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Abstract

This article introduces new reduction techniques for the Steiner tree problem in graphs
(SPG) and one of its most popular relatives, the maximum-weight connected subgraph prob-
lem. Several of the techniques generalize previous results from the literature. In particular,
we introduce a generalization of the Steiner bottleneck distance—the arguably most impor-
tant reduction concept for SPG. While several methods require to solve NP-hard problems,
relaxations allow for a strong practical efficiency of these techniques. Initial computational
tests with the exact Steiner tree solver SCIP-Jack show a significant improvement of the
preprocessing strength.

1 Introduction

The Steiner tree problem in graphs (SPG) is one of the most studied problems in combinato-
rial optimization. Furthermore, the SPG is among the classic NP-hard problems [8]. Also,
many relatives of the SPG have been extensively discussed in the literature, often propelled
by practical applications. One of the most popular of these is the maximum-weight connected
subgraph problem (MWCSP). For both SPG and MWCSP sophisticated exact solvers exist, see
e.g. [5, 11, 14]. An essential component of all these approaches is preprocessing. This article
introduces a series of new preprocessing technique for SPG and MWCSP (also commonly called
reduction techniques) that are provably stronger than previous ones.

Preliminary computational tests with the exact Steiner tree solver SCIP-Jack show a signif-
icant improvement of the reduction strength. If integrated into the branch-and-cut algorithm of
SCIP-Jack, the run-time for exact solution can also be notably improved. E.g., many non-trivial
SPG instances from the literature can be solved more than twice as fast.
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1.1 Notation

For both SPG and MWCSP we denote the underlying graph by G := (V,E), with vertices V
and (undirected) edges E. We set n := |V | and m := |E|. While for the SPG T denotes the
set of terminals, for the MWCSP we define T := {v ∈ V | p(v) > 0}. Furthermore, we use the
notation T = {t1, ..., ts} with s := |T |. For any subgraph S ⊆ G (e.g., a Steiner tree) we denote
its vertices by V (S) and its edges by E(S) (note the difference to the notation E[U ] defined
in (1) for a set U ⊆ V of vertices). For a walk W we likewise denote the set of vertices and the
set of edges it contains by V (W ) and E(W ). For any U ⊆ V we define

E[U ] :=
{
{v, w} ∈ E | v, w ∈ U

}
. (1)

For U ⊆ V define the induced edge cut as δ(U) := {{u, v} ∈ E | u ∈ U, v ∈ V \ U}. We
also write δG to distinguish the underlying graph. For a single vertex v we use the short-hand
notation δ(v) := δ({v}). We define the neighborhood of any v ∈ V as

N(v) :=
{
w ∈ V | {v, w} ∈ E

}
. (2)

Given edge costs c : E 7→ Q≥0, the triplet (V,E, c) is referred to as network. By d(v, w)
we denote the cost of a shortest path (with respect to c) between vertices v, w ∈ V . For any
(distance) function d̃ :

(
V
2

)
7→ Q≥0, and any U ⊆ V we define the d̃-distance graph on U as the

network

DG(U, d̃) := (U,

(
U

2

)
, c̃), (3)

with c̃({v, w}) := d̃(v, w) for all v, w ∈ U . If d̃ is the standard distance (i.e. d̃ = d), we write
DG(U) instead of DG(U, d). If a given d̃ :

(
V
2

)
7→ Q≥0 is symmetric, we occasionally write, with

a slight abuse of notation, d̃(e) instead of d̃(v, w) for an edge e = {v, w}.

2 Preprocessing for Steiner tree problems in graphs

Given an undirected, connected graph G = (V,E), costs (or weights) c : E → Q≥0 and a set
T ⊆ V of terminals, the Steiner tree problem in graphs (SPG) asks for a tree S ⊆ G such that

1. T ⊆ V (S) holds,

2. c(E(S)) is minimized.

A tree that satisfies condition 1 is called Steiner tree; a tree that additionally satisfies condition
2 is called minimum Steiner tree. The sum in 2 is called the weight or cost of the Steiner tree
S. The vertices in V \ T are referred to as Steiner nodes.

The SPG is a classic optimization problem, being the subject of hundreds of research articles,
and can also be found in real-world applications (although applications for variations of the
SPG are far more prevalent [5]). The by far strongest preprocessing techniques for the SPG are
described in [12, 13], which also form the basis of the until today strongest exact SPG solver.
This section generalizes some of these techniques and suggests new ones. In the following it will
be assumed that an SPG denoted by ISPG = (V,E, T, c) is given.

2.1 Bottleneck distance based techniques

In the context of Steiner tree problems, alternative-based reduction methods attempt to prove
that a specified part of the problem graph is not contained in at least one optimal solution [2].
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The usual procedure is to show that for each solution that contains this specified subgraph there
is another, alternative, solution of equal or better objective value that does not. This section
describes new alternative based reduction techniques. In particular, it introduces a generalization
of the most important distance concept for alternative-based reductions.

2.1.1 The bottleneck Steiner distance

Let P be a simple path with at least one edge. The bottleneck length [4] of P is

bl(P ) := max
e∈E(P )

c(e). (4)

Let v, w ∈ V . Let P(v, w) be the set of all simple paths between v and w. The bottleneck
distance [4] between v and w is defined as

b(v, w) := inf{bl(P ) | P ∈ P(v, w)}, (5)

with the common convention that inf ∅ =∞. Note that b(v, w) is equal to the bottleneck length
of the path between v and w on any minimum spanning tree of (G, c) [1].

Now consider the distance graph D := DG(T ∪ {v, w}). Let bD be the bottleneck distance in
D. Define the bottleneck Steiner distance or special distance [4] between v and w as

s(v, w) := bD(v, w). (6)

The bottleneck Steiner distance is arguably the most important reduction concept for SPG,
with various applications. The arguably best known one is the following criterion, which allows
for edge deletion [4].

Theorem 1. Let e = {v, w} ∈ E. If s(v, w) < c(e), then no minimum Steiner tree contains e.

Note that bottleneck Steiner distances can be computed in polynomial time, but in practice
(heuristic) approximations are used. See [12] for a state-of-the-art algorithm.

2.1.2 A stronger bottleneck concept

In the following we describe a generalization of the bottleneck Steiner distance. Initially, for
an edge e = {v, w} define the restricted bottleneck distance b(e) [12] as the bottleneck distance
between v and w on (V,E \ {e}, c).

The basis of the new bottleneck Steiner concept is formed by a node-weight function that we
introduce in the following. For any v ∈ V \ T and F ⊆ δ(v) define

p+(v, F ) = max
{

0, sup{b(e)− c(e) | e ∈ δ(v) ∩ F, e ∩ T 6= ∅}
}
. (7)

We call p+(v, F ) the F-implied profit of v. Note that p+(v, e) =∞ for an e ∈ δ(v) if and only if all
Steiner trees contain e. The following observation motivates the subsequent usage of the implied
profit. Assume that p+(v, {e}) > 0 for an edge e ∈ δ(v). If a Steiner tree S contains v, but not
e, then there is a Steiner tree S′ with e ∈ E(S′) such that c(E(S′)) + p+(v, {e}) ≤ c(E(S)).

Let v, w ∈ V . Consider a finite walk W = (v1, e1, v2, e2, ..., er, vr) with v1 = v and vr = w.
We say that W is a (v, w)-walk. For any k, l ∈ N with 1 ≤ k ≤ l ≤ r define the subwalk
W (k, l) := (vk, ek, vk+1, ek+1, ..., el, vl). W will be called Steiner walk if V (W ) ∩ T ⊆ {v, w} and
v, w are contained exactly once in W (the latter condition could be omitted, but has been added
for ease of presentation). The set of all Steiner walks from v to w will be denoted by WT (v, w).
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With a slight abuse of notation we define δW (u) := δ(u)∩E(W ) for any walk W and any u ∈ V .
Define the implied Steiner cost of a Steiner walk W ∈ WT (v, w) as

c+p (W ) :=
∑

e∈E(W )

c(e)−
∑

u∈V (W )\{v,w}

p+
(
u, δ(u) \ δW (u)

)
. (8)

Further, set
P+
W := {u ∈ V (W ) | p+

(
u, δ(u) \ δW (u)

)
> 0} ∪ {v, w}. (9)

Define the implied Steiner length of W as

l+p (W ) := max{c+p (W (vk, vl)) | 1 ≤ k ≤ l ≤ r, vk, vl ∈ P+
W }. (10)

Define the implied Steiner distance between v and w as

d+
p (v, w) := min{l+p (W ) |W ∈ WT (v, w)}. (11)

Note that d+
p (v, w) = d+

p (w, v). At last, consider the distance graph D+ := DG(T ∪ {v, w}, d+
p ).

Let bD+ be the bottleneck distance in D+. Define the implied bottleneck Steiner distance between
v and w as

sp(v, w) := bD+(v, w). (12)

Note that sp(v, w) ≤ s(v, w) and that the inequality can be strict. Indeed, s(v,w)
sp(v,w) can become

arbitrarily large. Thus, the following result is a stronger analogue to Theorem 1.

Theorem 2. Let e = {v, w} ∈ E. If sp(v, w) < c(e), then no minimum Steiner tree contains e.

Proof. Assume sp(v, w) < c(e) and let S be a Steiner tree with e ∈ E(S). We will show the
existence of a Steiner tree S′ with e /∈ E(S′) such that c(E(S′)) ≤ c(E(S)), which concludes the
proof. First, remove e from S to obtain a new subgraph S̃, which consists of exactly two connected
components. Assume that each connected component contains at least one terminal (otherwise
the proof is already finished). Consider a (v, w)-path P in D+ such that blD+(P ) = bD+(v, w).
Let {t, u} be an edge on P such that t and u are in different connected components of S̃ (where
t and u are considered in the original SPG). Let S̃t and S̃u be the connected components of S̃
such that t ∈ V (S̃t) and u ∈ V (S̃u). By the definition of the bottleneck length it holds that

d+
p (t, u) ≤ sp(v, w). (13)

Let W ∈ WT (t, u) such that
l+p (W ) = d+

p (t, u). (14)

Assume that W is given as W = (v1, e1, ..., er, vr). Define b := min{k ∈ {1, ..., r} | vk ∈
V (S̃u)} and a := max{k ∈ {1, ..., b} | vk ∈ V (S̃t)}. Further, define x := max{k ∈ {1, ..., a} | vk ∈
PW } and y := min{k ∈ {b, ..., r} | vk ∈ PW }. By definition, x ≤ a < b ≤ y and furthermore:∑

e∈E(W (a,b))

c(e)−
∑

v∈V (W (a,b))\{vx,vy}

p+
(
v, δ(v) \ δW (x,y)

)
≤ c+p (W (x, y)). (15)

Reconnect S̃t and S̃u by W (a, b), which yields a connected subgraph S′0 with T ⊆ V (S′0).
Assume that S′0 is a tree (otherwise remove any redundant edges).1 It holds that∑

e∈E(S′
0)

c(e) ≤
∑

e∈E(S)

c(e) +
∑

e∈E(W (a,b))

c(e)− c({v, w}). (16)

1Because we assume all edges to be of positive cost, S′
0 will in fact always be a tree.
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Let v+
1 , v

+
2 , ..., v

+
z be the vertices in PW (a,b) \ {va, vb}. Choose for each i = 1, ..., z an edge

e+
i ∈ δ(v

+
i ) \ δW (x,y)(v

+
i ) such that e+

i ∩ T 6= ∅ and

b(e+
i )− c(e+

i ) = p+(v, δ(v) \ δW (x,y)). (17)

Note that all e+
i are pairwise disjoint (just as the v+

i ).
We will construct Steiner trees S′i for i ∈ {1, ..., z} that satisfy

∑
e∈E(S′

i)

c(e) ≤
∑

e∈E(S′
0)

c(e)−
i∑

k=1

p+(v+
k , δ(v) \ δW (x,y)). (18)

and
z⋃

k=i+1

{e+
k } ∩ E(S′i) = ∅, (19)

and
V (S′i) = V (S′0). (20)

One readily verifies that S′0 satisfies (18)-(20). Let i ∈ {1, ..., z} and assume that (18)-(20)
hold for S′i−1. Thus, e+

i /∈ E(S′i−1). Let Pi be the (unique) path in S′i−1 between v+
i and the

terminal ti with {ti} = e+
i ∩ T . Choose any ẽi ∈ E(P ) with c(ẽi) = bl(Pi). Define the tree S′i

by V (S′i) := V (S′i−1) and E(S′i) :=
(
E(S′i−1) \ {ẽi}

)
∪ {e+

i }. We claim that S′i satisfies (18)-

(20). Equality (19) follows from the fact that all e+
i are disjoint. And (20) follows from the

construction of S′i. For (18), observe that by definition of the bottleneck distance it holds that
c(ẽi) ≥ b(e+

i ) and therefore
b(e+

i )− c(e+
i ) ≤ c(ẽi)− c(e+

i ). (21)

Thus, equation (17) implies that S′i satisfies (18).
Finally, set S′ := S′z. Because of (20) it holds that T ⊆ V (S′). Furthermore, one obtains:∑
e∈E(S′)

c(e)
(18)

≤
∑

e∈E(S′
0)

c(e)−
z∑

k=1

p+(v+
k , δ(v

+
k ) \ δW (x,y)) (22)

(16)

≤
∑

e∈E(S)

c(e) +
∑

e∈E(W (a,b))

c(e)− c({v, w})−
z∑

k=1

p+(v+
k , δ(v

+
k ) \ δW (x,y)) (23)

(15)

≤
∑

e∈E(S)

c(e)− c({v, w}) + c+p (W (x, y)) (24)

(14)

≤
∑

e∈E(S)

c(e)− c({v, w}) + l+p (W ) (25)

(13)

≤
∑

e∈E(S)

c(e)− c({v, w}) + sp(v, w) (26)

≤
∑

e∈E(S)

c(e), (27)

where the last inequality follows from the initial assumptions.

Furthermore, we define the restricted implied bottleneck Steiner distance sp(v, w) between
any v, w ∈ V as the implied bottleneck Steiner distance between v and w in the SPG (V,E \{
{v, w}

}
, c). One obtains the following corollary.
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Corollary 3. Let e = {v, w} ∈ E. If sp(v, w) ≤ c(e), then at least one minimum Steiner tree
does not contain e.

1

2

1

1

1.5 1

1

Figure 1: Segment of a Steiner tree instance. Terminals are drawn as squares. The dashed edge
can be deleted by employing Theorem 2.

Figure 1 shows a segment of an SPG instance for which Theorem 2 allows for the deletion
of an edge, but Theorem 1 does not. The implied bottleneck Steiner distance between the
endpoints of the dashed edge is 1—the edge can thus be deleted. In contrast, the (standard)
bottleneck Steiner distance between the endpoints is 1.5 (corresponding to the edge itself). In a
sense, the implied bottleneck Steiner distance can also be seen as a generalization of the walk-
based distance concept for the prize-collecting Steiner tree problem recently introduced by the
authors [16]. Thus, it does not come as a surprise that already computing the implied Steiner
distance is hard, as the following proposition shows.

Proposition 4. Computing the implied Steiner distance is NP-hard.

Nevertheless, one can readily devise heuristics that provide upper bounds on sp that are at
least as strong as those used for s, and that are empirically often stronger.

2.1.3 Replacement techniques

This section starts with a reduction criterion based on the standard bottleneck Steiner distance.
Besides being a new technique, this result also serves to highlight the complications that arise if
one attempts to formulate similar conditions based on the implied bottleneck Steiner distance.

Proposition 5. Let D := DG(T, d). Let Y be a minimum spanning tree in D. Write its
edges {eY1 , eY2 , ..., eY|T |−1} := E(Y ) in non-ascending order with respect to their weight in D. Let

v ∈ V \ T . If for all ∆ ⊆ δ(v) with |∆| ≥ 3 it holds that:

|∆|−1∑
i=1

d(eYi ) ≤
∑
e∈∆

c(e), (28)

then there is at least one minimum Steiner tree S such that |δS(v)| ≤ 2.

If the conditions (28) are satisfied for a vertex v ∈ V \ T one can pseudo-eliminate [3]
v, i.e., delete v and connect any two vertices u,w ∈ N(v) by a new edge {u,w} of weight
c({v, u}) + c({v, w}).

6



The SPG depicted in Figure 2 exemplifies why Proposition 5 cannot be formulated by using
the implied Steiner distance. The weight of the minimum spanning tree Y for DG(T, d) is 4, but
the weight of a minimum spanning tree with respect to the implied bottleneck Steiner distance
is 2. Similarly also the BDm reduction technique [3] cannot be directly formulated by using the
implied bottleneck distance. Still, it is possible to formulate a similar criterion that makes use
of the implied bottleneck distance. Unfortunately, both the result and the corresponding proof
are rather involved. Thus, we omit the details here. The important point is to make sure that
the selected Steiner walks do not overlap at vertices with a positive implied profit.

1

1

1

Figure 2: SPG instance. Terminals are drawn as squares

2.2 Bound-based techniques

Bound-based reductions techniques are preprocessing methods that identify edges and vertices
for elimination by examining whether they induce an lower bound that exceeds a given upper
bound [12, 17]. In this section a bound-based reduction concept is introduced that generalizes the
Voronoi-regions concept from [12]. Note that the bounding technique described in this section
can be seen as a special case of the bound-based reduction technique for the prize-collecting
Steiner tree problem that have been recently published by the authors in [16]. Thus, no proofs
are provided for any of the results in this section.

The base of the reduction technique is the following new concept: a terminal-regions decom-
position of ISPG—with underlying graph (V,E)—is a partition H =

{
Ht ⊆ V | T ∩Ht = {t}

}
of

V such that for each t ∈ T the subgraph (Ht, E[Ht]) is connected. Each of the Ht will be called
a region of H. Define for all t ∈ T

rH(t) := min{d(t, v) | v /∈ Ht}. (29)

In [12] a special terminal-regions decomposition called Voronoi-regions decomposition is used.
The more general results presented here allow to improve on the Voronoi preprocessing methods
introduced in [12]. However, it will also turn out that finding an optimal terminal-regions decom-
position is NP-hard. The following three propositions not only improve on the results from [12]
by using a more general decomposition, but also by making use of the following distance func-
tion. Given vertices vi, vj ∈ V define d(vi, vj) as the length of a shortest path between vi and vj
without intermediary terminals. In [2] an O(m+ n log n) algorithm was introduced to compute
for each non-terminal vi a constant number of d-nearest terminals vi,1, vi,2, ..., vi,k (if existent)
along with the corresponding paths. In the remainder of this section it will be assumed that a
terminal-regions decomposition H is given. Moreover, for ease of presentation it will be assumed
that the terminals of ISPG are ordered such that rH(t1) ≤ rH(t2) ≤ ... ≤ rH(tk) with k := |T |.
The following three propositions can be proved similarly to the Voronoi reduction techniques
from [12].
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Proposition 1. Let vi ∈ V \T and set k := |T |. If there is a minimum Steiner tree S such that
vi ∈ V (S), then

d(vi, vi,1) + d(vi, vi,2) +

k−2∑
q=1

rH(tq) (30)

is a lower bound on the weight of S.

Each vertex vi ∈ V \ T such that the affiliated lower bound stated in Proposition 1 exceeds
a known upper bound can be eliminated. Moreover, if a solution S corresponding to the upper
bound is given and vi is not contained in it, the latter can already be eliminated if the lower
bound stated in Proposition 1 is equal to the cost of S. A similar proposition holds for edges in
a minimum Steiner tree:

Proposition 2. Let {vi, vj} ∈ E and set k := |T |. If there is minimum Steiner tree S such that
{vi, vj} ∈ E(S), then L defined by

L := c({vi, vj}) + d(vi, vi,1) + d(vj , vj,1) +

k−2∑
q=1

rH(tq) (31)

if base(vi) 6= base(vj) and

L := c({vi, vj}) + min{d(vi, vi,1) + d(vj , vj,2), d(vi, vi,2) + d(vj , vj,1}

+

k−2∑
q=1

rH(tq) (32)

otherwise, is a lower bound on the weight of S.

The following proposition allows to pseudo-eliminate [2] vertices, i.e., to delete a vertex and
connect all its adjacent vertices by new edges.

Proposition 3. Let vi ∈ V \T . If there is a minimum Steiner tree S such that δS(vi) ≥ 3, then

d(vi, vi,1) + d(vi, vi,2) + d(vi, vi,3) +

k−3∑
q=1

rH(tq) (33)

with k := |T | is a lower bound on the weight of S.

To efficiently apply Proposition 1, one would like to maximize (30)—and for Proposition 2
and Proposition 3 to minimize (31) and (33), respectively. Unfortunately, this problem turns out
to be NP-hard. The decision variant of the problem can be stated as follows. Let α ∈ N0 and
let G0 = (V0, E0) be an undirected, connected graph with edge cost c : E → N. Furthermore, set
T0 := {v ∈ V0 | p(v) > 0}, and assume that α < |T0|. For each terminal-regions decomposition
H0 of G0 define T ′0 ( T0 such that |T ′0| = α and rH0

(t′) ≥ rH0
(t) for all t′ ∈ T ′0 and t ∈ T0 \ T ′0.

Let:

CH0
:=

∑
t∈T0\T ′

0

rH0(t). (34)

We now define the α terminal-regions decomposition problem as follows: Given a k ∈ N, is there a
terminal-regions decomposition H0 such that CH0 ≥ k? In the following proposition it is shown
that this problem is NP-complete, which forthwith establishes the NP-hardness of finding a
terminal-regions decomposition that minimizes (30), (31), (32), or (33)—which corresponds to
α = 2 and α = 3, respectively.
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3

2

3

1

3

1

(a) SPG instance (b) Voronoi-regions decomposition

(c) terminal-regions decomposition

Figure 3: Illustration of a Steiner tree instance (a), a Voronoi-decomposition (b), and a second
terminal-regions decomposition (c). Terminals are drawn as squares. If an upperbound less
than 11 is known, the vertex drawn filled in (c) can be deleted by means of the terminal-regions
decomposition depicted in (c), but not by means of the Voronoi-regions decomposition.

Proposition 4. For each α ∈ N0 the α terminal-regions decomposition problem is NP-complete.

Figure 3 depicts an SPG, a corresponding Voronoi-regions decomposition as described in [12],
and an alternative terminal-regions decomposition. The second terminal-regions decomposition
yields a stronger lower bound than the Voronoi-regions decomposition and indeed allows to
eliminate a vertex if an upper bound that is sufficiently close to the optimal solution value is
known. Computational experiments for this article have shown that it is in most cases easily
possible to improve on the bound provided by the Voronoi-regions decomposition and allow for
significantly stronger graph reductions.

2.3 Preliminary computational results

This section provides computational results for new implied bottleneck Steiner distance tests.
The results should be regarded as preliminary, since the development and implementation of the
reduction methods is still work in progress. We compare against a development version of the
SCIP-Jack solver [5]. Note that this version of SCIP-Jack is significantly stronger than the
latest released one [7].

We use four benchmark sets from the literature; two from [10], and two from the SteinLib [9].
Table 1 shows in the first column the name of the test set, followed by its number of instances.
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The next columns show the percentual average number of nodes and edges of the instances after
the preprocessing of SCIP-Jack and after the additional use of the new methods. We also
report the percentual relative change for the instances that are not already solved to optimality
by the SCIP-Jack preprocessing. Roughly speaking, the relative change shows the additional
impact of the new reduction techniques relative to the size of the already reduced instances.
More specifically, the relative change with respect to either edges or vertices for k instances is
defined as follows. Let pi ∈ (0, 1] (SCIP-Jack) and qi ∈ [0, 1] (new) be the relative size of
instance i after preprocessing, with i = 1, ..., k. E.g., if mi is the number of edges before and m′i
the number of edges after presolving with SCIP-Jack, then the relative edge size of instance i

is
m′

i

mi
. The relative change on all k instances (either with respect to the edges or the vertices) is

given as

1

k

k∑
i=1

qi − pi
max{pi, qi}

.

While the overall run-time is not reported, we note that the run time of the new tests in their
current form is neglectable. In fact, the overall run-time of the preprocessing even decreases,
since the tests are called early in the process. As they substantially reduce the instances already,
the run-time of the subsequently executed preprocessing methods is notably smaller.

Table 1: Average remaining nodes and edges after preprocessing.

SCIP-Jack +new techniques relative change

Test set # nodes [%] edges [%] nodes [%] edges [%] nodes [%] edges [%]

vienna-s 85 14.6 14.2 12.2 11.8 -18.9 -19.4
WRP3 63 54.5 56.1 52.6 53.2 -7.1 -8.7
GEO-org 23 10.6 12.3 10.1 11.5 -6.1 -7.0
ES1000FST 15 52.1 57.7 43.9 49.0 -15.9 -15.1

It can be seen that the average instance size on all test sets is notably decreased. This reduc-
tion is quite significant, given the large number of (often far more time-consuming) preprocessing
tests already present in SCIP-Jack, including a subset of the highly intricate extending reduc-
tion techniques [13]. Note that the all test sets come already in a preprocessed form—the impact
of these original reductions is not given here.

We also note that the new reduction techniques significantly reduce the overall run time on
the above benchmark sets. E.g. for for more than 80 % of the instances from the vienna-s set
the run time is at least halved. On this test set the new run times are now comparable with
those of the solver from [12] (see also [14] for the latest results), which has remained out of reach
for any other SPG solver from the literature until now. The WRP3 test set can even be solved
significantly faster than by [12].

3 Preprocessing for maximum-weight connected subgraph
problems2

Given an undirected graph G = (V,E) and vertex weights p : V → R, the maximum-weight
connected subgraph problem is to find a connected subgraph S ⊆ G such that its weight∑

v∈V (S) p(v) is maximized. Throughout this section we consider a MWCSP PMW = (V,E, p)

2Most of this section has been published in [15]
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with the property that at least one vertex is assigned a negative and one a positive weight
(otherwise the problem can be solved trivially).

The most comprehensive collections of reduction techniques for the MWCSP can be found
in [17]. While (arguably) interesting in their own right, reduction techniques also form the
backbone of the most successful solvers for the MWCSP. In the following, results from [17] are
generalized.

Dominating Connected Sets

Besides paths, one can also use general connected subgraphs for alternative-based reductions
tests. This article introduces the concept of dominating connected sets for the MWCSP: Let
X ⊂ V such that (X,E[X]) is connected and let U ⊂ V \X. Then X will be said to MWCS-
dominate U if{

v ∈ V \ U | ∃{v, w} ∈ E,w ∈ U
}
⊆
{
v ∈ V | ∃{v, w} ∈ E,w ∈ X

}
∪X.

Importantly, one can remove U from any feasible solution and reconnect the resulting components
by using only vertices of X. In the following, additional conditions will be formulated that allow
to remove U , or parts of it, without reducing the weight of at least one optimal solution. The
first such condition is stated in the following proposition, which generalizes a lemma from [17].

Proposition 6. Let U ⊆ V \ T and X ⊆ V \ U such that X MWCS-dominates U and assume∑
u∈U

p(u) ≤
∑

u∈X:p(u)<0

p(u). (35)

Then there exists an optimal solution S such that W * V (S). The set X will be said to all-
weights MWCS-dominate U .

Proof. Let S be a feasible solution with U ⊆ V (S). Note that by construction p(w) ≤ 0 for all
w ∈ U . Define

∆S :=
{
v ∈ V (S) \ U | ∃{v, w} ∈ E(S), w ∈ U

}
.

Next, remove U from S. In this way one obtains a new (possibly empty) subgraph S′ that
contains at most |∆S | many (inclusion-wise maximal) connected components. If S′ is connected,
no further discussion is necessary. Otherwise, note that each connected component of S′ contains
a vertex v ∈ ∆S . Therefore, these components can be reconnected as follows. First, add X\V (S′)
to V (S′) to obtain a new subgraph S′′. Second, because X MWCS-dominates U and because
each connected component contains a v ∈ ∆S , there exists a set of edges ẼS′′ ⊆ E[V (S′′)] that
reconnects S′′. Adding ẼS′′ to S′′, one obtains a, finally connected, subgraph S′′′. Finally, the
construction of S′′′ implies:∑

u∈V (S′′′)

p(u) ≥
∑

u∈V (S)

p(u)−
∑
u∈U

p(u) +
∑

u∈X:p(u)<0

p(u)
(35)

≥
∑

u∈V (S)

p(u).

This concludes the proof.

While Proposition 6 guarantees that set U is not part of at least one optimal solution, the
same may not be true for subsets of U . Therefore, one cannot just eliminate U in general.
However, in the case of |U | = 1 one can forthwith eliminate U , and in the case of |U | = 2 with
U = {v, w} ∈ E one can eliminate the edge {v, w}. Figure 4 shows an MWCSP instance for
which an edge can be eliminated by means of the criterion formulated in Proposition 6. The
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Figure 4: An MWCSP instance. Considering the vertices enclosed by the upper dotted ellipse
as the set X and those enclosed by the lower one as U , one can verify with Proposition 6 that
the dashed edge can be deleted.

vertices of the dashed edge have a summed weight of −4.3, smaller than the weight of the (sole)
negative vertex in the MWCS-dominating set X marked by the upper dotted ellipse (which is
−3.5).

In contrast to Proposition 6, the following proposition allows to eliminate non-trivial (i.e.
larger than single-vertex or single-edge) subgraphs of (V \T,E[V \T ])—but also involves a more
restricting test condition.

Proposition 7. Let U ⊆ V \ T and X ⊆ V \ U such that X MWCS-dominates U and assume

max
w∈U

p(w) ≤
∑

u∈X:p(u)<0

p(u). (36)

Then there exists an optimal solution S such that U ∩ V (S) = ∅. The set X will be said to
max-weight MWCS-dominate U .

Proof. Let S be a feasible solution with U ∩ V (S) 6= ∅. Further, define ∆S as in the proof of
Proposition 6. Remove U ∩ V (S) from S to obtain a new (possibly empty) subgraph S′ that
contains at most |∆S | many (inclusion-wise maximal) connected components. Assume that there
are at least two connected components. Each of these components contains a vertex v ∈ ∆S .
These components can therefore be reconnected as in the proof of Proposition 6 to obtain a
connected subgraph S′′′ with U∩V (S′′′) = ∅. Because of (36) it holds for the resulting connected
subgraph S′′′ that

∑
v∈V (S′′′) p(v) ≥

∑
v∈V (S) p(v).

Figure 5 shows an MWCSP instance that can be reduced by using Proposition 7.
For the special case of |U | = 1 a vertex set X max-weight MWCS-dominates a vertex set U if

and only if X all-weights MWCS-dominates U . Therefore, such a set will be called single-weight
MWCS-dominating. As will be shown in the following, already this special case is NP-hard. Let
G0 = (V0, E0) be an undirected, non-empty graph. Furthermore, let p0 : V0 → Z. Given a vertex
v ∈ V0 with p0(v) ≤ 0 the single-weight MWCS-domination problem is to determine whether a
subset of V \ {v} exists that single-weight MWCS-dominates v.

Proposition 8. The single-weight MWCS-domination problem is NP-complete.

Proof. Given a vertex subset X it can be verified with worst-case complexity of O(|E0| + |V0|)
whether this is an MWCS-dominating set to v. Hence, the single-weight MWCS-dominating
decision problem is in NP.
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Figure 5: An MWCSP instance. Considering the vertices enclosed by the upper dotted ellipse
as set X and the ones enclosed by the lower one as U , one can verify with Proposition 7 that all
vertices of U (and incident edges) can be deleted.

In the following it will be demonstrated that the (NP-complete [6]) vertex cover problem
can be reduced to the single-weight MWCS-domination problem. Let Gcov = (Vcov, Ecov) be an
undirected, non-empty graph and k ∈ N. Thereupon, for the vertex cover problem it has to be
determined whether a set in Vcov of cardinality at most k exists that is incident to all edges Ecov.

To establish the reduction, construct a graph G0 from Gcov as follows: Start with G0 =
(V0, E0) := Gcov and extend this graph as follows: First, define vertex weights p0(v) := −1
for all v ∈ V0. In the next step replace each edge el = {v, w} ∈ E0 by a vertex v′l of weight
p0(v′l) := −(k + 1) and the two edges {v, v′l} and {w, v′l}. Moreover, add edges {v, w} for each
pair of distinct vertices v, w ∈ V0∩Vcov to E0. Due to the previous step, this procedure does not
lead to multi-edges. Finally, add a vertex v?0 of weight p0(v?0) := −k to V0 and add edges {v?0 , v}
for all v ∈ V0 \ (Vcov ∪ {v?0}).

Scrutinizing the graphs G0 and Gcov, one can verify that a single-weight MWCS-dominating
set X to v?0 exists if and only if to each (newly added) vertex v ∈ V0 \ (Vcov ∪ {v?0}) there is an
adjacent vertex w ∈ V0 ∩ Vcov with w ∈ X. The latter condition is satisfied if and only if there
is a vertex cover in Gcov of cardinality at most k.

3.1 Bottleneck distances

Bottleneck Steiner distances are a classic concept for SPG reduction techniques [4], and has been
generalized to PCSTP [18] and MWCSP [17]. Initially, this section translates (in a straightfor-
ward way) a recent generalization of this concept for PCSTP [16] to MWCSP. Let v, w ∈ V . A
finite walk W = (v1, e1, v2, e2, ..., er, vr) with v1 = v and vr = w will be called positive-weight
constrained (v, w)-walk if no v ∈ T ∪ {v, w} is contained more than once in W . For any k, l ∈ N
with 1 ≤ k ≤ l ≤ r define the subwalk W (vk, vl) := (vk, ek, vk+1, ek+1, ..., el, vl). In the following,
let W be a positive-weight constrained (v, w)-walk. Define the interior cost of W as:

C−(W ) :=
∑

v∈V (W )\{vk,vl}

p(v), (37)

where the convention that the empty sum equals 0 is assumed, so the interior cost of an edge is
likewise 0. Furthermore, define the positive-weight constrained length of W as:

lpw(W ) := min{C−(W (vk, vl)) | 1 ≤ k ≤ l ≤ r, vk, vl ∈ T ∪ {v, w}}. (38)
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Note that lpw ≤ 0 holds, because the interior cost of an edge is 0. Denote the set of all positive-
weight constrained (v, w)-walks byWpw(v, w) and define the positive-weight constrained distance
between v and w as

dpw(v, w) := max{lpw(W ) |W ∈ Wpw(v, w)}. (39)

Note that it is NP-hard to compute dpw.

3.2 Combining dominating sets and bottleneck distances

Although both being NP-hard, the MWCS-domination and the bottleneck distance concept can
be merged into a powerful additional reduction test. The stage for this combined routine is set
by the following:

Proposition 9. Let U ⊆ V \ T and define

∆ :=
{
v ∈ V \ U | ∃{v, w} ∈ E,w ∈ U

}
If ∆ = ∅, then no optimal solution to PMW contains any vertex of U . Otherwise, let X ⊆ V \U
such that

∆1 := ∆ ∩
({
v ∈ V \X | ∃{v, w} ∈ E,w ∈ X

}
∪X

)
is non-empty and (X,E[X]) is connected. Define

C1 :=
∑

u∈X:p(u)<0

p(u). (40)

Further, let ∆2 := ∆ \∆1 and choose for each vk ∈ ∆2 an, arbitrary, v′k ∈ X. Define

C2 :=
∑

vk∈∆2

dpw(vk, v
′
k). (41)

If

C := C1 + C2 >
∑
u∈U

p(u), (42)

then each optimal solution S to PMW satisfies U * V (S).

Proof. Let S be a feasible solution with U ( V (S). Note that both C1 ≤ 0 and C2 ≤ 0. Define

∆S
1 := ∆1 ∩ V (S)

and
∆S

2 := ∆2 ∩ V (S).

In the following it will be demonstrated how to construct a connected subgraph S′′′ that does
not contain all vertices of U and satisfies P (S′′′) ≥ P (S).

Let S′ be the subgraph obtained from S by removing U and all incident edges. Note that
each maximal connected component of S′ contains at least one vertex of ∆S

1 ∪∆S
2 . Furthermore,

it holds that

P (S′) = P (S)−
∑
u∈U

p(u). (43)
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If ∆S
1 6= ∅, let S′′ be the vertex-induced subgraph of X ∪ V (S′). Otherwise set S′′ := S′. In

both cases, it holds for S′′ that

P (S′′) ≥ P (S′) + C1
(43)
= P (S)−

∑
u∈U

p(u) + C1. (44)

Moreover, all vertices of ∆S
1 are part of one connected component of S′′.

Set S′′′ := S′′. Consider each vk ∈ ∆S
2 \ V (S′′′) consecutively and choose a (vk, v

′
k)-walk

W k (with v′k as defined in the statement of this proposition) such that lpw(W k) = dpw(vk, v
′
k).

If vk and v′k are in different connected components of S′′′, there exist vq ∈ V (W k) in the
connected components of vk and v′q ∈ V (W k) in the connected component of v′k such that

V (W k(vq, v
′
q)) ∩ V (S′′′) = {vq, v′q}. Add (the subgraph corresponding to) W k(vq, v

′
q) to S′′′.

Because of condition (42) there is at least on vertex of U that is not contained in any of these newly
added paths—otherwise it would hold that C2 ≤

∑
u∈U p(u) and therefore also C ≤

∑
u∈U p(u).

Moreover, because of condition (41) the overall procedure reduces the weight of S′′ by at most
|C2|. Hence, it holds for the new (now connected) subgraph S′′′ that

P (S′′′) ≥ P (S′′) + C2

(44)

≥ P (S)−
∑
u∈U

p(u) + C1 + C2. (45)

Finally, U * V (S′′′) holds and due to (42) it follows from (45) that

P (S′′′) > P (S). (46)

Hence the proposition is proven.

Corollary 10. Assume that the conditions of Proposition 9 hold, but instead of (42) assume

C1 + C2 > max
u∈U

p(u). (47)

Then each optimal solution S to PMW satisfies U ∩ V (S) = ∅.

Proof. Let S be a feasible solution. Further, let S′′′ be a connected subgraph created from S
by the procedure described in the proof of Proposition 9. S′′′ is connected and it holds that
P (S′′′) > P (S), so only the equation U ∩ V (S′′′) = ∅ needs to be verified. By construction all
vertices of S′′′ are in one of the three sets: (V (S) \ U), X, and the set of vertices that are part
of a (vk, v

′
k)-walk W k with lpw(W k) = dpw(vk, v

′
k) and vk ∈ ∆S

2 . By definition the first two of
these sets cannot contain any vertices of U . Furthermore, because of (47), none of the walks W k

can contain a vertex of U since otherwise it would hold that lpw(W k) ≤ maxu∈U p(u)—which is
a contradiction because of C1 + C2 ≤ C2 ≤ lpw(W k). Thus, U ∩ V (S) = ∅.

Once again, for the special case of |U | = 1, corollary and proposition coincide. Figure 6 shows
an MWCSP for which a vertex can be deleted by means of this special case. Consider the upper
two encircled vertices as the set X. The right neighbor (forming the set ∆2) of the filled vertex
can be connected by a walk of positive-weight constrained length −1 to X, so C2 ≥ −1. Since
C1 = −1 and all other neighbors (∆1) of the filled vertex are also neighbors of X, one can delete
the vertex.
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Figure 6: An MWCSP instance. Consider the vertices enclosed by the upper dotted ellipse as
the set X, the lower left one as ∆1, the lower right ones as ∆2, and let U be the set that only
contains the bottom left (filled) vertex. One can verify with Proposition 9 that the bottom left
vertex can be deleted.

4 Conclusion

This paper has introduced various new preprocessing (or reduction) techniques for both the
Steiner tree problem in graphs and the maximum-weight connected subgraph problem. Initial
computational experiments with the Steiner tree solver SCIP-Jack [5] have already revealed a
considerable potential of the SPG methods for reducing the problem size, and furthermore for
strengthening exact solving. We plan to further extend the realization of the new techniques and
fully implement them into SCIP-Jack. As to MWCSP, the reductions methods have already
been fully integrated into SCIP-Jack and will be made publicly available as part of its next
release.
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