they deny the write and do not change their state. pA knows
that it cannot succeed with cmdA in this round. Therefore, it retries by starting a
new read phase with round number 4. This is continued in the next section.

This example illustrates that the number of possible message interleavings is
high, even for a low number of k-acceptors and concurrent requests. In addition, it
shows that the conflict created by concurrent commands is costly to resolve. pA will
need at least four round trip times in total to establish cmdA. The establishment
of cmdB also required an additional round trip.

Inconsistent Write Rounds

This section is the continuation of the previous example. It illustrates how
a WriteThrough resolves inconsistent write rounds. To prevent drawing out the
example more than necessary, it is assumed that all of pA’s messages arrive at all
k-acceptors in the order they were sent and that no concurrent requests exist.

Step 8 depicts the final state of Example 7.3. To reiterate, pA has received
too many denies and is now starting the read phase with round number 4. In the
following step, the all k-acceptors receive the read message and update their read
rounds accordingly. a1 and a2 replied first, therefore pA receives inconsistent write
rounds. As per protocol, it must start a WriteThrough.

In general, a WriteThrough behaves like any other write command. This means
pA has initiate another round_request phase. But this time, the ReadFilter of the
command returns the full value of the k-acceptors, i.e. the complete list. At the
end of step 10, pA receives read round 5E consistently but receives inconsistent

Chapter 7. Paxos Round Based Register 43

step prop. cmd a1 a2 a3

8 − − {3C , 1A, [A]} {3C , 3C , [B]} {3C , 3C , [B]}
9 pA cmdA {4D, 1A, [A]} {4D, 3C , [B]} {4D, 3C , [B]}
10 pA cmdWT {5E, 1A, [A]} {5E, 3C , [B]} {5E, 3C , [B]}
11 pA cmdWT {5E, 5E, [B]} {5E, 5E, [B]} {5E, 5E, [B]}
12 pA cmdA {6F , 5E, [B]} {6F , 5E, [B]} {6F , 5E, [B]}
13 pA cmdA {6F , 6F , [B,A]} {6F , 6F , [B,A]} {6F , 6F , [B,A]}

Example 7.4: k-acceptor states with inconsistent write rounds.

write rounds, thus inconsistent states. As described in Section 7.2.4, pA uses the
reply with the higher write round, in this case 3C with value [B].

In step 11, pA sends its write message (with rr = 5E, rw = 3C and i = [B]).
All k-acceptors receive the message and vote for command. The WriteFilter of
the WriteThrough overrides the previous values of each k-acceptor. a1 discards
its previous vote for cmdA, but this causes no problems because cmdA was never
chosen. The WriteThrough is complete. pA can try again to establish cmdA. This
time pA is successful and can finally notify the client of the write command’s result
(step 12 and 13).

7.4 Fast Writes

PRBR’s normal execution path requires the completion of at least two phases
until a write command can be chosen. An optimization called fast writes exists,
that allows a proposer to chain multiple sequential writes on the same item. Similar
to Multi-Paxos, the first write in such a chain requires at least two round trips,
whereas all subsequent writes can skip round negotiation and proceed directly to
the write phase. This can be achieved by incrementing the read round of acceptors
when they votes for a command using a fast write. By doing so, acceptors behave
like they give a promise in a higher round immediately after voting for a write
command. An example of fast writes can be seen in Example 7.5.

step prop. cmd a1 a2 a3

1 − − {0, 0,⊥} {0, 0,⊥} {0, 0,⊥}
2 pA cmdA {1A, 0,⊥} {1A, 0,⊥} {1A, 0,⊥}
3 pA cmdA {2A, 1A, [A]} {2A, 1A, [A]} {2A, 1A, [A]}
4 pA cmdB {3A, 2A, [A,B]} {3A, 2A, [A,B]} {3A, 2A, [A,B]}

Example 7.5: A proposer chaining write commands using fast writes.

The first write command submitted by pA is processed normally with the
exception that all k-acceptors that have voted for cmdA increment their read
rounds immediately. This allows pA to skip the round_request phase can directly
proposer command cmdB with round number 2 after cmdA was chosen.

Chapter 7. Paxos Round Based Register 44

Fast writes make it possible to write in two message delays. However, they
cannot be used in all situations due to the absence of a distinguished leader. In the
example shown above, pA’s second write would have been denied if an intermediate
request submitted by a different proposer caused an increase of the round numbers.
Therefore, this method is only viable if a proposer submits multiple requests in a
short period of time or is sufficiently certain that no other request was submitted
by a different proposer.

Fast writes slightly change the behavior of acceptors. Mixing normal writes
and fast writes in the same examples might cause unnecessary confusion. Thus,
fast writes will be used in later sections of this thesis. However, it was important
to list this optimization here to give a complete overview of PRBR’s capabilities.

7.5 Double Application of Write Commands

PRBR is still work in progress. In its current state, there exist some interleavings
in which PRBR’s behavior is not ideal and has potential for improvement. Most
notably, the way WriteThroughs are handled right now can cause write commands
to be applied twice to a value. An example for this is depicted in Example 7.6.

step prop. cmd a1 a2 a3

1 − − {0, 0,⊥} {0, 0,⊥} {0, 0,⊥}
2 pA cmdA {1A, 0,⊥} {1A, 0,⊥} {1A, 0,⊥}
3 pA cmdA {1A, 1A, [A]} {1A, 0,⊥} {1A, 0,⊥}
4 pB cmdB {2B, 1A, [A]} {2B, 0,⊥} {2B, 0,⊥}
5 pB cmdWT {3C , 1A, [A]} {3C , 0,⊥} {3C , 0,⊥}
6 pB cmdWT {3C , 3C , [A]} {3C , 3C , [A]} {3C , 3C , [A]}
7 pA cmdA {4D, 3C , [A]} {4D, 3C , [A]} {4D, 3C , [A]}
8 pA cmdA {4D, 4D, [A,A]} {4D, 4D, [A,A]} {4D, 4D, [A,A]}

Example 7.6: Command cmdA is applied twice due to WriteThrough.

Proposer pA proposes cmdA that appends value A to a list. However, only
k-acceptor a1 votes for cmdA before proposer pB receives a different command for
the same item and causes all k-acceptors to increment their read rounds (step 3
and 4). This means that pA will eventually receive two deny messages indicating
that its write failed. In the mean time, pB receives inconsistent write rounds in
step 4, thus starting the WriteThrough process. By chance, the WriteThrough
includes a1 in its quorum (step 5) and successfully synchronizes all k-acceptors
with this value (step 6). Finally, pA has received the denies. However, it has no
information that a WriteThrough happened and thus proposes cmdA again (step 7
and 8), which means that cmdA is included two times in the command sequence.

From pA’s perspective, it is generally not possible to find out if its unsuccessful
write was already included in a WriteThrough by examining the received replies
in the round_request phase, because it is theoretically possible for an arbitrary
number of writes to succeed in the mean time. Therefore, the WriteThrough

Chapter 7. Paxos Round Based Register 45

mechanism must be modified to reliably notify the original proposers of the
commands. Efforts to solve this problem are currently underway.

7.6 Implementation Considerations

Using PRBR in a setting in which n items are replicated r times requires n∗ r
acceptor processes. Typically, n can be quite large, which makes it not efficient to
allocate a proper process for each logical acceptor process. However, the protocol
is designed in a way that makes it easy to use one proper process to serve as an
arbitrary number of acceptors.

Since the logical processes used in this thesis are simply a form of deterministic
state machine, it is possible to define the current state of an acceptor and its future
behavior for any given input by knowing its state variables. Thus, each proper
acceptor process can manage multiple logical acceptors by persisting their states
locally, for example in a hash table. Once a proper process receives a message for
some key k, it can simply retrieve the state of the respective k-acceptor from the
hash table, perform the computations as required by the protocol, and persist the
new state of the k-acceptor afterwards.

Naturally, one must be careful to prevent a proper process from handling
multiple k-acceptors of the same item. Otherwise, a single process failure would
affect multiple replicas.

7.7 Protocol Complexity

As long as all commands for a given key are issued in sequence and a k-quorum
of acceptors is available, then proposers will always receive consistent k-quorums
in the round_request phase of PRBR. For many systems, it is not unreasonable to
assume that this assumption holds for the vast majority of requests. As described
in Section 5.5, real world systems often only access different keys concurrently.
In PRBR, such commands are managed by separate command sequences and
therefore do not interfere with each other.

This means that PRBR can handle the majority of submitted read commands
in two message delays, whereas four message delays are needed until the result of
a normal write command can be delivered. As described in Section 7.4, writes can
also be processed in two message delays in certain situations by using fast writes.

Is every item replicated r times, then 2r or 4r messages will be sent as part of
the protocol to handle read or write request, respectively. Note that only messages
send between acceptors and proposers are included in this count. In the description
of PRBR, proposers sent messages to themselves when transitioning into a new
phase. However, this choice was made mainly for an easier separation of the phases
and more compact actions. Instead of sending a message to itself, the two actions
sending and receiving the local message can be simply merged.

Conflicts can occur every time two or more proposers access the same item.
Analogously to basic Paxos, this can potentially lead to dueling proposers, which
means that, as a theoretical worst-case scenario, proposers never recover. How-
ever, this state is unstable and the probability of long sequences of conflicts
asymptotically approaches zero, as already discussed in Section 4.5.

46

Recovering from inconsistent read rounds requires at least two additional
message delays by entering PRBR’s read phase. Inconsistent write rounds require
a WriteThrough to resolve. Since these behave in general like any other write, at
least four additional message delays are needed. This makes conflict resolution
expensive. The following chapter, which constitutes the main contribution of this
thesis, explores approaches to reduce conflict potential for concurrent access on
the same item by making use of the commutative properties of the submitted
commands.

8 Weakening Consensus Sequences
PRBR establishes a separate consensus sequence for every key in the system.
This makes it possible to handle concurrent requests for different keys without
interference, unless some higher-level abstraction, for example a transaction
protocol, introduces dependencies between them. In this case, sequential processing
of the requests can be enforced via PRBR’s ContentCheck mechanism. In
comparison to the more conventional approach of managing a single consensus
sequence for all keys, as described in Section 5.4, this reduces overhead caused by
concurrent requests in settings in which inter-key dependencies are sparse.

PRBR in its current state establishes a total order of commands in regard to a
single item. All commands are executed on all replicas in the same order. This
means that any two commands for the same key that are submitted concurrently
can potentially block each other from succeeding. Such conflicts can lead to dueling
proposers or require a WriteThrough to synchronize the state of replicas again. In
both cases, considerable overhead in terms of the number of needed round trips
occurs.

Often, it is not necessary to strictly order a pair of commands. The most
obvious examples are read commands. If there are two concurrent read commands
cmd1 and cmd2, then the order in which they are executed on a single replica does
not matter. Some replicas can execute cmd1 first, whereas others can execute cmd2
before cmd1. Since both commands are reads, they do not modify the state of the
respective replica. Thus, they can be executed in either order without changing
the result that is returned to the clients. Furthermore, some operations that can
be performed on items are inherently commutative. For example, an item might
be used to store a set of elements and a command is defined to add elements to
set. Naturally, the order in which elements are added to the set does not matter.
In such case, replicas can execute the commands in either order with the same
end result.

This chapter focuses on weakening the total order in which commands are
executed on a single consensus sequence by making use of the commutative
properties of commands. Three scenarios will be considered: two concurrent read
commands, a read with a concurrent write command, and two concurrent writes.

8.1 Interfering and Commutative Commands

When arguing about the execution order of a set of commands it is useful
to introduce the notion of interfering commands in addition to commutative

Chapter 8. Weakening Consensus Sequences 47

commands.
Let Cmds be the set of all possible commands. Reads and Writes denote the

set of all read and write commands, respectively, with Reads ∪Writes = Cmds .

Definition 10 (Interfering Commands). A command cmd1 interferes (≍) with
cmd2, if the result returned by cmd2 depends on the execution of cmd1 or if the
value of any item depends on the execution order of cmd1 and cmd2.

For a more compact notation, the binary relation ≍ will be used. cmd1 ≍ cmd2
means that cmd1 interferes with cmd2. The symbol ≭ is used for the negation of
interference. cmd1 ≭ cmd2 denotes that cmd1 does not interfere with cmd2. Note
that ≍ is not symmetric. For example, if cmd2 ∈ Reads and cmd1 ∈Writes , then
cmd2 ≭ cmd1 because no read command modifies the value of an item. However,
cmd1 ≍ cmd2 might hold depending on the choice of cmd1 and cmd2.

WriteThroughs are a special kind of write command because they try to
synchronize the item’s state across replicas and are treated slightly different by
PRBR. They act as a synchronization point in the command sequence. Thus,
WriteThroughs interfere with all other commands.

Two commands commute if they can be executed in either order without
changing the result of either command. In terms of interference, this can be
expressed as:

Definition 11 (Commutative Commands). A command cmd1 commutes (∥) with
cmd2, if cmd1 ≭ cmd2 and cmd2 ≭ cmd1.

Two commutative commands cmd1 and cmd2 are denoted as cmd1 ∥ cmd2. ∥
is a symmetric binary relation. Analogously to interference, ∦ is the negation of ∥.
WriteThroughs do not commute with any command because they interfere with
all other commands.

8.2 Commutative Reads

During the execution of a read command, the respective item is accessed via
the submitted ReadFilter in PRBR’s round_request or read phase. The item’s
value is not modified during the execution of the command.

However, the result of any command depends solely on the current value of the
item, since the only operation performed in reads or writes is the application of
various filters on top of the value. Therefore, reads do not interfere with any other
command.

cmd1 ≭ cmd2 cmd1 ∈ Reads , cmd2 ∈ Cmds (8.1)

By application of Definition 11, it follows that any pair of read commands
always commute with each other.

cmd1 ∥ cmd2 cmd1, cmd2 ∈ Reads (8.2)

This is a rather unsurprising result. However, it is convenient because it means
that the specific read commands that conflict with each other do not matter. This
simplifies the modification of the protocol to prevent such conflicts.

Chapter 8. Weakening Consensus Sequences 48

8.2.1 Identifying Avoidable Conflicts

Before the protocol can be modified to accommodate commuting read com-
mands, the problems in PRBR’s current state must be identified. Example 8.1
shows an example of two conflicting read commands in PRBR’s unmodified state.

step prop. cmd a1 a2 a3

1 − − {1A, 1A, V } {1A, 1A, V } {1A, 1A, V }
2 pA cmdA {2B, 1A, V } {1A, 1A, V } {1A, 1A, V }
3 pB cmdB {3C , 1A, V } {2C , 1A, V } {2C , 1A, V }
4 pA cmdA {3C , 1A, V } {3B, 1A, V } {3B, 1A, V }

Example 8.1: Concurrent, conflicting read commands.

Due to the message interleaving, the proposers of commands cmdA and cmdB
both see inconsistent read rounds. Both commands proceed to the read phase with
round number 4. However, only one command can succeed in this round. The
other command must retry again within a higher round.

In this example, both proposers need at least four message delays before a result
can be returned, potentially even more if they block each other in the protocols
read phase using ever increasing rounds.

Ideally, they both receive a consistent quorum in the round_request phase and
return the result after only two message delays. The easiest way to achieve this is
by simply not incrementing the read round of the k-acceptors in the round_request
phase when processing read commands.

Change 1. Acceptors receiving a read command in the round_request phase do
not increment their read round.

By doing so, an arbitrary number of read commands can access the same item
without conflict since the round numbers do not change at all. Proposers always
receive consistent quorums. This does not violate property P1 (page 29) since all
reads are based on the same command sequence.

The behavior of reads with concurrent writes is unchanged by the modification.
Once the command sequence is extended by a new write command (i.e. the write
command was chosen), any read will either see inconsistent write rounds and
proceed to the WriteThrough phase, or see a consistent quorum and return a result
based on the new command sequence. Thus, no read submitted after the write
command was chosen returns the old state. Furthermore, no read will return the
new state before the write command was chosen because only a k-minority with
the new state exists.

Therefore, PRBR still satisfies P1-2 with Change 1 and thus satisfies strong
consistency.

8.2.2 Modifying PRBR

As it turns out, the modification required to prevent conflicting read commands
is simple. Only the round_request phase must be modified. At the start of

Chapter 8. Weakening Consensus Sequences 49

Proposer
On receive(⟨request, cmd⟩) from client c:

1: rID ← choose round ID
2: send(⟨rr, cmdk, rID, cmdrf , type(cmd)⟩)

to all k-acceptors

On receive(⟨rr_reply, rrq , rwq
, valq⟩)

from all q of some k-quorum Q:
7: if cons(rrq) ∧ cons(rwq

) then
8: q

′
← any q

9: if type(cmd) = read then
10: send(⟨result, valq′⟩) to c
11: else
12: send(⟨wStart, rrq′ , rwq′

, valq′⟩)
to self

13: end if
14: else if ¬cons(rwq

) then
15: send(⟨write_through, c, cmd⟩)

to self
16: else
17: rnew = inc(max(rrq))
18: send(⟨rStart, rnew⟩) to self
19: end if

k-Acceptor

On receive(⟨rr, k, rID, rf, type⟩)
from proposer p:

3: if type = write then
4: rread ← inc(rread, rID)
5: end if
6: send(⟨rr_reply, rread, rwrite, rf(val)⟩) to

p

Code Listing 8.1: Pseudocode of PRBR’s modified round_request
phase.

the phase, the proposer simply includes the type of the received commands in
the message before sending it to the k-acceptors. Each k-acceptor receiving the
message only increments its read round if the command is a write command. Lines
3-6 in Code Listing 8.1 depicts this change in PRBR’s pseudocode.

As long as the command sequence of all k-acceptors is equal and no new write
command is started, all proposers executing read commands will receive consistent
k-quorums because the k-acceptors’ read rounds are not modified. The example
at the beginning of this section is now executed as depicted in Example 8.2.

step prop. cmd a1 a2 a3

1 − − {1A, 1A, V } {1A, 1A, V } {1A, 1A, V }
2 pA cmdA {1A, 1A, V } {1A, 1A, V } {1A, 1A, V }
3 pB cmdB {1A, 1A, V } {1A, 1A, V } {1A, 1A, V }
4 pA cmdA {1A, 1A, V } {1A, 1A, V } {1A, 1A, V }

Example 8.2: After PRBR’s modification, both pA and pB receive
consistent rounds and can deliver the read.

Chapter 8. Weakening Consensus Sequences 50

8.2.3 Impact

The changes made to prevent unnecessary conflicts are small. The first message
sent by every proposer now includes the command’s type as an additional element.
There are only two possible types of commands: reads and writes. This means
it is possible to encode this information in one bit (without accounting for the
overhead needed to add an additional element to a message).

When processing non-concurrent commands, the number of messages sent
and message delays needed by the protocol remains unchanged. Therefore, it is
expected that the modification has no measurable impact in this case.

For concurrent read commands, the number of message delays is reduced. All
read commands can be processed in exactly two message delays when there is no
concurrent write command. Therefore, the throughput is expected to increase.

No additional memory is needed because neither proposers nor acceptors store
additional data.

8.3 Reads Commuting with Writes

The second scenario considers a read command cmdR that submitted concur-
rently to a write command cmdW

As already established, cmdR ≭ cmdW for any given pair of commands, because
reads do not modify the state of the item. However, the converse cannot be
assumed in general. cmdW ≭ cmdR holds only if the write command modifies a
different part of the value than returned by the ReadFilter of cmdR.

For example, assume that both commands are submitted as part of a transaction
protocol. Then, cmdW might set read or write locks and cmdR’s ReadFilter might
only read the actual value stored at this key. In this case, the modification made
by cmdW has no impact on the data returned by cmdR. Thus, cmdW ≭ cmdR,
which leads to cmdW ∥ cmdR.

A mechanism to identify whether a pair of concurrent commands commutes
or not will be assumed as part of a higher abstraction layer which uses PRBR
internally. Doing so at runtime as part of PRBR is not realistic because this
would require analyzing the instructions of the filters included as part of each
command. In contrast to that, a higher layer typically provides only a finite set of
API function for clients to use. Therefore, the set of possible commands is known
beforehand which allows it to define any commutative properties between such
commands.

8.3.1 Identifying Avoidable Conflicts

As with conflicting reads, an example helps to identify were conflicts between
read and write commands can occur and which conflicts can be avoided. Example
8.3 depicts an unfinished write command with three concurrent read commands.

The changes made to PRBR in the previous section are already applied here.
Note that the write command cmdW is no longer blocked by the partially finished
read cmdR1. As long as reads are successful in the round_request phase, no
acceptor’s round numbers are modified. Therefore, such commands are invisible
to all other commands. This matches with the fact that read commands do not
interfere with any other commands.

Chapter 8. Weakening Consensus Sequences 51

step prop. cmd a1 a2 a3

1 − − {1A, 1A, V } {1A, 1A, V } {1A, 1A, V }
2 pR1 cmdR1 {1A, 1A, V } {1A, 1A, V } {1A, 1A, V }
3 pW cmdW {2B, 1A, V } {2B, 1A, V } {1A, 1A, V }
4 pW cmdW {2B, 2B, V ′} {2B, 1A, V } {1A, 1A, V }
5 pR1 cmdR1 {2B, 2B, V ′} {2B, 1A, V } {1A, 1A, V }
6 pR2 cmdR2 {2B, 2B, V ′} {2B, 1A, V } {1A, 1A, V }
7 pR3 cmdR3 {2B, 2B, V ′} {2B, 1A, V } {1A, 1A, V }

Example 8.3: Concurrent read and write commands.

In contrast, all three read commands are blocked by the partially executed write.
Commands cmdR1 and cmdR2 receive inconsistent read rounds and thus proceed
to the read phase, whereas the proposer of cmdR3 has to start a WriteThrough
due to inconsistent write rounds. However, is this additional work necessary to
ensure strong consistency?

The proposer of cmdR1, denoted as pR1, can safely return a result based on V if
it can prove that cmdW was not chosen at the time it received cmdR1. Otherwise,
property P2 would be violated. For that, the proposer has two options: (1) show
that cmdW was chosen after pR1 received replies from a k-quorum, or (2) show
that cmdW was submitted concurrently to cmdR1.

(1) can not be proved based on the information pR1 received. In fact, it can
be contradicted by a slight modification of the example. Assume that a3 has also
received the write message in step 4. Then, cmdW would have been chosen and
pR1 still receives the same information from its k-quorum.

However, pR1 can prove that (2) applies, because it received a k-quorum with
consistent write rounds. This means that all acceptors in this k-quorum received
the message from pR1 before they voted for cmdW . Since pR1 must have received
command cmdR1 before sending the messages to the k-acceptors, only a k-minority
could have voted for cmdW before cmdR1 was submitted. Thus, cmdW was not
chosen before the read command started. Conversely, cmdR1 does not happen
before cmdW because the proposer received a reply with an incremented read
round. Thus, cmdW and cmdR1 are concurrent.

Note that examining the write rounds is enough to ensure that cmdW was
not chosen before cmdR1 was submitted, which is sufficient for pR1 to return the
read command’s result. Furthermore, the only information necessary to reach this
conclusion was that the proposer received consistent write rounds. No assumptions
specific to the example were made. Therefore, this argument applies in general.
This leads to the following modification of the protocol:

Change 2. A proposer receiving consistent write rounds can always return the
result of a read command.

The proposer of cmdR2 also receives consistent write rounds, therefore it can
return the result of the command as well.

Chapter 8. Weakening Consensus Sequences 52

Change 2 does not need to know of any interfering or commuting relationship
between the respective commands. However, this changes when the proposer of
the read command receives inconsistent write rounds.

The proposer pR3 of cmdR3 in Example 8.3, receives inconsistent write rounds.
pR3 can deliver the command’s result depending on whether cmdW ∥ cmdR3 holds
or not. Let rf x denote the ReadFilter of cmdx.

First, assume that cmdW ∦ cmdR3. This means cmdW ≍ cmdR3, because
cmdR ≭ cmdW∀cmdR ∈ Reads. Therefore, rf R3(V ′) ≠ rf R3(V). Assuming pR3

decides to return the result of cmdR3 with the k-quorum it received, it must decide
which of the two values can be returned safely.

In the provided example, pR3 can not return rf R3(V), because it is possible that
cmdW was chosen before cmdR3 was submitted. pR3 has no information on acceptor
a3’s state. It is possible that a3 has voted for cmdW in step 4, which means cmdW
could be chosen already. Additionally, pR3 can also not return rf R3(V ′), because
it is still not certain that cmdW will be the next chosen command. Another write
command might receive votes from a2 and a3 if cmdW ’s remaining write messages
are delayed. Therefore, pR3 can not return either value safely. It has no other
option than helping to establish cmdW in a WriteThrough.

Now, assume cmdW ∥ cmdR3. This means rf R3(V ′) = rf R3(V). Therefore, it
does not matter if cmdW was chosen or not for the result of cmdR3. Thus, pR3

can return the result of the read command. In this example, it is clear that no
intermediate write command was chosen before cmdW because the write round
of a1 is only incremented by one compared to a2’s write round. However, this is
not necessarily the case in general because any number of write commands can be
proposed concurrently. An intermediate write command might not commute with
cmdR3. In this case, rf R3(V ′) ≠ rf R3(V), thus preventing the proposer to deliver
the read. Therefore, a more generalized argument must be made:

Assume a client submits command cmdR with ReadFilter rf R to proposer
p. The proposer executes the round_request phase and receives replies from a
k-quorum Q of size n. The highest write round received in these messages is
denoted as rh∗ and the lowest round as rl∗. Let cmdx be the write command
voted by an k-acceptor in round rx with vx as the acceptor’s value. p can receive
multiple replies with the same write round. However, remember that cmdx and vx
is consistent for all rx across k-acceptors due to property P3 of PRBR. Assume
that p receives inconsistent write rounds, thus rh∗ > 0. This implies that there
exists a command cmdprev in write round rprev ≥ 0 that is the predecessor of cmdh∗.
Figure 8.1 servers as an overview of the notation. Note that p might not necessarily
receive a reply with write round rprev. In this case, it is possible that rprev < rl∗.

Proposition 1. If cmdh∗ ∥ cmdR, then p can return rf R(vh∗) without violating
strong consistency.

Proof.

1. cmdh∗ ∥ cmdR implies cmdh∗ ≭ cmdR. Since cmdprev is defined to be the
predecessor of cmdh∗:

rf R(vprev) = rf R(vh∗). (8.3)

Chapter 8. Weakening Consensus Sequences 53

write round a1 an

rl∗ cmdl∗

...
. . .

rprev cmdprev

...
. . .

rr∗ cmdh∗

cmdh∗ is successor of
command cmdprev

in
cr
ea
si
ng

ro
un

ds

Figure 8.1: Responses to p form a k-quorum Q of size n sorted by write
rounds.

2. cmdprev is chosen in round rprev.

Assume that cmdprev is not chosen. The proposer ph∗ trying to establish
cmdh∗ can receive consistent or inconsistent write rounds in the round_request
or read phase.

(a) ph∗ receives consistent write rounds. The received write round can
not be equal to rprev, since cmdprev only exists in a k-minority. Thus,
cmdh∗ is proposed as successor of a different command. However, this
contradicts the original assumption that cmdprev is cmdh∗’s predecessor.

(b) ph∗ receives inconsistent write rounds. Only WriteThrough commands
can be proposed after receiving inconsistent write rounds. However,
WriteThroughs do not commute with any other command. Thus, this
contradicts cmdh∗ ∥ cmdR.

Both possibilities lead to contradictions. Therefore, cmdprev is chosen.

3. There does not exist a command other than cmdh∗ which is chosen in a
round higher than rprev.

(a) No command is chosen in round rh with rprev < rh < rh∗.
Assume a chosen command cmdh exists. cmdh can be either chosen
before, or after an voted for cmdh∗.

i. cmdh was chosen before an’s vote.
Before an could have voted for cmdh∗, some proposer p′ must have
received consistent write rounds from some k-quorum Q

′. At this
moment, all acceptors in Q

′ have read round ≥ rh∗, thus only a
k-minority can still vote for cmdh. Since p

′ received consistent write
rounds, either all or no k-acceptors in Q

′ have voted for cmdh. If
no k-acceptor has voted for cmdh, then cmdh can not be chosen
anymore because only a k-minority can still vote for a command in
a round smaller than rh∗. If all k-acceptors voted for cmdh, then
cmdh∗ is proposed as a successor of cmdh. However, cmdprev ≠ cmdh
because rprev < rh. Therefore, this creates a contradiction.

ii. cmdh was chosen after an’s vote.

Chapter 8. Weakening Consensus Sequences 54

This is not possible because at most a k-minority can vote in a write
round smaller than rh∗ after an’s vote for cmdh∗, as established in
3(a)i.

Therefore, no chosen command cmdh can exist.

(b) No command is chosen in round rh with rh > rh∗.
Assume a chosen command cmdh exists. Since rh∗ denotes the highest
received write round, Q does not contain an acceptor which has voted
for cmdh. Therefore, at most the remaining k-minority has voted for
cmdh. This contradicts the assumption that cmdh is chosen.

(c) No k-acceptor votes for a command other than cmdh∗ in round rh∗.
As per protocol, every command is proposed with a unique round ID.
Therefore, there can not be two commands with the same round.

Note that cmdh∗ might or might not be chosen. Based on the information
received by p, an could be the only k-acceptor which has voted for cmdh∗,
or every acceptor in the not visible k-minority might have voted for cmdh∗.

4. Every read command cmdR′ with ReadFilter rf R′ returns a result that is
equivalent to some value rf R′(vx), where rx is a round in which a write
command was chosen.

A proposer p
′ can return the result of a read command if one out of two

conditions apply: Either p′ received consistent write rounds as per Change 2,
or the command voted for in the highest received write round, denoted as
cmdh∗′ , commutes with cmdR′ , as per Proposition 1.

(a) p
′ received consistent write rounds.
Some k-quorum exists that has voted for a command in this round.
Therefore, a command is chosen in this round.

(b) p
′ receives a k-quorum with cmdh∗′ ∥ cmdR′ .
Let rprev′ be the round in which the predecessor command of cmdh∗′

was voted for. Due to step 1, rf ′R(vh∗′) = rf
′
R(vprev′). Because of step

2, cmdprev′ was chosen in round rprev′

5. Step 2 and 3 of the proof show that the most recently chosen command is
either cmdprev or cmdh∗. Either way, the result of cmdR is the same because
of step 1. Therefore, cmdR can not return an outdated value.

Furthermore, step 4 shows that all other reads returned a value equivalent
to a value with cmdprev, cmdh∗, or some older command cmdl as the most
recent command in the command sequence. In case of cmdl or cmdprev, cmdR
returns a newer value because its ReadFilter is applied on cmdh∗. If cmdh∗
is the case, then both commands applied their ReadFilter on the same state
of the command sequence. Therefore, there does not exist a read which has
returned a newer value than cmdR.

Thus, p can return rf R(vh∗) without violating strong consistency.

Chapter 8. Weakening Consensus Sequences 55

The implication of Proposition 1 is, that only the reply with the highest write
round must be examined to decide whether the result of a read command can be
delivered or not. This leads to the following modification of PRBR:

Change 3. A proposer can return the result of a read command cmdR, if the write
command, which was voted for in the highest received write round, commutes with
cmdR.

8.3.2 Modifying PRBR

Change 3 requires knowledge of the command that every acceptor has voted
for. In PRBR’s current state, an acceptor receiving a write command with valid
rounds in the write phase of the protocol will apply the command to its current
value. However, it does not remember the write command.

Therefore, the state held by acceptors must be extended by a state variable
cmdwrite, which represents the last command the respective acceptor has voted
for. In PRBR’s write phase, proposers must now send the full command to the
k-acceptors. If a k-acceptor receives the command with valid rounds, then it
updates cmdwrite along with its remaining state variables (the read round, write
round, and value held by it). These changes are depicted in Code Listing 8.3 in
line 26 and 33, respectively.

k-acceptors can now include the last command they voted for in their rr_reply
messages. Due to Change 2 and Change 3, the condition in which proposers can
return the result of read commands changes. It can be returned if either the
received write rounds are consistent (Change 2) or if the last write command,
that the k-acceptor in the seen k-quorum with the highest write round voted
for, commutes with the current read command (Change 3). This modification is
depicted in Code Listing 8.2 line 8-9.

Note that proposers processing read commands never enter PRBR’s read phase.
Previously, the read phase was entered if the proposer received inconsistent read
rounds. As per Change 2, this is not necessary to satisfy strong consistency.
However, it is still possible for such a proposer to start a WriteThrough if the two
conditions above are not satisfied.

The logic concerning write commands remains unchanged. If a proposer
receives inconsistent write rounds when processing a write command, it starts a
WriteThrough. If it receives consistent write rounds but inconsistent read rounds,
it proceeds to the read phase. If both rounds are consistent, then it can start the
write phase of PRBR.

8.3.3 Impact and Further Optimizations

The modifications made to PRBR in this section increase the size of some
messages send as part of the protocol. First, k-acceptors send the last write
command they have voted for as an additional element in their rr_reply messages.
Second, write messages must include the full write command. Parts of the command
were already included in this message. Thus, only the ContentCheck and ReadFilter
of the command must be transmitted in addition. Furthermore, the size of each
acceptor’s state increased because they have to store the last command they have
voted for.

Chapter 8. Weakening Consensus Sequences 56

Proposer
On receive(⟨request, cmd⟩) from client c:

1: rID ← choose round ID
2: send(⟨rr, cmdk, rID, cmdrf , type(cmd)⟩) to

all k-acceptors

On receive(⟨rr_reply, rrq , rwq
, valq, cmdwq

⟩)
from all q of some k-quorum Q:

7: qmax ← any q with max(rwq
)

8: if type(cmd) = read∧
9: (cons(rwq

) ∨ cmd ∥ cmdqmax
) then

10: send(⟨result, valqmax
⟩) to c

11: end if
12: if ¬cons(rwq

) then
13: send(⟨write_through, c, cmd⟩)

to self
14: else if type(cmd) = write then
15: if cons(rrq) then
16: q

′
← any q

17: send(⟨wStart, rrq′ , rwq′
, valq′⟩)

to self
18: else
19: rnew = inc(max(rrq))
20: send(⟨rStart, rnew⟩) to self
21: end if
22: end if

k-Acceptor

On receive(⟨rr, k, rID, rf, type⟩)
from proposer p:

3: if type = write then
4: rread ← inc(rread, rID)
5: end if
6: send(⟨rr_reply, rread, rwrite, rf(val),

cmdwrite⟩) to p

Code Listing 8.2: Modifications in PRBR’s round_request phase to
support reads commuting with concurrent writes.

Proposer
On receive(⟨wStart, rr, rw, vread⟩) from
self :

23: cc← cmdcc
24: {valid, i}← cc(vread, cmd)
25: if valid then
26: send(⟨write, cmd, rr, rw, i⟩) to all

k-acceptors
27: else
28: send(⟨write_deny, i⟩) to c
29: end if

On receive(⟨write_ack, vretq⟩) from all q of
some k-quorum Q:

38: q′ ← any q
39: send(⟨result, vretq′⟩) to c

k-Acceptor

On receive(⟨write, cmd, rr, rw, i⟩) from
proposer p:

30: if rr ≥ rread ∧ rw = rwrite then
31: rread ← rr
32: rwrite ← rr
33: cmdwrite ← cmd
34: {vnew, vret}← cmdwf(val, cmdvwrite

, i)
35: val ← vnew
36: send(⟨write_ack, vret⟩) to p
37: end if

Code Listing 8.3: Modifications in PRBR’s write phase to support
reads commuting with concurrent writes.

Chapter 8. Weakening Consensus Sequences 57

The size of write commands can vary. The included write value has the most
profound effect on the command’s size since this value can be arbitrarily large. A
write command writing binaries that are multiple megabytes large will also cause
command sizes of multiple megabytes. This would cause very high overhead in
the round_request phase of the protocol.

However, the modifications as described in the previous section are pessimistic.
Usually, the decision whether a read command commutes with a write command
does not depend on the write value of the command, but instead on the operation
performed by the write command on the stored data, i.e. the command’s filters. In
this case, only the filters of the write commands must be stored and transmitted.
The size of a filter is more predictable. For languages like Erlang, only sending a
reference to the function defining the filter is necessary. This requires only a small,
relatively constant amount of data.

The overhead can be reduced further if the set of possible write commands
is fixed and known beforehand. In this case, each possible filter triple can be
assigned to a command ID. Then, only this ID has to be stored and included in
messages. Since the command ID is enough to identify the filters of a command, it
is sufficient to decide if a read command commutes with a write command with
a given ID. Naturally, the size of the command ID depends on the number of
possible commands. However, it only grows logarithmic in size and is therefore
typically small.

When processing read commands that access an item concurrently to a write
command, the modifications made in this section increase the likelihood that
reads can be delivered immediately without additional work. Therefore, the
number of messages sent and message delays needed to process read commands
decreases on average. Since no read commands enter the read phase, reads do not
block writes from succeeding anymore. However, read commands can still trigger
WriteThroughs, thus bringing the potential of causing dueling proposers.

In all other cases, the flow of the protocol remains unchanged.

8.4 Commutative Writes

This section extends PRBR to prevent commuting, concurrent write commands
from blocking each other. As with the previous sections, it first must be established
what it exactly means for two write commands to commute.

A write command can be roughly split into two parts. The first part of a
write command is the validation part that checks whether the command can
be applied to the current value of the item stored in the k-acceptors. This
includes the ReadFilter, that reads the item’s current value (or part of it), and the
ContentCheck performing the actual validation. In the time between application
of the ReadFilter on acceptors and ContentCheck, no other write command can
interfere with the result of the validation. If, however, two write commands cmd1
and cmd2 commute, then the proposer of cmd2 might receive some responses of
acceptors that already have applied cmd1 and some others without cmd1. If cmd2
commutes with cmd1 this state should be allowed because otherwise cmd1 blocks
cmd2. It is important that cmd2 passes its ContentCheck with or without cmd1
being applied to replicas. Otherwise the result of cmd2 would depend on cmd1,
which contradicts the definition of commuting commands.

Chapter 8. Weakening Consensus Sequences 58

The second part of a write command consists of the WriteFilter, the write
value submitted by the client and the UpdateInformation returned as part of the
result of the command’s validation. This information is enough to express the
write operation performed by the command. For two write commands to commute,
the value of the item must be the same after application of the commands in either
order. Otherwise, the value held by acceptors would be inconsistent after both
commands have completed.

After a completed write, the respective proposer collects write_ack messages
containing the return value for the client. Since it should be possible to apply
commuting commands in either order, the proposer of cmd2 can also receive replies
from k-acceptors that might or might not have applied cmd1. At this stage, the
proposer of cmd2 should not be forced to differentiate between replies and try
to find out whether cmd1 was chosen or not. Therefore, the return result of
the command’s WriteFilter should be unaffected by the existence of the other
command. By doing so, the client will receive the same result either way.

This condition might sound hard to fulfill. However, it is sufficient in many
scenarios (for example all write commands used as part of Scalaris transaction
protocol) that write commands simply return a fixed “acknowledge” value that
indicates that the write was successful. Since the returned value is fixed, the order
in which commuting commands are applied does not matter.

Some simple examples for write commands that can be modeled this way
include: incrementing a value, or adding/removing elements from a set. The later
can be used as read lock acquisition as part of a transaction protocol, since the
order in which read locks are acquired generally does not matter. For such a
command, the respective ContentCheck might test for the existence of a write
lock. The ContentCheck validates a different part of the value as is modified by
the read lock command. Therefore, it is easy to see that previous instances of the
command have no impact on a successful validation.

As with reads commuting with writes, it is assumed that some mechanism
exists to identify which write commands commute with each other.

8.4.1 Identifying Avoidable Conflicts

Analogously to the previous sections, an example helps to identify were conflicts
between two concurrent write commands can occur. Example 8.4 depicts the first
phase of the protocol when handling concurrent writes.

step prop. cmd a1 a2 a3

1 − − {1A, 1A, V } {1A, 1A, V } {1A, 1A, V }
2 pW1 cmdW1 {2B, 1A, V } {2B, 1A, V } {1A, 1A, V }
3 pW2 cmdW2 {2B, 1A, V } {3C , 1A, V } {2C , 1A, V }
...

...

Example 8.4: Start of two concurrent, conflicting write commands

The proposer of write command cmdW1 has completed the round_request
phase of PRBR. After that, the proposer of cmdW2 received replies from a different

Chapter 8. Weakening Consensus Sequences 59

k-quorum, therefore receiving inconsistent read rounds. When continuing the
example, pW2 will start the read phase and hopes to receive promises from a
k-quorum in round 4. Furthermore, at most one acceptor (a1) can accept the write
command sent by pW1. pW1 will therefore retry its write in the future.

Both commands block each other from succeeding. If cmdW1 ∦ cmdW2, then
this can not be avoided because a proposer needs a k-quorum of promises before
it can safely propose its command. If, however, cmdW1 ∥ cmdW2, then it should
be possible to process both commands on all acceptors in arbitrary order without
creating conflicts.

When comparing Example 8.4 with the example of conflicting read commands,
depicted in Example 8.1, strong similarities between the two problems can be seen.
The latter was solved by not incrementing read rounds. This allowed concurrent
reads to receive consistent read rounds. Effectively, this made reads invisible to
other reads because no information that a read occurred was persisted in acceptors.
Since all reads commute with each other, this did not cause violations of strong
consistency.

Of course, writes do not commute with all other writes. A write command must
know the existence of a concurrent, non-commuting write, but not necessarily of a
commuting write. By extending the idea of commuting reads, sets of commuting
writes can be executed in the same round until a non-commuting write is submitted.

8.4.2 Command Sets

The commutative properties of write commands are modeled by assigning write
commands to so-called command classes.
Definition 12 (Command Class). A command class C is a predefined set of write
commands that commute with each other:

cmd1 ∥ cmd2 ∀cmd1, cmd2 ∈ C (8.4)

Each command class is required to be disjunct from all other command classes.
This makes it easier to decide whether two write commands commute during
runtime. If their class matches, they are considered to commute, otherwise not.
Note that by doing so, it is only possible to model commutative relationships that
are symmetric and transitive. This restriction is a trade-off for a simpler protocol
design.

A write command that does not commute with any other command (including
itself) is not assigned a command class. If required, the null value ⊥ will be used
to denote the absence of a class. All read commands are considered to be of class
read .

Up until now, PRBR established a sequence of commands for each item. In
each round, k-acceptors could vote for at most one write command. Now, this
command sequence will be extended to a sequence of command sets.
Definition 13 (Command Set). A command set is a set of write commands with
the same command class, that are voted for in rounds with the same round number.

Hereinafter, command sets will be abbreviated as c-sets. The class of a c-set is
the class that all write commands in it share. A write command commutes with
a c-set if it commutes with all of the c-set’s write commands, i.e., if the write
command is of the same class as the c-set.

Chapter 8. Weakening Consensus Sequences 60

8.4.3 Sequence of Command Sets

Unlike previous changes of PRBR, extending the protocol to use command
sets can not be done by locally limited modifications. Instead, every phase of the
protocol must be changed. All changes introduced in this section are connected
and thus can not be implemented in isolation.

Furthermore, the current modifications of PRBR represent only a draft. Their
complete correctness is not proven unlike the changes made in the previous sections.
Due to the number of changes required, the level of detail in the argumentation of
each change is reduced compared to the previous sections.

Choosing the Round of the next Command

Section 8.4.1 introduced the first issue that has to be solved when extending PRBR
to c-sets: It must be possible for commutative write commands to proceed in the
same round, whereas a non-commutative command must use a different round.

This problem is reminiscent of the scenario with two concurrent reads. Thus,
the solution is similar as well.

Change 4. An acceptor receiving a write command in the round_request phase
does not increment its read round, if the previous write command it has received in
the round_request or read phase had the same command class.

It is not enough for an acceptor to remember the class of the command it has
voted for last. In this case, two concurrent, commutative commands that enter
the round_request phase before acceptors have voted for either command would
still block each other.

An example illustrates how Change 4 affects the flow of PRBR’s first phase.

step prop. cmd class a1 a2 a3

1 − − ⊥ {1A, 1A, V } {1A, 1A, V } {1A, 1A, V }
2 pW1 cmdW1 c1 {2B, 1A, V } {2B, 1A, V } {1A, 1A, V }
3 pW2 cmdW2 c1 {2B, 1A, V } {2B, 1A, V } {2C , 1A, V }
4 pW3 cmdW3 c2 {2B, 1A, V } {3D, 1A, V } {3D, 1A, V }
...

...

Example 8.5: First phase of write commands making use of command
classes.

cmdW1 and cmdW2 have the same command class, therefore they commute
with each other. The proposers of the commands receive responses from different
k-quorums. Due to Change 4, they receive replies with read round number 2. Note
that the round ID of a3 differs from a1 and a2 because a3 has received cmdW2

first. This is unavoidable without global knowledge of all requests submitted to
all proposers or a distinguished leader process. Therefore, two write commands
with the same class only have to be proposed in the same round number to be

Chapter 8. Weakening Consensus Sequences 61

considered part of the same c-set. For commands with differing classes, the whole
round will be used for comparisons as usual.

Command cmdW3 does not commute with the other two commands. This
causes acceptors to increment their read rounds. Thus, at most a1 can vote for
cmdW1 or cmdW2, which means that they can not be chosen in round 2. This
reflects the original behavior of PRBR.

Examining the Received Replies

Before a proposer p can deliver the result of a read command or propose a write
command in PRBR’s write_phase, it must examine the replies it received from the
k-quorum and make a decision based on this information. This decision-making
process must be extended to c-sets.

(1) First, assume that p has received a read command cmdR. Previously, p
was able to deliver the result of cmdR if one of two conditions were satisfied: (a) p
received consistent write rounds, or (b), cmdR commutes with the command voted
for in the highest received write round.

Acceptors can vote for an arbitrary number of commands in the same round if
they have the same class. If cmdR is proposed concurrently to write commands,
acceptors in the k-quorum might have voted for different sets of commands since
not all acceptors might have received all messages yet. However, this can not
be deducted by p solely by examining the received write rounds. p must have
knowledge of the most recent c-set of each k-acceptor.

step prop. cmd class a1 a2 a3

1 pW1 cmdW1 c1 {1A, 1A, [A,B]} {1A, 0, []} {1A, 1A, [A]}
2 pW2 cmdW2 c1 {1A, 1A, [A,B]} {1A, 1A, [B]} {1A, 1A, [A]}
3 pW1 cmdW1 c1 {1A, 1A, [A,B]} {1A, 1A, [B,A]} {1A, 1A, [A]}
4 pR1 cmdR1 read {1A, 1A, [A,B]} {1A, 1A, [B,A]} {1A, 1A, [A]}
5 pR2 cmdR2 read {1A, 1A, [A,B]} {1A, 1A, [B,A]} {1A, 1A, [A]}

Commutative write commands cmdW1 and cmdW2 each add an element to a set. The c-set of a1 and a2 contains
both write commands, whereas a3’s c-set contains only cmdW1. Both proposers pR1 and pR2 receive consistent
rounds. However, pR2 cannot deliver the read since it does not know if cmdW2 is chosen or not.

Example 8.6: Example of proposers receiving inconsistent c-sets.

In addition to comparing write rounds, p can then compare the received c-sets
for equality. If they are consistent, p can deduce that all commands it has seen
are chosen, and all other commands voted for in this round exist in at most a
k-minority. p does not need to care about the order the acceptors have voted for
the commands because by the definition of commutative commands, the resulting
value of the item must be the same for all permutations. This covers case (a). For
simplicity, a consistent write state refers to receiving consistent write rounds and
consistent c-sets in a k-quorum.

Change 5. A proposer can deliver the result of a read command, if it has received
a consistent write state.

Chapter 8. Weakening Consensus Sequences 62

Condition (b) is the result of proving Proposition 1. An intermediate result of
the proof was, that the last chosen command in the command sequence is either
some (possibly unknown) command cmdprev or the command voted for in the
highest received round, cmdh∗. If cmdR ∥ cmdh∗, then the result of cmdR is the
same either way, thus p can return the value received in the reply with the highest
round number.

By extending this to c-sets, p might receive multiple commands which were
voted for in the highest received round rh∗. To ensure that the delivery of cmdR’s
result does not violate strong consistency, cmdR must now commute with all write
commands for which p can not be certain if they are chosen or not. These are all
commands received in rh∗ which were not included in all replies of the k-quorum.
For example, read command cmdR2 of the example depicted in Example 8.6 can
return if cmdR2∣∣cmdW2. Of course, if p received inconsistent write rounds, no
command received in rh∗ is included in every reply. In this case, cmdR must
commute with all those commands.

Change 6. A proposer can return the result of a read command cmdR, if all write
commands, which were voted for in the highest received write round but are not for
certain chosen, commute with cmdR.

If the conditions of Change 5 and Change 6 are not fulfilled, then p cannot
deliver the result of cmdR and must start a WriteThrough.

(2) Next, assume that p has received a write command cmdW . As with reads,
there are now two conditions for which p can continue to the write phase: (a) p
received a consistent quorum, or (b) cmdW can be proposed as part of the c-set
with the current highest round.

Condition (a) is unchanged to unmodified PRBR. However, its semantic is
slightly different. Before, a consistent quorum required consistent read and write
rounds. A proposer receiving both could be sure that no command was proposed
in a round higher than the received write round. Examining write rounds is
not enough anymore, because k-acceptor might have voted for different c-sets.
Therefore, a consistent quorum now requires consistent read rounds and a consistent
write state. If the received read round is higher than the write round, then p will
start a new c-set by proposing cmdW .

Condition (b) implies that cmdW commutes with all commands received as
part of the most recent c-set. By definition, this is the case when cmdW ’s class
matches with the class of the commands in the c-set. In addition, p must be
certain that no newer c-set was started yet. If the highest received read round
matches with the write round of the most recent c-set, then no non-commuting
write command could have received a k-quorum of round_request replies for a
higher round and thus no k-acceptor could have voted for any command with a
higher round (see Example 8.7 for an example).

Change 7. A proposer can propose a write command in PRBR write phase, if it
can be proposed as part of the highest seen c-set.

If neither (a) nor (b) applies, then p must either start the read_phase if it
has received inconsistent read rounds to receive a k-quorum of promises or must
start a WriteThrough if it has received an inconsistent write state. This remains
unchanged to unmodified PRBR.

Chapter 8. Weakening Consensus Sequences 63

step prop. cmd class a1 a2 a3

1 pW1 cmdW1 c1 {1A, 1A, [A]} {1A, 1A, [A]} {1A, 1A, [A]}
2 pW2 cmdW2 c2 {2B, 1A, [A]} {1A, 1A, [A]} {1A, 1A, [A]}
3 pW3 cmdW3 c1 {3C , 1A, [A]} {1A, 1A, [A]} {1A, 1A, [A]}
4 pW4 cmdW4 c1 {3C , 1A, [A]} {1A, 1A, [A]} {1A, 1A, [A]}

All acceptors vote for write command cmdW1. a1 receives a round_request message for command cmdW2 with
a different class and increments its read round. This causes pW3 to receive inconsistent read rounds. From pW3’s
knowledge, it is possible for a3 to have voted for cmdW2 in round 2. Furthermore, a2 can still vote for cmdW2,
making cmdW2 a chosen command. pW3 can not proceed and must try to receive a k-quorum of promises in a
higher round. In contrast, pW4 knows that no k-acceptor could have voted for a command in a higher round.
Therefore, it can proceed to the write phase in round 1.

Example 8.7: Example of proposers receiving inconsistent read rounds.

Voting for Write Commands

If proposer p is trying to establish write command cmdW and the k-quorum of
replies it received satisfied one of the conditions outlined in the previous section,
then p proceeds to PRBR’s write phase as usual. Once the ContentCheck of cmdW
passes, p sends write messages to all k-acceptor to propose cmdW .

In the original version of PRBR, it was necessary for a proposed command to
satisfy two conditions before an k-acceptor a was able to vote for it: the command
must have been proposed in a higher or equal round than the highest round a has
given a promise for, and the last command a voted for must have been the last
chosen command (see line 8 in PRBR’s write phase on page 34).

The general nature of these conditions remains unchanged if a has received a
non-commuting write command, i.e. the write command can not be included in a’s
current c-set. This is analogous to voting for a new command in PRBR’s original
version. As shown in the example in Example 8.9, it is no longer enough to just
examine the write round, since it is possible for an acceptor to vote for more than
one command in a round. Therefore, p must include all chosen commands of the
previous write round as a c-set in its write message so that a can check that it has
voted for the same set of commands in the previous round.

Change 8. Acceptor a can vote for a command cmdW in a higher round (and thus
starting a new c-set) if a has not given a promise in a higher round and has voted
for exactly the set of commands that were chosen as part of the previous c-set.

If cmdW commutes with the current c-set of a, then a can vote for cmdW if it
can be included in the c-set. By the definition of c-sets, this requires cmdW to be
proposed in the same round as all other commands of this set. Naturally, a must
not have given a promise in a higher round as well, since that would violate one of
the underlying principles of Paxos. Example 8.7 can be revisited for an example
of adding commands to an existing c-set.

Change 9. Acceptor a can vote for command cmdW , if a has not given a promise
in a higher round, cmdW commutes with a’s current c-set and is proposed in the
same round.

Chapter 8. Weakening Consensus Sequences 64

step prop. cmd class a1 a2 a3

1 pW1 cmdW1 c1 {1A, 1A, [A,B]} {1A, 1A, [A]} {1A, 1A, [A]}
2 pW2 cmdW2 c2 {2B, 1A, [A,B]} {2B, 1A, [A]} {2B, 1A, [A]}
3 pW2 cmdW2 c2 {2B, 1A, [A,B]} {2B, 2B, 1} {2B, 2B, 1}

Write commands of class c1 add values to a set. Acceptor a1 has voted for a command that was not chosen yet.
pW2 receives a consistent quorum and can therefore propose the command. Here, cmdW2 simply replaces the
set of values by the size of the set. a1 is not allowed to vote for the command. A WriteThrough is necessary to
synchronize a1 with the other acceptors.

Example 8.8: Example of proposer starting a new c-set.

WriteThrough

The last part of the protocol that has to be extended is the WriteThrough
mechanism. Its purpose is to synchronize the state of k-acceptors if they have
voted for different interfering write commands. Previously, a proposer executing a
WriteThrough could simply use the state of the acceptor with the highest received
write round because there could not exist a chosen command in a higher round.

The extension of WriteThroughs to c-sets is straight forward. When a proposer
p receives a k-quorum of replies in the round_request or read phase, it must ensure
that no chosen command is discarded.

p receives the full value of each k-acceptor (due to ReadFilter of the WriteThrough),
along with their most recent c-set. Based on this information, p can construct a
value that is safe to write. It can choose one of the received replies with maximal
write round and apply all missing write commands received as part of this c-set
on it in arbitrary order. This is allowed because all commands commute, therefore
their execution order does not matter. That way, some not yet chosen commands
are included in the WriteThrough, but no chosen command is discarded (since at
most a k-minority can have voted for any not received command).

Change 10. WriteThroughs can write a value based on the union of all c-sets
received in the highest round.

Example 8.9 shows the progress of a possible WriteThrough.

step prop. cmd class a1 a2 a3

1 − − {1A, 1A, [A,C]} {1A, 1A, [B,A]} {1A, 1A, [B,D]}
2 pA cmdWT ⊥ {2B, 1A, [A,C]} {2B, 1A, [B,A]} {1A, 1A, [B,D]}
3 pA cmdWT ⊥ {2B, 2B, [B,A,C]} {2B, 2B, [B,A,C]} {2B, 2B, [B,A,C]}

Some write commands have started adding elements A through D to a set as part of the same c-set in round 1A.
The proposer of the WriteThrough receives replies of acceptors that have voted for A,B and C. Since pA does
not know if A, or C were chosen, they have to be included in the WriteThrough. All commands commute with
each other because they were members of the same c-set. Thus, the execution order in the WriteThrough does
not matter. The vote for D is discarded. However, this command was not and cannot ever be chosen in round
1A.

Example 8.9: Example of WriteThrough in combination with c-sets.

Chapter 8. Weakening Consensus Sequences 65

8.4.4 Modifying PRBR

Extending PRBR to c-sets introduces a great amount of complexity to the
protocol. The changes are depicted in Code Listing 8.4 and 8.5. The modifications
of the read phase are analogous to the round_request phase. For the sake of
brevity, they are not shown here.

The state of acceptors must be extended by three variables. First, the class of
the last write command which caused the acceptor to increment its read round,
classprev. This is needed to implement the conditional increment of the acceptor’s
read round (Change 5). Furthermore, each acceptor must have access to all
commands it voted for in its current c-set, denoted as csetcur. This replaces
cmdwrite, which was previously used to remember the last command. csetcur is
needed to apply missing commands as part of a WriteThrough and it is needed by
proposers to check for consistent quorums. Finally, csetprev, which is the c-set the
acceptor has voted for before starting csetcur. This is required to prevent acceptors
from skipping chosen commands in their command sequence.

The protocol begins as usual with the proposer p choosing an ID and sending
the ID, ReadFilter and class of the command to all k-acceptors (line 1). Each
k-acceptor receiving the message now decides if its read round must be incremented.
Line 3 encodes Change 1 and 4: an acceptor must only increment their read round
if receiving a write command with a class that does not match the previous write
command’s class.

This causes an uninterrupted series of commutative write commands to be
assegined to the same round, which in turn allows their proposer to propose them
as part of the same c-set. However, this might cause unbounded growth of the
current c-set if all proposed write commands commute with each other, for example
if a key is used as a counter and only increment commands are proposed. This is
problematic because growing c-sets cause the size of messages to increase, as well
as the state held by acceptors. A limit on the possible size of c-sets is needed. A
simple way to prevent unlimited growth of the c-set is to check the current c-set’s
size. If it has reached a constant threshold L, the acceptor will always increment
its read round number (if it was not already incremented before). This is shown
in line 4.

Eventually, a k-quorum has replied to the proposer’s message. The responses
contain the usual rounds and the (partial) value. In addition, acceptors must
include their last two c-sets, csetcur and csetprev, as well.

Based on the received information, p makes a decision about the next step in
the protocol. This concerns Changes 5-7 discussed in the previous section. Most
of the code of this action (line 10-31) is a straight-forward implementation of these
changes.

The delivery conditions for reads – receiving a consistent write state (Change 5)
or commuting with all commands which are not for certain chosen (Change 6)
– are depicted in line 13 and 14, respectively. The original behavior of writes is
shown from line 22 to 28: Either p receives a consistent quorum and can start the
write phase of PRBR, or it receives a consistent write state but inconsistent read
rounds and must continue to the read phase. Due to the extension to c-sets, p
can now also propose a write command if it can be proposed as a member of the
current c-set (Change 7), as is shown in line 20. Note that p must now include

Chapter 8. Weakening Consensus Sequences 66

Proposer
On receive(⟨request, cmd⟩) from client c:

1: rID ← choose round ID
2: send(⟨rr, cmdk, rID, cmdrf , class(cmd)⟩) to

all k-acceptors

On receive(⟨rr_reply, rrq , rwq
, valq, csetcurq ,

csetprevq⟩) from all q of a k-quorum Q:
10: c_state← cons(rwq

) ∧ cons(csetcurq)
11: Cmax ← {csetcurq∣q with max(rwq

)}
12: classmax ← class(c) any c ∈ ⋃Cmax

13: if class(cmd) = read ∧ (c_state∨
14: cmd ∥ c ∀c ∈ (⋃Cmax \⋂Cmax)) then
15: send(⟨result, valqmax

⟩) to c
16: end if
17: if class(cmd) ≠ read then
18: q

′
← any q with max(rwq

)
19: if class(cmd) = classmax∧
20: max(rwq

) = max(rrq) then
21: send(⟨wStart, rrq′ , rwq′

, valq′ , csetprev′q⟩)
22: else if cons(rrq) ∧ c_state then
23: send(⟨wStart, rrq′ , rwq′

, valq′ , csetcur′q⟩)
24: else if c_state then
25: rnew = inc(max(rrq))
26: send(⟨rStart, rnew⟩) to self
27: end if
28: end if
29: if no message send yet then
30: send(⟨write_through, c, cmd⟩)
31: end if

k-Acceptor

On receive(⟨rr, k, rID, rf, class⟩)
from proposer p:

3: if (class ≠ read ∧ class ≠ classprev)
4: ∨(rread = rwrite ∧ ∣csetcur∣ ≥ L) then
5: classprev ← class
6: rread ← inc(rread, rID)
7: end if
8: send(⟨rr_reply, rread, rwrite, rf(val),
9: csetcur, csetprev⟩) to p

Code Listing 8.4: Modifications in PRBR’s round_request phase to
support commutative write commands.

the predecessing c-set of the write command it will propose when continuing to
the write phase. If the command will be proposed as part of the same c-set (line
21), then the predecessor remains unchanged. If, however, the command will be
proposed in a higher round (line 23) and therefore in a new c-set, then the currently
highest c-set becomes the new predecessor.

AWriteThrough is performed if no success condition for either read or write com-
mands is met (line 29). This concludes the modification of PRBR’s round_request
phase. As already mentioned, the read phase is modified in the same manner and
is thereby omitted here.

The beginning of the write phase remains largely unchanged. p checks if the
write command it wants to propose is a valid successor by using the command’s
ContentCheck. If it passes, p sends a write message to all k-acceptors, with the
predecessing c-set as an additional element (line 34).

An acceptor a can now vote for a write command if it satisfies one of two
conditions: First, the command is proposed in a higher round and its predecessing
c-set matches the c-set a has voted for last (Change 8). This is equivalent to the
vote condition of PRBR’s unmodified version. In addition to updating its rounds
as usual, a must update its references to its current and previous c-set, because
the received command starts a new one. This is shown from line 41 to 48.

Second, a can now vote for a write command that is of the same class and is

Chapter 8. Weakening Consensus Sequences 67

Proposer
On receive(⟨wStart, rr, rw, vread, cset⟩)
from self :

31: cc← cmdcc
32: {valid, i}← cc(vread, cmd)
33: if valid then
34: send(⟨write, cmd, rr, rw, i, cset⟩) to all

k-acceptors
35: else
36: send(⟨write_deny, i⟩) to c
37: end if

On receive(⟨write_ack, vretq⟩) from all q
of some k-quorum Q:

55: q′ ← any q
56: send(⟨result, vretq′⟩) to c

k-Acceptor

On receive(⟨write, cmd, rr, rw, i, cset⟩)
from proposer p:

38: if rr = rread ∧ rr = rwrite ∧
39: class(cmd) = class(csetcur) then
40: voted = true
41: else if rr ≥ rread ∧ rw = rwrite∧
42: cset = csetcur then
43: rread ← rr
44: rwrite ← rr
45: csetprev ← csetcur
46: csetcur ← new empty cset in round rr
47: voted = true
48: end if
49: if voted = true then
50: {vnew, vret}← cmdwf(val, cmdvwrite

, i)
51: add (cmd, i) to csetcur
52: val ← vnew
53: send(⟨write_ack, vret⟩) to p
54: end if

Code Listing 8.5: Modifications in PRBR’s write phase to support
commutative write commands.

proposed in the same round as its current c-set (Change 9). The write command
commutes with all commands in this c-set and thus can be included in it. Since
the rounds are the same and no new c-set is introduced, no further work must be
done (line 38-40).

If either condition is satisfied, a can apply the command’s write filter, update its
stored value and include the command in its current c-set (line 49-54). Afterwards,
it sends the result of the command back to the proposer. Once the proposer has
received a k-quorum of write_ack replies, it knows that the command is chosen
and can therefore deliver the result to the client.

8.4.5 Impact and Further Optimizations

Extending PRBR to c-sets increases the amount of data each acceptor must
persist, as well as message sizes throughout the protocol. Due to the introduction
of the c-set size limit, the state can not grow arbitrarily large over time, which is
important for PRBR’s initial in-place property.

However, it is important to note that the limit, as it is described in the previous
section, merely imposes a soft limit on the c-sets size. Bursts of commutative
write commands might cause the acceptor to reply to a high number of messages
before the acceptor has actually included a new command in the write phase. A
hard limit could be implemented by introducing a “budget” for each round. Every
time an acceptor sends a promise without incrementing its read round in the
round_request phase, the budget is decremented. Once depleted, the acceptor
increments its round. This restricts the total amount of rr_reply message that
can be sent by each acceptor for a given round. As an additional benefit, write
commands can be weighted to accommodate varying command sizes.

Chapter 8. Weakening Consensus Sequences 68

Furthermore, it is not necessary most of the time to include the full commands
in messages. Full commands are only needed during a WriteThrough when the
proposer forms the union of all write commands and applies all missing write
commands on top of the full value received from acceptors. During normal
execution, it is enough to attach IDs to commands and only include those IDs in
the messages. This greatly reduced messages sizes, especially for larger commands.
Since commands included in csetprev c-sets of the acceptors are not used in
WriteThroughs, it is enough to just store command IDs in it. This reduced
the size of the state held by each acceptor.

Nevertheless, storing a single full c-set for every k-acceptor introduces high
additional storage overhead. The maximum size of c-sets must be carefully chosen
depending on the command sizes and size of the actual values. If only a single
integer is stored for every item, this overhead might be many times more than that
of the actual data. However, load is typically not distributed evenly on all items
stored by the system. Often, a majority of requests target only a relatively small
number of items (e.g. by following a Pareto distribution). Since PRBR manages
separate command sequences for different items, it is possible to use c-sets in only
some of them. To reduce storage overhead, it is sensible to use them for only
highly requested items for which conflicts of commutative writes are expected to
be common.

The conditional use of c-sets, as well as the use of hard limits were not
implemented in the scope of this thesis. In addition, fast writes were not considered
as well. Use cases in which both fast writes and c-sets are useful for the same
item seem limited. Fast writes are applicable if a proposer is confident that it can
propose multiple commands sequentially without intermediate commands from
another proposer interfering with it. In contrast, c-sets are useful when concurrent
commutative writes are expected. Using both methods at the same time seems
contradictory. However, it is possible to use them both on the same command
sequence, just not simultaneously. The protocol flow remains largely unchanged for
commands that are proposed without a command class. Each of these commands
will be assigned a new round number, as it was the case in PRBR’s unmodified
state. Thus, a proposer that wants to submit a fast write command can do so by
ensuring that this command is proposed without a class. Of course, the acceptors
must detect that a fast write is in progress and change their behavior accordingly.
Note that this is also just a theoretical consideration and was not implemented.

In the end, the potential of two proposers blocking each other when proposing
commutative write commands for the same item still exists. However, such conflicts
happen only if the c-set size limit is reached, which means that the total number of
conflicts is expected to decrease. This should increase the throughput achievable
during concurrent access of the same item. However, this speed-up is expected
to be much lower than that of the modification made for commutative reads,
which was discussed in Section 8.2, because the conflict potential was eliminated
completely in this case.

Chapter 8. Weakening Consensus Sequences 69

8.5 Summary

Several modifications that optimize PRBR for concurrent, commutative com-
mands were discussed in this chapter. Three scenarios were studied that each
resulted in distinct changes to the protocol: commutative reads, reads that commute
with write commands, and commutative write. This section gives a short summary
of these changes.

Commutative Reads Examining the interference relationships of read commands
revealed that reads do not interfere with any other command. It followed the
insight that reads do not have to modify the read round of the respective acceptors,
making them “invisible” to other commands.

By including the command type (read or write) in the messages of the
round_request phase, acceptors are now able to respond to reads without modifying
their state (i.e. rounds). Because of that, subsequent reads are processed in the
same round, which eliminates all conflict potential between them. As a positive
side effect, reads no longer block concurrently submitted write commands.

Reads Commuting with Write Two changes were discussed in this section.
The first modification was based on the observation that proposers can ignore
inconsistent reads rounds when processing read commands. Inconsistent read
rounds indicate that a write command is in progress. However, due to the
k-quorum property, it is impossible for a not seen write command to be chosen if
the received write rounds are consistent.

Thus, reads can now be delivered when another proposer is negotiating rounds
for a concurrent write command. It is also possible to deliver a read if some
acceptors have already voted for a concurrent write command, as long as this set
does not intersect the quorum of the read.

The second optimization of this section made use of pre-defined commutative
relationships between a given read and write command. It turned out that a
proposer can deliver a read as long as the newest write command that might have
been chosen commutes with it. To decide if this is the case, it is only necessary for
the proposer to examine the reply of the acceptor with the highest write round.
This result was not intuitive and therefore required a formal proof (see page 53).

Commutative Writes The last scenario examined commutative writes. The
key-insight here was that an arbitrary number of write commands can be proposed
and learned in the same round as long as they all commute with each other. For
that, the command sequences managed by PRBR were generalized to command
set sequences. The assignment of command classes to commands allowed the
modelling of commutative relationships between commands if they are transitive
(and commutative).

As a result, concurrently proposed write commands with the same command
class can now be proposed in the same round number. Since all such commands
commute with each other, acceptors can vote for them in an arbitrary order.

However, this approach requires acceptors to temporarily store all commands
that have been proposed in the current round number. To restrict the growth of
the internal state of acceptors, it was necessary to introduce a (soft) size limit
on command sets. Once this limit is reached, acceptors are forced to increment
their rounds, which starts a new command set. As long as commutative write

Chapter 8. Weakening Consensus Sequences 70

commands are proposed within the size limit, no conflicts can occur. However,
once the limit is reached and a new command set is started, conflicts can occur
during this transition phase if a proposer receives an inconsistent state.

This modification of PRBR turned out to be the most complex because
it required changes spanning all phases. Section 8.4.5 discussed some further
optimizations of the command set approach on a theoretical level, including the
incorporation of fast writes and the possibility of a hard size limit on command
sets. However, these were not implemented in this thesis and are subject to future
work.

71

Part III

Evaluation

9 Comparison with other Approaches
This chapter compares PRBR, including the modifications made in the context
of this thesis, with other Paxos-based approaches that support commutative
commands. The comparisons are made on a purely conceptual level. More
meaningful results could have been achieved by implementing them as part of
Scalaris’ replication layer and comparing their performance in an experimental
evaluation under different workloads. Due to their complexity, however, it was not
feasible to implement them in the context of this thesis.

9.1 Generalized Paxos

Generalized Paxos [25], proposed by Leslie Lamport in 2004, closely resembles
the original Paxos described in Chapter 4. However, it allows learning a sequence
of commands with a single Paxos instance by use of command structures. Basically,
a command structure can be seen as a directed graph whose nodes are the proposed
commands and edges represent interference of two commands. This allows modeling
arbitrary interference relationships between commands, making them more flexible
than the command sets introduced in Section 8.4.2. Read and write commands
are not distinguished by the protocol.

As long as two concurrently proposed commands do not interfere, they do not
create conflicts and can be learned in four message delays during normal execution.
Furthermore, if the quorum size is increased from a simple majority to two-thirds
of all acceptors in the system, then it is possible to learn non-interfering commands
in two message delays, which is optimal as argued by Lamport. If two commands
create a conflict, at least four additional messages delays are needed to resolve it,
similar to PRBR’s WriteThrough mechanism.

However, Generalized Paxos has two major drawbacks in comparison to PRBR.
First, ordering concurrent, interfering commands requires the existence of a stable
leader process that can resolve the conflict. The disadvantages of such a leader
were already discussed in Section 4.5. Most notably, the leader must receive every
proposed command because it is not known beforehand when a conflict will occur.
This makes the leader to a bottleneck of the system. Furthermore, it also represents
a single point of failure. The system is not able to resolve any conflicts until the
crash of a leader is detected. Only then is it possible to start the election of a new
leader, which is, in turn, an instance of the consensus problem as well. However,
the protocol can fall-back to standard Paxos in the mean time.

Generalized Paxos’ second problem is that of increasing state and message
sizes as new commands are proposed. New commands must be appended to the
existing command structures, which are in turn included in messages. To prevent

Chapter 9. Comparison with other Approaches 72

unrestricted growth, the leader must submit a checkpoint command. Such a
command interferes with all other commands and thus temporarily prevents all
other commands from succeeding.

This is similar to the problem encountered by the use of command sets when
modifying PRBR to support commutative write commands. However, due to their
simpler structure, it is possible to start a new command set by incrementing round
numbers without a dedicated checkpoint if the intermediate state is consistent.
Otherwise, a WriteThrough will be started which is analogous to a checkpoint
command.

In contrast to PRBR, which manages a register of command sequences, Gener-
alized Paxos is designed for a single sequence containing all commands for all keys.
In PRBR’s case, only the commands proposed for the same key will be blocked by
a WriteThrough. Thus, this lessens the impact of such a blocking command.

As of today, two notable extensions of Generalized Paxos exist. First, Fast
Genuine Generalized Consensus [40] which reduced the number of message delays
needed to recover from interfering commands by centering quorums around the
coordinator (leader). Second, Multicoordinated Paxos [7] which makes use of mul-
tiple coordinators. Here, clients send their commands to a quorum of coordinators
instead of one, which increases availability for non-interfering commands. However,
it also relies on a stable leader to establish a consistent order when interfering
commands arrive at coordinators in different order.

9.2 Egalitarian Paxos

Egalitarian Paxos (abbreviated as EPaxos) [33], proposed in 2013, is a Paxos
variant that is designed to establish a single command sequence by making use of
interference (or the absence thereof) between commands. It furthermore tries to
solve the bottleneck of a single leader by assigning the replica that has received a
command to its command leader9. This way, all replicas can act as the leader for
a disjunct subset of submitted commands, distributing the load more evenly.

The protocols structure varies fundamentally from other Paxos variants, which
is making direct comparisons difficult. Thus, the general outline of EPaxos will be
sketched in this section.

As the main difference, EPaxos differentiates between commit and execution of
a command. Is a command committed, then it is certain that it will be executed
eventually. The execution phase handles the application of the command.

The commit protocol of EPaxos is divided into two phases: pre-accept and
accept. In the pre-accept phase, the ordering constraints for a command cmd are
established. Is cmd submitted to a replica (cmd’s command leader), it calculates
the dependencies of cmd and sends this information to all other replicas. For
that, each replica must maintain a command log of its seen commands. Each
replica receiving the message updates its own command log and might amend
the received dependency information before sending them back to the command
leader. Receives the command leader responses from a fast quorum (which consists
of roughly two-thirds of all replicas) with consistent information, then it can

9The concept of different roles does not exist in EPaxos. Thus, the generic term ’replica’ is
used instead of ’acceptor’ or ’proposer’ by its creators.

73

immediately commit the command by notifying the client and all replicas with a
commit message. This is called a fast execution. Receives the command leader
inconsistent information or less than a fast quorum of replica responses, the
additional accept phase is needed to prevent inconsistencies in the dependencies
across replicas.

For command execution, every replica creates a local dependency graph based
on its command log and executes all its commands in the resulting order. Command
execution is only performed once a client reads the replicated state.

Due to the separation of commit and execution of a command, clients do not
know if a committed command was already executed. Furthermore, the execution
order of two committed commands is unknown if they were not serialized by clients
(i.e. one command is proposed after the other was committed by any replica). If
this knowledge required, a read command must be atomically executed after the
committed write command before delivering the result to the client.

If a replica wants to enforce the commit of a command, e.g. because it wants
to execute it, or if it suspects that the command leader of a not yet committed
command failed, a separate recovery procedure must be invoked. Basically, this
procedure entails taking ownership of the command and subsequently continuing
with the normal commit protocol without the possibility of a fast execution.

As with Generalized Paxos, Egalitarian Paxos manages only a single command
sequence instead of independent sequences for each item. Committing a write
command takes two message delays if the requirements of a fast execution are
satisfied, otherwise four. Due to the separation of commit and execution, this
does not change if two interfering commands are submitted concurrently. Is it
required to know for certain if a command was executed, or if the result of the
write command is of interest, then at least two additional messages delays are
needed for the subsequent read. Note that the authors have not explicitly stated
how a read is actually performed. It seems, however, that read commands have to
be committed in the same way as write commands with the subsequent command
execution phase.

By using a dependency graph, EPaxos allows to model arbitrary interference
relations, in contrast to the c-set approach that required transitivity for commands
targeting the same key. However, building the dependency graph requires each
replica to maintain a private command log of all seen commands, which increases the
size of each replicas state over time as more commands are proposed. Mechanisms
to safely prune the command log are not explicitly stated.

10 Experimental Evaluation

10.1 Hardware Setup

The cumulus cluster at the Zuse Institute Berlin was used for all experiments.
The description of cumulus’ hardware was adopted from [14].

The cluster consists of two Dell M1000 chassis, both holding 16 server blades
each. Each chassis holds a switch of type Dell Force10 MXL, which provides 10
Gbit/s point-to-point connections for all nodes within the chassis. The two chassis
are connected by two 40 Gbit/s links. Every node houses two Intel Xeon E5-2630

Chapter 10. Experimental Evaluation 74

v3 (20M Cache, 2.4 GHz) with eight cores each, for a total of 16 cores and 64 GB
main memory.

Load generation was performed on a different host, connected to each chassis
with 10 Gbit/s links using a Dell N4032F switch. This host also has two Intel
Xeon E5-2630 v3 CPU’s, but 128 GB of main memory.

10.2 Methodology

At the beginning of each measurement, a new Scalaris instance is started. Each
instance consists of four Scalaris nodes, with each node deployed on a separate
machine of the same chassis. A replication factor of four is chosen, which means
that each Scalaris node contains one replica of each item. Load generation is
performed by the benchmarking tool basho-bench 10.

Measurements are carried out over a duration of six minutes. However, the
first and last 30 seconds of each measurement are discarded to prevent abnormal
behavior during startup or shutdown of Scalaris or basho-bench from interfering
with the results.

The achieved throughput is used as the primary performance metric in all
experiments. basho-bench is configured to log histograms of the performed
operations in one-second intervals, which means that each measurement results in
300 data points. For analysis, the mean with a 95% confidence interval assuming
a normal distribution is used (no visible confidence interval indicates that it is so
small that is obscured by the mark in the diagram).

The changes made to PRBR all concern concurrent command that access
or modify the same item. Therefore, all operations during all experiments are
performed on a single item. This constitutes the worst case for PRBR because
concurrent commands targeting different do not create conflicts.

For simplicity, the item’s value is a single integer that can be incremented
or read by commands that are submitted by basho-bench work processes. This
prevents any eventual overhead caused by, for example, computationally intensive
filters, to interfere with the results.

Each basho-bench worker is a separate Erlang process that can be configured to
submit requests at a fixed rate, or the maximum rate possible. For all measurements,
the maximum option is used, which means that as soon as a worker receives a
reply from a request, it submits the next one. The number of worker processes
used will be stated for each measurement.

The raw data obtained from basho-bench, as well as a snapshot of Scalaris
with all modified versions of PRBR are available at GitHub11.

10.3 Measurements

10.3.1 Commutative Reads

This section examines how the number of concurrent clients (i.e. basho-
bench workers) affects the number of read requests that can be handled per
second. Naturally, the modification made in PRBR in regards to write commands

10http://docs.basho.com/riak/kv/2.2.3/using/performance/benchmarking/
11https://github.com/rumoe/thesis

http://docs.basho.com/riak/kv/2.2.3/using/performance/benchmarking/
https://github.com/rumoe/thesis

Chapter 10. Experimental Evaluation 75

should have no effect here, since no write commands are submitted. Thus, only
the unmodified version of PRBR will be compared with the modification for
commutative reads discussed in Section 8.2.

To summarize the achieved results, the modification completely eliminated
the conflict potential of two concurrently proposed reads commands by not
incrementing read round numbers when an acceptor receives a read command.
Therefore, it is expected that the number of handled requests initially grows nearly
linear. Of course, linear growth can not be sustained by using constant resources.
Every proposed command needs some minimal amount of computational work and
bandwidth. Therefore, the number of handled requests must eventually approach
some limit.

In contrast to that, conflict potential exists for every pair of concurrently
submitted commands in PRBR’s unmodified version. The more read commands
are proposed concurrently, the higher the likelihood of a conflict. Therefore, the
number of requests is expected to grow only for a very small number of clients,
albeit not nearly linear. After a certain threshold, repeated conflicts should increase
in number, causing the number of handled requests to decrease.

The results of the experiment are shown in Figure 10.1. In general, the results
are as expected. The handled requests in PRBR’s modified version (blue) increase
monotonically. A slight decrease in the graph’s slope is noticeable, suggesting
that some limit will be approached asymptotically for a higher number of clients.
The performance of the unmodified version (red) decreases if more than two
clients are used. However, it is surprising that the performance of both versions
is equal for two clients. This might suggest that some side effect caused by this
particular benchmark setup serializes the submitted requests, therefore preventing
conflicts from occurring. To investigate further, this measurement was repeated

0 5 10 15 20 25 30 35 40

concurrent clients

0

5000

10000

15000

20000

25000

30000

re
q
u
e
st

s
p
e
r

se
co

n
d

unmodified

rr commute

Figure 10.1: Commutative reads with an increasing number of
concurrent clients.

Chapter 10. Experimental Evaluation 76

with conflict-logging enabled. This revealed a small number of conflicts occurring
(roughly 50 conflicts per second). It seems that messages sent from a proposer to
all acceptors arrive within a small time frame in this configuration, which leaves
only limited room for different messages to arrive in-between.

Note that the logging of conflicts might affect the number of conflicts that occur
because it introduces some additional overhead. To prevent this from happening,
conflict logging will not be performed otherwise

10.3.2 Commutative Writes

The next experiment focuses on concurrent, commutative writes on a single
item. Similar to the previous measurement, the number of requests per second
is plotted for an increasing number of concurrent workers. All submitted write
commands commute with each other, which means that the c-set size would grow
indefinitely without the establishment of a size limit. Thus, the size limits of 1, 5,
10, 20 and 50 will be used and compared against PRBR’s unmodified version. To
reiterate, the established limit is not a hard-limit (see Section 8.4.5). C-set sizes
might grow larger than this, which makes a size limit of 1 interesting to compare
against the unmodified version.

Each time the size limit is reached, conflict potential exists due to the possibility
of a proposer receiving an inconsistent write state. Thus, no monotonic increase of
handled requests can be expected. Furthermore, resolving a conflict is much more
expensive due to the WriteThrough mechanism. Therefore, it is expected that all
plotted graphs will resemble that of PRBR’s unmodified behavior for commutative
reads (an initial performance increase with subsequent degradation), but with a
more aggressive decline in handled requests as the number of clients is increased.
Increasing the c-set size limit reduces the conflict potential, while it simultaneously
increases the size of sent messages. Since bandwidth is a limited resource, the cost
of larger c-sets should eventually outweigh the benefits of fewer conflicts. Therefore,
it is expected that the performance of PRBR increases initially for larger c-sets,
but will degrade if a too large size is chosen.

The results of the measurements are depicted in Figure 10.2.
The results match the expectations in general. However, some interesting

observations can be made. First, the performance of the unmodified version
degrades as soon as a second client is introduced. This is in direct contrast to the
read performance of the previous experiment. This can not be solely explained by
the more expensive conflict resolution. By examining the protocol, it is obvious
that conflicts are also much more likely to happen. A write will be blocked if a
k-quorum of acceptors made promises during the time in between the start of the
writes round_request and write phase. This time frame spans at least two message
delays, which is much longer than the time frame in which reads could block each
other.

The effects of using a soft-limit can be seen when comparing L = 1 to the
unmodified version. Initially, the performance is slightly lower for a single client due
to the slightly larger messages. However, the more concurrent clients are available,
the higher L = 1’s relative performance increase compared to the unmodified
version is. Since more commands are proposed concurrently, this likelihood is

Chapter 10. Experimental Evaluation 77

0 5 10 15 20

concurrent clients

0

200

400

600

800

1000

1200

1400
re

q
u
e
st

s
p
e
r

se
co

n
d

unmodified

L=1

L=5

L=10

L=20

L=50

Figure 10.2: Commutative writes with different c-set size limits and an
increasing number of concurrent clients.

higher that some pass the round_request phase in the same round. Thus, conflict
potential is reduced and the number of requests grows.

This effect is even more pronounced for larger c-sets. For larger c-sets, the
performance degradation when using a single client increases. All configurations
(except L = 1) behave roughly the same: an initial performance increase for a small
number of concurrent clients, followed by some range in which the performance
remains fairly unchanged, and a sharp performance decrease around 9 to 10
concurrent clients.

Examining the raw data reveals that the achieved performance varies strongly
for a higher number of clients. A possible reason for that is the use of WriteThroughs.
WriteThroughs are write commands that do not commute with any other command.
If a high number of clients is present, the probability of a client receiving an
inconsistent write state due to a WriteThrough is also high. This client, in
turn, will also start a WriteThrough. This can potentially trigger a cascade of
WriteThroughs which will considerably slow down the system. Once this state is
resolved, the PRBR returns to a much higher request rate. This indicates that the
current write conflict resolution mechanism is not designed to handle a consistent
stream of commands from multiple clients.

In addition, this strongly suggests that the obtained data has no normal
distribution for a high number of clients. Thus, the plotted confidence intervals
are not reliable here.

Out of the tested parameters, a c-set size limit of 20 seems to be performing best
in most of the configurations. For the higher limit of 50, the increase in message
sizes outweighs the benefit of fewer conflicts. Thus, it performs consistently worse.

L = 5 seems to be the best choice overall out of the tested configurations.
Its performance is comparable to that of L = 10 and L = 20, albeit with higher

Chapter 10. Experimental Evaluation 78

fluctuations. Due to the small size limit, however, the performance hit for non-
concurrent access is relatively small. In addition the amount of data each acceptor
must hold for L = 5 is considerably smaller than for the larger sizes. Storage size
was not a performance metric in these benchmarks. However, it is sensible in
real-life scenarios to keep storage overhead as small as possible.

10.3.3 Mix of Commutative and non-Commutative Writes

In the previous experiment, all submitted write commands commuted with
each other. Of course, this is not always the case. This measurement focuses on
PRBR’s behavior for different percentages of commutative and non-commutative
write commands using a fixed number of concurrent clients. Based on the result of
the previous experiments, a c-set size limit of 5 will be used and compared with
PRBR’s unmodified state. The number of concurrent clients is set to four so that
each basho-bench worker can send requests to a separate Scalaris node.

Since PRBR’s unmodified version has no concept of commutativity, a constant
throughput is expected for every configuration. For the version using c-sets,
however, fewer conflicts should occur with an increasing percentage of commutative
commands. By making some simplifying (and optimistic) assumptions, a prediction
about the relationship between commutative command percentage and throughput
can be made.

Assume that all clients submit their write commands at exactly the same time
and in the same interval. Furthermore, assume that all write commands take the
same time to process. No conflict occurs if all commands commute with each other.
Let x be the percentage of commutative write commands. Then, the probability
that no conflict occurs for a set of four commands is x

4. Otherwise, a conflict
occurs that must be resolved first. In other words, the submitted commands can
be processed faster with a probability of x4. This suggests the existence of a
quartic relationship between throughput and the percentage of commutative write
commands. By examination of the previous results, a throughput of roughly 390
and 1010 requests per second is expected for 0% or 100% of commutative writes,
respectively. This yields the function f(x) = 390+ 620x

4, which will be plotted as
well.

The assumptions made are optimistic. In the used setup, clients do not
synchronize their submissions and do not wait for each other. This means that
during the time a write command is processed, more than three other commands
can be submitted by the other clients. This reduces the probability of succeeding
without conflict. Therefore, this function should be considered as an upper bound
on the achieved performance.

Figure 10.3 depicts the results of the experiment. Unsurprisingly, the unmodified
version of PRBR shows a constant performance with only minor fluctuations. The
general shape of the modified version’s graph matches that of the predicted
upper bound. Due to the aforementioned argument, the achieved throughput is
considerably lower for higher percentages of commutative write commands than
was calculated by the naively derived function.

The main insight from this experiment is, that a significant portion of write
commands must be commutative to have a noticeable positive effect on the
throughput. A change of the percentage of commutative writes from 0% to 60%

Chapter 10. Experimental Evaluation 79

0 20 40 60 80 100

percentage of commutative write commands

0

200

400

600

800

1000
re

q
u
e
st

s
p
e
r

se
co

n
d

predicted upper bound

unmodified

ww commute

Figure 10.3: Mix of commutative and non-commutative writes using
four concurrent clients.

achieves only a roughly 10% higher throughput, whereas the change from 80% to
100% doubled the observed throughput. This effect is expected to be even more
pronounced for more concurrent clients since a single conflict has the potential to
block more submitted commands from succeeding.

10.4 Mix of Read and Write Commands

In the last experiment, clients submit a mix of read and write commands. As
with the previous experiment, four clients will be used and a c-set size limit of
L = 5.

Six configurations that are making use of different commutative relationships
will be compared.

unmodified PRBR’s unmodified state to establish the baseline performance.

rr All read commands commute with each other.

passive This incorporates commutative reads and Change 2 of Section 8.3 (reads
can ignore inconsistent read rounds caused by writes). This includes all
modifications that are always applicable, i.e. without assuming specific
relationships between commands, hence the name ’passive’.

passive+rw The same as passive, but all reads commute with all writes (writes,
however, do not commute with each other).

passive+ww The same as passive, but all writes commute with each other.

passive+rw+ww All submitted commands commute with each other.

Write commands are more expensive than read commands. Thus, the perfor-
mance of all configurations should increase as the percentage of read command

Chapter 10. Experimental Evaluation 80

0 20 40 60 80 100

percentage of read commands

0

1000

2000

3000

4000

5000

6000

7000
re

q
u
e
st

s
p
e
r

se
co

n
d

unmodified

rr

passive

passive+rw

passive+ww

passive+rw+ww

Figure 10.4: Mix of reads and writes using four concurrent clients.

increases. Furthermore, the order in which they are listed reflects the expected
performance in relation to each other. The unmodified version of PRBR should
be the slowest, whereas the configuration without non-commutative commands
should perform best. The reason for that is the reduced conflict potential as more
and more commands commute. Figure 10.4 depicts the result of the experiment.

All configurations demonstrate superlinear growth. The ordering in respect to
their performance matches the expectations. Their performance for 0% and 100%
matches with the results of the previous experiments. Since all but unmodified
PRBR can handle concurrent reads without conflicts, their achieved throughput
converges to the same value.

The way this experiment was set up allows it to group the used configurations
into those with commutative write commands and those without them.

For all configurations without commutative writes, only a minor performance
increase is noticeable if less than 50% of submitted commands are reads. This is
consistent with the previous experiment: Even if there are two or more concurrently
proposed read commands, a single concurrent write is enough to cause conflicts
with both of them. The differences get more pronounced as the rate of read
commands approaches 100%.

The passive graph is probably the most important since it includes all modi-
fications that can be applied independently of the submitted commands. These
modifications turn out to be effective for a high percentage of read commands,
increasing the throughput by up to a factor of roughly four. The impact of only a
few writes on the achievable performance is profound. Only five percent of writes
commands are enough to more than half the achieved throughput compared to no
writes at all.

It is unsurprising that configurations exploiting commutative writes perform
better than those that do not. Of course, this performance gap shrinks as the

Chapter 10. Experimental Evaluation 81

amount of write commands decreases. The only configuration which experienced a
significant speedup by the 50% mark is the configuration in which all commands
commute with each other. On the first glance, it might be surprising that this
configuration experiences superlinear growth as well. If the number of write
commands decreases linear, the number of messages decreases linear as well.
However, less writes also mean that c-sets are filled slower. Therefore, fewer new
c-sets must be started, which decreases the potential for conflicts to occur.

10.5 Summary of the Results

The modifications made to PRBR improved its performance throughout
nearly all tested workloads. Only when handling serialized writes the measured
performance degraded due to the additional data that had to be included in
messages.

The achieved performance increase was negligible for workloads in which the
percentage of commutative commands was not high. This effect is expected to be
even more pronounced for a higher number of concurrently proposed commands.
However, a noticeable improvement on the measured throughput could be observed
for read-heavy workloads.

It was possible to completely remove the conflict potential in read-only scenarios,
which completely changed the relationship between the number of concurrent clients
and throughput. Instead of a decrease in throughput, near-linear growth was
observed for the tested configuration.

Furthermore, it was shown that PRBR is not designed to handle a high number
of concurrent write commands trying to modify the same item. For an increasing
number of clients, conflicts became increasingly likely, which caused the protocol
to eventually livelock. PRBR’s extension to c-sets alleviated this problem slightly.
Depending on the c-set size limit, up to 10 clients were able to propose write
commands without major performance degradation compared to a single client.
However, this came at the cost of a higher protocol complexity and reduced
performance when using a single client.

82

Part IV

Conclusion and Future Work

11 Conclusion
This work provided the first in-depth description of the current state of PRBR,
a Paxos-based algorithm that can establish in-place consensus of any number of
independent command sequences. In addition, a number of informal proof sketches
that reasoned about the correctness of PRBR were presented.

The main contribution of this thesis constituted the extension of PRBR to
exploit commutativity of concurrently submitted commands as part of the same
command sequence. Several strategies – depending on the types of the submitted
commands – were outlined.

In a short discourse, two other approaches were discussed and compared on a
theoretical level which revealed some pros and cons between them.

In the last part of this thesis, the modifications made to PRBR were compared
to PRBR’s unmodified state in an experimental evaluation by using throughput as
the primary performance indicator. The experiments showed that, in general, these
changes successfully improved the throughput in scenarios in which a significant
portion of the submitted commands commuted with each other. The most
significant performance improvement was achieved for a read-only scenario. Here,
all conflict potential was eliminated, which resulted in a near-linear scaling for the
tested number of concurrent clients.

12 Future Work
PRBR can still be improved upon. Furthermore, the modifications made to it to
support commutative write commands only represent a proof-of-concept. Thus,
there is still a lot of interesting work left to do.

Conflict Resolution PRBR’s current conflict resolution mechanism is based on
WriteThroughs, which synchronize the state of replicas by using a predefined
write command. As shown in Section 7.5, WriteThroughs might cause
some write commands to be applied twice if this is not prevented by a
ContentCheck. Of course, this is often not desirable. Further work must be
done to improve the conflict resolution mechanism so that this problem can
be prevented.

C-Sets It was shown that commutativity of write commands can be exploited
by extending command sequences to command set sequences. Due to the
nature of c-sets, it is only possible to model transitive relationships that
way. Other approaches like Egalitarian Paxos or Generalized Paxos do not
require transitivity but are considerably more complex. In PRBR’s case,

Chapter 12. Future Work 83

however, only concurrent write commands (since conflicts involving reads
are handled differently) that operate on the same key must be considered,
whereas the other approaches must consider all commands. It is of interest
to investigate if use-cases exist that justify the added protocol complexity to
support non-transitive commutativity relationships between write commands.
If this is the case, it might be useful to incorporate some ideas of the other
approaches to relax the transitive requirement.

The conflict potential could not be eliminated completely in the scenario
where all submitted write commands commute with each other. The
experimental evaluation showed that too many concurrent writes can still
cause a livelock in the protocol. Further research is needed to explore ways
to further reduce conflict potential in this case.

Furthermore, some possible extensions of the c-set approach were men-
tioned in Section 8.4.5. These include the establishment of hard size limit,
the incorporation of the fast write mechanism, and the restricted use of c-sets
for only some command sequences managed by PRBR. Further work must
be done to evaluate the practical feasibility and effectiveness of these ideas.

Hardware Focus All considerations up until this point focused on PRBR solely
on an algorithmic level. Due to the fundamental and widely applicable
nature of the consensus problem, however, it is of interest to further improve
efficiency by making use of the capabilities of innovative hardware. Potential
optimizations include the exploitation of multicast and reduce operations
of modern interconnects such as InfiniBand and OmniPath to reduce the
number of messages and latency, or the use of techniques such as RDMA
(remote direct memory access) in conjunction with NVRAM (non-volatile
RAM) for more efficient access to the distributed state. An upcoming DFG
(Deutsche Forschungsgesellschaft) project12 starting end of 2017 as part of
the SPP203713 plans to address some of these issues.

12
https://www.dfg-spp2037.de/re1389-10/

13
http://www.dfg.de/foerderung/info_wissenschaft/2016/info_wissenschaft_16_26/index.html

https://www.dfg-spp2037.de/re1389-10/
http://www.dfg.de/foerderung/info_wissenschaft/2016/info_wissenschaft_16_26/index.html

84

Bibliography
[1] Marcos Aguilera, Wei Chen, and Sam Toueg. “Failure detection and consensus

in the crash-recovery model”. In: Distributed Computing (1998), pp. 231–245.

[2] Michael Barborak, Anton Dahbura, and Miroslaw Malek. “The Consensus
Problem in Fault-tolerant Computing”. In: ACM Comput. Surv. 25.2 (June
1993), pp. 171–220. issn: 0360-0300.

[3] Zuse Institute Berlin. Scalaris - Distributed Scalable Key-Value Store with
Transactions. Accessed: 08.06.2018. url: http://www.zib.de/projects/
scalaris-distributed-scalable-key-value-store-transactions.

[4] Zuse Institute Berlin. Scalaris - Users and Developers Guide. 2016. url:
https://github.com/scalaris-team/scalaris/blob/master/user-
dev-guide/main.pdf.

[5] Mike Burrows. “The Chubby lock service for loosely-coupled distributed
systems”. In: Proceedings of the 7th symposium on Operating systems design
and implementation. USENIX Association. 2006, pp. 335–350.

[6] Christian Cachin, Rachid Guerraoui, and Luis Rodrigues. Introduction to
reliable and secure distributed programming. Springer Science & Business
Media, 2011.

[7] Lásaro Jonas Camargos, Rodrigo Malta Schmidt, and Fernando Pedone.
“Multicoordinated Paxos”. In: Proceedings of the twenty-sixth annual ACM
symposium on Principles of distributed computing. ACM. 2007, pp. 316–317.

[8] Tushar D Chandra, Robert Griesemer, and Joshua Redstone. “Paxos made
live: an engineering perspective”. In: Proceedings of the twenty-sixth annual
ACM symposium on Principles of distributed computing. ACM. 2007, pp. 398–
407.

[9] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. “The weakest
failure detector for solving consensus”. In: Journal of the ACM (JACM) 43.4
(1996), pp. 685–722.

[10] James C. Corbett et al. “Spanner: Google’s globally distributed database”.
In: ACM Transactions on Computer Systems (TOCS) 31.3 (2013), p. 8.

[11] Giuseppe DeCandia et al. “Dynamo: Amazon’s Highly Available Key-value
Store”. In: SIGOPS Oper. Syst. Rev. 41.6 (Oct. 2007), pp. 205–220. issn:
0163-5980.

[12] Carole Delporte-Gallet et al. “From crash-stop to permanent omission:
Automatic transformation and weakest failure detectors”. In: International
Symposium on Distributed Computing. Springer. 2007, pp. 165–178.

[13] Hao Du and David J. St. Hilaire. Multi-Paxos: An Implementation and
Evaluation.

[14] Jens Fischer. “Evaluating the Scalability of Scalaris”. MA thesis. Freie
Universität Berlin, 2016.

http://www.zib.de/projects/scalaris-distributed-scalable-key-value-store-transactions
http://www.zib.de/projects/scalaris-distributed-scalable-key-value-store-transactions
https://github.com/scalaris-team/scalaris/blob/master/user-dev-guide/main.pdf
https://github.com/scalaris-team/scalaris/blob/master/user-dev-guide/main.pdf

BIBLIOGRAPHY 85

[15] Michael J Fischer. “The consensus problem in unreliable distributed sys-
tems (a brief survey)”. In: International Conference on Fundamentals of
Computation Theory. Springer. 1983, pp. 127–140.

[16] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. “Impossibility
of Distributed Consensus with One Faulty Process”. In: J. ACM 32.2 (Apr.
1985), pp. 374–382. issn: 0004-5411.

[17] Ali Ghodsi, Luc Onana Alima, and Seif Haridi. “Symmetric replication for
structured peer-to-peer systems”. In: Databases, Information Systems, and
Peer-to-Peer Computing. Springer, 2007, pp. 74–85.

[18] Seth Gilbert and Nancy Lynch. “Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services”. In: ACM SIGACT
News 33.2 (2002), pp. 51–59.

[19] Rachid Guerraoui and Luis Rodrigues. Introduction to reliable distributed
programming. Springer Science & Business Media, 2006.

[20] Maurice P Herlihy and Jeannette M Wing. “Linearizability: A correctness
condition for concurrent objects”. In: ACM Transactions on Programming
Languages and Systems (TOPLAS) 12.3 (1990), pp. 463–492.

[21] Patrick Hunt et al. “ZooKeeper: Wait-free Coordination for Internet-scale
Systems.” In: USENIX annual technical conference. Vol. 8. 2010, p. 9.

[22] Bjorn Kolbeck et al. “Flease-lease coordination without a lock server”.
In: Parallel & Distributed Processing Symposium (IPDPS), 2011 IEEE
International. IEEE. 2011, pp. 978–988.

[23] Leslie Lamport. “Byzantizing Paxos by refinement”. In: International Sym-
posium on Distributed Computing. Springer. 2011, pp. 211–224.

[24] Leslie Lamport. “Fast Paxos”. In: Distributed Computing 19.2 (2006), pp. 79–
103.

[25] Leslie Lamport. Generalized consensus and Paxos. Tech. rep. Technical
Report MSR-TR-2005-33, Microsoft Research, 2005.

[26] Leslie Lamport. “Paxos made simple”. In: ACM Sigact News 32.4 (2001),
pp. 18–25.

[27] Leslie Lamport. “Specifying concurrent program modules”. In: ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 5.2 (1983),
pp. 190–222.

[28] Leslie Lamport. The Part-Time Parliament. Accessed: 26.05.2017. url:
http://research.microsoft.com/en-us/um/people/lamport/pubs/
pubs.html#lamport-paxos.

[29] Leslie Lamport. “The Part-time Parliament”. In: ACM Trans. Comput. Syst.
16.2 (May 1998), pp. 133–169. issn: 0734-2071.

[30] Leslie Lamport. “Using time instead of timeout for fault-tolerant distributed
systems.” In: ACM Transactions on Programming Languages and Systems
(TOPLAS) 6.2 (1984), pp. 254–280.

http://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html#lamport-paxos
http://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html#lamport-paxos

BIBLIOGRAPHY 86

[31] Leslie Lamport and Mike Massa. “Cheap Paxos”. In: Dependable Systems
and Networks, 2004 International Conference on. IEEE. 2004, pp. 307–314.

[32] Nancy A. Lynch. Distributed algorithms. Morgan Kaufmann, 1996.

[33] Iulian Moraru, David G Andersen, and Michael Kaminsky. “There is more
consensus in egalitarian parliaments”. In: Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles. ACM. 2013, pp. 358–372.

[34] Hiroya Nagao and Kazuyuki Shudo. “Flexible routing tables: Designing
routing algorithms for overlays based on a total order on a routing table set”.
In: Peer-to-Peer Computing (P2P), 2011 IEEE International Conference on.
IEEE. 2011, pp. 72–81.

[35] Diego Ongaro and John K Ousterhout. “In Search of an Understandable
Consensus Algorithm.” In: USENIX Annual Technical Conference. 2014,
pp. 305–319.

[36] Fred B. Schneider. “Implementing fault-tolerant services using the state
machine approach: A tutorial”. In: ACM Computing Surveys (CSUR) 22.4
(1990), pp. 299–319.

[37] Thorsten Schütt, Florian Schintke, and Alexander Reinefeld. Chord#: Struc-
tured Overlay Network for Non-Uniform Load-Distribution. 2005.

[38] Thorsten Schütt, Florian Schintke, and Alexander Reinefeld. “Scalaris: Reli-
able Transactional P2P Key/Value Store”. In: Proceedings of the 7th ACM
SIGPLAN Workshop on ERLANG. ERLANG ’08. Victoria, BC, Canada:
ACM, 2008, pp. 41–48. isbn: 978-1-60558-065-4.

[39] Ion Stoica et al. “Chord: A scalable peer-to-peer lookup service for Internet
applications”. In: ACM SIGCOMM Computer Communication Review 31.4
(2001), pp. 149–160.

[40] Pierre Sutra and Marc Shapiro. “Fast Genuine Generalized Consensus”. In:
Reliable Distributed Systems (SRDS), 2011 30th IEEE Symposium on. IEEE.
2011, pp. 255–264.

[41] Paolo Viotti and Marko Vukolić. “Consistency in non-transactional dis-
tributed storage systems”. In: ACM Computing Surveys (CSUR) 49.1 (2016),
p. 19.

	Introduction
	Motivation
	Contribution

	I Background and Related Work
	Distributed System Abstraction
	Processes
	Interprocess Communication
	Messages
	Failures
	Process Failures
	Link Failures

	The Consensus Problem
	Problem Statement
	Impossibility of Asynchronous Consensus

	Paxos
	Process Roles
	Quorums
	The Algorithm
	Correctness
	Liveness

	Consensus Sequences
	Replicated State Machines
	Requirements for Consensus Sequences
	Strong Consistency
	Paxos in Replicated State Machines
	Commutative Commands

	Scalaris
	Architectural Overview

	II Paxos Consensus Sequences
	Paxos Round Based Register
	Preliminaries
	Register of Consensus Sequences
	Consistent Quorums
	Commands
	Rounds

	The Algorithm
	Phase 1: round_request
	Phase 2: read
	Phase 3: write
	WriteThrough

	Execution Examples
	Fast Writes
	Double Application of Write Commands
	Implementation Considerations
	Protocol Complexity

	Weakening Consensus Sequences
	Interfering and Commutative Commands
	Commutative Reads
	Identifying Avoidable Conflicts
	Modifying PRBR
	Impact

	Reads Commuting with Writes
	Identifying Avoidable Conflicts
	Modifying PRBR
	Impact and Further Optimizations

	Commutative Writes
	Identifying Avoidable Conflicts
	Command Sets
	Sequence of Command Sets
	Modifying PRBR
	Impact and Further Optimizations

	Summary

	III Evaluation
	Comparison with other Approaches
	Generalized Paxos
	Egalitarian Paxos

	Experimental Evaluation
	Hardware Setup
	Methodology
	Measurements
	Commutative Reads
	Commutative Writes
	Mix of Commutative and non-Commutative Writes

	Mix of Read and Write Commands
	Summary of the Results

	IV Conclusion and Future Work
	Conclusion
	Future Work

