
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

CHAVDAR PAPAZOV, HANS-CHRISTIAN HEGE

Blue-noise Optimized Point Sets
Based on Procrustes Analysis

ZIB Report 17-55 (Sept. 2017)

Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +49 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

Blue-noise Optimized Point Sets

Based on Procrustes Analysis

0 2.5 5.0 7.5 10.0
0

1

2

3

4

ra
d
ia
l
m
ea
n

0 2.5 5.0 7.5 10.0
-12

-6

0

6

12

frequency

an
is
ot
ro
p
y

input points optimized result power spectrum anisotropy & radial mean

Figure 1: A point set optimized with our algorithm exhibits typical blue noise characteristics.

Abstract

In this paper, we propose a new method for optimizing the blue noise characteristics of point sets. It is
based on Procrustes analysis, a technique for adjusting shapes to each other by applying optimal elements
of an appropriate transformation group. We adapt this technique to the problem at hand and introduce a
very simple, efficient and provably convergent point set optimizer.

1 Introduction

A point set optimizer transforms a given point set to another one, which is, in some sense, better than the input.
In this paper, we propose a new algorithm that maximizes the mutual distance between the points and leads
to distributions with excellent blue noise characteristics. Methods of this type have important applications in
areas like rendering, halftoning, stippling, texture synthesis and remeshing, just to name a few [YGW+15].

Given some input points distributed in a rectangular domain, our method iteratively maximizes the distance
between each point and its near neighbors while avoiding regular configurations. This is done by generating the
Delaunay triangulation of the input and then optimizing the vertex positions using Procrustes analysis.

Given two finite point sets Q,T ⊂ Rk, the Procrustes problem is to compute the rotation and translation that
optimally map Q to T by minimizing the sum of squared distances between corresponding points. Applications
include shape registration [BM92], deformation modeling [MHTG05], mesh parametrization [LZX+08] and many
others. To the best of our knowledge, the proposed algorithm is the first one that utilizes Procrustes analysis
in the context of blue-noise optimization.

Our method has several advantages: (i) it is very simple, (ii) it is provably convergent, (iii) it has low time
and memory complexity and (iv) it produces high-quality output.

Related Work. Perhaps the best-known point set optimizer is Lloyd’s relaxation method [Llo82]. It generates
point distributions with large inter-point distances but the output exhibits strong regularity artifacts. To account
for that, researchers developed methods that generate and optimize capacity-constrained Voronoi tessellations
[BSD09, dGBOD12, ZGZ+16]. They enforce that each point’s Voronoi region has the same area (volume)
throughout the optimization. Other state-of-the-art approaches include farthest point optimization [SHD11], a
kernel density model from statistical mechanics [Fat11] and an SPH method from computational fluid dynamics
[JZW+15]. Even though all these algorithms produce high-quality blue-noise distributions, they are either
computationally expensive or are based on complicated theory.

1

q1 q2

q3

p1
*

p2
*

p3
*p3

p2

p1

Q T

(R* , t*)

Figure 2: The target positions p∗
1,p

∗
2,p

∗
3 computed by rigidly mapping the equilateral triangle Q to the triangle T.

The energy of T is the sum of squared lengths of the red lines.

As our approach produces a triangulation of the input points, it is somewhat related to mesh generators
[ZS00, Che04]. However, such algorithms are not concerned with the blue noise characteristics of the mesh
vertices and tend to arrange them in regular hexagonal configurations.

2 Algorithm

Let an input point set be distributed in a (periodic or bounded) domain D = [x1, y1] × [x2, y2] ⊂ R2. Our
method relocates the points such that each one is roughly at a distance d from its near neighbors. How to
compute d is explained below. For now, assume that a suitable value is given.

2.1 Algorithm Description

Triangle matching. We denote by Q = (q1,q2,q3) an equilateral triangle with side length d that has its
center of mass at the origin. The exact positions of its vertices do not matter. We call Q the model triangle.
Let T = (p1,p2,p3) be another triangle, for which we compute the target positions p∗1,p

∗
2,p
∗
3 as

p∗i = R∗qi + t∗, i = 1, 2, 3, (1)

where R∗ ∈ SO(2) is the rotation matrix and t∗ ∈ R2 the translation vector, which most closely map Q to T:

(R∗, t∗) = argmin
R∈SO(2),t∈R2

3∑
i=1

‖(Rqi + t)− pi‖2. (2)

Each target position p∗i is the i-th vertex of the model triangle Q optimally mapped to T. Figure 2 pro-
vides an illustration. The Procrustes problem (2) has an efficient closed-form solution based on singular value
decomposition [AHB87].
Edge flipping. We set the energy of a triangle T = (p1,p2,p3) as

E(T) = E(p1,p2,p3) =

3∑
i=1

‖pi − p∗i ‖2. (3)

Let (p1,p2,p3) and (p1,p3,p4) be two triangles that share the edge (p1,p3), as shown in Figure 3(c). We flip
(p1,p3) only if this decreases the energy, i.e., if the following holds:

E(p1,p2,p4) + E(p2,p3,p4) < E(p1,p2,p3) + E(p1,p3,p4). (4)

Algorithm steps. In a preprocessing step, we compute the Delaunay triangulation (periodic or not) of the
input points. Let T1, . . . ,Tm be the resulting triangles. In this case, each vertex has as many target positions as
adjacent triangles since each triangle contributes with one target position to each of its vertices. The following
steps define the rest of the algorithm:

2

(a) step 1

p1

(b) step 2 (c) step 3

edge flip

p2

p4 p4

p3

p2

p1
p3

Figure 3: (a) The model triangle (gray) is mapped to the triangles in the current triangulation. Each vertex has a
corresponding set of target positions (indicated by the red lines). (b) Moving each vertex to the average of its target
positions. (c) The edge (p1,p3) is flipped as the model triangles (gray) better fit the two new triangles and the energy
decreases.

1. Match the model triangle Q to each Tk (Figure 3(a)).

2. Move each vertex to its average target position (Figure 3(b)).

3. Loop over the edges in random order and flip each one if Equation (4) holds (Figure 3(c)).

One iteration consists of these three steps. The method runs until the energy difference between consecutive

iterations falls below a given ε > 0. We use ε = 10−5
(
diagonal(D)

)2
. Note that the Delaunay triangulation is

computed only once at the beginning.
The inter-point distance d. The inter-point distance influences the final point distribution. Assuming n

input points, we relate d to the radius rmax =
(
area(D)/(2

√
3n)
)1/2

of n equal circles arranged in the densest
possible (hexagonal) packing in the rectangular domain D [SD11].

Circles with a smaller radius can be arranged in very nonuniform ways leading to clusters. This implies that
d should be no smaller than 2rmax. On the other hand, a value too large leads to badly shaped and flipped
triangles due to “lack of space”. We found experimentally that a value in the range [2rmax, 3.5rmax] leads to
similar point distributions with no flipped triangles. This indicates that our method is not particularly sensitive
to a specific parameter choice. All results in the paper are obtained with d = 3rmax.

2.2 Convergence and Complexity

Convergence. In the following, we prove the convergence of our method. Let P = {p1, . . . ,pn} be the input
points and T1, . . . ,Tm the triangles with Tk = (pk1 ,pk2 ,pk3) ⊂ P. Each Tk has an instance of the model
triangle Q attached to it by “elastic strings” (shown in red in Figure 3(a)). The sum of squared lengths of all
these strings is the energy to minimize. Step 1 reduces it by optimally mapping an instance of Q to each Tk.
Step 2 leads to a further decrease by moving each pi to the average of its target positions. (Recall that the
average v of n points minimizes the sum of squared distances from v to these points.)

More formally, using the triangle energy defined in Equation (3), the energy of the whole triangulation is

E =

m∑
k=1

E(Tk) =

m∑
k=1

3∑
l=1

‖pkl − p∗kl‖2. (5)

Note the slight change of notation due to the fact that, in contrast to (3), we now have m triangles instead of
a single one. Still, p∗kl is the target position of pkl induced by the triangle Tk.

Alternatively, we can sum over all vertices (points) and get

E =

n∑
i=1

mi∑
j=1

‖pi − p∗ij‖2, (6)

where mi denotes the number of triangles adjacent to pi and p∗ij is the target position of pi induced by the
j-th adjacent triangle to pi.

3

Obviously, (5) and (6) are equivalent as in both sums each squared string length appears exactly once,
just at a different place. By construction, Step 1 decreases each E(Tk) in (5) whereas Step 2 decreases each∑mi

j=1 ‖pi − p∗ij‖2 in (6). Step 3 also only leads to an energy decrease. Since the energy is bounded from below
by zero, the algorithm converges.
Periodic and bounded domains. Our algorithm can be implemented both in periodic (toroidal) and
bounded domains D. For periodic domains, we compute the periodic Delaunay triangulation [Kru16] and
modify the algorithm to take the toroidal nature of D into account. The changes are obvious and not further
discussed. The convergence proof remains unchanged.

pavg

D

pon
p i

In the case of a bounded domain, we initialize the algorithm with the Delaunay triangulation
dual to the Voronoi diagram clipped with D [YWLL13]. In Step 2, each point pi is moved to the
average pavg of its target positions. If pavg happens to lie outside D, pi is moved to pon, which is
the point in D closest to pavg.

Again, the convergence of the algorithm is guaranteed. Note that ‖pon −pavg‖ ≤ ‖pi −pavg‖,
i.e, the new position pon gets closer (or stays at the same distance) to the optimal pavg. This
implies that

∑mi

j=1 ‖pon − p∗ij‖2 ≤
∑mi

j=1 ‖pi − p∗ij‖2 i.e., moving pi to pon can only decrease the
energy defined in (6).
Complexity. Assuming n points in 2D, the Delaunay triangulation can be computed in O(n log n) time and
O(n) space complexity [GM01]. Both the number of edges and triangles in the triangulation depend linearly on
n [Lut06]. In each iteration, our method loops once over the triangles, edges and vertices (points), which yields
a time complexity of O(n) per iteration. The memory consumption depends linearly on the triangulation size.

3 Experimental Results

In this section, we provide an experimental analysis of our algorithm. It is implemented in C++ and all tests
were performed on a laptop with 8GB RAM using a single core of an Intel M-5Y70 1.10GHz CPU.

Blue-noise characteristics. In Section 2.2, we proved that our method is guaranteed to converge. We
now provide a short justification and present experimental evidence that it converges to blue-noise patterns.
It is well-known that point distributions generated by optimizing capacity-constrained Voronoi tessellations
or capacity-constrained Delaunay triangulations have excellent blue-noise characteristics [BSD09, XLGG11,
dGBOD12, JZW+15, ZGZ+16]. Our method also belongs to this class of approaches. It optimizes a triangulation
to have all its triangles as similar as possible to one and the same equilateral triangle. In particular, during the
optimization the triangles are resized to have roughly the same area (capacity).

We perform a spectral analysis by averaging the periodograms of 10 point distributions generated over the
2D periodic square [0, 1]2 [Uli87]. This provides us with an estimate of the point set’s power spectrum, which
is used two derive the radially averaged power spectrum and the anisotropy. We compute these quantities with
a dedicated open source software tool [SD11].

Figure 1 shows a typical point distribution generated with our method using the convergence criterion
presented in Section 2.1. Note that the points are evenly distributed and exhibit no regularity artifacts. Fur-
thermore, the averaged power spectra and the anisotropy plot are typical for blue noise patterns.

Qualitative Comparison. Figure 4 provides a qualitative comparison of our method to three other point set
optimizers, namely, Lloyd’s relaxation [LWL+09], FPO [SHD11] and CCVT [BSD09]. Our approach generates
patterns with better blue noise characteristics than Lloyd’s method, which is known to produce high-quality
triangulations at the cost of regularity artifacts. The artifacts are visible both in the spatial domain as large
hexagonal patches as well as in the frequency domain leading to turbulent power spectra. Our algorithm yields
results comparable to FPO and CCVT.

Performance. We compared the performance of our method to FPO and CCVT. The processing time, the
time per iteration and the number of iterations as function of the input size are plotted in Figure 5. The results
render our method as the most efficient one and support the linear time complexity per iteration derived in
Section 2.2. Furthermore, the figure suggests that the number of iterations does not depend on the number of
input points as long as the initial point distribution is uniformly random.

Triangle shape quality. Even though not of primary interest, we evaluated the quality of the triangulation
produced by our method and compared it to the ones of FPO and CCVT. The middle row in Figure 4 shows
typical triangulations generated by the algorithms. To make a quantitative comparison we use the following

4

Lloyd’s relaxation [LWL+09]

FPO [SHD11]

CCVT [BSD09]

our algorithm

Figure 4: Comparison of three point set optimizers with our algorithm. Optimized point sets (1st column), triangulations
(2nd column) and power spectra (3rd column).

1,500 2,000 2,500 3,000
1

4

7

10

13

points

se
co
n
d
s

CCVT
FPO
ours

(a)

1,500 2,000 2,500 3,000

3

5

7

points

m
s

(b)

1,500 2,000 2,500 3,000

300

400

500

points

#
it
er
at
io
n
s

(c)

Figure 5: (a) Computational time of various optimizers showing that ours is most efficient. (b) Computational time
per iteration of our algorithm. The curve indicates the linear time complexity per iteration. (c) Number of iterations.
(Best viewed in color.)

5

measures. The first one is the angle RMS error

Eα =

√√√√ 1

M

M∑
i=1

(αi − 60◦)2, (7)

where M is the number of angles in the triangulation (three times the number of triangles) and αi is the i-th
angle. The other measures are the triangle quality ρi and its average ρ̄ over all triangles:

ρi =
2ri
Ri

, ρ̄ =
1

m

m∑
i=1

ρi, (8)

where ri (resp. Ri) is the radius of the incircle (resp. circumcircle) of the i-th triangle and m is the number
of triangles. The factor 2 is included to normalize ρi to the range [0, 1], with ρi = 1 indicating an equilateral
triangle [PB03]. The angle RMS errors and the average triangle quality of the three methods are listed in
Table 1.

algorithm angle RMS error average triangle quality

FPO 13.0 0.93
CCVT 14.5 0.91
ours 11.7 0.94

Table 1: Triangulation quality measures. Our method has the lowest angle RMS error Eα (see (7)) and the highest
average triangle quality ρ̄ (see (8)).

4 Conclusions and Future Work

We presented a novel approach for optimizing the blue noise profile of point sets in 2D periodic or bounded
domains. It is based on Procrustes transformations that optimally match an equilateral triangle of suitable size
to the elements of a triangulation. This procedure is used for both vertex displacement and connectivity adjust-
ment, leading to a very simple, efficient and provably convergent optimization algorithm. We experimentally
validated that the generated output has very good blue noise characteristics.

Our algorithm can be extended to 3D. Instead of computing the Delaunay triangulation we would compute
the Delaunay tetrahedralization of the input points. The equilateral model triangle becomes a regular tetrahe-
dron, which would be mapped to the elements of the tetrahedralization. Instead of flipping edges we would flip
edges and/or faces.

Some applications require parts of the sampling domain to be resolved in higher accuracy than others. Such
local adaptivity could be achieved by varying the side length of the equilateral triangle (or regular tetrahedron)
according to a given density function.

References

[AHB87] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-Squares Fitting of Two 3-D Point Sets. IEEE
Trans. PAMI, 9(5):698–700, 1987.

[BM92] P. J. Besl and N. D. McKay. A Method for Registration of 3-D Shapes. IEEE Trans. PAMI,
14(2):239–256, 1992.

[BSD09] M. Balzer, T. Schlömer, and O. Deussen. Capacity-Constrained Point Distributions: A Variant of
Lloyd’s Method. ACM Trans. Graph., 28(3):1–8, 2009.

[Che04] L. Chen. Mesh smoothing schemes based on optimal Delaunay triangulations. In Proceedings of
the International Meshing Roundtable, pages 109–120, 2004.

6

[dGBOD12] F. de Goes, K. Breeden, V. Ostromoukhov, and M. Desbrun. Blue Noise Through Optimal Trans-
port. ACM Trans. Graph., 31(6):171:1–171:11, 2012.

[Fat11] R. Fattal. Blue-noise Point Sampling Using Kernel Density Model. In Proceedings of ACM SIG-
GRAPH, pages 48:1–48:12, 2011.

[GM01] C. I. Grima and A. Marquez. Computational Geometry on Surfaces. Springer Netherlands, 2001.

[JZW+15] M. Jiang, Y. Zhou, R. Wang, R. Southern, and J. J. Zhang. Blue Noise Sampling Using an
SPH-based Method. ACM Trans. Graph., 34(6):211:1–211:11, 2015.

[Kru16] N. Kruithof. 2D Periodic Triangulations. In CGAL User and Reference Manual. CGAL Editorial
Board, 4.9 edition, 2016.

[Llo82] S. Lloyd. Least Squares Quantization in PCM. IEEE Trans. Inf. Theor., 28(2):129–137, 1982.

[Lut06] F. H. Lutz. Triangulated Manifolds with Few Vertices: Combinatorial Manifolds. Technical Report
06/08, ZIB, 2006.

[LWL+09] Y. Liu, W. Wang, B. Lévy, F. Sun, D.-M. Yan, L. Lu, and C. Yang. On Centroidal Voronoi
Tessellation – Energy Smoothness and Fast Computation. ACM Trans. Graph., 28(4):101:1–101:17,
2009.

[LZX+08] L. Liu, L. Zhang, Y. Xu, C. Gotsman, and S. J. Gortler. A Local/Global Approach to Mesh
Parameterization. In Proceedings of the Symposium on Geometry Processing, pages 1495–1504,
2008.

[MHTG05] M. Müller, B. Heidelberger, M. Teschner, and M. Gross. Meshless deformations based on shape
matching. ACM Trans. Graph., 24(3):471–478, 2005.

[PB03] P. P. Pébay and T. J. Baker. Analysis of Triangle Quality Measures. Math. Comput., 72(244):1817–
1839, October 2003.

[SD11] T. Schlömer and O. Deussen. Accurate Spectral Analysis of Two-Dimensional Point Sets. Journal
of Graphics, GPU, and Game Tools, 15(3):152–160, 2011.

[SHD11] T. Schlömer, D. Heck, and O. Deussen. Farthest-point Optimized Point Sets with Maximized
Minimum Distance. In Proceedings of the ACM Symposium on High Performance Graphics, pages
135–142, 2011.

[Uli87] R. Ulichney. Digital Halftoning. MIT Press, 1987.

[XLGG11] Y. Xu, L. Liu, C. Gotsman, and S. J. Gortler. Capacity-Constrained Delaunay Triangulation for
Point Distributions. Comput. Graph., 35(3):510–516, 2011.

[YGW+15] D.-M. Yan, J.-W. Guo, B. Wang, X.-P. Zhang, and P. Wonka. A Survey of Blue-Noise Sampling
and its Applications. J. Comput. Sci. Technol., 30(3):439–452, 2015.

[YWLL13] D.-M. Yan, W. W., B. Lévy, and Y. Liu. Efficient Computation of Clipped Voronoi Diagram for
Mesh Generation. Computer-Aided Design, 45(4):843–852, 2013.

[ZGZ+16] S. Zhang, J. Guo, H. Zhang, X. Jia, D.-M. Yan, J. Yong, and P. Wonka. Capacity Constrained
Blue-Noise Sampling on Surfaces. Comput. Graph., 55:44–54, 2016.

[ZS00] T. Zhou and K. Shimada. An Angle-Based Approach to Two-Dimensional Mesh Smoothing. In
Proceedings of the International Meshing Roundtable, pages 373–384, 2000.

7

