
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

GERALD GAMRATH1, TIMO BERTHOLD2, STEFAN HEINZ2 , AND
MICHAEL WINKLER3

Structure-driven fix-and-propagate heuristics
for mixed integer programming

1 0000-0001-6141-5937
2Fair Isaac Germany GmbH, c/o ZIB, Germany
3Gurobi GmbH, c/o ZIB, Takustr. 7, 14195 Berlin, Germany

ZIB Report 17-56 (March 2019)

https://orcid.org/0000-0001-6141-5937

Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +49 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

Structure-driven fix-and-propagate heuristics for mixed

integer programming

Gerald Gamrath∗, Timo Berthold†, Stefan Heinz‡, Michael Winkler§

Abstract

Primal heuristics play an important role in the solving of mixed integer programs (MIPs).
They often provide good feasible solutions early and help to reduce the time needed to prove
optimality. In this paper, we present a scheme for start heuristics that can be executed
without previous knowledge of an LP solution or a previously found integer feasible solution.
It uses global structures available within MIP solvers to iteratively fix integer variables and
propagate these fixings. Thereby, fixings are determined based on the predicted impact they
have on the subsequent domain propagation. If sufficiently many variables can be fixed that
way, the resulting problem is solved first as an LP, and then as an auxiliary MIP if the
rounded LP solution does not provide a feasible solution already. We present three primal
heuristics that use this scheme based on different global structures. Our computational
experiments on standard MIP test sets show that the proposed heuristics find solutions for
about 60 % of the instances and by this, help to improve several performance measures for
MIP solvers, including the primal integral and the average solving time.

Keywords: mixed-integer programming, primal heuristics, fix-and-propagate, large neigh-
borhood search, domain propagation

Mathematics Subject Classification: 90C10, 90C11, 90C59

1 Introduction

Mixed integer linear programming problems (MIPs) minimize (or maximize) a linear objective
function subject to linear constraints and integrality restrictions on some or all of the variables.
More formally, a MIP is stated as follows:

zMIP = min{cTx : Ax ≤ b, ` ≤ x ≤ u, x ∈ Rn, xi ∈ Z for all i ∈ I} (1)

with objective function c ∈ Rn, constraint matrix A ∈ Rm×n, and constraint right-hand sides
b ∈ Rm. We allow lower and upper bounds `, u ∈ R̄n on variables, where R̄ := R ∪ {±∞}, and
the restriction of a subset of variables I ⊆ N = {1, . . . , n} to integral values. In the remainder of
this paper, we denote by P(c, A, b, `, u,N , I) a MIP of form (1) in dependence on the provided
data.

Very powerful generic solvers for MIPs have been developed over the last decades, which are
used widely in research and practice [50, 22, 8]. These solvers are based on the branch-and-bound
algorithm [48, 26], which is intertwined with various extensions, see [8].

∗Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, gamrath@zib.de
†Fair Isaac Germany GmbH, c/o ZIB, Takustr. 7, 14195 Berlin, Germany, timoberthold@fico.com
‡Fair Isaac Germany GmbH, c/o ZIB, Takustr. 7, 14195 Berlin, Germany, stefanheinz@fico.com
§Gurobi GmbH, c/o ZIB, Takustr. 7, 14195 Berlin, Germany, winkler@gurobi.com

1

gamrath@zib.de
timoberthold@fico.com
stefanheinz@fico.com
winkler@gurobi.com

Branch-and-bound profits directly from finding good solutions as early as possible. On the one
hand, these solutions originate from integral solutions to the linear programming (LP) relaxation.
The LP relaxation P(c, A, b, `, u,N , ∅) is obtained from (1) by omitting the integrality restrictions
and is repeatedly solved for (sub-)problems during the branch-and-bound search to provide
solution candidates and lower bounds. On the other hand, so-called primal heuristics try to
construct new feasible solutions or improve existing ones. Primal heuristics are incomplete
methods without any success or quality guarantee which nevertheless are beneficial on average.
For more details on primal heuristics, we refer to [14, 32, 16]. In this paper, we introduce three
novel heuristics which combine a fix-and-propagate scheme [20, 8] with the large neighborhood
search (LNS) paradigm, see [27]. The former is typically used for before-LP heuristics and
iteratively fixes a variable and propagates this change to apply all implied changes to the domains
of other variables. The latter defines a sub-problem, the neighborhood, by adding restrictions
to the problem, and then solves this sub-problem as a MIP. A more detailed discussion of these
heuristic concepts is given in Section 2.

By modeling a specific problem as a MIP and solving it with a MIP solver, one profits from
the decades of developments within this area. However, knowledge about the structure of the
problem which could be exploited by a problem specific approach can hardly be fed into a MIP
solver due to the generality of the approach. MIP solvers try to partially compensate this by
detecting some common structures within the problem and exploiting them in the solving process.
Examples for this are multi-commodity flow subproblems [7] and permutation structures [59].
This detection is often done in the presolving phase, which is a preprocessing step trying to
remove redundancies from the model and to tighten the formulation. An overview of different
global structures in MIP solvers and details about three of them, the clique table, the variable
bound graph, and the variable locks, are given in Section 3.

The heuristics presented in this paper use these global structures to determine the fixing
order and fixing values for the variables. While it is a known approach in MIP heuristics to
apply domain propagation to identify the direct consequences of a fixing and tighten domains
of other variables accordingly, our new heuristics take a step further than existing methods and
make domain propagation their driving force. Rather than supporting the fixing scheme by
domain propagation, the heuristics base their fixing scheme on the implications that a variable
fixing will have, predicted via global structures. After the fix-and-propagate step, the remaining
problem is solved as an LP and the LP solution is rounded. If this did not provide a feasible
solution already, the problem obtained after the fix-and-propagate phase is solved as an auxiliary
MIP (called sub-MIP in the following).

A detailed description of the general scheme of the structure-driven fix-and-propagate heuris-
tics is discussed in Section 4. The three instantiations of the heuristic scheme for the three
discussed global structures are presented in Sections 5 to 7. They have been implemented within
the academic MIP solver SCIP [2]. The impact of the heuristics on the overall solving process of
SCIP is evaluated by the computational experiments presented in Section 8. Finally, Section 9
gives our conclusions and an outlook.

Previous work by the authors [36] introduced prior versions of primal heuristics based on
the clique table and the variable bound graph and gave a preliminary computational evaluation
of the heuristics. The present paper extends this work significantly. First, a third heuristic
is introduced which is based on variable locks. Second, the two former heuristics have been
significantly improved. The clique-based fixing scheme works directly on the cliques now rather
than computing a clique partition. Cliques are also taken into account for the topological sorting
of the variable bound graph (see Section 6). In all heuristics, infeasible fixings are now undone
by a backtracking step in order to continue the fixing phase. This leads to higher fixing rates
and more solutions being found by LP solving rather than the more expensive sub-MIP solve.

2

Finally, we perform a thorough computational study to analyze the effort and success rates of
the heuristics.

2 Primal heuristics and large neighborhood search for MIP

Primal heuristics are algorithms that try to find feasible solutions of good quality for a given
optimization problem within a reasonably short amount of time. There is typically no guarantee
that they will find any solution, let alone an optimal one.

For mixed integer linear programs (MIPs) it is well known that general-purpose primal heuris-
tics like the Feasibility Pump [3, 29, 34] can find high-quality solutions for a wide range of prob-
lems. Over time, primal heuristics have become a substantial ingredient of state-of-the-art MIP
solvers [14, 24].

The last fifteen years have seen various publications on general-purpose heuristics for MIPs,
including [3, 4, 9, 12, 13, 17, 18, 19, 21, 28, 33, 34, 38, 39, 41, 42, 43, 46, 49, 56, 58, 59, 61]. For
an overview, see [14, 16, 51].

Large neighborhood search lies at the heart of many MIP heuristics, such as Local Branch-
ing [30], rins [27], Crossover [14], dins [39], rens [17], Proximity Search [33], and Analytic
Center Search [21]. The main idea of LNS is to restrict the search for “good” solutions to a
neighborhood centered at a particular reference point. This is typically the incumbent or an-
other feasible solution, but it may as well be an infeasible integer point or a partial solution,
see [31]. The hope is that the restricted search space makes the sub-problem much easier to
solve, while still providing solutions of high quality. Of course, these restricted sub-problems do
not have to be solved to optimality; they are mainly searched for an improving solution.

dins, rins, rens, Crossover, and Analytic Center Search define their neighborhoods by
variable fixings. LNS heuristics that are based on variable fixings suffer from an inherent conflict:
the original search space should be significantly reduced; thus, it seems desirable to fix a large
number of variables. At the same time, the more variables get fixed, the higher is the chance
that the sub-problem does not contain any improving solution or even becomes infeasible.

The present paper addresses this issue by applying a fix-and-propagate scheme that is guided
by global structures. The hope is that this scheme maintains feasibility of the restricted search
space while still reducing it significantly through the means of domain propagation. The fix-and-
propagate procedure can potentially find a complete assignment of the variables or end up with
an empty search space; in either case, the suggested heuristics will terminate. If neither is the
case, a large neighborhood search will be conducted on the restricted search space.

3 Global structures in MIP solvers

Mixed integer programs are restricted to linear constraints, a linear objective, and integrality
conditions. This makes MIP solvers easily accessible and exchangeable if a MIP model is at
hand. From the modeling point of view, however, there is hardly any possibility to pass additional
structural information to a solver, e.g., that and how certain model variables are connected via the
combinatorics of a network structure. Modern MIP solvers aim at detecting common structures
within a model and use them for heuristics, cutting plane separation or presolving. Examples
of such global information include cliques, implications, and variable bound constraints (see [10,
54, 2]), multi-commodity flow structures [7], permutation structures [59], and symmetries [55].
Multi-commodity flows and permutations are examples of rather specific constructs that occur
in only a handful of models—but are crucial for solving them. Cliques and variable bound
constraints, in contrast, can be found in many MIPs of different types. So far, they have been

3

mainly used for cutting plane generation and domain propagation, see, e.g., [2]. The remainder
of the section explains three global structures in more detail: the clique table and the variable
bound graph, both detected during presolving, and the variable locks, which capture how many
constraints restrict a variable.

3.1 The clique table

A clique is a set C of binary variables of which at most one variable can be set to one, see [2, 10].
A clique can be given directly as a linear inequality

∑
i∈C xi ≤ 1 or derived from more general

constraints such as knapsacks: given a constraint
∑
i∈J wixi ≤ C with binary variables xi, i ∈ J ,

each subset C ⊆ J for which wj + wk > C for all (j, k) ∈ C × C defines a clique. In addition,
presolving techniques such as probing [60] can be used to detect cliques which are given implicitly
and cannot be extracted directly from a single model constraint.

Similarly, negated cliques [62] can be extracted from the problem. A negated clique is a set
of binary variables of which at most one variable can be set to zero. When combining these
two types of cliques, we obtain the general form

∑
i∈C+ xi +

∑
i∈C−(1 − xi) ≤ 1. This can be

transferred back to the first case by introducing negated variables of the form x′i := 1 − xi for
all i ∈ J−. For the ease of presentation, we will therefore only consider simple cliques in the
remainder of this paper.

In modern MIP solvers, the set of all detected cliques is stored in the so-called clique table.
This global structure forms a relaxation of the MIP and is used by solver components, e.g., to
create clique cuts [45] or to deduce stronger reductions in presolving and propagation [60, 5]. In
Section 5, we will show how the clique table can be used to guide a fix-and-propagate heuristic.

3.2 The variable bound graph

Variable bound constraints are linear inequalities which contain exactly two variables, see [2,
54]. Typical examples for such constraints are precedence constraints on start time variables in
scheduling or big-M constraints modeling fixed-costs in production planning. Depending on the
sign of the coefficient, the variables bound each other. For example, a constraint ax + by ≥ c
with a > 0 implies that x is bounded from below by c

a −
b
ay. If a < 0, the latter provides an

upper bound on x. These dependencies are called variable bound relations. They express the
dependency of one bound of a variable on a bound of another variable. We will use the term
vbound when referencing variable bound relations in the following.

Similar to the clique information, vbounds cannot only be deduced from variable bound
constraints but can also be identified within more general constraints or during presolving, e.g.,
by probing. They are exploited by different solver components, e.g., for c-MIR cut separation,
where they can be used to replace non-binary variables with binary ones [54]. In order to make
vbounds available for those components, they can be stored in a global structure, the variable
bound graph. In this directed graph, each node corresponds to the lower or upper bound of a
variable and each vbound is represented by an arc pointing from the influencing bound to the
dependent bound. This graph generalizes the mixed conflict graph introduced in [11] which is
used to generate cutting planes for the mixed vertex packing problem. While the mixed conflict
graph represents variable bounds between two binary variables or a binary and a continuous
variable, the variable bound graph covers dependencies between all types of variables (possibly
excluding those between binary variables which are already captured by the clique table).

For an example of a variable bound graph, see Figure 1. We regard three constraints on
variables x, y, and z, as shown in part (a). Each of these constraints provides two bounds on
the involved variables as stated in part (b). Thereby, vbounds (1a) and (1b) are derived from

4

x− 2y ≤ 3 (1)
x+ 2z ≤ 2 (2)
x+ 3y ≤ 6 (3)

(a) constraint set. lb(x)

ub(z)

lb(y)

ub(y)

lb(z)

ub(x)

(2b)

(1b)

(3b) (1a)

(2a)

(3a)

(c) variable bound graph.

x ≤ 2y + 3 (1a)
y ≥ 1

2x−
3
2 (1b)

x ≤ 2− 2z (2a)
z ≤ 1− 1

2x (2b)
x ≤ 6− 3y (3a)
y ≤ 2− 1

3x (3b)

(b) vbounds.

Figure 1: Example of a variable bound graph.

constraint (1), (2a) and (2b) from (2), and (3a) and (3b) from (3). The resulting variable bound
graph is illustrated in part (c). Each arc is labeled with the vbound it represents.

If a bound of a variable is tightened, implications can be read from this graph by following
all paths starting at the corresponding node. Therefore, the graph can be used to compute an
estimate of the impact that a bound change will have. This observation is the basis for the
variable-bound-driven fix-and-propagate heuristic presented in Section 6.

3.3 Variable locks

In contrast to the two previous structures, variable locks are directly defined by the constraint
matrix. They are a measure of how many constraints may block an increase or decrease of
the value of a variable. In case of a MIP of form (1) with only ≤-constraints, the number ζ+i
of up-locks of a variable xi is the number of constraints in which this variable has a positive
coefficient ari, while the number ζ−i of down-locks counts the number of constraints with a
negative coefficient of the variable. A more general definition for variable locks in constraint
integer programming is given in [2]. In this paper, however, we focus on MIP and can thus use
the simple definition above.

In the special case that a variable has no locks in one direction, its value in a solution can be
moved into this direction without rendering a constraint infeasible. A simple rounding heuristic
was introduced in [2] which is based on this argument. On the other hand, duality fixing [35]
fixes variables to their bound if they have no locks in that direction and the objective coefficient
has the right sign. The variable-locks-driven fix-and-propagate heuristic presented in Section 7
uses the variable locks to decide which variable is most influential and to which value it should
be fixed to retain feasibility.

4 A framework for structure-driven fix-and-propagate
heuristics

In this section, we present a new primal heuristic scheme for mixed integer programming which
is based on global structures collected by MIP solvers. It forms the basis for the three new
primal heuristics discussed in the next sections which have been implemented in the academic
MIP solver SCIP [2].

5

Algorithm 1: Generic structure-driven fix-and-propagate heuristic

input : - MIP P(c, A, b, `, u,N , I)
- fixing thresholds α, β
- backtrack limit κ
- global structure S

output: - feasible solution or NULL, if no solution was found

1 begin
2 back← 0, result← stop

// 1. try to fix all integer variables in the structure

3 while {i ∈ I ∩ S | `i < ui} 6= ∅ do
4 (˜̀, ũ)← (`, u)

// get variable fixing based on global structure

5 (k, lower, result)← structure fixing(P(c, A, b, `, u,N , I), S)

// fix variable

6 if result 6= continue then break

7 if lower then ũk ← `k else ˜̀
k ← uk

// perform domain propagation

8 (P(c, A, b, ˜̀, ũ,N , I), inf)← domain propagation(P(c, A, b, ˜̀, ũ,N , I))

// infeasibility detected: backtrack and exclude infeasible value

9 if inf then
10 back← back + 1

11 (˜̀, ũ)← (`, u)

12 if lower then ˜̀
k ← `k + 1 else ũk ← uk − 1

// perform domain propagation

13 (P(c, A, b, ˜̀, ũ,N , I), inf)← domain propagation(P(c, A, b, ˜̀, ũ,N , I))
14 if inf then return NULL

15 P(c, A, b, `, u,N , I)← P(c, A, b, ˜̀, ũ,N , I)
16 if back ≥ κ then break

// 2. LP solving

17 if |{i ∈ I | `i = ui}| ≥ α|I| ∨ result = solve LP then
18 (x?, inf)← solve P(c, A, b, `, u,N , ∅)
19 if inf then return NULL

// try to round LP solution

20 x? ← simple round(x?)
21 if x?i ∈ Z for all i ∈ I then
22 return x?

23 else
// 3. LNS approach

24 P(c̃, Ã, b̃, ˜̀, ũ, Ñ , Ĩ)← presolve P(c, A, b, `, u,N , I)

25 if |Ñ | ≤ β|N | then
26 x? ← solve P(c̃, Ã, b̃, ˜̀, ũ, Ñ , Ĩ) (with working limits)
27 return x?

28 else
29 return NULL

6

The general scheme is illustrated in Algorithm 1. In a first step, a subset of the integer
variables is fixed based on the respective structure (lines 3–16). The structure fixing method
(line 5) is called in each iteration and determines the fixing based on the given global structure.
It returns the index k of a variable that should be fixed to one of its two bounds and whether the
variable is supposed to be fixed to the lower or upper bound. Additionally, the method gives back
a return value result, which is either continue, solve LP, or stop. The default return value
is continue, which just continues the fix-and-propagate process. On the other hand, stop and
solve LP will both stop the fixing phase, see line 6, and go directly to the LP solving starting
in line 17. The latter triggers the LP solve in any case, while with a stop return value, the
usual checks that the problem was reduced sufficiently need to be passed, see below for more
details. After the fixing is applied (line 7), domain propagation is performed (line 8). This
uses a method domain propagation, which performs domain propagation on the given MIP and
returns the updated MIP as well as the information whether an infeasibility was detected during
propagation. Propagation can work directly on the global structure, but also works on all other
constraints of the model and can identify reductions that do not originate from the regarded
global structure. By default, we limit the domain propagation call to perform only two rounds
of propagation to avoid performance issues. Nevertheless, this is usually enough to detect trivial
infeasibilities and apply implied bound changes on other variables—those contained in the global
structure, but also other variables in the problem.

If domain propagation detects an infeasibility for the current assignment of variables, we
backtrack one level, i.e., we undo the last fixing as well as the domain reductions deduced from
it. Then, we remove the fixing value that led to the infeasibility from the domain of the respective
variable and propagate this reduction (see lines 9–13). If the propagation detects infeasibility for
this problem as well, one of the assignments we did before must have caused the infeasibility (or
the global problem is already infeasible). We do not backtrack several levels in this case in order
to avoid too much effort being spent before finding the invalid assignment but instead stop the
heuristic immediately (line 14). If the updated problem is feasible, however, we continue with
the fix-and-propagate procedure.

Note that the need to backtrack repeatedly indicates that the global structure used by the
heuristics is missing essential components of the problem and directs the search to a wrong
region. Therefore, Algorithm 1 is passed a limit κ on the number of backtracks performed. By
default, we set κ = 10. If this number of backtracks is reached, the fix-and-propagate phase is
stopped even if there are unfixed integer variables left in the structure (line 16). Otherwise, the
fix-and-propagate phase is iterated until all variables in the global structure are fixed.

After the fixing phase, we check its success. For this, we compare the number of fixed
integer variables to the total number of integer variables (line 17). Ideally, the heuristic fixed all
integer variables, but it may happen that some of the variables are not contained in the global
structure employed for the fixing process, or that the fixing phase stopped prematurely due to
the backtrack limit or the result value being stop. The heuristic does not require all integer
variables to be fixed at that point. It solves an LP on the remaining problem and, if feasible,
tries to round the LP solution with the simple rounding heuristic mentioned in Section 3.3, see
lines 18–22. If enough integer variables were fixed before, this LP is significantly smaller (and
hopefully easier to solve) than the original LP relaxation. Additionally, not only the LP solving
effort but also the success probability of the rounding heuristic depends on the success of the
fixing step. Therefore, the heuristic scheme demands that a fixing rate of at least α after the
fixing phase is reached (line 17) and stops otherwise. The only exception is the case that the
result value was solve LP. Then, the heuristic continues without checking the fixing rate.

If rounding the LP solution was not successful, the heuristic employs an LNS approach to
construct a feasible solution to the neighborhood defined by the remaining unfixed variables.

7

However, since this is typically the most expensive step of the algorithm, we first apply fast
presolving methods to the LNS sub-MIP defined by the fixings obtained in the previous phase,
see line 24. These methods remove fixed variables and redundant constraints, apply bound
tightening and duality fixing, and perform aggregations of variables, amongst others. While we
checked before that we fixed a sufficient number of integer variables, we now require a reduction
of β in the overall problem size in terms of all variables (line 25). Since the processing time of
branch-and-bound nodes in the sub-MIP depends mainly on the LP solving time, a sufficiently
decreased problem size is a good indicator for reasonable LNS times. Finally, the sub-MIP
is solved, see line 26, and the best feasible solution found during sub-MIP solving is returned
(line 27).

In order to limit the effort spent within the heuristics, we use working limits for the sub-MIP
solving. First, the fixing thresholds α and β ensure that the problem is significantly easier after
the fixing phase. Second, we aim at performing a quick partial solve of the sub-MIP. Therefore,
we disable separation in the LNS sub-MIP solving, use only fast presolving algorithms, and
disable all LNS heuristics to avoid recursion. Additionally, we disable strong branching and use
the inference branching rule of SCIP [2]. If a primal feasible solution was found already, we
set an objective limit such that the solution is improved by at least 1 %. Finally, a node limit
of 5000 is used together with a limit of 500 for the number of stalling nodes, i.e., consecutively
processed nodes without finding a new best solution. These limits are chosen based on previous
experiments with LNS heuristics in SCIP.

This general scheme is the same for all three heuristics proposed in this paper. The difference
between them is how and in which order the variables are fixed in the first phase. This is defined
by the global structures which represent interconnections between variables which can and will
be propagated. The novel concept of the heuristics is that the order in which variables are fixed
and the fixing values take into account the predicted impact a fixing will have on the domain
propagation step. By this, domain propagation is not used as a supplementary subroutine to
support the search, but as a driving mechanism to take decisions within the search: we choose
fixings of which we know that they propagate well. How this is done for each of the three global
structures is explained in the following sections.

5 The clique-driven fix-and-propagate heuristic

The idea behind the clique-driven fix-and-propagate heuristic is the following: Given a clique
C, at most one variable xi, i ∈ C may be set to 1 in a feasible solution, all other variables need
to be set to 0. Thus, by fixing one of the variables to 1, domain propagation will fix all other
variables in the clique to 0, but will potentially also apply many more domain changes implied
by any of the fixed variables. Consequently, it seems beneficial to choose large cliques in order to
trigger many propagation changes. On the other hand, by choosing the cheapest variable, i.e.,
the variable with smallest objective coefficient as the one to fix to 1, we can aim at constructing
solutions with small objective value.

The fixing algorithm of the clique-driven fix-and-propagate heuristic is illustrated in Algo-
rithm 2. In a first step, the next clique to process is selected (line 2). This is done with a
greedy strategy: We select a clique with the largest number of unfixed variables. Note that the
selection criterion implies that no variable contained in the clique is already fixed to 1 since
propagation would have fixed all other variables to 0 otherwise. Additionally, we can assume
that there always exists a clique with unfixed variables, since the algorithm is called in line 5 of
Algorithm 1 directly after the while-loop starting in line 3 checks this condition. After choosing
a clique, we select an unfixed variable in it with smallest objective coefficient and return that

8

Algorithm 2: clique fixing

input : - MIP P(c, A, b, `, u,N , I)
- clique table T

output: - index of binary variable xk which should be fixed next
- should xk be fixed to 0?
- result of the call: continue

1 begin
// 1. select clique

2 C? ← arg max{|{xi ∈ C | `i < ui}| | C ∈ T }
// best index and corresponding smallest objective

3 k? ← −1
4 c? ←∞

// 2. find cheapest variable to fix

5 for j ∈ C? do
6 if ucj = 1 and cj < c? then
7 k? ← j
8 c? ← cj

9 return (k?, FALSE, continue)

this variable should be fixed to 1, see lines 3–9. How successful this fixing strategy is and which
fixing thresholds should be used, see Algorithm 1, is analyzed in the computational experiments
presented in the remainder of this section.

5.1 Computational analysis

Our computational experiments are based on an implementation of the clique-driven fix-and-
propagate heuristic within the academic MIP solver SCIP 4.0.0 [2, 53] with SoPlex 3.0.0 [64, 53]
as underlying LP solver. We use a modified version of the heuristic as described in this paper,
which will replace the old version in the next release of SCIP. It is implemented as a primal
heuristic plugin of SCIP and called once at the beginning of the root node processing. Note
that finding new incumbent solutions is often most effective at the root node when a new primal
bound might directly lead to global fixings, tighter cutting planes, and better initial branching
decisions. This is the typical application of fix-and-propagate heuristics, since the diversification
of the heuristic search for calls during the subsequent branch-and-bound phase is smaller than
for other heuristics that rely on local LP optima.

In our first experiments, we ran SCIP with a node limit of 1, i.e., we let SCIP stop after the
root node processing. This allows us to compare the heuristic runtime to the overall root node
processing time. Additionally, we set a time limit of 3600 seconds and a memory limit of 16 GB.
All results were obtained on a cluster of 3.2 GHz Intel Xeon X5672 CPUs with 12 MB cache
and 128 GB main memory, running only one job per cluster node at a time. The experiments
were performed on the MMMC test set which contains all instances from the last three MIPLIB
benchmark sets [23, 6, 47] as well as the Cor@l test set [25]. We removed duplicates and the
instances neos-1058477, neos-847051, and npmv07 because they caused numerical troubles. Note
that the numerical troubles do not depend on the usage of the heuristic; they can also be observed
if it is disabled. This left us with a total of 496 instances.

9

subset size sols root time heur time F&P time LP time LNS time

all 496 189 83.93 2.28 0.11 0.08 2.09
stopped early 226 – 91.49 0.12 0.12 – –
only LP solved 215 144 84.71 0.18 0.11 0.06 –
LP + LNS 55 45 49.76 19.39 0.04 0.50 18.85

Table 1: Statistics for the clique-driven fix-and-propagate heuristic without fixing thresholds
on the MMMC test set.

For our first experiment, we set the fixing thresholds α and β to 0 in order to always continue
with LP and LNS sub-MIP solving. The backtracking limit of κ = 10 stayed unchanged. This
experiment is meant to show the potential of the clique-driven fix-and-propagate heuristic and
at the same time derive good default values for α and β.

Table 1 gives first aggregated results for this experiment. The rows list information for
different subsets of the instances. All instances (row 1), those stopped before the LP was solved
(row 2), and those where the fix-and-propagate phase was successful and the heuristic solved
the subsequent LP, but no LNS sub-MIP (row 3). The last row shows statistics for the set of
instances where the LNS sub-MIP was solved. For each subset, we list its size, i.e., the number of
instances in this category, the number of instances for which the heuristic found a solution, and
the average root node processing time (including presolving). Additionally, we show the average
running time of the heuristic, as well as the average times for the fix-and-propagate phase, the
LP solving, and the LNS sub-MIP solving. All averages are computed as arithmetic means.

Out of the 496 instances, 102 instances contain no cliques. Another 124 instances ran into a
dead-end, where fixing the best variable in the current clique to 0 or 1 both led to infeasibility.
These two cases together account for the row “stopped early”. On these instances, the clique-
driven fix-and-propagate heuristic is fast and consumes only 0.13 % of the root node running
time.

For the remaining 270 instances, the heuristic solved the LP. The LP solution could be
rounded to a feasible solution 144 times, and the LP was infeasible for 71 calls. If neither of the
two happened, the LNS sub-MIP was solved. That was the case for 55 instances. If no sub-MIP
was needed, the fix-and-propagate phase typically left few variables unfixed, which results in the
LP solving time being about half of the fix-and-propagate time on average. The expensive case is
the one that solves the LNS sub-MIP. Here, the LP is often harder to solve and needs about 1 %
of the root time, while the sub-MIP time dominates the heuristic time and accounts for 38 % of
the root node processing time. This is the main reason why the clique-driven fix-and-propagate
heuristic without any fixing limits makes up for 2.7 % of the total root time.

The fixing thresholds α and β are meant to reduce the running time of the heuristic by
avoiding to spend too much time in LP and sub-MIP solving. To this end, we investigate the
impact of the fixing rates on both effort and success of the heuristic in the LP and sub-MIP calls.
Figure 2 illustrates the fixing rates for the 270 instances for which at least an LP was solved.
Each bar of the histogram shows the number of instances for which the integer fixing rate after
the fix-and-propagate step was within a certain range. More specifically, bar k represents all
instances with fixing rate in [5(k − 1)%, 5k%), with an additional bar at 100 % for the case
that all integer variables were fixed. Each bar is further divided into two parts: the solid part
illustrates the instances where the clique-driven fix-and-propagate heuristic was successful in
constructing a feasible solution, while the checked part shows instances where no solution was
found by the heuristic. Each of these parts is further divided into two segments. The dark one

10

Figure 2: Number of instances and solutions found by the clique-driven fix-and-propagate
heuristic per integer fixing rate after the fix-and-propagate step. The solid blue part of each
bar represents the instances for which the heuristic found a solution, the checked red part the
instances where it was unsuccessful. The darker (lighter) parts represent instances where a (no)
sub-MIP was solved.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

fixing rate (%)

#
in

st
a
n

ce
s

instances w/o solutions w/o LNS

instances w/o solutions w/ LNS

instances w/ solutions w/o LNS

instances w/ solutions w/ LNS

represents instances where the heuristic solved the LNS sub-MIP. For the instances illustrated
by the light part, the LP solution could be rounded to a feasible solution (solid) or the LP was
infeasible (checked). The effort spent within the clique-driven fix-and-propagate heuristic for
different fixing rates is illustrated in Figure 3. Again, each bar represents all instances with
integer fixing rate within a certain 5 % range, with one additional bar for instances where all
integer variable were fixed. The height of the bars represents the average time spent in the
heuristic compared to the total root (and preprocessing) time. The heuristic time counts into
the root time so that this share is between 0 and 100 % for each instance.

We observe in Figure 2 that the success rate is high in particular at the two ends of the
histogram. A total of 153 instances have a fixing rate of 90 % or higher, the success rate for these
instances is 85 %. On the other hand, a solution is found for 75.8 % of the 33 instances with a
fixing rate of less than 20 %. Figure 3 indicates that the low fixing rates, though successful in
many cases, should be avoided. They require solving a sub-MIP of size similar to the original

Figure 3: Average effort of the clique-driven fix-and-propagate heuristic per fixing rate, relative
to total root node processing time.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

fixing rate (%)

ro
ot

ti
m

e
sh

ar
e

(%
)

11

Figure 4: Clique-driven fix-and-propagate heuristic time for LP and sub-MIP solving (color)
per fixing rate of integer variables (x-axis) and total fixing rate after sub-MIP presolving (y-axis).
Each circle (triangle) represents one instance where the heuristic solved a sub-MIP and found a
(no) solution.

0 20 40 60 80 100
0

20

40

60

80

100

integer fixing rate (%)

to
ta

l
fi

x
in

g
ra

te
af

te
r

p
re

so
lv

e
(%

)

0

20

40

60

80

problem for most of the instances. This consumes 51.3 % of the aggregated root time on average—
time that is better spent just continuing to solve the original problem. On the other hand, only
1.6 % of the aggregated root node processing time is spent in the heuristic for instances with a
fixing rate of 65 % or higher. This threshold slightly increases the number of solutions constructed
by the heuristic to 146 as compared to 130 for a limit of 90 %. Many of the additional solutions
are constructed via a sub-MIP; however, no unsuccessful sub-MIP calls can be observed. On the
one hand, this can be seen as a success of the fixing scheme, on the other hand, the LP solving
works very well here as a filter. It identifies all cases where the subproblem is infeasible so that
the effort stays relatively low and accounts for only 1.6 % of the root node processing time.

Figure 4 takes into account the problem size reduction of the presolved sub-MIP as well,
which can be limited by parameter β in Algorithm 1. Since this is only relevant for instances
which solve the LNS sub-MIP, the scatter plot illustrates only those 55 instances. Each instance
is represented either by a circle if the heuristic found a solution, or by a triangle if it was not
successful. The x-coordinate indicates the integer fixing rate after the fix-and-propagate phase,
the y-coordinate the problem size reduction after presolve of the sub-MIP. Note that the latter
includes all variables, also continuous ones, and can therefore be lower than the former which
only considers integer variables. Finally, the color shows the effort spent on solving the LP and
sub-MIP, again relative to the total root node processing time.

Except for some outliers, the points are roughly located on the diagonal, meaning that a
reduction in the number of integer variables often causes a similar reduction in the total problem
size after presolve, as was to be expected. At the top right where both fixing rates are high, all
sub-MIPs find a solution, and the joint time for LP and sub-MIP solving is below 5 % of the root
node processing time for each instance except for one where it amounts to about 20 %. Overall

12

subset size sols root time heur time F&P time LP time LNS time

all 496 146 81.80 0.13 0.11 0.01 0.01
stopped early 301 – 76.93 0.09 0.09 – –
only LP solved 181 132 89.86 0.16 0.13 0.04 –
LP + LNS 14 14 82.21 0.55 0.06 0.03 0.46

Table 2: Statistics for the clique-driven fix-and-propagate heuristic with final fixing thresholds
α = β = 65 % on the MMMC test set.

choosing the limit β on the fixing rate after presolve similar to the limit α of integer variables
fixed in the fixing phase seems reasonable.

This leads us to choose α = β = 65 % as default in the clique-driven fix-and-propagate
heuristic for our following experiments as well as the version to be released. Table 2 lists the
same information as Table 1, but for the heuristic with the updated limits. We see that the
number of instances that were stopped before the LP solving increased to 301 since 75 instances
did not reach the desired fixing rate. The heuristic finds 146 solutions, 43 less than in the
previous experiment. However, 31 of those had been constructed with the aid of an expensive
sub-MIP. Overall, the number of sub-MIP calls is reduced from 55 to 14 with a 100 % success
rate now whenever the heuristic solves a sub-MIP. Since also the neighborhoods to investigate
are smaller due to the fixing limit, the average LNS time is significantly reduced from more than
19 seconds to about half a second. This leads to a significantly smaller runtime of the heuristic
compared to the previous experiment. On average over all instances, the heuristic needs about
0.2 % of the root node processing time, which is a good value given a success rate of 29.4 %.

6 The variable-bound-driven fix-and-propagate heuristic

In the variable-bound-driven fix-and-propagate heuristic, we implemented different rules for de-
termining the variable fixings. All of them make use of a topological sorting of the variable
bound graph. Recall that a topological sorting of an acyclic directed graph is an order of the
nodes, such that for every arc (i, j), node i precedes node j in the order. Since the variable
bound graph can contain cycles, we may need to break them by randomly removing one of the
arcs in the cycle. We will use a topological sorting of this reduced graph to define the order in
which variables are fixed. Note that cycles in the variable bound graph are uncommon and may
already be removed during presolving. In SCIP, this is done by cycle detection in the variable
bound graph [53] and the clique table analysis [40].

Note that each clique C represents a set of vbounds as well: for each pair of variables xi, xj ∈ C,
the two vbounds xi ≤ 1− xj and xj ≤ 1− xi are implied, which correspond to the arcs (lb(xj),
ub(xi)) and (lb(xi), ub(xj)) in the variable bound graph, respectively. We take those implied
vbounds into account when computing the topological sorting. Special care has to be taken to
avoid unnecessarily high runtimes for the sorting process. This is done with a simple depth-first
search, which has linear effort in the number of nodes and arcs. However, the number of edges
represented by a single clique is quadratic in the number of variables contained in the clique, so
adding all of them explicitly may significantly increase the sorting time if large cliques are present
in the problem. We use an improvement suggested by [8] for a similar application: we observe
that each clique needs to be considered only twice. The first time when we are regarding a node
lb(xi), xi ∈ C, we examine all arcs (lb(xi), ub(xj)) with xj ∈ C, i 6= j. Now, when regarding

13

the next node lb(xj), xj ∈ C, we only need to consider the arc (lb(xj), ub(xi)), all other arcs
point to nodes which have already been processed. In further examinations of nodes lb(xk),
xk ∈ C, the clique can be disregarded by the same argument. Thus, the variable-bound-driven
fix-and-propagate heuristic also uses information stored in the clique table just like the clique-
driven heuristic, but it only uses it to refine the topological sorting of the variable bound graph.
The final fixing scheme summarized in Algorithm 3 is again a sub-algorithm of Algorithm 1 and
called in each iteration of the fix-and-propagate phase to determine a variable to fix and the
corresponding fixing value.

The fixing method starts with an initialization step (lines 2–4). The method topological sort
called for this purpose returns an array of nodes in topological order (with respect to the reduced
graph). The method already sorts out disconnected nodes, nodes corresponding to continuous
variables and nodes from which only nodes corresponding to continuous variables can be reached.
Additionally, the set U of unprocessed nodes is initialized to all nodes in the order.

Then, the first unprocessed node in the topological order is selected. If it corresponds to an
already fixed variable, e.g., by a previous iteration of the fixing phase, it is ignored and the next
variable is selected (lines 9–11). Recall that each node v of the variable bound graph represents
a bound of a variable. Tightening this bound causes some bound changes on other variables, as
defined by all paths in the variable bound graph starting at node v. Consequently, the earlier
a node is considered within the topological order, the more impact on other bounds we expect
when tightening the corresponding bound.

The first variant by which the heuristic determines fixings aims at obtaining a large neigh-
borhood by fixing variables such that only few additional restrictions are caused. This results in
a neighborhood with a higher probability both for containing feasible solutions as well as high-
quality solutions. To this end, this variant fixes the variable to the bound represented by the
current node. This means that not the bound corresponding to the current node is tightened,
but the opposite bound, which comes later in the topological order (if even) and thus causes
fewer reductions on other bounds. The second variant uses an opposing argument: A large
neighborhood is more expensive to process and finding any solutions in there might need more
effort than in a smaller neighborhood with more fixed variables. Therefore, we fix the variable
to the reverse bound, i.e., tighten the bound corresponding to the node in the variable bound
graph. This forces a change of many other bounds of variables, a concept known to be rather
effective in order to drive the solution to feasibility faster, cf. [57]. The parameter strategy is
used to switch between the two variants in Algorithm 3, lines 12–15. Thereby, a value of aggr

corresponds to the more aggressive second variant, while cons represents the more conservative
first variant.

We obtain two variations for each of the previously mentioned variants by taking into account
the objective function. For this, we need the notion of the best bound of a variable, which is
the bound that leads to the best objective contribution of the variable, i.e., its lower bound if its
objective value is non-negative, and its upper bound otherwise. The first variation applies fixings
only if the variable is fixed to its best bound. Conversely, the second variation fixes a variable
only if it is not fixed to its best bound. The motivation for the first variation is clearly to aim at
obtaining high-quality solutions, it is enabled by setting obj to qual in Algorithm 3, lines 16–21,
instead of the default value noobj. Variation 2 is based on the observation that typically, the
constraints of the problem push variables away from their best bound, while fixing them to their
worst bound might give a higher chance for a feasible solution in the end. It is triggered by
setting obj to feas. Both variations may keep variables in the variable bound graph unfixed. If
this is the case, the fixing algorithm returns stop as the result to signal that no further fixings
will be performed by the current scheme (line 25).

Overall, this gives us six fixing schemes for the variable-bound-driven fix-and-propagate

14

Algorithm 3: variable bound fixing

input : - MIP P(c, A, b, `, u,N , I)
- variable bound graph including clique table G = (V,A)
- strategy ∈ {aggr, cons} – force change or feasibility?
- obj ∈ {noobj, qual, feas} – how should the objective function be

taken into account?
output: - index of binary variable xk which should be fixed next

- should xk be fixed to its lower bound (otherwise: upper bound)?
- result of the call: continue or stop fixing

1 begin
// initialization

2 if 1st call then
// topological sorting; the order does not contain independent nodes,

nodes which correspond to or only influence continuous variables

3 π ← topological sort(G);
4 U ← V ∩ π;

5 k ← 0;

6 while k = 0 ∧ |U| > 0 do
// select first unprocessed node

7 k ← min{1 ≤ i ≤ |π| | πi ∈ U};
8 U ← U \ {πk};

// discard fixed variables

9 if `idx(πk) = uidx(πk) then
10 k ← 0;
11 continue ;

// fixing value

12 if strategy = aggr then
13 fixtolower ← not lower(πk);
14 else
15 fixtolower ← lower(πk);

// consider objective function

16 if obj = qual then
// do not fix to worse bound w.r.t. objective

17 if fixtolower 6= (cidx(πk) ≥ 0) then
18 k ← 0;

19 else if obj = feas then
// do not fix to better bound w.r.t. objective

20 if fixtolower 6= (cidx(πk) ≤ 0) then
21 k ← 0;

22 if k > 0 then
23 return (idx(πk),fixtolower,continue);
24 else
25 return (0,FALSE,stop);

15

heuristic. We will investigate in the following how well they complement each other or if any of
them is dominated by the others.

6.1 Computational analysis

Our computational experiments are performed in the same environment, with the same soft-
ware, and on the same instance set as described in Section 5.1. Again, the updated version of
the variable-bound-driven fix-and-propagate heuristic is called once at the start of root node
processing as motivated in Section 5.1.

The results of a first experiment with fixing thresholds α and β set to 0 are summarized in
Table 3 as well as Figures 5 and 6. We ran all six variants without any interaction between
them in order to assess their individual performance. More specifically, all variants were run
one after the other, without applying primal solutions found by one of the variants during the
process. This avoids that the behavior of the subsequent variants is changed, e.g., because only
better solutions would be accepted, and allows to compare the number of solutions found by each
variant as well as their quality in a fair way. They display the same information as Table 1 and
Figures 2 and 3, respectively. For a fair comparison, we are not aggregating the results of the six
variants of the variable-bound-driven fix-and-propagate heuristic, because this would naturally
lead to higher success rates. Instead, we are counting each (potential) call of each of the six
variants, which increases the number of observations from 496 to 2976. Note that we are not
counting the time of all six variants into the root node processing time when looking at a single
variant, but reduce the root time by the time spent in the other five variants.

We see that the variable-bound-driven fix-and-propagate heuristic is stopped early due to
missing structure or infeasible assignments in 42.2 % of the calls, while having a success rate of
67.5 % on the other instances. These numbers are similar to those of the clique-driven heuristic,
as is the running time of an average heuristic call in the former case. A main difference that can
be observed is that the average time for a heuristic call that is not stopped early is much higher.
It is increased by almost an order of magnitude, which can be attributed to similar increases in
the average LP and LNS time. A closer look at the results for the individual instances revealed
that this is mainly caused by a few instances for which the LNS process consumed almost an hour
of runtime, while normally, the root node processing was finished within seconds. The arithmetic
mean is particularly prone to such changes which result in very large numbers on few instances.
Figures 5 and 6 second that this change is mainly due to some outliers. The fixing rates, as
shown in Figure 5, have a similar distribution as for the clique-driven heuristic, however, there
are 10.2 % of the heuristic calls with a fixing rate α of less than 5 %, as opposed to 4.8 % for the
clique-driven heuristic. The figures suggest that a fixing threshold α = 65 % is again reasonable.
This way, we filter out 36.1 % of the heuristic calls with an average running time of 29 % of the

subset calls sols root time heur time F&P time LP time LNS time

all 2976 1161 94.44 19.38 0.23 0.99 18.17
stopped early 1255 – 69.09 0.12 0.12 – –
only LP solved 1311 809 84.70 1.33 0.35 0.98 –
LP + LNS 410 352 203.22 136.09 0.18 4.02 131.89

Table 3: Statistics for the six variants of the variable-bound-driven fix-and-propagate heuristic
without fixing thresholds on the MMMC test set. Each call of a variant is counted individually,
resulting in 2976 observations.

16

Figure 5: Number of instances and solutions found by the variable-bound-driven fix-and-
propagate heuristic per integer fixing rate after the fix-and-propagate step. The solid blue part
of each bar represents the instances for which the heuristic found a solution, the checked red part
the instances where it was unsuccessful. The darker (lighter) parts represent instances where a
(no) sub-MIP was solved.

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

fixing rate (%)

#
in

st
a
n

ce
s

instances w/o solutions

instances w/o solutions w/ LNS

instances w/ solutions

instances w/ solutions w/ LNS

root node processing time, see Figure 6. The remaining 1099 heuristic calls have a success rate of
67.6 % with an average running time of 1.6 % of the root node processing time. Only 74 sub-MIPs
are solved which construct 70 feasible solutions. Compared to the clique-based heuristic, which
has a higher success rate of 74.9 %, the average effort per call of a variant is almost identical.
The different variants, however, allow to spend more effort to potentially find more or better
solutions. Thus, we will use fixing thresholds α = β = 65 % for the variable-bound-driven fix-
and-propagate heuristic in the following. Given these thresholds, we only call the heuristic on
instances where we expect enough fixings based on the size of the variable bound graph.

How well the variants complement each other is investigated in Table 4. For each of the
six variants (defined by the first two columns which present the values of the two parameters
strategy and obj), the table shows its success in finding primal solutions. Thereby, we are only
counting heuristic calls that reached the fixing rate limits of 65 %. We present four different
statistics. Column “sols” lists the total number of solutions found by the variant, while column

Figure 6: Average effort of the variable-bound-driven fix-and-propagate heuristic per fixing
rate, relative to total root node processing time.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

fixing rate (%)

ro
ot

ti
m

e
sh

ar
e

(%
)

17

“best sols” displays the number of instances where the variant found a solution with best objective
value among the variants. This includes cases where multiple variants found solutions with the
same best objective value, while column “single best sols” only includes instances where the
solution was strictly better than the solutions found by all other variants. Finally, column
“single sols” summarizes the number of instances for which the respective variant was the only
one able to construct a feasible primal solution.

The three variants (cons, feas), (aggr, noobj), and (aggr, feas), which find the highest
number of solutions also find many best solutions. Variant (aggr, qual) is ranked worst with
respect to the number of solutions found, but taking into account the objective during fixing
proves beneficial for finding better solutions than the other variants: it is ranked second for
the number of strictly best solutions. Overall, (cons, noobj) performs worst. Although finding
the fourth-highest number of solutions, it is ranked last for all other criteria. For all but two
instances, there is at least one other variant which finds a solution of equal or better quality. For
all other variants, there are at least 17 instances where the variant finds the single best solution
and often several instances where no other variant finds a solution at all. These results, together
with the relatively small effort for the call of a single variant motivate the default settings for
the heuristic. Variant (cons, noobj) is disabled by default, all five other variants are called
sequentially in each call of the variable-bound-driven fix-and-propagate heuristic.

The performance of the final version of the variable-bound-driven fix-and-propagate heuristic
is presented in Table 5. It lists the same kind of information as Table 1 for each call of the
variable-bound-driven heuristic, which includes the sub-calls of the five variants enabled by de-
fault. Thereby, improving primal solutions found by one variant are directly applied, which may
influence the variants executed later. Additionally, the heuristic is not run on instances for which
the variable bound graph spans only such a small fraction of the variables that reaching the fixing
rate is very unlikely. More precisely, the heuristic is only called if the number of variable bounds
is at least 0.1α of the total variable number. As a consequence, the heuristic reaches the LP
solving and rounding step for only 44 % of the instances. Note that an instance is counted for
having solved an LNS sub-MIP if at least one of the variants did so on this instance; otherwise,
an instance is counted as having solved the LP if one of the variants did so. The former case
happens for 53 instances, for 50 of those, a feasible primal solution can be constructed. Overall,
the variable-bound-driven fix-and-propagate heuristic consumes about 2.2 % of the root node
processing time. The effort is negligible for instances where it is stopped before the LP solving,
while for the remaining instances, it increases to 4.51 %. This seems still reasonable given the
success rate of 78.9 % on this set of instances.

strategy obj sols best sols single best sols single sols

cons noobj 113 46 2 1
cons qual 112 54 25 3
cons feas 139 78 35 7
aggr noobj 147 84 17 2
aggr qual 90 59 26 6
aggr feas 142 72 24 12

Table 4: Comparison of the six variants of the variable-bound-driven fix-and-propagate heuristic
with fixing thresholds α = β = 65 % on the MMMC test set (496 instances).

18

subset size sols root time heur time F&P time LP time LNS time

all 496 172 79.26 1.74 1.06 0.11 0.57
stopped early 278 – 75.99 0.04 0.04 – –
only LP solved 165 122 81.70 3.19 2.97 0.21 –
LP + LNS 53 50 102.42 6.17 0.45 0.39 5.33

Table 5: Statistics for the variable-bound-driven fix-and-propagate heuristic with final fixing
thresholds α = β = 65 % on the MMMC test set. For each instance, the calls of the five variants
enabled by default are merged, giving one result.

7 The variable-locks-driven fix-and-propagate heuristic

The variable-locks-driven fix-and-propagate heuristic works on a structure which is present in
each MIP: the constraint matrix, and in particular, the variable locks, see Sect. 3.3. While cliques
and the variable bound graph represent only a part of the original constraints, but also cover
relations implicitly given in the problem and detected during presolving, the variable locks take
into account all given constraints.

The heuristic is motivated by greedy heuristics for set covering problems: Starting with an
all-zero solution, one selects one variable which is contained in the highest number of constraints
and fixes it to 1. By this, all these set covering constraints are fulfilled independently of the other
variables’ values. In subsequent steps, a variable is selected which is contained in the highest
number of not-yet fulfilled constraints.

How the variable-locks-driven fix-and-propagate heuristic translates this approach to general
MIP is shown in Algorithm 4. In each iteration of the fixing process, a “high-impact” binary
variable is selected, where the impact of a variable is decided based on the sum of its up- and
down-locks, which corresponds to the number of constraints it is part of, cf. line 5. Then, the
given variable is fixed to the bound where it has the smaller number of locks, see lines 8 to 12.
This aims at reaching feasibility fast and possibly ensuring that some constraints are already
fulfilled after a few fixings, no matter how the values of the remaining variables in the constraint
will be chosen within their updated bounds. If a variable has the same number of up- and down
locks, we use a randomized approach to determine its fixing value. The variable is then fixed to 1
with a probability of 67 %, see line 11. We chose this probability based on a previous experiment
where it showed a good performance.

If a constraint is already fulfilled, its locks are disregarded (see lines 2–4), so that the impact
and the fixing direction are always determined with respect to the not-yet fulfilled constraints
only. Therefore, it may happen that all constraints are fulfilled already and none of the remaining
variables has any locks left. In this case, we stop the fixing procedure and return that the LP
should be solved directly in order to determine optimal values for the remaining variables, cf.
lines 6–7.

7.1 Computational analysis

For the computational analysis of the variable-locks-driven fix-and-propagate heuristic, we used
the same environment, the same software, and the same instance set as described in Section 5.1.
As the previously presented heuristics, the heuristic is called once at the start of root node
processing. Note that we are not using the exact activities to identify already fulfilled constraints.
Computing them from scratch in each iteration would be too expensive; instead, we are using

19

subset size sols root time heur time F&P time LP time LNS time

all 496 253 78.46 0.47 0.22 0.22 0.03
stopped early 210 – 68.82 0.24 0.24 – –
only LP solved 277 244 74.77 0.54 0.18 0.36 –
LP + LNS 9 9 417.14 3.48 0.90 1.06 1.51

Table 6: Statistics for the variable-locks-driven fix-and-propagate heuristic without fixing
thresholds on the MMMC test set.

an updating mechanism which updates activities whenever the heuristic fixes a variable. The
structure of SCIP, however, makes it hard to update them for propagated domain changes.
Therefore, constraints may be detected to be fulfilled later than they could otherwise be, but the
detection still works reasonably well while being sufficiently fast.

We performed the same experiments as described in Section 5.1 to derive good fixing thresh-
olds α and β. The results are summarized in Table 6 and Figures 7 and 8.

The variable-locks-driven fix-and-propagate heuristic is different to the other two heuristics
presented in this paper in two aspects. First, it does not necessarily aim at fixing as many binary
variables as possible. It constantly monitors how many of the constraints became redundant with

Algorithm 4: locks fixing

input : - MIP P(c, A, b, `, u,N , I)

output: - index of binary variable xk which should be fixed next;
or -1 if no further fixings should be performed

- should xk be fixed to it 0 (otherwise: 1)?
- result of the call: continue or directly solve LP

1 begin
// get variable locks

2 for i ∈ B do
3 ζ+i ← |{r ∈ [1, . . . ,m] : ari > 0 ∧max{Ar.x|` ≤ x ≤ u} > br}|
4 ζ−i ← |{r ∈ [1, . . . ,m] : ari < 0 ∧max{Ar.x|` ≤ x ≤ u} > br}|

// select variable with highest sum of up- and down-locks

5 k ← arg maxi∈B{ζ+i + ζ−i }
// no variable with locks left, stop fixing phase

6 if ζ+k = ζ−k = 0 then
7 return (0,FALSE,solve LP)

// fix variable to bound where it has fewer locks

8 if ζ+k > ζ−k then
9 return (k,TRUE,continue)

10 else if ζ+k = ζ−k then
11 return (k,TRUE,continue) with probability 33 %

12 return (k,FALSE,continue)

20

Figure 7: Number of instances and solutions found by the variable-locks-driven fix-and-
propagate heuristic per integer fixing rate after the fix-and-propagate step. The solid blue part
of each bar represents the instances for which the heuristic found a solution, the checked red part
the instances where it was unsuccessful. The darker (lighter) parts represent instances where a
(no) sub-MIP was solved.

0 10 20 30 40 50 60 70 80 90 100
0

100

200

fixing rate (%)

#
in

st
a
n

ce
s

instances w/o solutions

instances w/o solutions w/ LNS

instances w/ solutions

instances w/ solutions w/ LNS

respect to the tightened domains and stops the fixing phase as soon as all constraints became
redundant. The values for all remaining variables can easily be determined by the subsequent
LP solve. This is also taken into account in the general framework for structure based heuristics,
where the fixing rate does not need to be checked in that case (see Algorithm 1, line 17). For
better comparability, such instances will be counted as having a fixing rate of 100 % in the
following, since the remaining problem can be optimized as an LP.

On the other hand, the variable-locks-driven fix-and-propagate heuristic is based on a struc-
ture which covers the whole problem, in particular all binary variables. This is different to
clique table and variable bound graph which often cover only a part of the binary variables (at
least when disregarding trivial cliques containing only one variable as the clique-driven heuristic
does). This means the the heuristic can always specify a fixing value for all binary variables
unlike clique- and variable-bound-driven fix-and-propagate heuristic which will just stop the fix-
ing phase as soon as all variables in the respective structure were fixed. As a consequence, the
heuristic typically fixes a high number of variables or fails repeatedly while trying to do so. This
leads to 210 instances where the heuristic is stopped before the LP solving. For the remaining
286 instances, the heuristic successfully constructs a feasible primal solution in 88.5 % of the
cases. To do so, it performs the LNS step for only 9 instances. This small number is a direct
consequence of the effectiveness of domain propagation and obtaining high fixing rates, which
make it more probable to be successful in rounding the LP solution.

The fixing rates are illustrated in Figure 7. It shows that 232 of the 286 instances for which
at least an LP was solved have a fixing rate of 100 % or the fixing phase rendered all constraints
redundant. On the other hand, only 18 instances which solve an LP have a fixing rate of less
than 90 %, 8 of them perform an LNS search.

Figure 8 shows the effort of the variable-locks-driven fix-and-propagate heuristic is very small
for fixing rates larger than 60 %. Note that we cannot really take a conclusion for fixing rates
between 60 % and 75 %, since this case does not happen in our experiment. What we can say,
though, is that for instances with a fixing rate of less than 60 %, the average running time of
the heuristic accounts for 28.3 % of the root processing time, while for higher fixing rate this is

21

Figure 8: Average effort of the variable-locks-driven fix-and-propagate heuristic per fixing rate,
relative to total root processing time.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

fixing rate (%)

ro
ot

ti
m

e
sh

a
re

(%
)

reduced to 1.9 %.
As a consequence, and for consistency reasons, we set the fixing thresholds α and β to

65 % by default. The final statistics for the variable-locks-driven fix-and-propagate heuristic are
summarized in Table 7, which again lists the same kind of information as Table 1. The heuristic
finds 240 solutions, which results in a success rate of 48.4 % over the complete test set and 88.2 %
for the subset of instances where the heuristic is not stopped early. It only solves a single LNS
sub-MIP which is a direct consequence of the effectiveness of domain propagation and obtaining
high fixing rates, making it more probable to be successful in rounding the LP solution. Overall,
the heuristic is reasonably fast, accounting for about 0.5 % of the average root node processing
time.

8 Computational results

In the previous sections, we did a local analysis of the newly proposed heuristics. This means
that we evaluated each heuristic individually, focussing on its success in terms of solutions being
found. Additionally, we investigated their runtimes and which part of the heuristic algorithm
consumed how much time. In this section, we investigate the impact of the structure-driven
fix-and-propagate heuristics on the overall solving behavior of SCIP and evaluate how well they
can be combined. For this, we use SCIP version 4.0 with default settings except for the settings
enabling the three investigated heuristics.

Before we come to the overall performance, let us shortly look at how well the heuristics
complement each other. The variable-locks-driven fix-and-propagate heuristic finds a solution
for 48.4 % of the instances, while the clique- and the variable-bound-driven heuristic, which both

subset calls sols root time heur time F&P time LP time LNS time

all 496 240 78.15 0.42 0.22 0.20 0.00
stopped early 224 – 81.04 0.25 0.25 – –
only LP solved 271 239 75.95 0.55 0.19 0.37 –
LP + LNS 1 1 24.70 1.88 1.15 0.05 0.69

Table 7: Statistics for the variable-locks-driven fix-and-propagate heuristic with final fixing
thresholds α = β = 65 % on the MMMC test set.

22

worse solution

clique vbound locks
b

et
te

r clique – 68 94
vbound 117 – 127
locks 155 130 –

(a) instances where at least one heuristic found
a solution

worse solution

clique vbound locks

b
et

te
r clique – 43 71

vbound 67 – 86
locks 38 20 –

(b) instances where both heuristics found a so-
lution

Table 8: Pairwise comparison of the structure-driven fix-and-propagate heuristics, showing the
number of instances where one heuristic found a better solution than the other.

depend on a more specific structure in the problem, are only able to generate solutions for 29.4 %
and 34.5 % of the instances, respectively. Table 8 shows a pairwise comparison of the heuristics
with respect to the objective value of solutions being constructed. On the left side, all instances
are regarded where at least one of the two heuristics found a solution, not counting instances
where both found a solution of equal objective value. Here, the variable-locks-driven heuristic
performs best, followed by the variable-bound-driven one. On the right side the evaluation is
restricted to instances where both heuristics found a solution; now the variable-bound-driven
heuristic performs best with the variable-locks-driven heuristic being ranked last. Summing up,
the variable-locks-driven heuristic performs very well with respect to the number of solutions
found but does not take into account the objective function. The clique- and variable-bound-
driven heuristics both consider the objective function and construct solutions with better objec-
tive values but are successful for fewer instances. Among the two, the latter is more successful,
but also considerably more expensive due to running up to five fixing scheme variants. Based
on this analysis, we decided to configure the heuristics as follows: the clique-driven heuristic is
called first, then the variable-locks-driven one and finally the variable-bound-driven heuristic.
We are running the faster heuristics first because a solution generated by them provides a cutoff
bound that may speed-up the LP and sub-MIP solving of the variable-bound-driven heuristic.

For the overall performance evaluation, we ran SCIP once without any of the three structure-
driven primal heuristics, once for each of the three heuristics with only this heuristic enabled
and the other two disabled, and once with all three heuristics enabled. We used a cluster of
2.50 GHz Intel Xeon E5-2670 v2 CPUs with 128 GB main memory. Each job was run exclusively
on one node with a time limit of 7200 seconds and a memory limit of 100 GB. In order to reduce
the impact of performance variability (see [47, 52]), we ran each instance six times with different
random seeds (one of them being the default seed). We removed 27 instance/seed combinations
that caused numerical troubles in one of the experiments, leaving us with 2967 instance/seed
combinations. In a slight abuse of notation, we will refer to each instance/seed combination as
an individual instance in the following. The results of the experiments were evaluated with the
Interactive Performance Evaluation Tools (IPET) [44] and are summarized in Table 9.

The table is divided into two parts. Each part lists solving process statistics for the five
settings, each represented by one row, on a different (sub-)set of instances. The first column
denotes the setting, followed by columns listing the number of instances solved to optimality
within the time limit of two hours and the number of solutions found by the structure-driven fix-
and-propagate heuristics. Column four lists the time in seconds until the first solution was found
for the instances, averaged by the shifted geometric mean [2] with a shift of 1 second. Column

23

setting opt sols first sol (s) primal int. time (s)

all instances (2967)

nostructheur 1863 0 4.2 2080.3 431.7
onlyclique 1875 869 4.2 2025.0 429.0
onlyvbound 1877 1023 3.8 1979.1 428.9
onlylocks 1874 1443 4.0 2035.6 430.0
allstructheur 1880 1730 3.5 1857.2 421.2

hard instances (874)

nostructheur 791 0 7.3 3011.3 686.9
onlyclique 803 187 7.1 2994.7 667.6
onlyvbound 805 231 6.4 2908.0 661.0
onlylocks 802 405 6.6 2755.4 671.0
allstructheur 808 479 5.7 2596.3 630.2

Table 9: Solution process statistics for SCIP with default settings and with additional structure-
driven heuristics.

“primal int.” shows the shifted geometric mean with a shift of 100 of the primal integrals1 for the
instances. The last column presents the shifted geometric mean of the running time in seconds
with a shift of 10 seconds.

The first part of the table considers all 2967 instances. On this set, each of the structure-
driven fix-and-propagate heuristics helps to increase the number of instances solved to optimality
within the time limit, while enabling all of them leads to the best results with 17 more instances
being solved than without any of the heuristics. When running all three heuristics, an initial
solution is constructed for 58.3 % of the instances. Each of the heuristics individually reduces the
time needed to find a first feasible solution by 1.7 % (clique-driven heuristic) to 10.3 % (variable-
bound-driven heuristic). Used together, they even accomplish a reduction of 16.4 %. With respect
to the primal integral, each heuristic alone accounts for a reduction by 2.2 % to 4.9 %, by enabling
all three heuristics, a reduction of 10.7 % is obtained. But not only these measures tailored to
primal heuristics are improved: the most important measure, the solving time to optimality, is
also slightly improved by running the heuristics. Even though about one-third of the instances
in the test set do not change their running time because they time out with all settings, we
observe a speed-up of 2.4 % with all three heuristics enabled. More interesting in this regard is
the second part of Table 9 which refers to the subset of “hard” instances. This excludes instances
that all settings solved within 100 seconds. For these instances, the potential for improvement is
smaller while the overhead for running the heuristic has a larger impact. The hard instances, on
the other hand, are the ones where algorithmic improvements are particularly needed and where
we expected a larger impact of the heuristics. We additionally exclude all instances that none of
the settings could solve since those dampen the actual improvement. The number of additionally
solved instances stays unchanged compared to the complete set, as is implied by the definition
of the subset. The success rates of clique- and variable-bound-driven heuristics are both reduced
by about 8 % as compared to the complete test set. The variable-locks-driven fix-and-propagate
heuristic is almost as successful as before, while running all heuristics still finds a solution for

1We compute the primal integral [15] of instance i as P (i) =
∫ tmax
t=0 γi(t) dt with tmax= 7200 seconds and γi(t)

the primal gap at time t.

24

54.8 % of the hard instances. When running all heuristics, the time to the first solution is reduced
by 21.2 % and the average primal integral by 13.8 %. Due to focusing on the most interesting
instances and omitting unsolvable and very easy ones, we can observe a solving time reduction
by 8.3 % now when activating all heuristics.

These are impressive numbers for primal heuristics in mixed-integer programming. The
improvement is not caused by the solutions found by the heuristics alone, however. There is
also a side-effect which impacts performance: the generation of conflict constraints [1, 63]. They
capture the essence of infeasible assignments detected during the fix-and-propagate phase and
help to guide the subsequent search. To assess this effect, we further split the hard instances
into the 479 instances where at least one of the heuristics found a solution on the one side and
the remaining 395 on the other side. For the first set, the positive effects of running all three
structure-driven heuristics are strengthened. The time to the first solution is reduced by 45.9 %
and the average primal integral by 25.8 %. The average solving time goes down by 12.3 % while
11 more instances are solved. On the 395 instances where no solution is constructed, the time to
the first solution is increased by 0.5 % and the average primal integral by 2.3 %. This is due to
the overhead caused by the heuristics which slows down the initial root processing of the main
MIP solve. In the long run, however, conflict constraints generated by the seemingly unsuccessful
heuristic calls improve the solving time by 3.1 % and even help to solve 6 more instances. An
additional computational experiment in which we disabled the creation of conflict constraints
showed a reduction in the solving time improvement by about one third, while the impact on the
average time to a first solution and average primal integral is considerably smaller (about 5 %
and 20 %, respectively). This shows that the main task of our newly proposed primal heuristics,
namely generating primal feasible solutions, is still the main reason for the improvements we
observed.

9 Conclusions and outlook

In this paper, we presented three primal heuristics which are based on global structures available
within MIP solvers. Those structures are the clique table, the variable bound graph, and the
variable locks based on the constraint matrix. The heuristics use these structures to define a
sequence of variable fixings applied in a fix-and-propagate approach. The LP relaxation of the
resulting sub-problem is then solved and rounded. If the rounded LP solution is not feasible,
the sub-problem is solved in an LNS fashion. In our approach, domain propagation is not only
used as a tool to avoid infeasible fixings but rather are the fixing order and fixing values decided
based on their effect on the domain propagation step. The global structures provide the tools to
predict this effect by representing a part of the domain reductions that can be deduced from a
variable fixing.

We performed a detailed analysis of the three heuristics to derive appropriate default settings.
Our final computational experiments indicate that all three heuristics complement each other
in the academic MIP solver SCIP. When applying all of them at the beginning of the branch-
and-bound search, they are able to generate a solution for almost 60 % of the instances in
standard MIP benchmark sets. This reduces the shifted geometric means of both the time to the
first solution as well as the primal integral significantly. The structure-driven fix-and-propagate
heuristics prove to perform particularly well on hard instances, where they decrease the solving
time by more than 12 % when successful. But even when they do not find a feasible solution,
they are still able to provide a small improvement by 3 % on average due to other effects, most
importantly, conflict constraints generated for unsuccessful calls. Therefore, the updated versions
of all three heuristics are part of SCIP since release 5.0 and enabled by default.

25

Acknowledgements

The work for this article has been conducted within the Research Campus Modal funded by the
German Federal Ministry of Education and Research (fund number 05M14ZAM). The authors
would like to thank the anonymous reviewers for helpful comments on the paper.

References

[1] T. Achterberg. Conflict analysis in mixed integer programming. Discret. Optim., 4(1):4–20,
Mar. 2007.

[2] T. Achterberg. Constraint Integer Programming. PhD thesis, Technische Universität Berlin,
2007.

[3] T. Achterberg and T. Berthold. Improving the Feasibility Pump. Discret. Optim., 4(1):77–
86, 2007.

[4] T. Achterberg, T. Berthold, and G. Hendel. Rounding and propagation heuristics for mixed
integer programming. In D. Klatte, H.-J. Lüthi, and K. Schmedders, editors, Operations
Research Proceedings 2011, pages 71–76. Springer Berlin Heidelberg, 2012.

[5] T. Achterberg, R. E. Bixby, Z. Gu, E. Rothberg, and D. Weninger. Presolve reductions in
mixed integer programming. Technical Report 16-44, ZIB, Takustr. 7, 14195 Berlin, 2016.

[6] T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research Letters,
34(4):1–12, 2006.

[7] T. Achterberg and C. Raack. The MCF-separator: detecting and exploiting multi-
commodity flow structures in MIPs. Mathematical Programming Computation, 2(2):125–
165, 2010.

[8] T. Achterberg and R. Wunderling. Mixed integer programming: Analyzing 12 years of
progress. In Facets of Combinatorial Optimization, pages 449–481. Springer, 2013.

[9] C. E. Andrade, S. Ahmed, G. L. Nemhauser, and Y. Shao. A hybrid primal heuristic
for finding feasible solutions to mixed integer programs. European Journal of Operational
Research, 263(1):62–71, 2017.

[10] A. Atamtürk, G. L. Nemhauser, and M. W. Savelsbergh. Conflict graphs in solving integer
programming problems. European Journal of Operational Research, 121(1):40–55, 2000.

[11] A. Atamtürk, G. L. Nemhauser, and M. W. Savelsbergh. The mixed vertex packing problem.
Mathematical Programming, 89(1):35–53, Nov 2000.

[12] D. Bergman, A. A. Cire, W.-J. van Hoeve, and T. Yunes. BDD-based heuristics for binary
optimization. Journal of Heuristics, 20(2):211–234, 2014.

[13] L. Bertacco, M. Fischetti, and A. Lodi. A feasibility pump heuristic for general mixed-integer
problems. Discrete Optimization, Special Issue 4(1):63–76, 2007.

[14] T. Berthold. Primal heuristics for mixed integer programs. Diploma thesis, Technische
Universität Berlin, 2006.

26

[15] T. Berthold. Measuring the impact of primal heuristics. Operations Research Letters,
41(6):611–614, 2013.

[16] T. Berthold. Heuristic algorithms in global MINLP solvers. PhD thesis, Technische Univer-
sität Berlin, 2014.

[17] T. Berthold. RENS – the optimal rounding. Mathematical Programming Computation,
6(1):33–54, 2014.

[18] T. Berthold. Improving the performance of MIP and MINLP solvers by integrated heuristics.
In K. F. Dörner, I. Ljubic, G. Pflug, and G. Tragler, editors, Operations Research Proceedings
2015, pages 19–24. Springer International Publishing, Cham, 2017.

[19] T. Berthold, T. Feydy, and P. J. Stuckey. Rapid learning for binary programs. In A. Lodi,
M. Milano, and P. Toth, editors, Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems, Lecture Notes in Computer Science,
pages 51–55. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[20] T. Berthold and A. M. Gleixner. Undercover – a primal heuristic for MINLP based on sub-
MIPs generated by set covering. In P. Bonami, L. Liberti, A. J. Miller, and A. Sartenaer,
editors, Proceedings of the EWMINLP, pages 103–112, April 2010.

[21] T. Berthold, M. Perregaard, and C. Mészáros. Four good reasons to use an interior point
solver within a MIP solver. Technical Report 17-42, ZIB, Takustr. 7, 14195 Berlin, 2017.

[22] R. E. Bixby. A brief history of linear and mixed-integer programming computation. Docu-
menta Mathematica, pages 107–121, 2012.

[23] R. E. Bixby, S. Ceria, C. M. McZeal, and M. W. P. Savelsbergh. An updated mixed integer
programming library: MIPLIB 3.0. Optima, (58):12–15, June 1998.

[24] R. E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling. MIP: Theory and
practice – closing the gap. In M. J. D. Powell and S. Scholtes, editors, Systems Modelling and
Optimization: Methods, Theory, and Applications, pages 19–49. Kluwer Academic Publisher,
2000.

[25] COR@L. MIP Instances, 2014. http://coral.ie.lehigh.edu/data-sets/

mixed-integer-instances/.

[26] R. J. Dakin. A tree-search algorithm for mixed integer programming problems. The Com-
puter Journal, 8(3):250–255, 1965.

[27] E. Danna, E. Rothberg, and C. L. Pape. Exploring relaxation induced neighborhoods to
improve MIP solutions. Mathematical Programming, 102(1):71–90, 2004.

[28] S. Dey, A. Iroume, M. Molinaro, and D. Salvagnin. Improving the randomization step in
feasibility pump. arXiv preprint arXiv:1609.08121, 2016.

[29] M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathematical Programming,
104(1):91–104, 2005.

[30] M. Fischetti and A. Lodi. Local branching. Mathematical Programming, 98(1-3):23–47,
2003.

27

http://coral.ie.lehigh.edu/data-sets/mixed-integer-instances/
http://coral.ie.lehigh.edu/data-sets/mixed-integer-instances/

[31] M. Fischetti and A. Lodi. Repairing MIP infeasibility through local branching. Computers &
Operations Research, 35(5):1436–1445, 2008. Special Issue: Algorithms and Computational
Methods in Feasibility and Infeasibility.

[32] M. Fischetti and A. Lodi. Heuristics in mixed integer programming. In J. J. Cochran,
L. A. Cox, P. Keskinocak, J. P. Kharoufeh, and J. C. Smith, editors, Wiley Encyclopedia
of Operations Research and Management Science. John Wiley & Sons, Inc., 2010. Online
publication.

[33] M. Fischetti and M. Monaci. Proximity search for 0-1 mixed-integer convex programming.
Journal of Heuristics, 20(6):709–731, 2014.

[34] M. Fischetti and D. Salvagnin. Feasibility pump 2.0. Mathematical Programming Compu-
tation, 1:201–222, 2009.

[35] A. Fügenschuh and A. Martin. Computational integer programming and cutting planes.
In K. Aardal, G. L. Nemhauser, and R. Weismantel, editors, Discret. Optim., volume 12
of Handbooks in Operations Research and Management Science, chapter 2, pages 69–122.
Elsevier, 2005.

[36] G. Gamrath, T. Berthold, S. Heinz, and M. Winkler. Structure-based primal heuristics for
mixed integer programming. In Optimization in the Real World, volume 13, pages 37 – 53.
Springer Tokyo, 2015.

[37] G. Gamrath, T. Berthold, S. Heinz, and M. Winkler. Structure-driven fix-and-propagate
heuristics for mixed integer programming. Technical Report 17-56, ZIB, Takustr. 7, 14195
Berlin, 2017.

[38] F. Gardi. Toward a mathematical programming solver based on local search. Habilitation
thesis, Université Pierre et Marie Curie, 2013.

[39] S. Ghosh. DINS, a MIP improvement heuristic. In M. Fischetti and D. P. Williamson,
editors, Integer Programming and Combinatorial Optimization, 12th International IPCO
Conference, Proceedings, volume 4513 of LNCS, pages 310–323. Springer Berlin Heidelberg,
2007.

[40] A. Gleixner, L. Eifler, T. Gally, G. Gamrath, P. Gemander, R. L. Gottwald, G. Hendel,
C. Hojny, T. Koch, M. Miltenberger, B. M. r, M. E. Pfetsch, C. Puchert, D. Rehfeldt,
F. Schlösser, F. Serrano, Y. Shinano, J. M. Viernickel, S. Vigerske, D. Weninger, J. T. Witt,
and J. Witzig. The SCIP Optimization Suite 5.0. Technical Report 17-61, ZIB, Takustr. 7,
14195 Berlin, 2017.

[41] G. Guastaroba, M. Savelsbergh, and M. Speranza. Adaptive kernel search: A heuris-
tic for solving mixed integer linear programs. European Journal of Operational Research,
263(3):789–804, 2017.

[42] M. Guzelsoy, G. Nemhauser, and M. Savelsbergh. Restrict-and-relax search for 0-1 mixed-
integer programs. EURO Journal on Computational Optimization, pages 1–18, 2013. online
first publication.

[43] P. Hansen, N. Mladenović, and D. Urošević. Variable neighborhood search and local branch-
ing. Computers & Operations Research, 33(10):3034–3045, 2006.

28

[44] G. Hendel. IPET interactive performance evaluation tools. https://github.com/

GregorCH/ipet.

[45] E. L. Johnson and M. W. Padberg. Degree-two inequalities, clique facets, and biperfect
graphs. North-Holland Mathematics Studies, 66:169–187, 1982.

[46] U. Koc and S. Mehrotra. Generation of feasible integer solutions on a massively parallel
computer using the feasibility pump. Operations Research Letters, 2017.

[47] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby, E. Danna,
G. Gamrath, A. M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann, T. Ralphs, D. Salvagnin,
D. E. Steffy, and K. Wolter. MIPLIB 2010. Mathematical Programming Computation,
3(2):103–163, 2011.

[48] A. H. Land and A. G. Doig. An automatic method of solving discrete programming problems.
Econometrica, 28(3):497–520, 1960.

[49] J. Lazić. Variable and single neighbourhood diving for MIP feasibility. Yugoslav Journal of
Operations Research, 26(2), 2016.

[50] A. Lodi. Mixed integer programming computation. In M. Jünger, T. M. Liebling, D. Naddef,
G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, and L. A. Wolsey, editors, 50
Years of Integer Programming 1958-2008, pages 619–645. Springer Berlin Heidelberg, 2010.

[51] A. Lodi. The heuristic (dark) side of MIP solvers. In E.-G. Talbi, editor, Hybrid Metaheuris-
tics, volume 434 of Studies in Computational Intelligence, pages 273–284. Springer Berlin
Heidelberg, 2013.

[52] A. Lodi and A. Tramontani. Performance variability in mixed-integer programming. In
Theory Driven by Influential Applications, chapter 1, pages 1–12. INFORMS, 2013.

[53] S. J. Maher, T. Fischer, T. Gally, G. Gamrath, A. Gleixner, R. L. Gottwald, G. Hendel,
T. Koch, M. E. Lübbecke, M. Miltenberger, B. Müller, M. E. Pfetsch, C. Puchert, D. Re-
hfeldt, S. Schenker, R. Schwarz, F. Serrano, Y. Shinano, D. Weninger, J. T. Witt, and
J. Witzig. The SCIP Optimization Suite 4.0. Technical Report 17-12, ZIB, Takustr. 7,
14195 Berlin, 2017.

[54] H. Marchand and L. A. Wolsey. Aggregation and mixed integer rounding to solve MIPs.
Operations Research, 49(3):363–371, 2001.

[55] F. Margot. Symmetry in Integer Linear Programming. In M. Jünger, T. M. Liebling,
D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, and L. A. Wolsey,
editors, 50 Years of Integer Programming 1958-2008: From the Early Years to the State-of-
the-Art, pages 647–686. Springer Berlin Heidelberg, 2010.

[56] L.-M. Mungúıa, S. Ahmed, D. A. Bader, G. L. Nemhauser, and Y. Shao. Alternating
criteria search: a parallel large neighborhood search algorithm for mixed integer programs.
Computational Optimization and Applications, 2017.

[57] J. Pryor and J. W. Chinneck. Faster integer-feasibility in mixed-integer linear programs by
branching to force change. Computers & Operations Research, 38(8):1143–1152, 2011.

[58] E. Rothberg. An evolutionary algorithm for polishing mixed integer programming solutions.
INFORMS Journal on Computing, 19(4):534–541, 2007.

29

https://github.com/GregorCH/ipet
https://github.com/GregorCH/ipet

[59] D. Salvagnin. Detecting and exploiting permutation structures in MIPs. In H. Simonis,
editor, Integration of AI and OR Techniques in Constraint Programming, volume 8451 of
Lecture Notes in Computer Science, pages 29–44. Springer Berlin Heidelberg, 2014.

[60] M. W. P. Savelsbergh. Preprocessing and probing techniques for mixed integer programming
problems. ORSA Journal on Computing, 6:445–454, 1994.

[61] C. Wallace. ZI round, a MIP rounding heuristic. Journal of Heuristics, 16(5):715–722, 2010.

[62] M. Winkler. Presolving for pseudo-Boolean optimization problems. Diploma thesis, Tech-
nische Universität Berlin, 2014.

[63] J. Witzig, T. Berthold, and S. Heinz. Experiments with conflict analysis in mixed inte-
ger programming. In D. Salvagnin and M. Lombardi, editors, Integration of AI and OR
Techniques in Constraint Programming, pages 211–220. Springer International Publishing,
Cham, 2017.

[64] R. Wunderling. Paralleler und objektorientierter Simplex-Algorithmus. PhD thesis, Tech-
nische Universität Berlin, 1996.

30

	Introduction
	Primal heuristics and large neighborhood search for MIP
	Global structures in MIP solvers
	The clique table
	The variable bound graph
	Variable locks

	A framework for structure-driven fix-and-propagateheuristics
	The clique-driven fix-and-propagate heuristic
	Computational analysis

	The variable-bound-driven fix-and-propagate heuristic
	Computational analysis

	The variable-locks-driven fix-and-propagate heuristic
	Computational analysis

	Computational results
	Conclusions and outlook

