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Abstract

This report aims to explain and extend pattern databases as a tool in finding optimal solutions
to combination puzzles. Using sliding tile puzzles as an example, an overview over techniques
to construct and use pattern databases is given, analysed, and extended. As novel results, zero
aware additive pattern databases and PDB catalogues are introduced. This report originally
appeared as a bachelor thesis at Humboldt University of Berlin under the title Notes on the
Construction of Tablebases.





Notation
We write A: = B for “A is defined by A = B” and A:↔ B for “A is defined by A↔ B.” Furthermore,
we denote true with ⊤ and false with ⊥. We denote with N = {0, 1, . . .} the set of natural numbers
including zero and with nk: = n(n− 1) · · · (n− k + 1) the falling factorial .

Sk denotes the symmetric group of order k whose members are the permutations of k items . Its
neutral element is id. Given such a permutation σ ∈ Sk, σ(i) with 0 ≤ i < k is the element at position i
in σ. Given two permutations σ, τ ∈ Sk, σ ◦ τ is the composition of σ and τ with (σ ◦ τ)(i): = τ(σ(i)) for
all 0 ≤ i < k. The notation (a b) denotes the transposition of a and b which is a permutation defined by

(a b)(i): =

{

a if i = b
b if i = a
i otherwise.

Given an equivalence relation ≈ ⊂ S × S over some set S, the notation [a]≈: = {x | x ∈ S, a ≈ x }
indicates the equivalence class of a under ≈. When the relation is ≃T , indicating equivalence under
the APDB or ZPDB for tile set T , we write [v]T instead of [v]≃T

for convenience to denote the set of all
configurations that map to the same partial puzzle configuration as v.

We denote an undirected graph G = (V,E) as a set of vertices V and a set of edges E ⊂ V × V
with E symmetric. Given two vertices v, w ∈ V , the relation v ∼G w indicates whether v is connected
to w. The distance function dG(v, w) : V × V 7→ N ∪ {∞} yields the number of edges in the shortest
path from v to w in G or ∞ if no such path exists:

dG(v, w): =

{

min
n∈N

v ∼n
G w if v ∼∗

G w

∞ otherwise.

The neighbourhood NG(v): = {w | w ∈ V, v ∼G w } of a vertex v is the set of all vertices it is connected
to. If the graph we consider is obvious from the context, the subscripts are dropped.

We denote by G/≈ the quotient graph of G with respect to some equivalence relation ≈ ⊂ V × V .
The vertices of G/≈ are the equivalence classes of V under ≈ denoted by V/≈: = { [v]≈ | v ∈ V },
furthermore it is [v]≈ ∼G/≈ [w]≈, v, w ∈ V iff there are some ṽ ∈ [v], w̃ ∈ [w] such that ṽ ∼G w̃. Again,
we denote by G/T : = G/≃T the quotient graph of the state transition graph of an (nm−1) puzzle under
the equivalence class induced by the APDB or ZPDB for tile set T .
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1 Sliding Tile Puzzles
The first sliding tile puzzle was the 15 puzzle invented in 1874 by Noyes Chapman, a postmaster in
Canastota, New York [2]. The puzzle comprises 15 square tiles numbered 1 to 15 arranged randomly in
a 4× 4 square tray with one spot empty. The configuration of the puzzle can be changed by sliding any
tile adjacent to the empty grid location into the empty grid location. The objective of the puzzle is to
transition the puzzle configuration into the solved configuration* shown in figure 1.1.

1 3 8 9

10 6 4

2 12 5 15

14 7 13 11

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

+ − + −

− + − +

+ − + −

− + − +

Figure 1.1 a permuted and a solved 15 puzzle, square parity

By varying the size of the tray and consequentially varying the number of tiles in the puzzle, the
15 puzzle can be generalised to the (nm− 1) puzzle played on an n×m tray. For this thesis the author
has mainly researched the 24 puzzle played on a 5 × 5 tray, but the results are applicable to arbitrary
puzzle sizes. The solved configuration for an (nm− 1) puzzle is formed by leaving the upper left corner
empty and then arranging the tiles 1, 2, . . . , nm− 1 from left to right, top to bottom.

1.1 The Invariant Property

Since their invention, sliding tile puzzles have been subject to abundant research.
Let’s label the empty grid spot with 0 and call it zero tile. If we number the grid locations such that

in the solved configuration (cf. figure 1.1), each tile is on the grid location with the same number, we
can model an (nm− 1) puzzle configuration as a permutation σ of the tiles {0, 1, . . . , nm− 1} with σ(t)
representing the location of tile t. The sign of this permutation alternates with every move as a move is
a composition of σ with a transposition of the zero tile with some adjacent tile. Similarly, when the grid
locations are assigned a parity as shown in figure 1.1, the parity of the grid location on which the zero tile
resides changes every move. If these two are combined, we get the parity of a puzzle configuration P (σ),
shown in (1.1.1).

P (σ): = sgnσ · sgnσ(0) (1.1.1)

Because both factors of P (σ) change with every move, P (σ) stays unchanged when transitioning into a
different state, forming an invariant.

This invariant was found in an initial analysis in 1879 by Johnson and Story [4] who showed that it
exists in 15 puzzle configurations; pairs of configurations can be reached from each other iff they have the
same parity. Because the puzzle dimensions are not used in the invariant’s definition, the result readily
generalises to all (nm− 1) puzzles.

* Traditionally, the solved configuration has tile 1 in the top left corner and the bottom right corner
left empty. The solved configuration used here is more common in research due to the slightly easier
programming. Nevertheless, some authors [11] prefer the more traditional solved configuration.
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2 Informed Graph Search: The A* Family of Algorithms
An interesting problem on sliding tile puzzles and other combination puzzles is finding the shortest
solution for a given configuration. This can be modelled as a single-pair shortest path problem on the
puzzles state transition graph and can be solved efficiently using an algorithm from the A* family of
algorithms. Indeed, sliding tile puzzles have for a long time been popular test cases for heuristic search
research [4].

As an improvement over earlier graph search algorithms, the key idea of the A* family of algorithms
is to use an externally supplied heuristic function h(v) to disregard paths leading away from the goal,
searching primarily along paths that achieve progress. In many real world use cases such a heuristic
function obtains readily. For example, for graphs embedded into Euclidean space, Euclidean distance
can generally be used with good performance. §§3–4 of this thesis deal with the construction of good
heuristic functions for sliding tile puzzles.

Given a graph G = (E, V ) and a goal vertex z ∈ V , a function h(v) : V 7→ N is called an admissible
heuristic function for path searches to z if

h(v) ≤ d(v, z) (2.1)

for all v ∈ V . Such a heuristic function provides a h value which is a lower bound for the distance from v
to z, informally allowing the search algorithm to receive a notion of how close vertex v is to the goal.

A heuristic function is called consistent , if

v ∼ w → h(v)− h(w) ≤ 1 (2.2)

for all v, w ∈ V , a stronger property than admissibility:

Lemma 2.1 Every consistent heuristic function h with h(z) = 0 is admissible.

Proof Let v0 ∈ V such that v0 ∼
∗ z and let v0v1 . . . z be a shortest path from v0 to z. This path

comprises d(v0, z) + 1 vertices. We can now expand h(v0) using the consistency property:

h(v0) = h(v0) +
(

h(v1)− h(v1)
)

+
(

h(v2)− h(v2)
)

+ . . .+
(

h(z)− h(z)
)

=
(

h(v0)− h(v1)
)

+
(

h(v1)− h(v2)
)

+ . . .+
(

h(vd(v0,z)−1)− h(z)
)

+ h(z)

≤ 1 + 1 + . . .+ 1 + 0 = d(v0, z),

proving the lemma. q. e. d.

Algorithm 2.1 presents the A* algorithm invented in 1968 by Peter Hart, Nils Nilsson, and Bertram
Raphael [5]. The algorithm keeps a priority queue open of vertices whose neighbourhood has not yet
been expanded and a set closed of vertices which have already been visited. For each vertex v in the
open list, we keep track of the distance g at which we encountered v. If in addition to the distance the
shortest path is desired, too, we can keep track of that as well.

The priority queue open is ordered by f = g+h(v), the sum of the exact length of the path from v0
to v and the estimated length of the path from v to z. As each vertex v we add to the open list is added
at the shortest distance we encounter it, g = d(v0, v) and thus f ≤ d(v0, z) for all vertices in the open
list, guaranteeing that the shortest path is found.

In each step, we take a vertex v with minimal f from open, mark it as closed, add the neighbourhood
of v to open and finally remove all closed nodes from the open list. If the goal node is encountered in
the open list, we immediately terminate the search. If we find open to be empty, z must be unreachable
from v0, so we return ∞.

A detailed analysis of the algorithm as well as a rigorous proof of correctness can be found in [5].

Algorithm 2.1 The A* algorithm A*(G, h, v0, z). Find a shortest path from v0 to z on graph G = (V,E)
using the admissible heuristic h(v). The algorithm returns d(v0, z).

1 open ← {(v0, 0)}
2 closed ← ∅
3 while open ̸= ∅ do

3.1 if ∃g ∈ N. (z, g) ∈ open then return g
3.2 (v, g)← minf open
3.3 closed ← closed ∪ {v}
3.4 open ← open \ {(v, g)}
3.5 open ← open ∪

{

(w, g + 1)
∣

∣ w ∈ NG(v), w /∈ closed
}

4 return ∞

3



While A* can be proven to have optimal run time for a given admissible heuristic h(v), its practical
use is often limited by the requirement to keep track of the open and closed lists. When trying to find
shortest paths in very large graphs (for example, the state transition graphs of sliding tile puzzles), list
size quickly exceeds available storage.

To solve this problem, Richard Korf in 1985 [6] introduced algorithm 2.2 named Iterative Deepen-
ing A* (IDA*), a variant of Depth-First Iterative Deepening Search (IDFS, ibid.). IDA* removes the need
for open and closed lists by performing a depth-first search over the graph. To ensure that an optimal
result is obtained, only vertices with an f value below a bound b are expanded. If no path has been
found, the bound is raised to the lowest f value encountered that was just out of reach and the search
started anew. Analysis and a proof of correctness can be found in [6].

This algorithm performs well on large graphs, but has a number of drawbacks. If the graph contains
cycles and no path to z exists, IDA* does not terminate. If the graph contains cycles, IDA* expands the
same vertex multiple times. If h(v) is not very accurate and the graph contains many cycles, this can
quickly lead to almost all expanded vertices being duplicates as [7] noted. This effect can be reduced
using pruning techniques that detect duplicate vertex expansions without having to keep tab of the
already expanded vertices. Korf and Taylor developed Finite State Machine Pruning in [7], §6.2 tries to
expand this idea.

Algorithm 2.2 The IDA* algorithm IDA*(G, h, v0, z). Find a shortest path from v0 to z on graph G =
(V,E) using the admissible heuristic h(v).

1 (found , b)← (⊥, 0)
2 until b =∞∨ found do (found , b)← search to bound(G, h, v0, z, b)
3 return b

function search to bound(G, h, v0, z, b0) 7→ (found , b):
1 if h(v0) > b0 then return (⊥, h(v0))
2 if v0 = z then return (⊤, 0)
3 b←∞
4 for each v ∈ NG(v0) do

4.1 (found , bv)← search to bound(G, h, v0, z, b0 − 1)
4.2 if found then return (found , bv + 1)
4.3 if b > bv + 1 then b← bv + 1

5 return (⊥, b)
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3 Pattern Databases as Heuristic Functions
Since the introduction of sliding tile puzzles as test vehicles for heuristic search, a number of ways to
build good heuristics have been developed; see [4] for an overview. Currently, the best heuristics are
produced by additive pattern databases (APDB).

The pattern database (PDB) was introduced in 1998 by Culberson and Schaeffer [1] to find solutions
for the 15 puzzle. The key idea developed by the two was to simplify the state of the puzzle, disregarding
the identity of some tiles and then tabulating d(v, z) for each state of the simplified puzzle. Figure 3.1
shows how such a pattern database for the tile set {2, 3, 4, 7, 8, 9} views a configuration of the 24 puzzle.

23 1 12 6 16

2 20 10 21 18

14 13 17 19 22

15 24 3 7

4 8 5 9 11

−−−−−−→

⃝ ⃝ ⃝ ⃝ ⃝

2 ⃝ ⃝ ⃝ ⃝

⃝ ⃝ ⃝ ⃝ ⃝

⃝ ⃝ 3 7

4 8 ⃝ 9 ⃝

Figure 3.1 a 24 puzzle configuration as seen by the {2, 3, 4, 7, 8, 9} PDB

While a full table for the 15 puzzle has 16!/2 ≈ 10.4614 × 1012 entries and is infeasible for use as
a lookup table in most applications, a PDB considering just 7 out of the 15 tiles has merely 16!/8! =
518 918 400 entries. The distances stored in the pattern database underestimate the distances in the
complete puzzle and form a good admissible and consistent heuristic if a reasonable large set of tiles is
chosen. However, as the identity of some tiles is lost, nothing accounts for their entanglement, leading
to poor h values if the unaccounted tiles are badly permuted.

This problem was addressed by Korf and Felner in 2002 with the introduction of disjoint pattern
databases [8], here called additive pattern databases as in Korf’s later papers. Instead of disregarding just
the label of some tiles, those tiles are entirely ignored in additive pattern databases. Only moves that
touch a tile in the tile set observed by the pattern database are accounted for, as displayed in figure 3.2.

23 1 12 6 16

2 20 10 21 18

14 13 17 19 22

15 24 3 7

4 8 5 9 11

−−−−−−→

2

3 7

4 8 9

Figure 3.2 a 24 puzzle configuration as seen by the {2, 3, 4, 7, 8, 9} APDB

An APDB for some tile set T ⊂ {1, . . . , nm− 1} can be described through the equivalence relation
≃T it induces on puzzle configurations. Two puzzle configurations map to the same APDB entry iff all
tiles in T are in the same spot:

π ≃T σ:↔ ∀t ∈ T. π(t) = σ(t) (3.1)

The heuristic function hT provided by the APDB for tile set T could then simply be hT (v) =
dG/T (v, z), the distance between v and z in the quotient graph induced by ≃T . However, Korf et al. [10]
use a slightly more sophisticated construction yielding significantly better distances while still maintain-
ing the admissibility. See also [9] for some discussion on the APDB construction procedure.

By counting the number of ways the k tiles of a tile set T can be placed inside an n×m grid, it is
easy to see that an APDB for the (nm− 1) puzzle APDB has

sAPDB: = (nm)k = k!

(

nm

k

)

(3.2)
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entries. By including the zero tile in T , the same formula (3.1) could be used to describe the equivalence
relation forming a Culberson & Schaeffer PDB, but we would like to use ≃T for some tile set T with
0 ∈ T to denote the equivalence relation induced by ZPDBs introduced below.

Even though this leads to a worse heuristic on its own, additive pattern databases have the property
that the h value of multiple additive pattern databases for disjoint tile sets can be added to an admissible
heuristic that captures the entanglements in each tile set used. This solves the issues observed with
Culberson and Schaeffer’s pattern databases and is proven below.

Lemma 3.1 Given a set S = {T1, T2, . . . , Tk} of pairwise disjoint tile sets Ti ⊂ {1, . . . , nm − 1} and
the heuristic functions h1, h2 . . . , hk constructed from the additive pattern databases for these tile sets,
h = h1 + h2 + . . .+ hk is an admissible and consistent heuristic.

Proof Let G = (V,E) be the state transition graph of the (nm − 1) puzzle we consider. Because for
i = 1, 2, . . . , k − 1 we have hi(v) = dG/Ti

(v, z) ≤ dG(v, z) equal to the actual distance between v and z
in the quotient graph induced by ≃Ti

, all heuristic functions hi are both admissible and consistent.
For each edge (v, w) ∈ E there is at most one T ∈ S such that v ̸≃T w: Considering the corresponding

tile permutations σv and σw, we see that each move transposes the zero tile with some tile t giving
σv(u) = σw(u) for all u ̸= t and v ≃T w for all T ∈ S with t /∈ T by (3.1). However, as all T1, T2, . . . , Tk

are pairwise disjoint, t can be part of at most one Ti.
Hence there are two possibilities for the difference h(v)−h(w) between the h values of two adjacent

vertices v, w ∈ V : Either it is v ≃T w for all Ti ∈ S and hi(v) = hi(w) for all 1 ≤ i ≤ k yielding
h(v)− h(w) = 0, or there is exactly one Ti ∈ S with v ̸≃T w and h(v)− h(w) = hi(v)− hi(w) ≤ 1 using
the consistency of hi.

This shows the consistency of h and using lemma 2.1 implies that h is admissible. q. e. d.

While additive pattern databases are a very good improvement over Culberson and Schaeffer’s pattern
databases, they fail to account both for the entanglement between two tile sets in an additive pattern
database (as shown in figure 3.3) as well as the usually very slight distance increase given by the location
of the zero tile, which is discarded by additive pattern databases.

1 2 3

5 6 7

←−−−−

8 9 10

4 12 13 14

1 2 3 11

5 6 7 15

−−−−→

8 9 10

12 13 14

Figure 3.3 a 15 puzzle configuration as seen by the {1, 2, 3, 5, 6, 7} and {8, 9, 10, 12, 13, 14}
additive pattern databases. Note how the pattern databases do not account for the cost of

moving the two tile groups around each other.

To address the first deficiency, we discuss PDB catalogues in §5.3. To deal with the second deficiency,
we introduce zero aware additive pattern databases (ZPDB) whose construction is detailed in §4.

The idea behind a ZPDB for some tile set T is to keep track of the zero tile region. This is the
connected region of grid locations not covered by a tile in T in which the zero tile is located. This restricts
the possible moves in the partial puzzle configuration observed by the ZPDB to the moves moving a
tile adjacent to the zero tile region into it, thus mirroring the true distance to a solved configuration
closer while maintaining the additive property of the APDB. Figure 3.4 shows how a partial puzzle
configuration is partitioned into regions, and compares the resulting ZPDB with the APDB for the same
puzzle configuration and tile set.

By refining definition (3.1), we can describe a ZPDB with the same equivalence relation ≃T for
some tile set T ⊂ {0, 1, . . . , nm − 1}, allowing 0 ∈ T to indicate a zero-tile aware pattern database.
In the definition below, RT (σ) is the zero tile region of σ with respect to tile set T . If 0 /∈ T , this is
{0, 1, . . . , nm− 1} \ T , otherwise it’s the largest connected region of grid locations not occupied by tiles
in T \ {0} which contains the square σ(0).

π ≃T σ:↔ RT (π) = RT (σ) ∧ ∀t ∈ T \ {0}. π(t) = σ(t) (3.3)
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1 3 8 9

10 6 4

2 12 5 15

14 7 13 11

1 3

6 4

2 5

7

⃝ ⃝ A A

B ⃝ A ⃝

⃝ C ⃝ D

E ⃝ D D

1 3

⃝ 6 4

2 ⃝ 5 ⃝

⃝ 7 ⃝ ⃝

(a) (b) (c) (d)

Figure 3.4 (a) a 15 puzzle configuration, (b) as seen by the {1, 2, 3, 4, 5, 6, 7} APDB,
(c) its possible zero-tile regions, and (d) as seen by the corresponding ZPDB

The proof for lemma 3.1 also holds for zero-aware pattern databases as no assumption about zero-
tile regions is made; a ZPDB forms an admissible and consistent heuristic just as an APDB does.
Furthermore, because the ZPDB refines the information in the APDB for the same tile set, its heuristic
is never worse than the corresponding APDB heuristic. Compared to additive pattern databases, a
simple formula for the number of entries in a zero-aware pattern database does not obtain easily. The
number of entries in a ZPDB is given by

sZPDB: = ρ̄(nm)k (3.4)

where ρ̄ is the average number of zero tile regions for a given tile arrangement. Table 3.5 gives ρ̄ values
for different tile set sizes in the 24 puzzle.

k sAPDB sZPDB ρ̄ ρmax

2 600 608 1.01 2
3 13 800 14 472 1.04 2
4 303 600 339 048 1.12 3
5 6 375 600 7 871 280 1.23 4
6 127 512 000 181 008 000 1.42 5
7 2 422 728 000 4 066 655 040 1.68 6
8 43 609 104 000 87 358 400 640 2.00 7
9 741 354 768 000 1 759 513 674 240 2.37 8
10 11 861 676 288 000 32 787 717 580 800 2.76 10
11 177 925 144 320 000 560 680 553 664 000 3.15 11
12 2 490 952 020 480 000 8 749 801 518 796 800 3.51 13

Table 3.5 The size of a k-tile APDB for the 24 puzzle, the size of the corresponding ZPDB,
and the average and maximal number of zero tile regions per partial tile configuration.

The storage required is always larger than the storage required for an APDB with an extra tile,
but no extra tile is “consumed” with respect to the additive property. The extra storage requirement is
rather low in practical cases, making ZPDBs a useful tool to gain a better approximation while spending
little extra storage compared to the usage of a larger APDB.

In previous research [10], zero tile region information was collected during database construction
and then discarded by storing for each partial puzzle configuration just the minimum h value for all zero
tile regions. This is useful to get a much better approximation than a näıvely generated APDB without
using additional storage.

In §4.2 we show how the region-tracking property of a ZPDB can be used to generate it easily,
avoiding the costly open and closed lists used in the Döbbelin et al. algorithm [9]. In §5.1 we em-
pirically compare the quality of the heuristic provided by a ZPDB with the heuristic provided by the
corresponding APDBs.
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4 The Construction of Pattern Databases
In this section, we discuss the representation, construction, and verification of APDBs and ZPDBs for
(nm− 1) puzzles. The focus lies on algorithms and data structures that perform well in practice.

4.1 Constructing an Index Function

In [11], Korf et al. introduce two ways to store the h values of an additive pattern database. First, a
sparse mapping is introduced in which a k-tile APDB is represented as a k-dimensional array with (nm)k

entries. While this representation wastes a lot of space as it does not account for no pair of tiles being
allowed to occupy the same square on the grid, indices into the table are very fast to compute. Second,
a compact mapping is described where one array entry is reserved for each partial tile permutation in
the APDB, reducing space usage to (nm)k at a significantly higher indexing cost.

In this thesis we do not consider the sparse mapping any further as its space requirements are
prohibitive for large tile sets. Instead we enhance the compact mapping by indexing an entry e = (µ, π)
in the APDB for tile set T as a pair of a tile map rank µ describing the grid locations occupied by tiles
in T , and a tile permutation index π describing the permutation of the tiles in T within the grid locations
given by µ. Similarly, as shown in figure 4.1.1, a ZPDB entry is indexed as a triple e = (µ, π, ρ) keeping
track of the zero tile region index ρ in addition to µ and π.

The APDB is stored as an array of cohort arrays, where each cohort contains the entries for one µ.
This slightly complicated scheme is needed as the number of zero tile regions differs between partial
configurations. But as this number only depends on µ, we can get away with a rather small lookup table
for the cohort offsets by grouping entries by µ first and then by π and ρ.

1 3

⃝ 6 4

2 ⃝ 5 ⃝

⃝ 7 ⃝ ⃝

⃝ ⃝

⃝ ⃝

⃝ ⃝

⃝

(

1 2 3 4 5 6 7
1 3 6 4 2 5 7

)

A A

A

e = (µ, π, ρ) µ = 2027 π = 198 ρ = 0

Figure 4.1.1 A 15 puzzle configuration as seen by the {1, 2, 3, 4, 5, 6, 7} ZPDB and
the components of the corresponding index, see also figure 3.4

The tile map rank µ is a number between 0 and
(

nm
k

)

− 1 representing the choice of the grid
locations on which we place the tiles in T . The combinatorial number system [12] can be used to map
these combinations to integers. In the author’s implementation, lookup tables were used to implement
these rank and unrank operations.

Similarly, tile permutation index π is a number between 0 and k!− 1 representing the permutation
of the tiles in T within the squares selected by µ. Computing this is slightly more involved, the standard
approach involves computing the permutation’s inversion table [13] and then encoding it into a single
integer using the factorial number system (ibid.). However, without hardware support, both computing
inversion tables and reconstructing the permutation from the inversion table have run time Θ(k2) and
slow performance in practice. See appendix C for some implementation ideas using the aforementioned
hardware support.

As a practical solution, algorithm 4.1.1, a variant of the Fisher-Yates Shuffle [14], can be used
instead. The idea behind this algorithm is to interpret the random values used in the Fisher-Yates
Shuffle as entropy that goes into selecting a permutation. By retrieving these random values from a
single integer using the factorial number system, we can quickly compute a permutation belonging to a
given π.

Algorithm 4.1.1 shufflek(π) returns a permutation σ of k items using 0 ≤ π < k! as an entropy source.
1 σ ← id
2 π1, π2, . . . , πk ← π with 0 ≤ πi < i using the factorial number system
3 for i← 0, 1, . . . , k − 1 do transpose σ(i) and σ(i+ πk−i)
4 return σ

8



As seen easily, the run time of algorithm 4.1.1 is Θ(k). To show that shufflek(π) is suitable both as a
shuffling function and as an inverse index function, we prove that it is a bijection.

Lemma 4.1.1 shufflek(π) : {0, 1, . . . , k!− 1} 7→ Sk implemented by algorithm 4.1.1 is a bijection.

Proof Assume there are π, π̃ ∈ {0, 1, . . . , k! − 1} such that π ̸= π̃ but shufflek(π) = shufflek(π̃). Let
us observe the execution of shufflek for π and π̃ with the variables in shufflek(π̃) named σ̃ and π̃k−i.
If πi = π̃i for all i, then π = π̃ contradicting the assumption. Therefore there must be an i such that
πk−i ̸= π̃k−i. Let imin be the smallest such i.

Right before iteration imin of step 3, it is σ = σ̃ because πk−i = π̃k−i for all i < imin but right after
this iteration σ(imin) ̸= σ̃(imin) as we transposed σ(imin) with σ(imin + πk−imin

) in shufflek(π) but with
σ(imin + π̃k−imin

) = σ̃(imin + π̃k−imin
) in shufflek(π̃) and πk−imin

̸= π̃k−imin
by construction.

As i+πk−i > i for all i, the values of σ(imin) remain fixed after iteration imin, hence σ(imin) ̸= σ̃(imin)
and therefore σ ̸= σ̃ at the end of algorithm 4.1.1, contradicting the assumption.

This shows that shufflek(π) is injective. Because |Sk| = k!, domain and codomain of shufflek(π) have
the same finite size and shufflek(π) is total, it is a bijection by the pigeonhole principle. q. e. d.

By keeping track of the inverse permutation as done in algorithm 4.1.2, we can just as quickly compute
the π that generates a given permutation (cf. [14], exercise 12).

Algorithm 4.1.2 shuffle−1
k (σ) computes an integer 0 ≤ π < k! such that shufflek(π) = σ.

1 τ ← τ−1 ← id

2 for i← 0, 1, . . . , k − 1 do

2.1 πk−i ← τ−1(σ(i))− i

2.2 transpose τ−1(τ(i)) and τ−1(τ(i+ πk−i))

2.3 transpose τ(i) and τ(i+ πk−i)

3 π ← π1, π2, . . . , πk using the factorial number system

4 return π

Implementations of algorithm 4.1.2 can be optimised using the invariant τ−1 ◦τ = id and the observation
that neither τ−1(σ(i)) nor τ(i) are read after iteration i, allowing us to replace step 2.2 with τ−1[τ [i]]←
i + πk−i and step 2.3 with τ [i + πk−i] ← τ [i] in an implementation where τ and τ−1 are arrays, saving
two of the five assignments in the loop.

Algorithm 4.1.2 works by tracing in τ the intermediate values σ had when trying to generate the
permutation using algorithm 4.1.1 and reconstructing the choice of πk−i that would cause σ(i) to have
the desired value. To do this efficiently, we trace the inverse permutation of τ in τ−1, allowing us to
reconstruct each “random value” πk−i in constant time for a total run time of Θ(k).

Lemma 4.1.2 Algorithm 4.1.2’s shuffle−1
k (σ) : Sn 7→ {0, 1, . . . , k!− 1} is the inverse of shufflek(π).

Proof The invariant τ ◦ τ−1 = id which holds initially and at the end of each iteration of step 2 is of
use here. Step 2.2 mutates τ−1 to (i i + πk−i) ◦ τ

−1 and τ is mutated to τ ◦ (i i + πk−i) in step 2.3 to
restore the invariant.

After each iteration of step 2, it is τ(j) = σ(j) for all j ≤ i by induction: in the first iteration, this
is ensured for j = 0 by exchanging τ(0) with τ(τ−1(σ(0)). In iteration i the induction hypothesis gives
us τ(j) = σ(i) for all j < i. Before step 2.2 we have τ−1(σ(i)) ≥ i and therefore 0 ≤ πk−i < k − i as
otherwise σ(τ−1(σ(i))) = τ(τ−1(σ(i))) using the induction hypothesis and

i = (σ ◦ σ−1)(i) = (σ ◦ τ−1 ◦ τ ◦ σ−1)(i) = (σ ◦ τ−1 ◦ σ ◦ σ−1)(i) = (σ ◦ τ−1)(i)

contradicts τ−1(σ(i)) < i. Steps 2.2 and 2.3 ensure τ(i) = σ(i) by mutating τ to τ ◦ (i i+πk−i). Because
i ≤ i+ πk−i, this does not destroy τ(j) = σ(j) for j < i, concluding the induction.

If we write down the mutations performed on τ as a composition of transpositions, we get

σ = τ = (0 πk) ◦ (1 1 + πk−1) ◦ . . . ◦ (k − 1 k − 1 + π1)

with 0 ≤ πi < i as shown above. This is the same sequence of transpositions performed by shufflek(π)
to yield σ, proving shufflek

(

shuffle−1
k (σ)

)

= σ. q. e. d.
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As the last piece of the index function, we need to compute ρ. To do so, one can create a lookup table
with nm

(

nm
k

)

entries containing the correct ρ for each cohort and grid location to use. In practice, this
table consumes a few megabytes of storage for common puzzle and tile set sizes and it can be shared
among all pattern databases with the same k. The same table can be used to store the offset from the
beginning of the ZPDB where a cohort’s entries are stored, improving cache locality.

4.2 Computing the Pattern Database by Iterated Neighbour Expansion

Algorithm 4.2.1, a variant of breadth-first search, is used to generate pattern databases. This algorithm
can be used both for Culberson & Schaefer’s non-additive PDBs, APDBs, and ZPBDs.

When an APDB is generated directly using this algorithm, the resulting heuristic has poor quality
because it does not account for some configurations in the partial puzzle configuration appearing to be
easier than they could possibly be as illustrated in figure 4.2.1. To improve the result one can first
generate a ZPDB and then identify the entries of all equivalence classes, storing only the minimum. This
yields the same result as the Korf et al. algorithm [10] but consumes less storage because ρ̄ table entries
have to be stored for each (µ, π) instead of one entry and a bitmap for ρmax possible classes as often
ρ̄ < 1 + ⌈ρmax/8⌉, see also table 3.5.

1 2 3

5 6

7
−−−−→

1 2 3

5 6

7
−−−−→

1 2 3

5 6 7

Figure 4.2.1 A partial puzzle configuration in the näıvely constructed {1, 2, 3, 5, 6, 7} APDB
with h = 2. Regardless of where the zero tile is located, more than the two moves depicted in
this impossible yet technically shortest move sequence are needed to actually transition into the

solved partial configuration.

Algorithm 4.2.1 The algorithm make pdb(G,T, z, idx ) creates a pattern database pdb for the puzzle
with state transition graph G = (V,E) using the bijective index function idx (v) : V/T 7→ {0, . . . , s − 1}
leading to the solved configuration z where s = |V/T | is the number of entries in the pattern database.

1 pdb[0, . . . , s− 1]←∞
2 pdb[idx (z)]← 0
3 r ← 1
4 while ∃0 ≤ e < s. pdb[e] = r do

4.1 Vr ←
{

idx−1(e)
∣

∣ 0 ≤ e < s, pdb[e] = r
}

4.2 Vr+1 ←
{

w
∣

∣ v ∈ Vr, w ∈ NG/T (v), pdb[idx (w)] =∞
}

4.3 for v ∈ Vr+1 do pdb[idx (v)]← r + 1
4.4 r ← r + 1

5 return pdb

Steps 4.1–4.3 of algorithm 4.2.1 can be executed in parallel easily. No synchronisation when writing to pdb
is necessary as all writes overwrite entries valued ∞ with r + 1, an idempotent operation. Similarly,
algorithm 4.2.1 can be implemented with pdb in background storage by fetching one cohort and its
neighbourhood at a time, updating the entries and then writing the cohort back to background storage.

Lemma 4.2.1 After make pdb(G,T, z, idx ) has executed, pdb[idx (v)] = dG/T (v, z) for all v ∈ V .

Proof First, let us prove that algorithm 4.2.1 always terminates: In each iteration, the number of
entries e with pdb[e] = ∞ either decreases or Vr+1 = ∅. In the latter case, the loop terminates because
no members of pdb have been set to r ← r + 1. As pdb has finitely many entries, eventually Vr+1 must
be empty. An infinite descent is impossible and algorithm 4.2.1 terminates.

After the initialisation in step 1, each entry pdb[er] is assigned up to once. When pdb[er] with
er ̸= idx (z) is assigned in step 4.3, there has to be some entry er−1 with idx−1(er−1) ∼G/T idx−1(er)
that caused er to be assigned. Iterating, we find a chain of entries erer−1 . . . e0 with e0 = idx (z)
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describing the path through which er was assigned “reachable in r steps.” For each ei in this path, it
is ei ∼G/T ei−1, so the corresponding vertices vi = idx−1(ei) form a path from er to z.

It follows that for all v ∈ V , if dG/T (v, z) = ∞ then pdb[idx (v)] = ∞ must be as otherwise a
path could be obtained as explained in the previous paragraph, leading to a contradiction. Similarly, if
dG/T (v, z) <∞, then pdb[idx (v)] ≤ dG/T (v, z) because the shortest path from v to z in G/T has such a
chain of entries and would cause assignment to idx (v) in round dG/T (v, z) and an earlier assignment is
impossible as no path shorter than dG/T (v, z) + 1 vertices from v to z can exist by definition. q. e. d.

4.3 The Pattern Database as a Witness of Its Own Correctness

Algorithm 4.3.1 verifies if an APDB or ZPDB is internally consistent , that is, all entries in the database
are consistent with all entries in their neighbourhoods. As shown in Lemma 4.3.1, this is equivalent to
the database storing dG/T (v, z) for all v ∈ V/T , allowing us to easily verify that no errors have caused
the database to contain wrong values. This is useful both to verify the correctness of an algorithm 4.2.1
implementation and to catch any hardware errors that caused bits to flip during generation, potentially
helping to reduce the problems noted in [15] when using disks to store large amount of state.

Algorithm 4.3.1 Algorithm pdb consistent(pdb, G, T, z, idx ) verifies if pdb[e] is internally consistent for
all 0 ≤ e < s where s = |V/T | is the number of entries in the pattern database.

1 if pdb[idx (z)] ̸= 0 then return ⊥
2 for 0 ≤ e < s do

2.1 v ← idx−1(e)
2.2 if ∃w ∈ NG/T (v). pdb[e]− pdb[idx (w)] > 1 then return ⊥
2.3 if v ̸= z ∧ ¬∃w ∈ NG/T (v). pdb[idx (w)] = pdb[e]− 1 then return ⊥

3 return ⊤

In steps 2.2 and 2.3 we handle pattern databases for disconnected graphs by assuming

∞− n: =
{

0 if n =∞
∞ otherwise.

This allows us to avoid special cases for disconnected graphs where pdb[e] =∞ for some e. The following
invariants on the heuristic hT represented by pdb are checked:

a) In step 1, we verify that hT (z) = dG/T (z, z) = 0
b) In step 2.2, we verify that hT (v) is consistent for each v
c) In step 2.3, we verify that we can progress towards z from each v ̸= z iff v ∼G/T z

Note that algorithm 4.3.1 cannot be applied to verify an APDB generated by first generating the cor-
responding ZPDB and then identifying all entries with the same µ and π as such an APDB does not
represent dG/T (v, z) but rather some value dG/T (v, z) ≤ hT (v) ≤ dG/T∪{0}(v, z).

Lemma 4.3.1 It is pdb consistent(pdb, G, T, z, idx ) iff pdb[idx (v)] = d(v, z) for all v ∈ V/T .

Proof In this proof, we write d(v, w) for dG/T (v, w), v ∼ w for v ∼G/T w, etc. for easier reading.
Let us first prove that pdb consistent(pdb, G, T, z, idx ) if pdb[idx (v0)] = d(v0, z) for all v0 ∈ V/T .

Invariant (a) holds by assumption, (b) holds because h(v) = d(v, z) is a consistent heuristic and for (c)
observe that if v0 ∼ z with v0 ̸= z, a shortest path v0v1 . . . z with d(v0, z) edges exists and thus
pdb[idx (v1)] = d(v1, z) = d(v0, z) − 1 = pdb[idx (v0)] − 1. Conversely, if pdb[idx (v0)] = ∞ we have
v0 ̸∼

∗ z and pdb[idx (w)] = ∞ for all w ∈ N(v0) as otherwise v0 ∼ w ∼∗ z → v0 ∼
∗ z contradicting the

assumption.
For the other direction, observe that if invariants (a) and (b) hold, hT represented by pdb is consistent

by (2.2) and admissible by lemma 2.1. Now suppose hT (v) ̸= d(v, z) for some v ∈ V/T . Without loss of
generality, assume v0 is a counterexample such that hT (v0) is minimal. By invariant (c) there must be
some w ∈ N(v) such that hT (w) = hT (v0)− 1. Because hT (w) < hT (v0) and hT (w) has been chosen to
be the least counterexample, it is hT (w) = d(w, z) and

hT (v0) = 1 + hT (w) = 1 + d(w, z) ≥ d(v0, w) + d(w, z) ≥ d(v0, z)

by the triangle inequality. The case hT (v0) > d(v0, z) contradicts the admissibility of hT and case
hT (v0) > d(v0, z) contradicts the existence of a counterexample. q. e. d.
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5 Heuristic Quality Analysis
In this section, we empirically compare zero-aware pattern databases with other heuristics and then
explore the effects of choosing different pattern databases on heuristic quality.

5.1 A Measure of Heuristic Quality

Previous research [20] found that the number of expanded nodes E(N, d, P ) in an IDA* iteration to
depth d with N(i) nodes at level i and P (i) being the fraction of nodes with h value less than or equal
to i can be described by (5.1.1).

E(N, d, P ) =
d

∑

i=0

N(i)P (d− i) (5.1.1)

Assuming N(i) = bi where b is the brute force branching factor with b ≈ 2.36761 for the 24 puzzle, Korf
shows that

E(N, d, P )

E(N, d− 1, P )
≈ b (5.1.2)

from which we can conclude that the time complexity of an IDA* search for the shortest path from v
to z is in O(bd(v,z)−h(v)) compared to O(bd(v,z)) for a brute-force search. This indicates that the number
of node expansions exponentially depends on the h value of the initial position in our search tree.

We can capture this notion of heuristic quality by computing h̄, the average h value for a given
heuristic by random sample and compare it with d̄, the average distance to the solved configuration.
The average number of node expansions can then be predicted by bd̄−h̄. Furthermore the quality of two
heuristics h1 and h2 can be compared through the ratio of their expected node expansions. It is

bd̄−h̄1

bd̄−h̄2

= bh̄2−h̄1 (5.1.3)

allowing us to compare the quality of two heuristics just through the difference of their h̄ values and the
brute force branching factor b. For the 15 puzzle, dmax = 80 and d̄ = 52.59 are known [17] but due to
computational limitations, these figures have not yet been computed for the 24 puzzle.

A B

C D E

Figure 5.2.1 Two 6-6-6-6 partitionings and three partitionings from [9]

5.2 ZPDBs and APDBs in Comparison

To empirically evaluate the quality advantage gained from a ZPDB in comparison to an APDB, the
author has solved the 50 instance of the 24 puzzle from Korf [8] using an implementation of IDA*
without pruning using partitioning B (cf. figure 5.2.1). The results are listed in appendix B and show
that using ZPDBs results in a reduction of node expansions by a factor of 1.6065 in Korf’s test cases on
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average. In these searches, the h value for a node in the search tree was formed by looking up both the
puzzle configuration and its transposition in the A/ZPDB set and taking the maximum.

Partitioning B was found to be an improvement over Korf’s partitioning A (ibid.). For Korf’s
partitioning we get h̄APDB = 81.57 and h̄ZPDB = 81.82 with a sample size of n = 100 000 000 while
partitioning B has h̄APDB = 81.81 and h̄ZPDB = 82.06 with an expected reduction by b82.06−81.81 = 1.24,
further showing that the analysis from §5.1 is not very accurate.

5.3 The Influence of Pattern Size

In [9], the effectiveness of differently sized APDBs was researched. The node expansion figures are not
directly comparable as Döbbelin et al. used BF-IDA* [18] instead of IDA* as used in this paper, leading
to slightly lower node expansion figures due to pruning of duplicate nodes. However, we can compare
the average and maximal h values given in table 5.3.1.

pattern x s h̄ hmin hmax r̄A/x bh̄A−h̄x

6-6-6-6 A 510 048 000 81.85 40 115 1.00 1.00
8-8-8 C 130 827 312 000 82.84 40 116 3.00 2.35
9-8-7 D 787 386 600 000 83.10 43 116 5.74 2.94
9-9-6 E 1 482 837 048 000 84.56 44 116 8.37 10.34

Table 5.3.1 PDB statistics from [9] for partitionings A, C, D, and E in figure 5.2.1

In the second to last column r̄A/x, the ratio between node expansions in partitioning A and the
current line is provided. This is contrasted with the node expansion ratio predicted by (5.1.3) in column
bh̄A−h̄x . The numbers are in the same region but not very close, indicating that using h̄ to compare node
expansions is a possible indicator for the real performance of a heuristic but not sufficient for accurate
predictions.

Of note are the diminishing returns from an increase in pattern size. For example, partitioning C
occupies 256.5 times more space than partitioning A, yet it only reduces node expansions threefold,
suggesting that raising the PDB size is even less effective than for Culberson & Schaeffer PDBs where
Korf [16] showed that a PDB with s entries in a problem with branching factor b reduces the number of
expanded IDA* nodes by a factor of at least

logb s+ 1

s
(5.3.1)

compared to the number of nodes in a brute-force search. In his paper, Korf exclaims a desire to extend
this analysis to additive pattern databases. As to my knowledge, no such analysis has been performed.

In the following section we show how instead of raising the tile set size, a better heuristic can be
constructed just as well by using a catalogue of multiple small PDBs.

5.4 Pattern Database Catalogues

In [19], Holte et. al. researched how using the maximum h value from a catalogue of heuristics can
be used to reduce node expansions. In their paper, they make two propositions to explain this effect:
(a) using multiple heuristics reduces the number of configurations with low h values and (b) eliminating
low h values is more important for improving search performance than retaining large h values.

The first proposition is explained as a direct result of taking the maximum, fixing “weaknesses”
one heuristic has which another one lacks. The second proposition is explained through (5.1.1) with
N(i) = bi assumed, causing P (d− i) for high i to have an exponentially higher influence on the number
of node expansions than P (d− i) for low i.

This does not contradict the analysis in §5.1 but is not supported by it either as increasing the
h value for any configuration has an equal effect on h̄. The author has continued to primarily rely on h̄
as a measure of heuristic quality and tried to find a reasonable small catalogue of ZPDBs with high h̄,
resulting in a catalogue with h̄ = 83.31 comprising 20 ZPDBs @ 6 tiles each, forming 14 partitionings
and a subset of 14 ZPDBs forming 7 partitionings with h̄ = 83.08 but still good performance in practice
due to the reduced lookup time. The partitionings used are shown in appendix A.

To find a good PDB catalogue with high h̄ and a modest number of ZPDBs, the author used the
following empirical method: first, a set of known good partitionings was used as a starting point. Then,
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new partitionings were added by deliberately selecting partitionings whose tile sets are both reasonably
compact and group tiles together that were not grouped together before. If possible, an attempt is
made to reuse existing tile sets to keep the number of PDBs low. After this step, h̄ is sampled with
n = 100 000 000. For each partitioning, we count the number of samples whose maximal h value was
only predicted by this partitioning. Then, partitionings that rarely lead to an improvement are removed
from the catalogue. This procedure is iterated until no further improvements can be found within the
desired catalogue size.

5.5 The Cost of PDB Lookups

The run time of IDA* using one or more APDB partitionings as a heuristic function is dominated by the
time needed to compute PDB indices and lookup configurations. Lookup time is severely penalised by the
random-access behaviour, rendering the CPU cache ineffective. On an Intel Xeon E3-1290 v2 processor
@ 3.70GHz, the author’s implementation performs 8.88 × 106 APDB lookups and 8.16 × 106 ZPDB
lookups per second on random puzzle configurations. APDB lookups are slightly faster as their layout
saves one memory access due to the lack of the auxiliary array outlined in §4.1.

With this knowledge, the reductions in node expansions of a PDB catalogue must be contrasted with
the number of PDB lookups performed per expanded node. Note that as with each move only one tile
is moved and, all h values of PDBs not involving this tile can be copied from the previous configuration.
In a search with one partitioning, this means that one lookup per expanded node and one lookup per
unexpanded node have to be performed. In a search on the (nm − 1) puzzle with a PDB catalogue
comprising pattern databases for tile sets T1, T2, . . . , Tk, the number of lookups per configuration is
estimated by (5.5.1).

k
∑

i=1

|Ti|

nm− 1
(5.5.1)

This formula assumes that when searching through the graph, the tile moved is distributed equally,
allowing us to average the number of PDBs that involve each tile to get an easy formula.

Applying this to the PDB catalogues in appendix A, we get 5 lookups per configuration for the large
catalogue and 3.5 lookups for the small catalogue. To outperform a single PDB, the small catalogue needs
to reduce node expansions at least threefold. To outperform the small catalogue, the large catalogue
needs to reduce the number of expanded nodes by at least a factor of 5/3.5 ≈ 1.43. Both have been
annotated in the sample instances in appendix B, showing that while the small catalogue outperforms
a single ZPDB partitioning in 34 out of 50 sample configurations, the large catalogue outperforms the
small one in only 11 instances and only once outperforms the single ZPDB partitioning were the small
catalogue has not.

These empirical results show that using a small catalogue of PDBs can improve heuristic search
performance in the average case, but as with many other heuristics, returns quickly diminish.

14



6 Outlook
In this section we list ideas for further research that appeared while working on this thesis but were
either ignored due to lack of time or not fitting into the scope of this thesis.

6.1 Pattern Databases and Distributed Search

In [9], Döbbelin et al. built large 9-tile APDBs for the 25-puzzle to perform a distributed search for
optimal solutions. In their implementation, a hash function is used to distribute APDB entries over
the compute nodes to avoid an imbalance in the workload. However, this causes most table lookups
to require network communication, slowing down the search. By observing that whether two vertices
v, w ∈ V/T are connected only depends on µv and µw, we can represent the problem of distributing an
APDB over the network as a graph partitioning problem and potentially gain good performance with
minimal traffic.

6.2 Finite State Machine Pruning

In [7], Taylor and Korf introduce Finite State Machine Pruning , a technique to prune duplicate nodes
in an IDA* search tree by keeping track of the path to the current node using a finite state machine and
pruning edges that lead more than half-way through a cycle in the state transition graph. This method
is very effective because the state transition graph of an (nm − 1) puzzle is highly self-similar; a cycle
of length 2l can be detected solely by looking at the last l moves we did to reach the current position,
allowing for a fairly good state machine to occupy little space.

Building these state machines is a fairly elaborate process: to detect cycles up to length 2l, all paths
of length l and the nodes they end in have to be enumerated and checked for duplicates. By finding a
more efficient way to build finite state machines for pruning, this approach might be made practical.

Another interesting question is if a comprehensive pruning finite state machine could be build. Such
a finite state machine would account for all cycles in the graph. With this machine, a polynomial time
algorithm for solving any instance of the (nm − 1) puzzle the machine was built for obtains: Find
an arbitrary solution for the instance, then use the machine to repeatedly find segments that can be
shortened by flipping them over to the other half of the loop. When no loop is found, the shortest
solution has been obtained.

6.3 Tail Databases

In [11], Donald Knuth mentions, how IDA* could be sped up using a database of all puzzle configurations
v for which h(v) = d(v, z). When IDA* reaches a point where f = b, we can query this tail database. If
the configuration is not present, we immediately know that this vertex cannot lead to a solution within
the current bound b. If the configuration is found, we know that a solution can be reached from this
vertex within the current bound b. Knuth further mentions how such a database for the 15 puzzle under
the Manhattan heuristic contains just 88 728 779 entries, suggesting that this approach might be feasible.

Clearly, this could be generalised to n-tail databases storing all configurations with h(v) ≥ d(v, z)−n.
Since a false positive in the tail database merely causes less aggressive pruning, a probabilistic data
structure such as a bloom filter could be used to implement probabilistic tail databases with sufficient
accuracy and modest storage requirements.

6.4 Finding an Optimal Partitioning

The analysis in §5.1 suggest that the performance of IDA* for a specific configuration v is exponential
in h(v), suggesting that finding the PDB set with h(v) maximal and using just that PDB might lead to
good search performance while avoiding the performance impact from having to do lookups into multiple
non-additive heuristics.

As observed in [8], partitioning the puzzle into compact regions is generally a good idea since “those
tiles interact the most with each other.” The same rule could be formalised and used to generate
partitionings based on which tiles are close to each other in the puzzle instance we want to solve as those
should interact just as much with each other as tiles close to each other in the solved configuration.

We could also generate all 6 tile ZPDBs in advance and then find the optimal partitioning for v
by brute force. The author estimates that all ZPDBs would occupy about 1 TB storage with general-
purpose compression, making this approach just feasible with modern disk sizes. This idea is similar to
the high-order heuristics outlined in [4] but avoids its performance problems by determining an optimal
partitioning once instead of for every node in the search tree.
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A Sample PDB Catalogue
The following catalogue was created using the empirical method explained in §5.4. For each partitioning
in the catalogue, the fraction of samples for which that partitioning’s ZPDB heuristic applied to the
sample or its transposition was the only one to yield the maximal h value is listed. A subset of these
partitionings was chosen to form a smaller catalogue with better performance due to the reduced number
of PDB lookups. These partionings have two such fractions, the first one for the big catalogue, the second
one for the small catalogue. Most tile sets are used multiple times. To make identification easier, each
tile set is given a letter.

A B

C D

E F

C D

A B

G

H

E F

G

H

1.42%/2.21% 0.95%/4.49% 0.60%/0.83% 0.91%/1.72%

I B

K D

E

L M

C

I N

O

K

A N

O

C

2.48%/5.18% 1.50%/7.15% 0.95% 0.73%

I B

P

Q

R S

P

H

R

L M

T

R F

T D

1.78%/4.77% 2.29% 0.73% 0.64%

E S

C U

R S

T U

0.83% 0.29%
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B Node Expansions
The following table contains node expansion figures for Korf’s 50 instances [8] using IDA* without pruning. For columns APDB and ZPDB , partitioning B
from figure 5.2.1 was used, first as an APDB and then as a ZPDB. The APDB was generated by identifying equivalence classes of the corresponding ZPDB.
The columns large and small contain node expansion figures for the large and small PDB catalogues shown in appendix A. For both catalogues, ZPDBs
were used. In all searches, the heuristics for both configuration and its transposition were evaluated and the maximum taken. Column A/Z contains the
ratio of APDB node expansions to ZPDB node expansions, giving the node expansion reduction factor.

Instances for which the large catalogue outperforms the small catalogue when accounting for PDB lookup time are marked with an asterisk * in the
large column. Similarly, configurations for which the small catalogue outperforms the ZPDB column when accounting for PDB lookup time are marked
with a dagger † in the small column. Instance  is marked with a dagger in the large column to indicate that the large catalogue outperforms the ZPDB
column while the small catalogue does not.

instance dst APDB ZPDB large small A/Z

 14,5,9,2,18,8,23,19,12,17,15,0,10,20,4,6,11,21,1,7,24,3,16,22,13 95 3 141 570 558 1 519 342 878 108 703 674 117 467 064† 2.068
 16,5,1,12,6,24,17,9,2,22,4,10,13,18,19,20,0,23,7,21,15,11,8,3,14 96 247 550 334 056 192 822 200 142 25 135 947 124 29 264 736 068† 1.284
 6,0,24,14,8,5,21,19,9,17,16,20,10,13,2,15,11,22,1,3,7,23,4,18,12 97 17 615 736 271 11 413 683 106 3 999 342 793 5 434 702 977 1.543
 18,14,0,9,8,3,7,19,2,15,5,12,1,13,24,23,4,21,10,20,16,22,11,6,17 98 10 986 155 299 5 864 537 433 935 567 772* 1 400 503 448† 1.873
 17,1,20,9,16,2,22,19,14,5,15,21,0,3,24,23,18,13,12,7,10,8,6,4,11 100 12 001 345 718 9 315 037 634 273 410 647 390 578 091† 1.288

 2,0,10,19,1,4,16,3,15,20,22,9,6,18,5,13,12,21,8,17,23,11,24,7,14 101 54 535 765 242 42 030 291 877 4 796 719 621 6 698 966 111† 1.298
 21,22,15,9,24,12,16,23,2,8,5,18,17,7,10,14,13,4,0,6,20,11,3,1,19 104 77 231 244 201 60 961 985 243 13 194 614 396 17 906 078 537 1.267
 7,13,11,22,12,20,1,18,21,5,0,8,14,24,19,9,4,17,16,10,23,15,3,2,6 108 47 525 839 166 29 697 758 251 10 376 569 382 13 535 201 029 1.600
 3,2,17,0,14,18,22,19,15,20,9,7,10,21,16,6,24,23,8,5,1,4,11,12,13 113 2 236 415 582 740 1 672 298 149 150 187 175 422 518* 309 130 241 762† 1.337
 23,14,0,24,17,9,20,21,2,18,10,13,22,1,3,11,4,16,6,5,7,12,8,15,19 114 924 368 172 083 676 392 893 522 134 940 105 049 167 583 392 153† 1.367

 15,11,8,18,14,3,19,16,20,5,24,2,17,4,22,10,1,13,9,21,23,7,6,12,0 106 1 902 486 069 006 1 351 698 389 608 49 573 504 121* 116 474 549 412† 1.407
 12,23,9,18,24,22,4,0,16,13,20,3,15,6,17,8,7,11,19,1,10,2,14,5,21 109 1 197 561 998 218 790 809 277 878 141 565 811 281 171 571 908 021† 1.514
 21,24,8,1,19,22,12,9,7,18,4,0,23,14,10,6,3,11,16,5,15,2,20,13,17 101 2 402 824 683 1 884 837 825 616 447 004 701 223 515 1.275
 24,1,17,10,15,14,3,13,8,0,22,16,20,7,21,4,12,9,2,11,5,23,6,18,19 111 835 033 892 309 604 143 294 406 150 994 599 974 200 822 010 034 1.382
 24,10,15,9,16,6,3,22,17,13,19,23,21,11,18,0,1,2,7,8,20,5,12,4,14 103 160 297 159 212 119 978 837 751 20 200 259 355 26 267 090 496† 1.336

 18,24,17,11,12,10,19,15,6,1,5,21,22,9,7,3,2,16,14,4,20,23,0,8,13 96 4 425 035 169 2 948 432 041 553 571 538 662 629 439† 1.501
 23,16,13,24,5,18,22,11,17,0,6,9,20,7,3,2,10,14,12,21,1,19,15,8,4 109 342 545 189 161 276 985 020 457 22 863 713 753* 33 631 896 485† 1.237
 0,12,24,10,13,5,2,4,19,21,23,18,8,17,9,22,16,11,6,15,7,3,14,1,20 110 1 630 815 047 031 951 396 884 026 216 061 645 298 285 537 534 331 1.714
 16,13,6,23,9,8,3,5,24,15,22,12,21,17,1,19,10,7,11,4,18,2,14,20,0 106 175 567 621 968 143 446 839 323 21 754 367 511* 32 889 968 312† 1.224
 4,5,1,23,21,13,2,10,18,17,15,7,0,9,3,14,11,12,19,8,6,20,24,22,16 92 441 263 822 738 198 843 123 714 18 204 163 668 22 735 477 601† 2.219

 24,8,14,5,16,4,13,6,22,19,1,10,9,12,3,0,18,21,20,23,15,17,11,7,2 103 399 664 301 385 239 491 639 509 44 703 839 402 58 584 164 217† 1.669
 7,6,3,22,15,19,21,2,13,0,8,10,9,4,18,16,11,24,5,12,17,1,23,14,20 95 4 242 972 533 2 040 103 620 358 982 248* 548 311 618† 2.080
 24,11,18,7,3,17,5,1,23,15,21,8,2,4,19,14,0,16,22,6,9,13,20,12,10 104 93 524 754 833 54 505 056 714 10 548 597 086 13 045 533 560† 1.716
 14,24,18,12,22,15,5,1,23,11,6,19,10,13,7,0,3,9,4,17,2,21,16,20,8 107 588 001 863 444 334 268 324 895 33 428 251 235 44 201 568 857† 1.759
 3,17,9,8,24,1,11,12,14,0,5,4,22,13,16,21,15,6,7,10,20,23,2,18,19 81 287 284 728 226 092 925 69 184 229 84 227 356 1.271
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 22,21,15,3,14,13,9,19,24,23,16,0,7,10,18,4,11,20,8,2,1,6,5,17,12 105 15 971 930 421 9 507 576 552 2 139 369 616 2 659 110 319† 1.680
 9,19,8,20,2,3,14,1,24,6,13,18,7,10,17,5,22,12,21,16,15,0,23,11,4 99 65 129 544 138 49 270 386 612 2 046 198 636* 4 216 102 078† 1.568
 17,15,7,12,8,3,4,9,21,5,16,6,19,20,1,22,24,18,11,14,23,10,2,13,0 98 2 527 026 959 1 648 150 241 277 237 937 372 429 469† 1.533
 10,3,6,13,1,2,20,14,18,11,15,7,5,12,9,24,17,22,4,8,21,23,19,16,0 88 3 627 610 303 1 843 325 968 328 724 666† 600 979 319 1.968
 8,19,7,16,12,2,13,22,14,9,11,5,6,3,18,24,0,15,10,23,1,20,4,17,21 92 1 856 058 898 1 193 365 165 269 745 193 344 637 494 1.555

 19,20,12,21,7,0,16,10,5,9,14,23,3,11,4,2,6,1,8,15,17,13,22,24,18 99 34 260 502 816 25 189 694 913 8 155 230 997 9 053 104 297 1.360
 1,12,18,13,17,15,3,7,20,0,19,24,6,5,21,11,2,8,9,16,22,10,4,23,14 97 1 771 683 541 1 309 878 844 110 429 060 132 190 231† 1.356
 11,22,6,21,8,13,20,23,0,2,15,7,12,18,16,3,1,17,5,4,9,14,24,10,19 106 1 732 619 843 486 1 128 931 796 105 212 585 689 793 242 636 097 372† 1.535
 5,18,3,21,22,17,13,24,0,7,15,14,11,2,9,10,1,8,6,16,19,4,20,23,12 102 779 613 628 794 363 395 428 336 24 601 164 074 35 005 528 703† 2.145
 2,10,24,11,22,19,0,3,8,17,15,16,6,4,23,20,18,7,9,14,13,5,12,1,21 98 79 111 763 362 50 830 832 599 7 657 225 682 10 634 620 002† 1.519

 2,10,1,7,16,9,0,6,12,11,3,18,22,4,13,24,20,15,8,14,21,23,17,19,5 90 2 583 250 416 1 279 740 693 448 117 068 539 330 132 2.019
 23,22,5,3,9,6,18,15,10,2,21,13,19,12,20,7,0,1,16,24,17,4,14,8,11 100 1 602 136 899 833 616 086 217 671 293 241 609 604 1.922
 10,3,24,12,0,7,8,11,14,21,22,23,2,1,9,17,18,6,20,4,13,15,5,19,16 96 41 008 133 34 805 331 5 569 572 7 625 016† 1.178
 16,24,3,14,5,18,7,6,4,2,0,15,8,10,20,13,19,9,21,11,17,12,22,23,1 104 180 338 759 227 114 074 886 931 13 479 027 313* 21 307 377 603† 1.581
 2,17,4,13,7,12,10,3,0,16,21,24,8,5,18,20,15,19,14,9,22,11,6,1,23 82 63 460 870 45 178 716 15 211 386 19 188 906 1.405

 13,19,9,10,14,15,23,21,24,16,12,11,0,5,22,20,4,18,3,1,6,2,7,17,8 106 30 362 260 471 17 880 754 992 7 118 193 532 7 573 206 864 1.698
 16,6,20,18,23,19,7,11,13,17,12,9,1,24,3,22,2,21,10,4,8,15,14,5,0 108 323 637 323 917 237 833 366 277 39 893 389 786 50 231 887 608† 1.361
 7,4,19,12,16,20,15,23,8,10,1,18,2,17,14,24,9,5,0,21,6,3,11,13,22 104 48 240 581 391 35 565 936 934 8 704 466 404 11 222 700 070 1.356
 8,12,18,3,2,11,10,22,24,17,1,13,23,4,20,16,6,15,9,21,19,5,14,0,7 93 765 221 908 207 281 923 54 511 645 58 563 520† 3.691
 9,7,16,18,12,1,23,8,22,0,6,19,4,13,2,24,11,15,21,17,20,3,10,14,5 101 83 844 370 278 61 023 573 559 14 386 085 329 16 291 382 555† 1.374

 1,16,10,14,17,13,0,3,5,7,4,15,19,2,21,9,23,8,12,6,11,24,22,20,18 100 53 061 069 552 39 494 530 901 1 721 078 711* 3 323 229 228† 1.344
 21,11,10,4,16,6,13,24,7,14,1,20,9,17,0,15,2,5,8,22,3,12,18,19,23 92 30 693 099 481 13 924 939 866 4 208 353 106 5 381 998 824† 2.204
 2,22,21,0,23,8,14,20,12,7,16,11,3,5,1,15,4,9,24,10,13,6,19,17,18 107 335 529 724 182 229 804 892 114 97 237 792 233 120 724 359 750 1.460
 2,21,3,7,0,8,5,14,18,6,12,11,23,20,10,15,17,4,9,16,13,19,24,22,1 100 86 995 188 013 48 316 661 736 8 357 503 208* 12 414 119 411† 1.801
 23,1,12,6,16,2,20,10,21,18,14,13,17,19,22,0,15,24,3,7,4,8,5,9,11 113 4 410 965 020 136 2 973 799 264 599 451 651 234 220 493 791 380 323† 1.483

averages 101 394 294 072 986 263 644 437 998 40 362 051 222 52 160 056 183 1.607
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C Computing Inversion Tables
The following algorithms to compute inversion vectors were found to perform well but require special
hardware support. In the following descriptions, a & b and a | b indicate bitwise and as well as bitwise
or as in the C programming language. Likewise, ∼a indicates the bitwise complement and a% b is the
remainder.

Algorithm C.1 Given a permutation σ of k items, compute the inversion table b0, b1, . . . , bk−1 using the
popcount function.

1 m ← 2k − 1
2 for i← 0, 1, . . . , k − 1 do

2.1 bi ← popcount(m& 2σ(i) − 1)
2.2 m← m&∼2σ(i)

3 return b1, b2, . . . , bk−1

Algorithm C.1 works by keeping in m a bitmask of all items already encountered. Using popcount on m
with an appropriate mask, we can quickly determine how many of the spots to the left of the current
item have already been filled. This algorithm is attractive as popcount is available as an instruction on
many modern computers.

For other computers, algorithm C.2 [22] can be used. It does not need popcount but requires an
integer type with k⌈log2 k⌉ bits to be available instead. For the 15 puzzle, this is just a 64 bit type, but
for the 25 puzzle, a type with at least 125 bits is needed already.

Algorithm C.2 Given a permutation σ of k items, compute the inversion table b0, b1, . . . , bk−1 using
integers with at least k⌈log2 k⌉ bits.

1 w ← 2⌈log2
k⌉

2 m← 1w + 2w2 + . . .+ (k − 1)wk−1

3 for i← 0, 1, . . . , k − 1 do

3.1 m← m− wσ(i)(w + w2 + . . .+ wk−1) % wk

3.2 bi ← ⌊m/wσ(i)⌋% w
4 return b1, b2, . . . , bk−1

This algorithm is easy to understand if you view m as a vector with k entries. Then, the algorithm
initialises m with mi ← i and in each iteration decreases all mi to the right of σ(i), setting bi ← mσ(i).

The same method can be used to reconstruct σ from the inversion table as well (ibid.):

Algorithm C.3 Given an inversion table b0, b1, . . . , bk−1 compute the corresponding permutation σ using
integers with at least k⌈log2 k⌉ bits.

1 w ← 2⌈log2
k⌉

2 m← 1w + 2w2 + . . .+ (k − 1)wk−1

3 for i← 0, 1, . . . , k − 1 do

3.1 l← wbi − 1
3.2 σ(i)← ⌊m/wbi⌋% w
3.3 m← m& l | ⌊m/w⌋&∼l

4 return σ

Using the pdep instruction from the BMI2 instruction set [21] and the widely available intrinsic function
ctz, an even faster reconstruction procedure obtains. However, availability of pdep is limited to the
amd64 architecture as of October 2017.

Algorithm C.4 Given an inversion table b0, b1, . . . , bk−1 compute the corresponding permutation σ using
the pdep instruction.

1 m← 2k − 1
2 for i← 0, 1, . . . , k − 1 do

2.1 σ(i)← ctz
(

pdep(2bi ,m)
)

2.2 m← m&∼2σ(i)

3 return σ

The function ctz(x) = log2(x&−x) computes the number of trailing zeros in the binary representation
of x with ctz(0) undefined. The behaviour of the instruction pdep(x, y) is explained in [21].
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D Difficult Instances
In [23], Schütt et. al. try to find difficult 25 puzzle instances by starting with a 15 puzzle instance of
maximal distance in the upper left corner of the 5×5 puzzle tray and then finding the hardest assignment
of the remaining tiles using a breadth-first search. The hard instance they constructed is given on the
left in figure D.1. While Schütt et. al. were not able to solve the instance optimally, they found the
instance’s distance to be either 140 or 142 moves.

24 19 13 21 20

23 7 22 11 10

2 17 12 6

9 18 8 1 15

4 14 3 5 16

24 23 22 21 20

19 18 17 16 15

14 13 12 11 10

9 8 7 6 5

4 3 2 1

3 22 15 21 14

12 7 18 6 19

11 16 10 2 4

23 8 5 17

9 13 1 24 20

Figure D.1 hard 25 puzzle instances

During the work on this thesis, the author found that the configuration obtained by rotating the
solved configuration by 180◦ is hard to solve, too. The small catalogue gives h = 128 for this configuration
and no solution is obtained withinin a bound of 144 moves. The configuration solved by the author’s
program requiring the highest number of vertex expansions at the time of this writing is given on the
right of figure D.1, has distance 110 and required the expansion of 3 288 483 999 260 IDA* nodes using
the small catalogue given in appendix A.
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