
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

YUJI SHINANO

The Ubiquity Generator Framework:
7 Years of Progress in Parallelizing

Branch-and-Bound

This work has also been supported by the Research Campus Modal Mathematical Optimization and Data Analysis Laboratories funded by the Federal Ministry of
Education and Research (BMBF Grant 05M14ZAM), and partially supported by the BMWi project Realisierung von Beschleunigungsstrategien der anwendung-
sorientierten Mathematik und Informatik für optimierende Energiesystemmodelle - BEAM-ME (fund number 03ET4023DE). All responsibility for the content of this
publication is assumed by the authors.

ZIB Report 17-60 (November 2017)

Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +49 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

The Ubiquity Generator Framework: 7 Years of

Progress in Parallelizing Branch-and-Bound∗

Yuji Shinano†

November 7, 2017

Abstract

Mixed integer linear programming (MILP) is a general form to model
combinatorial optimization problems and has many industrial applica-
tions. The performance of MILP solvers has improved tremendously in the
last two decades and these solvers have been used to solve many real-word
problems. However, against the backdrop of modern computer technology,
parallelization is of pivotal importance. In this way, ParaSCIP is the most
successful parallel MILP solver in terms of solving previously unsolvable
instances from the well-known benchmark instance set MIPLIB by using
supercomputers. It solved two instances from MIPLIB2003 and 12 from
MIPLIB2010 for the first time to optimality by using up to 80,000 cores
on supercomputers. ParaSCIP has been developed by using the Ubiq-
uity Generator (UG) framework, which is a general software package to
parallelize any state-of-the-art branch-and-bound based solver. This pa-
per discusses 7 years of progress in parallelizing branch-and-bound solvers
with UG.

1 Introduction

This paper deals with the Ubiquity Generator (UG) framework [20, 24], a soft-
ware package that allows to parallelize branch-and-bound (B&B) solvers—in
particular solvers for mixed integer linear programming (MILP) problems. The
standard algorithm used to solve MILP is an LP-based branch-and-bound with
many advanced procedures such as primal heuristics, preprocessing and con-
flict analysis, which implicitly enumerates the whole solution space to find an
optimal solution. The reader is referred to [10] for details about these proce-
dures and the latest survey of parallel MILP solvers. This paper presents the
ground design and general features of UG, current development based on it, and
discusses 7 years of progress in parallelizing branch-and-bound solvers with UG.

∗This work has been supported by the Research Campus MODAL Mathematical Opti-
mization and Data Analysis Laboratories funded by the Federal Ministry of Education and
Research (BMBF Grant 05M14ZAM). All responsibility for the content of this publication is
assumed by the authors.
†Zuse Institute Berlin, Takustraße 7, 14195 Berlin, Germany, shinano@zib.de

1

2 Towards a General Branch-and-Bound Paral-
lelization

Standardization of the message passing interface started in the mid-90s. In
the same period of time, general parallel branch-and-bound software frame-
work/library development started [21, 2, 23]. Comparing between a sequential
sophisticated B&B implementation and a naive parallel B&B one for solving an
optimization problem, the former is overwhelmingly high-performance in terms
of solvability. In order to investigate effectiveness of parallelization for a so-
phisticated B&B implementation, the CPLEX solver was parallelized by using
PUBB2 [19]. However, it soon turned out that parallelizing a black-box solver
with a general parallel B&B framework does not easily lead to a significantly en-
hanced performance. Therefore, the development of ParaLEX [18] was started,
which was specialized for the CPLEX solver and could run on distributed mem-
ory environments. Yet, when ParaLEX was redesigned in 2008 [16] by the author
of this article, the idea of developing a general software framework to exploit
state-of-the-art MILP solvers re-emerged and subsequently gave rise to the UG

framework described in the following.

2.1 The Ubiquity Generator (UG) Framework

UG is a generic framework to parallelize any existing state-of-the-art B&B based
solver, subsequently referred to as base solver. UG is composed of a collection
of base C++ classes, which define interfaces that can be customized for any
base solver and allow descriptions of subproblems and solutions to be trans-
lated into a solver independent form. Additionally, there are base classes that
define interfaces for different message-passing protocols. Implementations of
ramp-up, dynamic load balancing, and check-pointing and restarting mecha-
nisms are available as a generic functionality (see details in [20]). The B&B
tree is maintained as a collection of subtrees by the base solvers, while UG only
extracts and manages a small number of subproblems from the base solvers for
load balancing.

The concept of UG is thus to abstract from a base solver and parallelization
library and to provide a framework that can be used, in principle, to parallelize
any powerful state-of-the-art base solver on any computational environment.
For a particular base solver, only the interface to UG in form of specializations of
base classes needs to be implemented. Similarly, for a particular parallelization
library, a specialization of an abstract UG class is necessary.

A particular instantiated parallel solver is referred to as ug [a specific solver
name, a specific parallelization library name]. Here, the specific parallelization
library is used to realize the message-passing based communications. In [10],
recent parallel MILP solvers are summarized in terms of aspects such as load
coordination mechanisms, or granularity of working unit. According to the
term defined in [10], UG employs a Supervisor-Worker coordination mechanism
with subtree-level parallelism (the unit of work is a subtree). One of the most
important characteristics of UG is that it makes algorithmic changes to that
of the base solver, such as multiple presolving, and performs very adaptive
algorithms, such as racing ramp-up [20] and distributed domain propagation [5].

2

-1916

-1915.5

-1915

-1914.5

-1914

-1913.5

-1913

-1912.5

-1912

 0 1x10
6

 2x10
6

 3x10
6

 4x10
6

 5x10
6

 6x10
6

 7x10
6

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 V

a
lu

e

Computing Time (sec.)

Incumbents
Global LBs

Upper and lower bounds

 1

 100

 10000

 1x10
6

 1x10
8

 1x10
10

 0 1x10
6

 2x10
6

 3x10
6

 4x10
6

 5x10
6

 6x10
6

 7x10
6

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

N
u

m
b

e
r

o
f

N
o

d
e

s

N
u

m
b

e
r

o
f

A
c
ti
v
e

 S
o

lv
e

rs
 +

 1

Computing Time (sec.)

nodes left
active solvers

nodes in check-point file

Nodes and active solvers

Figure 1: Evolution of computation for solving rmine10 by using up to 80,000
cores

2.2 Instantiated parallel solvers by UG

The following parallel solvers are instantiated by UG. The current distribution of
UG has the capability to use the parallelization libraries MPI (Message Passing
Interface) and pthreads (POSIX Threads).

Academic solver SCIP as the base solver Two solvers have been developed
for the academic SCIP solver [11], ParaSCIP (= ug [SCIP, MPI]) [13] and
FiberSCIP (= ug [SCIP, Pthreads]) [20]. Algorithmically, both solvers are
identical, since they are parallelized by the same software framework UG.
The run-time behavior has been investigated in detail for the MIPLIB2010
benchmark instances by using FiberSCIP. ParaSCIP successfully solved 14
previously unsolved instances from MIPLIB2003 and MIPLIB2010 as of
writing this document [14, 15]. The longest and the biggest scale computa-
tion conducted to solve an open instance by ParaSCIP is presented in Fig.1.
The rmine10 instance was solved for the first time with 48 restarted runs
from checkpoint files that were generated by previous runs using between
6144 and 80,000 cores. In total, it took about 75 days and 6,405 years of
CPU core hours.

Commercial solver FICO Xpress as the base solver Two solvers have been
developed for the commercial Xpress the solvers, ParaXpress (= ug [Xpress,
MPI]) and FiberXpress (= ug [Xpress, Pthreads]). Xpress itself is a shared
memory parallel MILP solver. Therefore, FiberXpress can be viewed as a
multi-level threaded parallel shared memory MILP solver. When there is
more than one core, it is necessary to decide how cores are assigned to UG

threads and how many to the Xpress threads. The assignment also changes
the solving behavior of the algorithm. ParaXpress has the same assignment
issue in between UG processes and FICO Xpress internal threads. The
difference in assignments was investigated in [17].

Distributed memory parallel solver PIPS-SBB as the base solver UG has
also been used to parallelize the PIPS-SBB [8] solver for two-stage stochas-
tic programming problems (ug [PIPS-SBB,MPI]) [9]. PIPS-SBB can solve
large-scale LPs on distributed memory computing environments. There-
fore, this parallel solver instantiation shows that UG is capable of paral-
lelizing distributed memory parallel base solvers.

3

2.3 Instantiated parallel solvers by ug [SCIP,*] libraries

UG has been developed mainly in concert with SCIP. Therefore, ug [SCIP,*] is
the most mature and also has user-customizable libraries. By using these li-
braries with the plug-in architecture of SCIP, a customized parallel solver can
be developed with minimal effort.

ug [SCIP-Jack, *] One of the most successful results of using this develop-
ment mechanism is the SCIP-Jack solver for Steiner tree problems and
its variants: ug [SCIP-Jack, MPI] solved three open instances from the
SteinLib[22] benchmark set [4]. The SCIP Optimization Suite contains all
source codes of this parallel solver. Only one file with 116 lines of code
(without comments) in the source code of ug is required for the paral-
lelization of SCIP-Jack.

ug [SCIP-Scheduler, *] The SCIP applications moreover contain a Scheduler,
which is a solver for resource-constrained project scheduling problems [1].
Also this solver can be parallelized by ug [SCIP,*] libraries.

ug [SCIP-SDP, *] The Mixed Integer Semidefinite Programming (MISDP)
solver has been developed in a project of SCIP-SDP [12] at TU Darmstadt.
The solver is realized as plugin for SCIP. Therefore, this solver can be
parallelized by ug [SCIP,*]; libraries and the code will be published in the
near future.

3 UG synthesizer (UGS)
The strategy of composing multiple heuristic algorithms within a single solver
that chooses the best suited one for each input is called algorithm portfolio. In
order to exploit performance variability [3, 6] for MILP solving, a solver may
solve an instance in parallel with several different configurations of parameters
(including parameter for permutation of columns and rows of input data). This
procedure is called racing [20]. It is a natural idea to run several (parallel)
heuristic solvers together with several B&B based solvers in parallel to share a
good primal solution to cut-off search trees in the B&B based solvers. UG syn-
thesizer (UGS) is a software framework to realize this strategy on a distributed
memory computing environment; it is a general framework to realize any com-
binations of algorithm portfolio and racing.

Although a parallel solver instantiated by UG has a single executable file
and runs as a SPMD (Single Program, Multiple Data) model MPI program,
a parallel solver configured by UGS has several executable files and it runs
as MPMD (Multiple Program, Multiple Data) model MPI program. In UGS

solvers, a heuristic solver or a B&B solver has a separate executable file and is
referred to as a UGS solver that can be a distributed memory parallel solver.
Currently, shared memory parallel B&B UGS solvers ugs Xpress, ugs CPLEX,
and ugs Gurobi have been developed. As for these solvers, the corresponding
commercial solvers are extended to run as UGS solvers. And also, distributed
memory heuristic UGS solvers ugs PAC CPLEX and ugs PAC Xpress have been
developed. These are implementations of alternative criteria search [7] using
different MILP solvers. Any ug [*,*] solver can run as a UGS solver.UGS pro-
vides one special executable file ugs, which mediates incumbent solutions among
the UGS solvers.

4

A parallel UGS solver can be configured at run-time flexibly. For example, it
runs with ugs, ugs Xpress1, ugs Xpress2, ugs CPLEX1, ugs PAC CPLEX1 and
ug [Xpress,MPI]1. The different numbers at the end of the same solver name
denote the multiple solvers for one UGS solver can run in parallel with different
parameter settings. The solver configuration is specified by a special file and is
passed to each solver at run-time. Therefore, the configuration can be decided
flexibly depending on the computing environment used to solve an instance. On
top of that, whenever a new promising algorithm implementation has appeared,
a new UGS solver can be added without any modification of the other existing
solvers, since the executable file is separate.

4 Concluding remarks
Some of the instances solved by ParaSCIP for the first time are currently solvable
by commercial solvers on a common desktop machine in a reasonable amount
of time. This can be taken as an indication that algorithmic improvements are
more crucial than parallelizations. Nevertheless, by providing a way to apply
large-scale parallelization to the latest algorithm implementations, UG has in
many cases succeeded to “look ahead in time” and in some cases helped to
guide sequential solver development.

Besides this fact, a solver instantiated by UG causes algorithmic changes
to that of the base solver by adding more cores, though the program code is
the same. An open question is whether this kind of algorithmic change can
fundamentally help to increase the solvability of problems or not.

References

[1] Berthold, T., Heinz, S., Lübbecke, M.E., Möhring, R.H., Schulz, J.: A
constraint integer programming approach for resource-constrained project
scheduling. In: A. Lodi, M. Milano, P. Toth (eds.) Integration of AI and
OR Techniques in Constraint Programming for Combinatorial Optimiza-
tion Problems, Lecture Notes in Computer Science, vol. 6140, pp. 313–317.
Springer (2010)

[2] Cun, B.L., Roucairol, C., The PNN Team: BOB: a Unified Platform for
Implementing Branch-and-Bound like Algorithms. Rapports de Recherche
95/16, PRiSM (1995)

[3] Danna, E.: Performance variability in mixed integer programming
(2008). Presentation, Workshop on Mixed Integer Programming (MIP
2008), Columbia University, New York. http://coral.ie.lehigh.edu/∼jeff/
mip-2008/talks/danna.pdf

[4] Gamrath, G., Koch, T., Maher, S.J., Rehfeldt, D., Shinano, Y.: SCIP-
Jack—a solver for stp and variants with parallelization extensions. Math-
ematical Programming Computation 9(2), 231–296 (2017)

[5] Gottwald, R.L., Maher, S.J., Shinano, Y.: Distributed domain propagation.
ZIB-Report 16-71, Zuse Institute Berlin, Takustr. 7, 14195 Berlin (2016).
Leibniz International Proceedings in Informatics SEA 2017 (to appear)

5

[6] Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby,
R.E., Danna, E., Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mit-
telmann, H., Ralphs, T., Salvagnin, D., Steffy, D.E., Wolter, K.: MIPLIB
2010. Math. Prog. Comp. 3, 103–163 (2011)

[7] Mungúıa, L.M., Ahmed, S., Bader, D.A., Nemhauser, G.L., Shao, Y.: Al-
ternating criteria search: A parallel large neighborhood search algorithm
for mixed integer programs. Submitted for publication (2016)

[8] Mungúıa, L.M., Oxberry, G., Rajan, D.: PIPS-SBB: A parallel distributed-
memory branch-and-bound algorithm for stochastic mixed-integer pro-
grams. In: 2016 IEEE IPDPSW, pp. 730–739 (2016)

[9] Mungúıa, L.M., Oxberry, G., Rajan, D., Shinano, Y.: Parallel pips-sbb:
Multi-level parallelism for stochastic mixed-integer programs. ZIB-Report
17-58, Zuse Institute Berlin (2017)

[10] Ralphs, T., Shinano, Y., Berthold, T., Koch, T.: Parallel solvers for mixed
integer linear programming. Tech. Rep. 16-74, ZIB, Takustr.7, 14195 Berlin
(2016)

[11] SCIP: Solving Constraint Integer Programs. http://scip.zib.de/

[12] SCIP-SDP: a mixed integer semidefinite programming plugin for SCIP.
http://www.opt.tu-darmstadt.de/scipsdp/

[13] Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T.: ParaSCIP
– a parallel extension of SCIP. In: C. Bischof, H.G. Hegering, W.E. Nagel,
G. Wittum (eds.) Competence in High Performance Computing 2010, pp.
135–148. Springer (2012)

[14] Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T., Winkler,
M.: Solving hard MIPLIB2003 problems with ParaSCIP on supercomput-
ers: An update. In: Parallel Distributed Processing Symposium Workshops
(IPDPSW), 2014 IEEE International, pp. 1552–1561 (2014)

[15] Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T., Winkler,
M.: Solving open MIP instances with ParaSCIP on supercomputers using
up to 80,000 cores. In: 2016 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp. 770–779. IEEE Computer Society,
Los Alamitos, CA, USA (2016)

[16] Shinano, Y., Achterberg, T., Fujie, T.: A dynamic load balancing mech-
anism for new ParaLEX. In: Proceedings of ICPADS 2008, pp. 455–462
(2008)

[17] Shinano, Y., Berthold, T., Heinz, S.: A First Implementation of ParaX-
press: Combining Internal and External Parallelization to Solve MIPs on
Supercomputers, pp. 308–316. Springer International Publishing, Cham
(2016). URL http://dx.doi.org/10.1007/978-3-319-42432-3 38

[18] Shinano, Y., Fujie, T.: ParaLEX: A parallel extension for the CPLEX
mixed integer optimizer. In: F. Cappello, T. Herault, J. Dongarra (eds.)

6

Recent Advances in Parallel Virtual Machine and Message Passing Inter-
face. Proceedings, pp. 97–106. Springer Berlin Heidelberg (2007). DOI
10.1007/978-3-540-75416-9\ 19

[19] Shinano, Y., Fujie, T., Kounoike, Y.: Effectiveness of parallelizing the
ILOG-CPLEX mixed integer optimizer in the PUBB2 framework. In:
H. Kosch, L. Böszörményi, H. Hellwagner (eds.) Euro-Par 2003 Parallel
Processing: Proceedings, pp. 451–460. Springer Berlin Heidelberg (2003)

[20] Shinano, Y., Heinz, S., Vigerske, S., Winkler, M.: FiberSCIP – a shared
memory parallelization of SCIP. INFORMS Journal on Computing 30(1),
11–30 (2018). DOI 10.1287/ijoc.2017.0762. URL https://doi.org/10.1287/
ijoc.2017.0762

[21] Shinano, Y., Higaki, M., Hirabayashi, R.: A generalized utility for parallel
branch and bound algorithms. In: Proceedings.Seventh IEEE Symposium
on Parallel and Distributed Processing, pp. 392–401 (1995). DOI 10.1109/
SPDP.1995.530710

[22] SteinLib Testdata Library. http://steinlib.zib.de/steinlib.php

[23] Tschöke, S., Polzer, T.: Prortabl Parallel Branch-and-Bound Library
PPBB-Lib. User manual version 2.0, University of Paderborn (1996)

[24] UG: Ubiquity Generator framework. http://ug.zib.de/

7

