
Takustr. 7

14195 Berlin

Germany

Zuse Institute Berlin

LLUÍS-MIQUEL MUNGUÍA1, GEOFFREY OXBERRY2, DEEPAK RAJAN3,
YUJI SHINANO

Parallel PIPS-SBB: Multi-Level Parallelism For

Stochastic Mixed-Integer Programs

1
College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA, lluis.munguia@gatech.edu

2
Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

3
Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

Some of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-

07NA27344. This work has also been supported by the Research Campus Modal Mathematical Optimization and Data Analysis Laboratories funded by the

Federal Ministry of Education and Research (BMBF Grant 05M14ZAM), and partially supported by the BMWi project Realisierung von Beschleunigungsstrategien

der anwendungsorientierten Mathematik und Informatik f ¨ur optimierende Energiesystemmodelle - BEAM-ME (fund number 03ET4023DE). All responsibility for the

content of this publication is assumed by the authors.

ZIB Report 17-58 (November 2017)



Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +49 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782



Parallel PIPS-SBB: Multi-Level Parallelism For Stochastic

Mixed-Integer Programs

Llúıs-Miquel Mungúıa1, Geo↵rey Oxberry2, Deepak Rajan2, and Yuji Shinano3

1College of Computing, Georgia Institute of Technology, Atlanta, GA 30332,
USA, lluis.munguia@gatech.edu

2Computational Engineering Division, Lawrence Livermore National Laboratory,
Livermore, CA 94550, USA

3Department of Mathematical Optimization, Zuse Institute Berlin, Takustr. 7,
14195 Berlin, Germany

November 7, 2017

Abstract

PIPS-SBB is a distributed-memory parallel solver with a scalable data distribution

paradigm. It is designed to solve MIPs with a dual-block angular structure, which is char-

acteristic of deterministic-equivalent Stochastic Mixed-Integer Programs (SMIPs). In this

paper, we present two di↵erent parallelizations of Branch & Bound (B&B), implementing

both as extensions of PIPS-SBB, thus adding an additional layer of parallelism. In the

first of the proposed frameworks, PIPS-PSBB, the coordination and load-balancing of the

di↵erent optimization workers is done in a decentralized fashion. This new framework is de-

signed to ensure all available cores are processing the most promising parts of the B&B tree.

The second, ug[PIPS-SBB,MPI], is a parallel implementation using the Ubiquity Generator

(UG), a universal framework for parallelizing B&B tree search that has been successfully

applied to other MIP solvers. We show the e↵ects of leveraging multiple levels of parallelism

in potentially improving scaling performance beyond thousands of cores.

1 Introduction

The breakdown of Dennard scaling in CPUs has forced manufacturers to design for increasing
parallelism to improve theoretical peak CPU performance, as processor clock speeds cannot be
increased using current chip manufacturing processes. Realizing a nontrivial fraction of these
theoretical performance improvements requires algorithms that leverage parallelism e↵ectively.
For high-performance computing (HPC) systems used in large-scale scientific and engineering
applications, this trend has been exacerbated, with recent HPC systems such as Argonne National
Laboratory’s Mira enabling million-process parallelism, and future systems enabling even larger
process counts. Using such massive-scale parallelism – four to five orders of magnitude greater
than current workstations – to its full potential in large-scale Mixed Integer Programming (MIP)
applications demands MIP algorithms that scale e�ciently (e.g., in a weak or strong sense) as
process counts increase [10].

Current parallel algorithms for MIPs do not meet this criterion. The scalability of existing
approaches, discussed later in this introduction, can vary dramatically depending on the instance

1



being solved, exposing a significant gap between current HPC hardware and MIP algorithmic
capabilities. To begin to address this algorithmic capability gap, this work investigates the par-
allel scaling benefits of exploiting the problem structure found in dual block-angular MIPs and
exposing multiple levels of parallelism. Leveraging the parallelism in each level yields multiplica-
tive e↵ects on speedup: if each of two levels scales e�ciently to hundreds of cores, the overall
algorithm has the potential to scale e�ciently to tens of thousands of cores. Our intention is to
exploit this principle for dual block-angular MIPs using PIPS-SBB [16].

In the rest of this introduction, we first provide some background in Sections 1.1-1.3, de-
scribing: Stochastic MIPs, Branch & Bound (the primary MIP algorithm), and PIPS-SBB (a
parallel B&B framework for solving SMIPs). Subsequently, in Section 1.4, we summarize the
main contributions of this work.

1.1 Stochastic Mixed Integer Programs

Deterministic-equivalent SMIPs exhibit dual block-angular structure of the form:

min
x2Rn1

,y2Rn2⇥s

c

T
x+

sX

i=1

q

T
i

y

i

,

subject to:

Ax = b0,

T1x +W1y1 = b1,

T2x +W2y2 = b2,

...
. . .

...
T

s

x +W

s

y

s

= b

s

,

l  x  u,

l

i

 y

i

 u

i

, 8i 2 [s],

x

j

2 Z, 8j 2 I1,

y

i,j

2 Z, 8i 2 [s], 8j 2 I2.

(1)

In (1), [s] is the set of natural numbers from 1 to s inclusive, and R is the extended set
of real numbers R [ {�1,1}. Members of [s] label scenarios – instances of the second-stage
MIP for given realizations of the random variables on which it depends. First-stage decision
variables x are bounded from above and below by l 2 Rn

and u 2 Rn

, respectively, where n is
the number of first-stage decision variables. Second-stage decision variables y

i

for scenario i are
bounded from above and below by l

i

2 Rn2
and u

i

2 Rn2
respectively, where n2 is the number of

second-stage decision variables in each scenario. These sets of decision variables are constrained
by a set of linear constraints, modeled with di↵erent independent submatrices. The sets I1 and
I2 are sets of indices of first-stage and second-stage variables, respectively, that correspond to
integer-valued decision variables; for simplicity, we assume that if second-stage decision variable
y

i,j

is integer in scenario i, then j is in I2, and y

k,j

is integer for each scenario k from 1 to
s inclusive. This formulation is called block-angular because it can be permuted into a “block
half-arrow” structure, where the A and T

i

matrices make up the left half of the arrow head, while
the A and W

i

matrices form the stem. This formulation is also called dual block-angular because
columns of this block-angular constraint matrix link primal variables, while the corresponding
second-stage dual variables remain uncoupled across scenarios.

SMIPs arise in many important applications, most notably stochastic unit commitment [31].
For the remainder of this work, we will discuss algorithms for dual block-angular MIPs using the

2



terminology of SMIPs for convenience, due to the prevalence of SMIPs and the well-developed
terminology for this problem class. However, dual block-angular MIPs arise in other problem
classes besides SMIPs. We emphasize that the algorithms described herein could be applied to
any dual block-angular MIP, and the explanations in this work map easily to this case by drawing
an analogy to SMIPs.

1.2 Parallel Branch & Bound

The B&B algorithm [11] is the most commonly used method for solving MIPs to optimality. It is a
search algorithm that systematically partitions a problem into smaller subproblems and searches
the solution space using a dynamically-generated tree data structure called the B&B tree. In
LP-relaxation-based B&B, the quality and promise of subproblems is evaluated by solving an
LP relaxation formed by relaxing all integrality constraints. The optimization concludes once
all subproblems are fathomed or solved to optimality. Furthermore, since the B&B algorithm
computes upper and lower bounds on the optimal objective function value, it can also be used
to provide a guarantee on the quality of the best feasible solution found, if terminated early.

Algorithm 1 Branch and Bound

1: UB = 1
2: LB = �1
3: priority queue Q = ;
4: Add root subproblem r of original MIP problem to Q
5: while Q 6= ; and LB < UB do

6: remove subproblem p from top of Q
7: Process p
8: UBp = best solution found within p
9: LBp = lower bound of p, 1 if infeasible, �1 if unbounded

10: UB = min{UB,UBp}
11: if LBp < UB then

12: Partition p into a set {s0, . . . , sk} of subproblems, each with a lower bound defined to be LBp

13: Add {s0, · · · , sk} to Q
14: else

15: continue . If LBp � UB, problem p is discarded (fathomed by bound dominance)

16: end if

17: LB = minimum lower bound among all open subproblems in Q
18: end while

19: if LB < UB then

20: return infeasible

21: else

22: return optimal solution

23: end if

Despite being an exact algorithm for solving MIPs, näıve B&B as described in Algorithm 1
is computationally infeasible due to the exponential growth of the search space. State-of-the-art
MIP solvers enhance this B&B scheme with many additional methods that prune the search
space in order to make the scheme practical. Developing each of these techniques is nontrivial,
given that they usually involve solving additional NP-hard problems. Primal heuristics [5, 8]
are algorithms, usually with a guarantee of success, that focus on finding high-quality feasible
solutions to improve the upper bound. Pre-processing [19, 2, 9] and cutting planes [15] are
techniques focused on strengthening the LP relaxation, thus reducing the search space. Other
important components include the branching rules (how to partition the problem) [3], and how
the priority queue is sorted [12]. The search strategy can have a big impact on how fast high-
quality solutions are found and determine greatly the size of the tree required to solve a problem
to optimality.

3



Multiple parallel B&B tree search algorithms have been devised in order to speed up the opti-
mization algorithm, though most of them di↵er significantly on how they might go about it. For
a thorough taxonomy of most B&B parallelizations, we urge the reader to refer to [18]. In theory,
parallel B&B tree search is not di�cult because the processing of subproblems is independent.
However, There are many challenges associated with designing a parallel B&B algorithm, such
as maintaining a healthy work balance among all the processors and avoiding significant com-
munication and synchronization costs. In other words, distributed-memory parallelization is not
straightforward in practice, in contrast to the relatively straightforward shared-memory parallel
algorithms present in most state-of-the-art MIP solvers. In this paper, we classify parallel B&B
algorithms based on the smallest transferrable unit of work between the various cores of the
parallel search. On one hand, solvers using fine-grained parallelizations use a single MIP tree
node as the basic unit of work. In contrast, each solver in coarse-grained parallelizations focuses
on solving an entire MIP subtree at a time. Generally speaking, coarse-grained parallelizations
require less communication. On the other hand, it may be challenging for such implementations
to supply useful work to all processors.

To keep this discussion self-contained, we mention three notable parallel B&B tree search
frameworks developed recently: PEBBL [6, 7], CHiPPS [25, 26, 27, 28, 29, 30], and UG [20, 21,
22, 1].

PEBBL parallelizes B&B at a fine-grained, node level within an MPI-based, shared-nothing
parallel programming model using a decentralized hub-worker approach. In this approach, each
hub process owns a collection of worker processes that solve subproblems (nodes). Workers
and hubs communicate problem metadata to coordinate subproblem transfers between worker
processes. “Load factors” are used to estimate the work required to process the B&B subtrees
rooted at the subproblems owned by workers in each hub. “Rendezvous” load balancing is then
used to decide which hubs donate or receive subproblems to or from other hubs. A hub may
also transfer subproblems between worker processes it owns through dynamic load-balancing
algorithms specific to PEBBL.

CHiPPS parallelizes B&B using a master-hub-worker approach built upon the ALPS [26]
parallel tree search framework. This approach uses coarse-grained, subtree-level parallelism in
which workers explore B&B subtrees, and these subtrees are transferred among workers during
load-balancing. As with PEBBL, CHiPPS uses hub processes to coordinate worker processes,
but instead of employing peer-to-peer coordination among hubs, CHiPPS load-balances hierar-
chically, using a master process to coordinate and balance work among hub processes, each of
which themselves coordinates and balances work among the worker processes it owns.

The Ubiquity Generator (UG) framework [1] was designed to parallelize existing state-of-the-
art sequential B&B algorithms for MIPs, referred to as base solvers, using a supervisor-worker
approach. In this approach, UG wraps around both the API of the base solver (e.g., CPLEX)
and the parallel programming model (e.g., MPI, POSIX threads) to enable passing B&B subtrees
among worker processes, each of which processes a B&B subtree using a base solver instance.
A supervisor process called a “LoadCoordinator” is used to serialize B&B subtrees (e.g., using
variable bound changes in the root subproblem of a subtree) and to redistribute them among
worker processes during load balancing.

1.3 PIPS-SBB, the base solver

PIPS-SBB [16] is a parallel B&B framework for MIPs that have dual block-angular structure.
PIPS-SBB is designed to operate in a parallel distributed-memory environment (i.e., an MPI-
based, shared-nothing parallel programming model) and exploits problem structure to o↵er two
unique advantages. First, PIPS-SBB distributes data representing each scenario to di↵erent

4



processes within its MPI communicator, while first-stage information is replicated across all pro-
cesses. This data distribution enables allocating to a communicator up to as many processes as
scenarios specified in the input problem, so PIPS-SBB can solve some large SMIPs that would
not otherwise fit in memory. Second, PIPS-SBB uses PIPS-S [13] to solve LP relaxations of sub-
problems in parallel; PIPS-S also exploits dual block-angular structure exhibited by stochastic
LPs in extensive form. Every component of the B&B framework conforms to this data distribu-
tion policy, including PIPS-S. This data distribution policy also extends to other data stored by
PIPS-SBB, such as cutting planes, variable bound updates (as a result of branching), and LP
warm-start information.

A

T1

T2

TN

... ...
...

W1

W2

WN

(a) Data distribution policy of PIPS-SBB and PIPS-S: Data

for each scenario is sent to di↵erent processor.

...�
... �

...

�

(b) Distributed-memory B&B tree search with

PIPS-SBB: Each B&B node solved in parallel.

Figure 1: Two of the most prominent features of PIPS-SBB are (a) the ability to distribute
problem data across distributed-memory and (b) the capability of processing each node of B&B
tree (LP relaxations, cuts, heuristics, etc.) in parallel.

PIPS-SBB aims to achieve speed-up by using PIPS-S as its LP solver to exploit data paral-
lelism when processing each B&B node. This architectural decision avoids scaling bottlenecks
associated with parallel node exploration. However, the scalability of the base solver PIPS-S for
a given SMIP is limited because it depends on the relative sizes of its first- and second-stage
coe�cient matrices and the number of scenarios.

The reader is referred to [16] for details about the various features implemented in the initial
version of PIPS-SBB. More recently, other features have been added to PIPS-SBB, including
newer primal heuristics and best-estimate based node selection strategies. While these features
have improved the performance of our base solver, the main focus of this paper is the extension
of PIPS-SBB for parallel B&B tree search.

1.4 Contributions and Outline

The premise of this paper is to expose multiple nested levels of parallelism in MIP algorithms.
We present two new frameworks for parallelizing the B&B tree, and demonstrate them on SMIPs
using PIPS-SBB [16], a distributed-memory parallel Branch and Bound (B&B) solver for SMIPs.
In these frameworks, the LP relaxations of SMIPs are solved using PIPS-S [13], a distributed-
memory parallel simplex solver. By parallelizing the B&B tree search in PIPS-SBB, we incorpo-

5



rate two levels of parallelism: parallelism (1) in the LP solver, and (2) in the B&B tree search.
This additional level of parallelism to PIPS-SBB with parallel node exploration enables us to
increase its scalability.

We briefly describe both frameworks, which di↵er in the approach used in the management
and distribution of work among the parallel workers. The first framework, called PIPS-PSBB,
is a new, fine-grained framework that attempts to search aggressively the promising parts of
the B&B tree, with the intention of decreasing the amount of redundant work performed by the
solver. For minimization problems, a redundant node can be characterized as a subproblem with
an LP relaxation value greater than the optimal value. To limit communication overhead, this
framework transfers node metadata (e.g., upper/lower bounds, tree sizes) asynchronously to hide
latency until a load imbalance is detected, at which point MIP subproblems are redistributed
among processes using synchronous communication. MPI collective operations are used instead
of point-to-point operations to further limit communications overhead. The proposed architec-
ture is also decentralized: node exchanges do not pass through a single coordinating process,
which avoids a potential communication bottleneck. The second framework is based on UG. We
compare the strengths and weaknesses of both approaches, and show that when implemented
as extensions of PIPS-SBB, both approaches leverage multi-level parallelism to scale e�ciently
beyond the natural limitations of each framework in isolation.

The main contributions of this paper are therefore:

• A novel framework for fine-grained parallel B&B tree search for solving mixed-integer
programs.

• Two new multi-level distributed-memory parallelisms for solving SMIPs, implemented as
extensions of the distributed-memory SMIP solver PIPS-SBB.

– PIPS-PSBB: B&B parallelism implemented using the new fine-grained parallelism
presented in this paper.

– B&B parallelism implemented using UG, the coarse-grained parallel B&B framework
available as part of the SCIP optimization suite [14].

• Detailed computational experiments illustrating the scaling performance of both parallel
B&B frameworks.

In general, leveraging the parallelism in each level simultaneously yields multiplicative e↵ects
on speedup and parallel scaling e�ciency (in a weak or strong sense). In the specific case of B&B
parallelizations for practical MIP instances, it is non-trivial to achieve even 20% strong scaling
e�ciency beyond 100-1000 processors (modest by HPC standards). By providing an extra level
of parallelism, available processing power can be partitioned across multiple levels to improve
overall e�ciency and speedups over allocating the same number of processes to either single level.

The paper is organized as follows. In Section 2, we present PIPS-PSBB: our decentralized,
lightweight parallel framework for fine-grained B&B tree search. Additionally, we delve into the
details of our implementation, discussing some of the challenges, and our approach to minimizing
the communication overhead associated with the distributed-memory algorithm. In Section 3,
we discuss the same topics for ug[PIPS-SBB,MPI]. In Section 4, we begin by first comparing the
performance of both of our implementations in detail on a few select instances, and then present
performance results (comparing with distributed-memory CPLEX) over the complete test set.
Finally, we conclude in Section 5 with some directions for future research.

6



2 PIPS-PSBB: A decentralized lightweight parallel frame-
work for B&B

In this section, we present PIPS-PSBB, a decentralized fine-grained, yet lightweight parallel
framework built as an extension to PIPS-SBB. Our approach and ideas are general, and can be
applied to any base MIP solver. We first present the main ideas and the implementation details,
which are independent of PIPS-SBB. Then, in Section 2.3, we address the challenges specific to
extending and adhering to the design principles of PIPS-SBB.

A primary aspect to consider in the design of parallel B&B algorithms is the policy used
in the distribution of work, and the degree and frequency of communication used to coordinate
optimization workers. On one hand, coarse-grained parallelizations typically require less com-
munication, and allow each worker to focus on processing an entire subtree at a time. However,
less frequent coordination between workers may have a detrimental e↵ect on parallel e�ciency.
Workers may be likely to solve subtrees that would be otherwise fathomed in a sequential exe-
cution, especially in the context of large-scale computations with thousands of available solvers.
Performing redundant work may seem unavoidable because the information required for fath-
oming the nodes is only discovered during the optimization and is therefore impossible to know
beforehand. Figure 2 highlights this issue. The discovery of a feasible solution (black-colored
node) by processor 2 could have resulted in the fathoming of many nodes belonging to other
workers, if only this information was known beforehand. In the context of a coarse-grained
distribution of work, nodes from the same part of the B&B tree typically belong to the same
processor, unlike in fine-grained distributions.

Worker 1                Worker 2              Worker 3               Worker 4

Fathomed Nodes

Figure 2: Example depicting the coarse-grained distribution of subtrees among the parallel pro-
cessors at a given point in the parallel exploration. Knowledge of feasible solution at black-colored
node could have fathomed many other nodes on many processors.

When point-to-point communications are used, a coarse-grained distribution of work may
seem the only viable option for avoiding large communication overheads without resorting to
complex communication schemes, as in PEBBL. Nevertheless, it is possible to develop a practical,
e↵ective, and scalable coarse-grained parallelization framework; as has been demonstrated by UG.
Some strategies for reducing overheads include restricting the number of workers simultaneously
engaging in communication. We explore the integration of PIPS-SBB with UG in Section 3.

On the other side of the spectrum, fine-grained parallelizations have a MIP tree node as their
smallest unit of work, which can be transferred among workers. This allows the most promising

7



parts of the tree to be partitioned and processed in parallel, thus ensuring an e↵ective use of the
computing resources. Fine-grained control of the work performed is an adaptive approach where
the amount of redundant work can be minimized e↵ectively. At the same time, a large degree of
communication is also required, which may cause an excessive overhead. By establishing complex
protocols so that communication between processors is structured hierarchically, it is possible to
develop scalable fine-grained parallelizations, as demonstrated by PEBBL. In PIPS-PSBB, we
take a slightly di↵erent approach, overcoming many of these communication challenges using a
simpler, light-weight framework using MPI collectives. We note that MPI collectives can also
be implemented e�cienclty using hierarchical tree-based algorithms [23], enabling us to reap
some of the benefits of these schemes with less implementation complexity than PEBBL. As in
PEBBL, PIPS-PSBB is a decentralized framework based on asynchronous MPI communications.

2.1 The philosophy behind fine-grained node rebalancing

B&B can be regarded as a graph algorithm, the objective of which is to traverse the di↵erent
subproblems until the optimal solution is found and proven. Borrowing from graph algorithms,
we define the frontier as the collection of open subproblems at a given time. We also define
the active nodes as the set of subproblems currently being explored in parallel. To be able to
measure the e↵ectiveness of any parallel B&B framework, we use the notion of redundant work
(as described in [10, 18]) to refer to the collection of subproblems that would be fathomed if the
optimal solution was known.

One way to reduce the amount of redundant work is to have extremely powerful heuristics. By
finding good feasible solutions very early in the search, B&B fathoms as many nodes as possible,
thus increasing parallel e�ciency. In addition, one can try to ensure that all optimization workers
focus on the most promising nodes. In the context of parallel B&B tree search, load balancing is
done to ensure that all processors have access to a fraction of the most promising nodes, rather
than an equal number of nodes. The quality of a node is determined by the criterion used to
order it within the priority work queue. Typically the lower bound of its parent is used, or some
form of node estimation as the ones described in [24, 12].

With the objective of minimizing load imbalance in PIPS-PSBB, we define the smallest
transferrable unit of work to be one B&B node. As the optimization progresses and the work
load is continually rebalanced, every processor gradually collects a set of nodes from di↵erent
subtrees in its work queue. This feature enables great flexibility in the parallel search strategy.
An example depicting the fine-grained distribution of work is shown in Figure 3. For instance,
nodes 8-13 belong to the same subree, but are distributed among all the available optimization
workers.

The objective of our new parallel B&B implementation is to increase parallel e�ciency by
minimizing the number of redundant nodes explored. We actively target this goal by ensuring
the set of active nodes being explored are always the most promising ones. We present an
overview of our fine-grained implementation in Algorithm 2. One of its key components is the
work redistribution mechanism, described between lines 9 to 15. The approach is described in
greater detail in Section 2.2.

PIPS-PSBB uses a lightweight mechanism for redistributing the most promising nodes among
all the optimization workers without the need for a centralized load coordinator. Rather, this
alternative scheme seeks to reduce the communication bottlenecks that would be caused by the
existence of one. Instead of point-to-point communications, parallel processors exchange sub-
problems via all-to-all collective MPI asynchronous communications, enabling the framework to
rebalance the computational load using a single communication step. Parallel processes proceed
to solve subproblems until the problem has been solved to optimality.

8



Worker 1                 Worker 2              Worker 3                Worker 4

14

15

16 17

20

18 19

1 2 3 4

7

5 6

8

9 10

11

12 13

Active nodes

Queue

3 15 14 11

1 2 4

7 9

5 6

20

1316

17

8 10 18 1912

Figure 3: PIPS-PSBB: Example depicting the fine-grained distribution of subtrees among the
parallel processes at a given point in the parallel exploration. The frontier and the active nodes
in the frontier are also depicted.

2.2 Decentralized node exchange

Load rebalancing among all workers is maintained via a sequence of MPI collective communica-
tions. It enables workers to rank the most promising subproblems and to redistribute them in a
round robin fashion to improve load balance. A flow chart of the rebalancing process is provided
in Figure 4.

The first step in the process consists of identifying the location of the most promising nodes.
Assuming the objective is to redistribute K of the most promising nodes for every one of the
N available optimization workers, the total nodes to exchange will be K · N . In the example
presented in Figure 4, we have K = N = 3, yielding 9 nodes to exchange. To achieve this
exchange, every worker first collects the lower bounds and estimates of its best K · N (= 9 in
this example) open subproblems, since it is possible that a single worker owns all the nodes to
exchange. It is also possible that some worker does not have K ·N nodes (as is the case for orkers
1 and 2), the algorithm proceeds with the maximum available. The node bounds/estimates are
exchanged through a decentralized all-to-all MPI Allgather communication, collecting a total of
K ·N ·N lower bounds and estimates. Once the K ·N most promising nodes have been identified
in the next step by each worker (by sorting), and their origin has been determined, the actual
node information is prepared to be redistributed in round-robin fashion. In this example, worker
1 is identified to receive nodes 1,4,7. Observe that it may already own some of these nodes, and
therefore these nodes do not need to be exchanged. Once it is determined which nodes need to
be redistributed, every worker proceeds to serialize the actual node information prior to their
exchange. In this example, none of the nodes from worker 2 were deemed promising nodes, but
it received three new promising subproblems.

Communication must be used strategically in order to avoid overheads. While node transfers

9



0 21 3 5 86 1615 4 97 10

1211 13 14 1817 19 Solver 0

0 21 3 5 86 1615 4 97 10

1211 13 14 1817 19 Solver 2

0 21 3 5 86 1615 4 97 10

1211 13 14 1817 19 Solver 0

0 21 3 5 86 1615 4 97 10

1211 13 14 1817 19 Solver 1

0 21 3 5 864 7

Worker 0

0 21 3

Worker 1 Worker 2

5 86

4 97 10 1211

14

13

Gather top K · N · N bounds
(K nodes · N workers · N workers)

Worker 0

0 63

Worker 1 Worker 2

2 85

11

10

12

Redistribution of
top K · N nodes

1 74 9

13 14

16 2120

15

22

1817 19

Sort, and select top K · N bounds

K=3, N=3

16 2120

15

22

1817 19

Worker 2

0 21 3 5 864 7
Worker 1

0 21 3 5 864 7
Worker 0

0 21 3 5 86 1615 4 97 10

1211 13 14 1817 19 Solver 0

0 21 3 5 86 1615 4 97 10

1211 13 14 1817 19
Worker 0

n Node estimation/bound n Node information

Figure 4: Steps of the node exchange: Node estimates (in circles) are gathered using all-to-
all communication and sorted at each worker. When each worker has determined (in parallel)
which nodes need to be exchanged, actual node information (in squares) is redistributed using
point-to-point communication.

10



Algorithm 2 Fine-grained parallel Branch & Bound algorithm of PIPS-PSBB
1: for All processors t 2 [N ] in Parallel do
2: UB

t =1
3: LB

t = �1
4: priority queue Q

t = ;
5: if t = 1 then

6: Add root r of original MIP problem to Q

1

7: end if

8: while termination conditions are not met do

9: mustCommunicate = TestConditionsForCommunication(t, Qt

, UB

t)
10: if mustCommunicate then

11: Determine the top K · N candidate subproblems from Q

t

, t 2 [N ] and redistribute them among all pro-
cessors in a round robin fashion.

12: if termination conditions are met then

13: return
14: end if

15: end if

16: remove subproblem p from top of Qt

17: Process p

18: UB

p

= best solution found within p

19: LB

p

= lower bound of p, 1 if infeasible, �1 if unbounded

20: UB

t = min{UB

t

, UB

p

}
21: if LB

p

< UB

t

then

22: Partition p into a set {s0, . . . , sk} of subproblems, each with a lower bound defined to be LB

p

23: Add {s0, · · · , sk} to Q

t

24: end if

25: . If LB

p

> UB

t, fathom problem p by bound dominance

26: LB

t = minimum lower bound among all open subproblems in Q

t

27: end while

28: end for

29: if LB < UB then

30: return infeasible
31: else

32: return optimal solution
33: end if

are carried out synchronously, exchanges of worker statuses such as upper/lower bounds, tree
sizes, times, and solutions are performed asynchronously. Nodes are transferred synchronously
only after all workers signal that communication is needed. When communicating over a large
number of processes, MPI collective communication primitives have been shown to significantly
outperform their point-to-point equivalents[23], provided a tuned MPI implementation is used.

We provide details regarding the asynchronous detection of load imbalance in Algorithm 3.
The algorithm establishes a threshold � that determines the number of B&B iterations between
asynchronous communication calls. This parameter is adjusted throughout the parallel B&B tree
search to adapt load rebalancing as needed. The parameter is modified based on the di↵erence
between the minimum and maximum optimality gap (gap between lower and upper bounds)
among the workers. A di↵erence in gap greater than a provided threshold � indicates load
imbalance, and therefore the parameter � is decreased in order to rebalance more aggressively
in the future. During ramp-up and ramp-down, frequent rebalancing is expected. Work queues
are also rebalanced whenever any worker has no active nodes in its priority queue. Otherwise, if
the number of iterations since the last communication is greater than �, asynchronous all-to-all
communication is performed.

2.3 Processor distribution

Every software component and algorithm in PIPS-PSBB is designed to comply with the dis-
tributed data representation imposed by PIPS-SBB. Thus, every MPI processor is responsible
for performing all operations on the data it owns. With the addition of B&B parallelism to the
framework, processes are arranged in a matrix of MPI communicators, as depicted in Figure 5.

11



Algorithm 3 Asynchronous communication mechanism in PIPS-PSBB

1: procedure TestConditionsForCommunication(t, Qt

, UB

t)
2: if asynchronous communication pending then

3: Test communication flags
4: if communication complete then

5: Update best solutions, UB

t = min1iN

{UB

i}
6: Update global lower bound, and check termination conditions
7: Gap

min

= smallest optimality gap among workers
8: Gap

max

= largest optimality gap among workers
9: if |Gap

max

�Gap

min

| � � then

10: Decrease number of iterations threshold � before next communication
11: Return true
12: else

13: increase number of iterations threshold � before next communication
14: end if

15: end if

16: Return false
17: end if

18: if number of iterations since last communication is greater than � or Q

t = ; then

19: initiate asynchronous exchange of current best lower bound, upper bound, tree size, solution time, and best
solution

20: end if

21: Return false
22: end procedure

MPI processes belonging to a given PIPS-S solver communicator operate as a single worker,
conform to the data distribution, and exchange information in order to be able to solve LP re-
laxations in parallel. In turn, all MPI processes belonging to a B&B communicator own the same
data of the problem, and communicate to exchange nodes during the rebalancing process. The
process/communicator arrangement is such that with a total of M ·N processes, each collective
communication only involves either M or N processes.

PIPS-SBB Solver m

PIPS-SBB Solver 1

PIPS-SBB Solver 0P0,0 P0,1 P0,2 P0,n…

P1,0 P1,1 P1,2 P1,n…

Pm,0 Pm,1 Pm,2 Pm,n…

… … … …

Branch
and

Bound
Comm 0

Branch
and

Bound
Comm 1

Branch
and

Bound
Comm 2

Branch
and

Bound
Comm n

Figure 5: Processor distribution used in PIPS-PSBB: Each row corresponds to the communicator
of a single PIPS-SBB solver. Each column corresponds to the communicator used by processes
from di↵erent PIPS-SBB solvers that own the same data.

12



3 Parallelizing PIPS-SBB with UG

The main concept of UG is to exploit the performance of a powerful state-of-the-art “base solver”
by coordinating multiple instances in parallel. The UG framework is depicted in Figure 6. Using
the established notation, ug[PIPS-SBB, MPI] is the product of parallelizing the base solver
PIPS-SBB using MPI under the framework of UG. UG carefully abstracts all functions related
to managing parallel B&B search from the actual processing of the B&B tree itself. It supports
many common features needed in parallel B&B, such as multiple communication protocols, ramp-
up, dynamic load balancing, check-pointing, and restarting mechanisms.

UG framework

Loads are coordinated by a special process or thread Base Solver
I/O, presolve

Base solver

Using API to control
solving algorithms

Using MPI (or pthreads)
for communications

Base solver

Using API to control
solving algorithms

Using MPI (or pthreads)
for communications

Base solver

Using API to control
solving algorithms

Using MPI (or pthreads)
for communications

… …

Figure 6: Design of UG and ug[PIPS-SBB, MPI]

This framework has been instrumental in solving to optimality several open instances of the
MIPLIB2003 and MIPLIB2010 libraries [21]. Its coordination paradigm has also been used in
the distributed-memory implementation of the CPLEX solver. The design of UG is such that its
integration with PIPS-SBB is straightforward, only requiring the implementation of the interface
between both software components.

3.1 Processor distribution within UG

The ug[PIPS-SBB,MPI] design requires an additional MPI processor to act as coordinator and
some additional design compromises. The supervisor-worker paradigm of UG designates a single
processor within each PIPS-S communicator to exchange solver information and subproblems.
Therefore, only a single communicator is needed in order to enable parallelism at the branch-
and-bound level, as depicted in Figure 7. The main downside to this approach is the need to
break the data distribution policy imposed by PIPS-SBB when communication takes place. This
design limitation limits the scalability of the parallel implementation to large data sizes.

3.2 Supervised workload coordination mechanism

UG follows a supervisor-worker paradigm, in which a supervisor, the LoadCoordinator, moni-
tors and coordinates the workload among multiple optimization workers. The LoadCoordinator
coordinates the workload and does not store data associated with the search tree. Load balanc-
ing is accomplished mainly by toggling the collection mode flag in the UG solvers. Turning on

13



Algorithm 4 UG LoadCoordinator (UG workers 1 to N with the PIPS-SBB are spawned)

1: collectMode  False

2: x

⇤  NULL
3: I  N \ {1}
4: A  {1}
5: Q  ;
6: R  {(1, 0)} . Subproblems currently being processed, 0 is the index of the root problem
7: Send the root problem to UG workers 1 (see Algorithm 5)
8: while Q 6= ; and R 6= ; do

9: (i, tag)  Wait for message . Returns UG workers identifier and message tag
10: if tag = solutionFound then

11: Receive solution x̂ from UG worker i

12: if x

⇤ = NULL or c

>
x̂ < c

>
x

⇤
then

13: x

⇤  x̂

14: end if

15: else if tag = subproblem then

16: Receive a subproblem indexed by k from UG worker i

17: Q Q [ {k}
18: else if tag = terminated then

19: R R \ {(i, j)} . j is the index of the terminated subproblem
20: A A \ {i}, I  I [ {i}
21: else if tag = status then

22: if collectMode = True then

23: if there are enough heavy subproblems in Q then

24: . heavy subproblem is a subproblem which is expected to generate a large subtree
25: Send message with tag = stopCollecting to UG workers in collecting mode. (see Algorithm 5)
26: collectMode  False

27: end if

28: else

29: . collectMode = False

30: if there are not enough heavy subproblems in Q then

31: Select UG workers which have heavy subproblems
32: Send message with tag = startCollecting to the selected UG workers (see Algorithm 5)
33: collectMode  True

34: end if

35: end if

36: end if

37: while I 6= ; do

38: i 2 I, I  I \ {i}, A A [ {i}
39: subproblem j 2 Q, Q Q \ {j}, R R [ {(i, j)}
40: Send subproblem j and x

⇤ to UG worker i (see Algorithm 5)
41: end while

42: end while

43: 8i 2 S : Send message with tag = termination to UG worker i (see Algorithm 5)
44: Output x

⇤

Algorithm 5 UG worker i with the PIPS-SBB (i = 1, . . . , N)

1: collectMode  False

2: terminate  False

3: while terminate = False do

4: (i, tag)  Wait for message from LoadCoordinator (from Algorithm 4) . Returns LoadCoodinator identifier 0
and message tag

5: if tag = subproblem then

6: Receive subproblem and solution from LoadCoordinator (from Algorithm 4)
7: Solve the subproblem using PIPS-SBB, periodically communicating with LoadCoordinator (from Algorithm 4)

as follows
8: - Send message with tag solutionFound any time a new solution is discovered.
9: - Periodically send message with tag status to report current lower bound for this subproblem.
10: - When messages with tag startCollecting or stopCollecting are received, toggle collectMode.
11: - When collectMode = True,
12: periodically send message with tag subproblem containing best candidate subproblem.
13: Send a message with tag = terminated

14: else if tag = termination then

15: terminate  True

16: end if

17: end while

14



PIPS-SBB Solver m

PIPS-SBB Solver 1

PIPS-SBB Solver 0P0,0 P0,1 P0,2 P0,n…

P1,0 P1,1 P1,2 P1,n…

Pm,0 Pm,1 Pm,2 Pm,n…

… … … …

UG Coordinator 
Communicator

C

Figure 7: Processor distribution used in ug[PIPS-SBB,MPI]

collecting mode sends additional “high quality” subproblems to other UG solvers via the Load-
Coordinator. Algorithms 4 and 5 show a simplified coordination mechanism used in UG. The
LoadCoordinator can tune the frequency of the status updates produced by the optimization
workers to avoid communication bottlenecks in large-scale parallel optimizations. In addition,
the number of workers simultaneously participating in the collection mode can be restricted and
selected dynamically.

Naturally, there are tradeo↵s among the frequency of communication, the number of UG
workers participating in collection mode, and the degree to which the parallel search order
replicates the sequential one. As the number of processes increases, these tradeo↵s must be
navigated carefully.

An exchanged subproblem that contains additional bound changes of variables and warmstart
information di↵erent from the original problem must be solved from scratch on the receiver side.
This is a price to pay for externalization. However, there is a potential benefit from this practice,
as better performance can be obtained by applying additional presolving, cutting planes and
heuristics in the subproblem. In the case of ug[PIPS-SBB,MPI], the impact of externalization is
minimal because the information exchange level is the same as the one produced in PIPS-PSBB.

4 Experimental Results

We test the performance of our parallel implementations on the Stochastic Server Location
Problem (SSLP) [17] instances from the SIPLIB library [4]. The SSLP instances model server
location problems with pure binary variables in the first-stage and mixed-binary variables in the
second-stage. The problems are encoded as sslp m n s, where m is the number of potential
server locations, n is the number of potential clients, and s is the number of scenarios. All
computations were performed on the cab Cluster at Lawrence Livermore National Laboratory,
which consists of 1,296 computing nodes. Each computing node features two Intel Xeon E5-
2670 8-core processors and 32 GB of RAM. In all experiments, bindings of MPI processes were
configured to prevent over-subscription. We evaluate the performance of our frameworks from
the perspective of parallel scaling, as well as the overall performance when compared against
CPLEX 12.6.2 on a distributed-memory parallel environment.

We evaluate the scaling performance of our methods using four metrics: time to optimality,
tree size, communication overhead, and node ine�cency. We define communication overhead
as the fraction of the total time spent by a process performing communication, being idle due

15



to parallel synchronization, or waiting to receive work from the central coordinator. In other
words, it is the fraction of time a process spends not performing computation. Recall that
for minimization problems, a redundant node can be characterized as a subproblem with an
LP relaxation value greater than the optimal solution. If the optimal solution is known at the
beginning of the B&B tree search, all redundant nodes would be fathomed immediately, and
therefore never processed. Hence, the number of redundant nodes processed is a measure of the
extra work performed by the solver in order to prove optimality. We define node ine�ciency
as the fraction of the total number of nodes processed that are redundant nodes. In a serial
B&B implementation, node ine�ciency is purely a measure of how quickly the optimal solution
is found. In parallel B&B implementations, there will be additional redundant work because
some processes may not be working on the most promising nodes. Therefore, node ine�ciency is
a good surrogate for how well the parallel B&B framework ensures that the processors are doing
useful work.

4.1 Scaling performance: B&B parallelization

We first present results that demonstrate the scaling performance of both parallel implementa-
tions. For these results, we use sslp 15 45 5, a problem instance with 5 scenarios, 3390 binary
variables, and 301 constraints. Because of the relatively small number of scenarios, the LP solver
PIPS-S is unable to scale beyond a handful of cores. Therefore, The focus of these experiments
is to understand the benefits from B&B parallelization, the trade-o↵s involved, and the impact
of certain algorithmic parameters.

Figure 8 shows the scaling performance of PIPS-PSBB (black) and ug[PIPS-SBB,MPI] (gray).
For both frameworks, we use as many solvers as the number of available MPI processes. We
see that PIPS-PSBB is able to scale up to 200 processes with a speedup of 66x with respect
to the baseline serial execution (2920s). This represents a parallel e�ciency of 33%. Further
progress (increasing the number of processes to 400) is hampered by the overhead caused by
the communication required to synchronize the solvers. The total number of nodes explored
remains fairly constant, under 400000 nodes. The proportion of redundant nodes is below 15%
for configurations under 50 processes, but increases as the number of solvers is increased further.
Later, in Section 4.2, we will see that decreasing the number of solvers (by giving more processes
to each PIPS-S solver) can reduce significantly the communication overhead as well as the node
ine�ciency. We next look at the scaling performance of ug[PIPS-SBB,MPI], presented in gray
in Figure 8. This parallel solver is able to scale up to 200 processes, with a speedup of 33x
with respect to the baseline serial execution (4491s). This represents a parallel e�ciency of
16.5%. Compared to PIPS-PSBB, ug[PIPS-SBB,MPI] shows slightly worse performance. This
performance decrease is caused by a larger communication overhead and a larger node ine�ciency.

Figure 9 provides further information regarding the origin of the overhead for both frame-
works. For ug[PIPS-SBB,MPI], the overhead coming from the ramp down gains importance as
the number of processes increases. This overhead is due to the centralized nature of the load
coordinator, which fails to provide all available solvers with open subproblems to process. As a
result, most processes remain idle during ramp down. On the other hand, PIPS-PSBB has much
lower overhead in general. However, its overhead in the primal phase increases as the number
of processors increases, whereas ug[PIPS-SBB,MPI] has relatively stable overhead in this phase.
These experiments suggest that the two parallelization frameworks have di↵erent strengths, and
may perform di↵erently depending on problem instance.

Finally, we analyze the behavior of PIPS-PSBB in more detail. As described in Section 2.2,
the control of communication between solvers in PIPS-PSBB is dictated primarily by the com-
munication frequency parameter �. In the experiments presented in Figure 8, the parameter �

16



0

10

20

30

40

50

60

70
S

p
ee

d
u
p

:
T

im
e

to
o
p
ti

m
al

it
y

1 2 10 50 100 200 400

Number of Processors

100000

200000

300000

400000

500000

600000

700000

T
o
ta

l
tr

e
e

s
iz

e

1 2 10 50 100 200 400

Number of Processors

0

10

20

30

40

50

60

70

C
o
m

m
u
n
ic

at
io

n
o
v
er

h
ea

d
(%

)

1 2 10 50 100 200 400

Number of Processors

0

10

20

30

40

50

60

70

N
o
d
e

in
ef

fi
ci

en
cy

(%
)

1 2 10 50 100 200 400

Number of Processors

100000

200000

300000

400000

500000

600000

700000

T
o
ta

l
tr

ee
si

ze

1 2 10 50 100 200 400

Number of Processors

Total tree size

PIPS-PSBB ug[PIPS-SBB,MPI]

Figure 8: Scaling performance of PIPS-PSBB and ug[PIPS-SBB,MPI] when solving sslp 15 45 5:
Speedup (time to optimality), branch and bound nodes processed, parallel communication over-
head, and proportion of redundant nodes

is set to fluctuate within a minimum of 50 iterations and a maximum of 1000. In Figure 10, we
study the e↵ects on performance when the communication frequency is altered. When solvers are
forced to communicate more frequently, PIPS-PSBB su↵ers from an increased communication
overhead and a corresponding decrease in performance, especially when the number of processes
is increased to 400. The positive side-e↵ect from more frequent communication is a compar-
atively smaller tree size. When synchronization is less frequent, we see the opposite e↵ect: a
decrease in overhead but a significantly large number of nodes processed.

4.2 Scaling performance: Multiplicative e↵ects of two levels of paral-
lelism

Parallel scaling results on small problems such as sslp 15 45 5 provide an interesting picture
for understanding the behavior and the interactions between the di↵erent solvers in the B&B
parallelization frameworks. From a practical standpoint, it is more valuable to test the e↵ects of
parallelism when optimizing larger problems, especially those with a larger number of scenarios,
because the UG framework was designed with large-scale parallel optimization in mind [21].

17



0

10

20

30

40

50

60

70

C
o

m
m

u
n
ic

at
io

n
o
v
er

h
ea

d
(%

)

1 2 10 50 100 200 400

Number of Processors

(a) Ramp up phase

0

10

20

30

40

50

60

70

C
o

m
m

u
n
ic

at
io

n
o
v
er

h
ea

d
(%

)

1 2 10 50 100 200 400

Number of Processors

(b) Primal phase

0

10

20

30

40

50

60

70

C
o

m
m

u
n
ic

at
io

n
o
v
er

h
ea

d
(%

)

1 2 10 50 100 200 400

Number of Processors

(c) Ramp down phase

100000

200000

300000

400000

500000

600000

700000

T
o
ta

l
tr

ee
si

ze

1 2 10 50 100 200 400

Number of Processors

Total tree size

PIPS-PSBB ug[PIPS-SBB,MPI]

Figure 9: Communication overhead for PIPS-PSBB and ug[PIPS-SBB,MPI] when solving
sslp 15 45 5 broken down by stage in the optimization process

0

10

20

30

40

50

60

70

S
p
ee

d
u

p
:

T
im

e
to

o
p

ti
m

al
it

y

1 2 10 50 100 200 400

Number of Processors

150000

200000

250000

300000

350000

400000

450000

500000

T
o
ta

l
tr

e
e

s
iz

e

1 2 10 50 100 200 400

Number of Processors

0

10

20

30

40

50

60

70

80

90

C
o

m
m

u
n
ic

at
io

n
o
v
er

h
ea

d
(%

)
1 2 10 50 100 200 400

Number of Processors

150000

200000

250000

300000

350000

400000

450000

500000

T
o
ta

l
tr

ee
si

ze

1 2 10 50 100 200 400

Number of Processors

Total tree size

Tight Communication (10-500) Standard Communication (50-1000) Loose Communication (100-50000)

Figure 10: Performance of PIPS-PSBB for di↵erent communication frequencies �. (x�y) denotes
the minimum (x) and the maximum (y) number of solver iterations before communication is
attempted.

The following set of results describe the performance of PIPS-PSBB and ug[PIPS-SBB,MPI]
when optimizing sslp 10 50 500, a problem with 500 scenarios, 250010 variables, and 504510
constraints. We particularly take a look at the combined e↵ect of the two levels of paralellism
by splitting a budget of 500 parallel cores and testing the solvers’ behavior under di↵erent
configurations.

In Figure 11, we first analyze the performance of the LP solver in solving the root node of
the B&B tree. When a single core per solver is used (last column), the performance of the LP
solver is significantly inferior to other configurations. However, its speed improves when more
processors are used (moving to the left), achieving a speedup of 6x when using 10 cores per solver.
As the number of processors increase, the returns for using more cores per solver diminishes. The
trend is inverted after the mark of 20 cores per PIPS-S solver because the time needed to solve
the LP relaxation grows and the e�ciency of PIPS-S drops o↵ quickly. This dropo↵ in PIPS-S
e�ciency suggests that the total available parallelism should be divided between the two levels
of parallelism. In this case, the best configuration is to distribute the 500 available processors
among 20-25 PIPS-SBB solvers, with each solver getting 20-25 processors. This timing result
regarding multilevel parallelism is an important point to make, and further confirmed by the

18



0

100

200

300

400

500

600

R
o

o
t

n
o
d
e

L
P

R
el

ax
at

io
n

T
im

e
(s

)

1[500]
5[100]

10[50]
20[25]

25[20]
50[10]

100[5]
500[1]

Number of solvers[Processors per PIPS-S solver]

0

5

10

15

20

25

C
o
m

m
u
n
ic

at
io

n
o
v
er

h
ea

d
(%

)

1[500]
5[100]

10[50]
20[25]

25[20]
50[10]

100[5]
500[1]

Number of solvers[Processors per PIPS-S solver]

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

T
o
ta

l
tr

ee
si

ze

1[500]
5[100]

10[50]
20[25]

25[20]
50[10]

100[5]
500[1]

Number of solvers[Processors per PIPS-S solver]

0

2

4

6

8

10

12

14

16

18

R
am

p
u

p
co

m
m

u
n
ic

at
io

n
o
v
er

h
ea

d
(%

)

1[500]
5[100]

10[50]
20[25]

25[20]
50[10]

100[5]
500[1]

Number of solvers[Processors per PIPS-S solver]

Figure 11: Scaling performance of PIPS-PSBB when solving sslp 10 50 500: Time to solve
the LP relaxation, communication overhead, number of nodes processed, and communication
overhead at ramp-up.

remaining charts in Figure 11: When large process counts are available, performance can be
significantly improved by distributing them among di↵erent levels of parallelism.

The remaining charts display the performance of PIPS-PSBB in terms of total tree size
and communication overhead. When solving larger problems, PIPS-PSBB is able to keep a low
communication overhead until 100 solvers are used. The overhead spikes significantly when using
500 solvers. This spike in overhead is due to the slow performance of PIPS-S when solving the
initial LP relaxations, and the problems PIPS-PSBB faces when generating work for all solvers
quickly at the beginning of the optimization. As a result, most solvers remain idle at ramp-
up, causing the significant overhead. This finding can be confirmed in the last plot, where the
communication overhead at ramp up is plotted for the di↵erent processor arrangements, and is
highly correlated with the overall communication overhead. In general, the node throughput
increases as more solvers are used, though its progress is hampered by the overhead created by
slow LP relaxations.

ug[PIPS-SBB,MPI] displays a similar performance behavior, as seen in Figure 12.

19



0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

T
o
ta

l
tr

ee
si

ze

1[500]
5[100]

10[50]
20[25]

25[20]
50[10]

100[5]
500[1]

Number of solvers[Processors per PIPS-S solver]

0

5

10

15

20

25

30

C
o
m

m
u
n
ic

at
io

n
o
v
er

h
ea

d
(%

)

1[500]
5[100]

10[50]
20[25]

25[20]
50[10]

100[5]
500[1]

Number of solvers[Processors per PIPS-S solver]

0

5

10

15

20

25

30

R
am

p
u

p
co

m
m

u
n
ic

at
io

n
o
v
er

h
ea

d
(%

)

1[500]
5[100]

10[50]
20[25]

25[20]
50[10]

100[5]
500[1]

Number of solvers[Processors per PIPS-S solver]

Figure 12: Scaling performance of ug[PIPS-SBB,MPI] when solving sslp 10 50 500: Time to
solve the LP relaxation, communication overhead, number of nodes processed, and communica-
tion overhead at ramp-up.

4.3 Overall performance and comparison to CPLEX

We illustrate the overall performance of PIPS-PSBB and ug[PIPS-SBB, MPI] by testing them
on all instances from the SSLP set. For these experiments, we present results for a representative
parallel processor configuration, where the number of cores used for each PIPS-S LP solver is
chosen as a function of the number of scenarios. In turn, a configuration of 200 solvers is used for
all but the trivial problems. We also add CPLEX 12.6.2 to the comparison, both in its shared-
memory and distributed-memory implementations using a comparable number of computing
cores.

Instances are solved to a relative gap of 10�4 (CPLEX default). Each experiment is given
a time limit of 1 hour (3600 seconds), and the performance results are reported as “(Time)”
in seconds needed to prove optimality. If an optimal solution is not provably obtained within
the time limit, then the performance results are reported in terms of the relative gap, which is
calculated based on the best found upper and lower bounds, z

UB

and z

LB

:

Gap =
z

UB

� z

LB

z

UB

(2)

The instances where CPLEX ran out of memory are denoted with (M) next to the GAP at
termination.

From Table 1, we see that PIPS-PSBB and ug[PIPS-SBB,MPI] perform comparably through
the entire problem set. The first set of rows correspond to the trivial sslp 5 ⇤ instances, which
all solvers are able solve to optimality, though CPLEX is significantly faster than all PIPS-SBB
variants. The next set consists of three easy sslp 15 ⇤ instances, which have a small numer of
scenarios. CPLEX is able to solve all instances in this case, while PIPS-SBB implementations
are able to solve only one of the three instances, and at a significantly slower pace. In the
case of sslp 10 ⇤ instances, the problem di�culty increases as the number of scenarios grows.
Distributed-memory CPLEX runs out of memory before solving the instances with 50, 100 and
500 scenarios to optimality. We also suspect the same would have happened for the larger
instances if the solver was allowed more time. The performance for sslp 10 ⇤ is similar in all
distributed-memory parallel algorithms, with PIPS-SBB implementations taking a significant
advantage for instances with more than 500 scenarios. Note that CPLEX has no knowledge that
it is solving an extensive formulation, which results in its poor performance when the number
of scenarios is large. It is also worth mentioning the poor performance of distributed-memory
CPLEX compared to its shared-memory counterpart, which is only able to provide a better
performance for the two largest problems in the set.

20



Table 1: Performance comparison for all SSLP instances

Problem Configuration PARBB ug[PIPS-SBB,MPI] CPLEX SM CPLEX DM
Instance Solvers PIPS-S Gap(%) Gap(%) Procs Gap(%) Procs Gap(%)

procs (time)(s) (time)(s) (time)(s) (time)(s)

sslp 5 25 50 2 2 (7.45s) (8.03s) 4 (0.27s) 4 (0.27s)
sslp 5 25 100 2 2 (22.37s) (17.7951s) 4 (0.64s) 4 (0.64s)

sslp 15 45 5 200 2 (107.11s) (163.53s) 16 (1.97s) 400 (6.26s)
sslp 15 45 10 200 2 0.09 0.16 16 (1.81s) 400 (15.94s)
sslp 15 45 15 200 2 0.25 0.30 16 (7.8s) 400 (15.75s)

sslp 10 50 50 200 10 0.13 0.21 16 (43.88s) 2000 0.15(M)
sslp 10 50 100 200 10 0.17 0.20 16 (221.69s) 2000 0.16(M)
sslp 10 50 500 200 10 0.24 0.24 16 4.91(M) 2000 1.25(M)
sslp 10 50 1000 200 10 0.24 0.24 16 9.21 2000 6.08
sslp 10 50 2000 200 10 0.26 0.26 16 19.93 2000 8.11

In Table 2, we show the performance improvements made from the version of PIPS-SBB
introduced in [16] to the current parallel implementations presented in this paper. Significant
performance improvements are made possible, not only with the introduction of parallel B&B,
but also with the addition of further specialized heuristics and branching methods.

Table 2: Version-to-version performance comparison of PIPS-SBB solvers

Problem PIPS-SBB presented in [16] Parallel versions in current paper
Instance Configuration PARBB ug[PIPS-SBB,MPI]

Procs Gap(time) Solvers PIPS-S procs Gap(time) Gap(time)

sslp 5 25 50 1 (12.34s) 2 2 (7.45s) (8.03s)
sslp 5 25 100 1 (41.63s) 2 2 (22.37s) (17.7951s)

sslp 15 45 5 2 1.36 200 2 (107.11s) (163.53s)
sslp 15 45 10 2 7.93 200 2 0.09 0.16
sslp 15 45 15 2 5.25 200 2 0.25 0.30

sslp 10 50 50 5 1.48 200 10 0.13 0.21
sslp 10 50 100 10 1.74 200 10 0.17 0.20
sslp 10 50 500 50 1.57 200 10 0.24 0.24
sslp 10 50 1000 100 1.60 200 10 0.24 0.24
sslp 10 50 2000 100 24.00 200 10 0.26 0.26

5 Conclusions

In this paper, we present PIPS-PSBB and ug[PIPS-SBB,MPI]: two implementations of parallel
distributed-memory Branch & Bound. The first of the proposed methods, PIPS-PSBB, is a new
fine-grained algorithm for parallelizing the tree search. The coordination and load-balancing of
the di↵erent parallel solvers is done in a decentralized fashion, and designed to ensure that all
available cores are processing the most promising parts of the B&B tree. The second method is
ug[PIPS-SBB,MPI]: a parallel implementation using UG, a generic framework for parallelizing
B&B tree search that is relatively coarse-grained in its approach. The UG framework has been
e↵ectively used to parallelize other MIP solvers such as Xpress and SCIP.

We implement both frameworks for parallelizing B&B tree search as extensions of PIPS-SBB,
a distributed memory solver for Stochastic MIPs (SMIPs). Therefore, both our implementations
leverage two levels of nested parallelism in order to improve parallel scalability. We study the
e↵ects of leveraging multiple levels of parallelism in improving scaling performance. We also
compare our algorithms against the distributed-memory B&B implementation of the state-of-
the-art commercial solver CPLEX. The latter proves to be the best performer for small problems.

21



However, the specialized nature of the methods present in PIPS-SBB-based solvers enable them
to outperform CPLEX in large SMIP instances.

PIPS-SBB has seen a dramatic performance improvement since its inception. As new fea-
tures get added, it will become a more viable option when solving generic two-stage SMIPs. A
natural extension of this work is to improve the performance of the base solver. In particular,
further specialized methods to improve the convergence of bounds, such as specialized cuts and
preprocessing can be added. Another natural extension of this work is to incorporate three levels
of parallelism by hierarchically incorporating both frameworks of parallelism presented in this
paper. Since UG can already handle a distributed-memory base solver, it can be integrated with
the fine-grained parallel B&B implementation PIPS-PSBB, resulting in ug[PIPS-PSBB,MPI].
Adding a third level of parallelism would enable more opportunities for parallel speedup with
large process counts.

6 Acknowledgements

Some of this work was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. This work has
also been supported by the Research Campus Modal Mathematical Optimization and Data Anal-
ysis Laboratories funded by the Federal Ministry of Education and Research (BMBF Grant
05M14ZAM), and partially supported by the BMWi project Realisierung von Beschleunigungsstrate-
gien der anwendungsorientierten Mathematik und Informatik für optimierende Energiesystem-
modelle - BEAM-ME (fund number 03ET4023DE).

References

[1] UG: Ubiquity Generator framework. http://ug.zib.de/.

[2] T. Achterberg, R. E. Bixby, Z. Gu, E. Rothberg, and D. Weninger. Presolve reductions
in mixed integer programming. Technical report, Technical Report 16-44, ZIB, Takustr. 7,
14195 Berlin, 2016.

[3] T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Operations Research
Letters, 33(1):42–54, 2005.

[4] S. Ahmed, R. Garcia, N. Kong, L. Ntaimo, G. Parija, F. Qiu, and S. Sen. SIPLIB: A
stochastic integer programming test problem library, 2013.

[5] T. Berthold. Primal heuristics for mixed integer programs. Master’s thesis, TU Berlin, 2006.

[6] J. Eckstein, W. E. Hart, and C. A. Phillips. PEBBL: an object-oriented framework for
scalable parallel branch-and-bound. Mathematical Programming Computation, 7(4):429–
469, 2015.

[7] J. Eckstein, C. A. Phillips, and W. E. Hart. PEBBL 1.0 User Guide. https://software.
sandia.gov/acro/releases/votd/acro/packages/pebbl/doc/uguide/user-guide.pdf,
2007.

[8] M. Fischetti and A. Lodi. Heuristics in mixed integer programming. Wiley Encyclopedia of
Operations Research and Management Science, 2011.

22



[9] G. Gamrath, T. Koch, A. Martin, M. Miltenberger, and D. Weninger. Progress in presolving
for mixed integer programming. Mathematical Programming Computation, 7(4):367–398,
December 2015.

[10] T. Koch, T. Ralphs, and Y. Shinano. Could we use a million cores to solve an integer
program? Mathematical Methods of Operations Research, 76(1):67–93, 2012.

[11] A.H. Land and A.G. Doig. An automatic method of solving discrete programming problems.
Econometrica: Journal of the Econometric Society, pages 497–520, 1960.

[12] J. T. Linderoth and M. W. P. Savelsbergh. A computational study of search strategies for
mixed integer programming. INFORMS Journal on Computing, 11(2):173–187, 1999.

[13] M. Lubin, J. Hall, C. Petra, and M. Anitescu. Parallel distributed-memory simplex for large-
scale stochastic LP problems. Computational Optimization and Applications, 55(3):571–596,
2013.

[14] S. J. Maher, T. Fischer, T. Galley, G. Gamrath, A. Gleixner, Robert L. Gottwald, G. Hen-
del, T. Koch, M. E. Lübbecke, M. Miltenberger, B. Müller, M. E. Pfetsch, C. Puchert,
D. Rehfeldt, S. Schenker, R. Schwarz, F. Serrano, Y. Shinano, D. Weninger, J. T. Witt,
and J. Witzig. The SCIP optimization suite 4.0. Technical Report ZIB-Report 17-12, Zuse
Institute Berlin, March 2017.

[15] H. Marchand, A. Martin, R. Weismantel, and L. Wolsey. Cutting planes in integer and
mixed integer programming. Discrete Applied Mathematics, 123(1–3):397 – 446, 2002.

[16] L. M. Mungúıa, G. Oxberry, and D. Rajan. PIPS-SBB: A parallel distributed-memory
branch-and-bound algorithm for stochastic mixed-integer programs. In 2016 IEEE In-
ternational Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages
730–739, May 2016.

[17] L. Ntaimo and S. Sen. The million-variable “march” for stochastic combinatorial optimiza-
tion. Journal of Global Optimization, 32(3):385–400, 2005.

[18] T. Ralphs, Y. Shinano, T. Berthold, and T. Koch. Parallel solvers for mixed integer linear
programming. Technical Report 16-74, ZIB, Takustr.7, 14195 Berlin, 2016.

[19] M. W. P. Savelsbergh. Preprocessing and probing techniques for mixed integer programming
problems. ORSA Journal on Computing, 6(4):445–454, 1994.

[20] Y. Shinano, T. Achterberg, T. Berthold, S. Heinz, and T. Koch. ParaSCIP: A parallel
extension of SCIP. In Competence in High Performance Computing 2010, pages 135–148.
Springer, 2012.

[21] Y. Shinano, T. Achterberg, T. Berthold, S. Heinz, T. Koch, and M. Winkler. Solving open
MIP instances with ParaSCIP on supercomputers using up to 80,000 cores. In 2016 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pages 770–779, Los
Alamitos, CA, USA, 2016. IEEE Computer Society.

[22] Y. Shinano, S. Heinz, S. Vigerske, and M. Winkler. FiberSCIP – a shared memory paral-
lelization of SCIP. INFORMS Journal on Computing, 30(1):11–30, 2018.

[23] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of collective communication oper-
ations in MPICH. The International Journal of High Performance Computing Applications,
19(1):49–66, 2005.

23



[24] D. T. Wojtaszek and J. W. Chinneck. Faster MIP solutions via new node selection rules.
Computers & Operations Research, 37(9):1544–1556, 2010.

[25] Y. Xu. Scalable algorithms for parallel tree search. Phd thesis, Lehigh University, 2007.

[26] Y. Xu, T. K. Ralphs, L. Ladányi, and M. Saltzmann. ALPS version 1.5. https://github.
com/coin-or/CHiPPS-ALPS, 2016.

[27] Y. Xu, T. K. Ralphs, L. Ladányi, and M. Saltzmann. BiCePs version 0.94. https://

github.com/coin-or/CHiPPS-BiCePS, 2017.

[28] Y. Xu, T. K. Ralphs, L. Ladányi, and M. Saltzmann. BLIS version 0.94. https://github.
com/coin-or/CHiPPS-BLIS, 2017.

[29] Y. Xu, T. K. Ralphs, L. Ladányi, and M. J. Saltzmann. ALPS: a framework for implementing
parallel search algorithms. The Proceedings of the Ninth INFORMS Computing Society
Conference, pages 319–334, 2005.

[30] Y. Xu, T. K. Ralphs, L. Ladányi, and M. J. Saltzmann. Computational expereicne with a
software framework for parallel integer programming. The INFORMS Journal on Comput-
ing, 21:383–397, 2009.

[31] Q. P. Zheng, J. Wang, and A. L. Liu. Stochastic optimization for unit commitment - a
review. IEEE Transactions on Power Systems, 30(4):1913–1924, July 2015.

24


