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Introduction

Raman spectroscopy is a versatile tool for detection of vibrational spectra. Analy-

sis of those spectra provides comprehension about chemical and physical properties

of molecular structures, which is important in different reasearch areas in biology,

medicine and industry [FNB03,LC14,Kud08]. Nowadays, Raman spectrometers are

capable to generate spectral recordings down to the femtosecond time scale. Such

time-resolved Raman spectroscopy allows, besides so far spectral recordings of stable

substances, for monitoring of events like intramolecular rearrangements and chem-

ical reactions [SUP11]. We thereby obtain measured Raman spectra as a function

of time, which depicts both main characteristics of an observed process: On the one

hand, each measured spectrum is a fingerprint of compounds and therefore repre-

sents the intrinsic spectra of the individual species or molecular states involved in

the reaction. On the other hand, the relative contributions of the involved spectra

to each measured spectrum reflect the momentary composition of the sample at the

corresponding time. Through the full series of generated spectra we hence draw

conclusions about the kinetics of the underlying reaction process. Consequently, the

central task about time-resolved Raman data spectral analysis is deciphering the

series of measured spectra with respect to the individual component spectra and

their temporal evolution.

In order to deal with the central task of time-resolved Raman data spectral anal-

ysis, we in this thesis elaborate the application of non-negative matrix factoriza-

tion (NMF) methods. NMF is a powerful approach for the study of high-dimensional

data as it generates sparse and meaningful features from a non-negative matrix or a

set of non-negative vectors, respectively. We thereby generally consider a compon-

entwise non-negative matrix M of dimension n ×m as well as an integer r > 0 and

we are interested into a factorization M = WH, where W and H are non-negative

matrices of dimensions n× r and r ×m [AGKM16]. Among others, examples for the

diverse range of NMF applications include image processing [GV02], music analy-

sis [FBD09] and document clustering [XLG03]. The non-negativity constraint always

arises from the interpretation of the investigated data. So in document clustering

for instance, the columns of M represent documents (in terms of word frequencies)

such that we search for a matrix W of topics (again in terms of word frequencies)

and a matrix H of coefficients, which assign the topics to the different documents
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according to their relative importances.

In the context of Raman data spectral analysis, drawing on the non-negativity of

involved matrices becomes reasonable through the model for time-resolved Raman

spectral data of Liesen et al. [LHKL16]. They introduce an approach to express a

series of spectral recordings of a chemical reaction (matrix M) as the matrix product

of the component spectra (matrix W ) and the evolution of relative concentrations of

these reaction components (matrix H). Based on this model and synthetic spectral

data, which satisfy the recently much-cited separability assumption, Liesen et al.

furthermore present an algorithm to detect a factorization WH =M using separable

NMF methods. Inspired by their results, the overall target of this work is to extend

the toolbox for Raman data spectral analysis by a new holistic NMF approach,

which in particular does not rely on the separability assumption. In the center of

attention of this new approach stands an adaptable objective function, taking into

account only the common structural properties of the sought-for, process defining

matrices W and H.

This thesis is organized as follows. In Section 1, we explain basic theory, execu-

tion and application of Raman spectroscopy and we introduce the above-mentioned

mathematical model for time-resolved Raman spectral data. With respect to this

model, we motivate the relation between spectral analysis and non-negative ma-

trix factorization (NMF). In Section 2, we give an overview of NMF approaches

and algorithms known so far. In particular we present the separable NMF method,

which found application in the approach for spectral analysis in [LHKL16]. Our

new holistic NMF approach as well as the algorithmic details of the corresponding

computational method are introduced in Section 3. In Section 4, we present nume-

rical results of our holistic method. On the one hand, we thereby discuss recovery

results for synthetical measurement data with increasing interference of the com-

ponent spectra and occurence of measurement noise. On the other hand, we verify

the influence of the single components of our adaptable objective function through

recovery results for certain choices of weighting coefficients. Finally, we introduce a

new criterion for evaluation and comparability of spectral recovery results.
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1 Raman Spectroscopy

Raman spectroscopy is based on an effect called Raman scattering, which has ini-

tially been observed by the Indian physicist C.V. Raman in 1928 [WMD82]. In the

same time, the development of quantum mechanics and polarisability theory de-

livered theoretical insights to understand and describe the scattering phenomenon.

The impact of this new approach further increased with improvements in the various

components of Raman instrumentation. In particular, the invention of the laser as

ideal illuminant and the progress in detection systems and signal processing were

fundamental for the establishment of Raman spectroscopy [Sch95]. Today, infrared

spectra as well as Raman spectra of substances are recorded straightforward and

fast. Therefore, both types of spectroscopy are part of the standard configuration

in present-day laboratories.

1.1 Theory, Instrumentation and Application

Basic Theory

In quantum mechanics, light is represented by photons [SD05]. The defining pro-

perty of a photon is its frequency νpho. The energy Epho of the photon can then be

written as

Epho = hνpho, (1.1)

where h denotes Planck’s constant. Hence, the frequency of light is directly related

to the energy of its photons. In this setting, confrontation of light with matter ei-

ther leads to scattering or absorption, or the photons may pass the matter straight

through it.

Raman spectroscopy investigates scattering of light. Thereby, a sample is irradiated

by a laser beam. The laser beam is represented by photons of the frequency ν0, while

ν0 is chosen to be inadequate for the sampled molecules to reach an energetically

excited state. If in this setting a photon hits a molecule, the molecule reaches a

virtual state and we observe three possible consequences [Str03]. In most cases, the

molecule relaxes from this virtual state by again emitting a photon of frequency ν0.
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This process of elastic scattering is called Rayleigh scattering. The alternative to

elastic scattering is inelastic scattering, which actually appears quite seldom: Just

one in every 106 − 108 photons is affected [SD05]. For inelastic scattering, molecules

in the virtual state emit photons of frequency ν0 − νs or ν0 + νs. In the first case, the

molecule keeps the energy hνs to remain in a vibrational excited state. The released

photon thus has the appropriately reduced frequency ν0 − νs. This effect is called

Stokes scattering. In the opposite case, which is denoted as anti-Stokes scattering,

the molecule had been in the vibrational excited state with energy hνs even before

absorbing the ν0-photon. Complete relaxation to the vibrational ground state then

causes emission of a photon of increased frequency ν0 + νs. Figure 1.1 illustrates the

three different events.

Figure 1.1: Diagram of the Rayleigh and Raman scattering processes. At the bot-
tom, the lowest vibrational state is m. A vibrational excited state is
represented by n. The energy transfers are displayed by the upward
arrows (incoming energy) and the downward arrows (emitted energy).
The length differences in cases of Stokes and anti-Stokes are caused by
Raman scattering (illustration from [SD05], page 4).

Experimental Aspects

In general, we distinguish two different types of detection systems to record Raman

spectra: Dispersive monochrometers on the one hand and Fourier transform inter-

ferometers on the other hand.

Dispersive monochrometers perform a piecewise intensity measurement of narrow

frequency intervals. After irradiating a sample with an intensive, monochromatic

laser beam, scattered light enters the detector. The reflection angle of radiation
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depends on its frequency. Thus, meeting an optical grating, the scattered light

becomes spectrally decomposed. A slit in front of the photocell then shields all

light except a single frequency interval. By either moving the grating or the slit

we stepwise measure the intensity of each frequency in the scattered light. Quality

improvements of the obtained spectral measurements may be achieved by using two

or even three optical gratings behind each other [WMD82].

In Fourier transform spectroscopy (FTS), the interferometer is the most important

item of the detection apparatus. The general arrangement of a Michelson interfer-

ometer, which is commonly used in FTS, is illustrated in Figure 1.2. The incoming

beam of scattered light is divided into two parts by a beamsplitter. While the re-

flected part travels to a fixed mirror and back, the transmitted beam travels to a

moving mirror and back. Interference occurs when the two beams return to the

beamsplitter. The detector finally measures this interference signal, which depends

on the optical path difference caused by the moving mirror [Fec05].

Figure 1.2: General arrangement of a Michelson interferometer. The movement of
the mirror is described by the optical path difference x (modified illus-
tration from [Fec05], page 9).

Assuming some general conditions (e.g. the medium of the experiment is vacuum)

and denoting the optical path difference as x, we follow [KP01] expressing the value

of the interference signal in terms as

I(x) = 2

∞

∫
0

E(w) cos(2πwx) dw. (1.2)

E is the spectrum of the investigated scattered light and w is the wavenumber.
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Radiation frequency ν and wavenumber w are related through

w = ν

c
,

where c is the velocity of light. If we furthermore define E(−w) = E(w), the calcu-

lation in (1.2) is simplified to obtain

I(x) =
∞

∫
−∞

E(w) cos(2πwx) dw =
∞

∫
−∞

E(w)ei2πwx dw = F{E(w)},

where F is the Fourier transform. This means I(x) and E(w) form a Fourier

transform pair and can thus be written as

I(x) =
∞

∫
−∞

E(w)ei2πwx dw = F{E(w)},

E(w) =
∞

∫
−∞

I(x)e−i2πwx dx = F −1{I(x)}. (1.3)

While the measurement of the interference signal depends on the optical path diffe-

rence x, spectrum E depends on the wavenumber w. According to (1.3), we gain the

spectrum by inverse Fourier transform of the interference signal. Of course modern

instruments for FTS carry out this transformation computationally and immediately

return the resulting spectra.

There are two main reasons why FTS techniques are commonly preferred to disper-

sive monochrometers: Firstly, FTS drastically reduces the measuring time. That

is because one scan, which means the interference record of a complete movement

of the movable mirror, delivers the data to recover the whole spectrum. Sensing

of each frequency interval individually, as in monochromators, takes much longer.

Secondly, FTS simultaneously views all wavenumbers as well as their intensities

throughout the entire measurement. In comparison to dispersive instruments, this

increased light throughput in FTS improves the signal-to-noise ratio and therefore

the sensitivity of the results [Sch95].

In Raman spectroscopy we are interested into wavenumbers ws, which characterize

the energy difference between vibrational excited states. We thereby mainly measure

the wavenumbers as a shift from the wavenumber w0 of the incident beam. This

Raman shift is gained by subtraction of the scattered light wavenumbers from the
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wavenumber of the irradiating laser beam. The bands of Stokes and anti-Stokes

scattering then are placed, respectively, to the left and the right side of the origin of

ordinates. According to the Boltzmann law, at room temperature the majority of

molecules is present in their vibrational ground state. Thus, Stokes scattering has

a much higher probability than anti-Stokes scattering and under normal conditions,

hence, Stokes bands reach higher intensities than anti-Stokes bands. An example

for this observation is presented in Figure 1.3.

Figure 1.3: FTS Raman spectrum of sulphur. The dominating intensity in zero is
caused by the Rayleigh process. Raman scattering leads to the Stokes
band (positive Raman shift) and anti-Stokes band (negative Raman
shift). While the positions of the spectral peaks are equal, the inten-
sities in the Stokes band are clearly higher than in the anti-Stokes band
(illustration from [SD05], page 137).

Since Stokes and anti-Stokes bands both give the same information, it is usual to

only measure the Stokes side of the spectrum [FNB03].

Advantages & Disadvantages

We contrast advantages and disadvantages of Raman spectroscopy as gathered in

[Fec05] and [FNB03].

The main advantages of Raman spectroscopy are listed here:

� Raman spectroscopy is applicable to the solid as well as to the gaseous and

the fluid state of samples.

� Water is a weak Raman scatterer. Thus, Raman spectroscopy is suitable for

the investigation of biological compounds in aqueous solutions. In comparison,

infrared spectroscopy is limited by the strong absorption of water.

� The diameter of the irradiating laser beam normally is in the range of 1-2mm.
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Therefore, Raman spectroscopy can be performed with very small sample vol-

umes.

� Evaluation of Raman spectra allows conclusions about structure, bond, com-

position and further characteristics of molecules. These insights can for exam-

ple be used for material testing and identification as well as for conformation

analysis. In addition, Raman spectroscopy is a versatile tool to even probe

chemical reactions and molecular structure changes.

� Especially for Fourier transform spectroscopy the measuring time to detect

Raman spectra is comparatively short. Furthermore, the results stand out

due to great reproducibility.

Two main disadvantages of Raman spectroscopy are the following:

� The excitation frequency of the laser beam may fit to the absorption band

of the investigated compound or its solvent. Consequences can be heating or

even photodecomposition of the sample.

� Fluorescence of compounds or of impurity particles may overlie the measure-

ment of Raman scattering.

Applications

Vibrational states can be considered as one more individual fingerprint of molec-

ular structures and hence give further indication of composition and properties of

substances. Therefore, Raman spectroscopy is applied in many different disciplines.

Industrial usage of the technique for example is taking place in research and qua-

lity inspection of food, water, petroleum and metals [FNB03]. Further exemplary

applications of Raman spectroscopy are in chemistry (e.g. identification of minerals

and inorganic materials), biology (e.g. detection of DNA and protein arrays), foren-

sic laboratories (e.g. determination of explosives) and art and archaeology (e.g. age

estimation of paintings and archaeological artefacts) [SD05]. In [Fec05], the author

additionally points out the importance of Raman spectroscopy in pharmacy and

medicine. Besides the qualitative and quantitative analysis of compounds, Raman

spectroscopy allows for testing and checking of closed dosage forms like bottles and

ampoules. Note that glass is a weak Raman scatterer, too.
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As mentioned above in the list of advantages, even chemical reactions and molecular

structure changes are investigated by analysis of Raman spectra. Thereby the Ra-

man spectrum of a compound represents its composition in terms of the individual

spectra of the involved species and their relative concentrations. A versatile tool

to monitor chemical reactions is time-resolved Raman spectroscopy, which detects

reaction spectra down to the femtosecond time scale [SUP11]. Observing an ex-

periment or a reaction with time-resolved Raman spectroscopy delivers a series of

spectra as a function of time. Evaluating such data sets has two important aspects:

On the one hand, it is of interest to detect the component spectra of the different

species or molecular states which are involved in the reaction sequence. On the other

hand, gaining information about the relative contributions of the various component

spectra to each measured spectrum delivers insights into the kinetics of the under-

lying processes. The ensuing task then is to break down the series of time-resolved

spectra in terms of the single component spectra and their temporal evolution.

1.2 Model for Time-Resolved Raman Spectra of

Chemical Reactions

As mentioned above, analysis of time-resolved Raman spectral data aims to recover

component spectra of the single involved species as well as the underlying reaction

kinetics, represented by the temporal evolution of relative concentrations. In this

thesis, we embed this kind of data analysis into the context of non-negative matrix

factorization (NMF). In preparation, we introduce a model for time-resolved Raman

spectra, which transfers the measurements into matrix notation. We thereby follow

the framework developed by Liesen et al. [LHKL16] and adopt their formalism.

Consider a chemical reaction with r reactant species. Each single spectral measure-

ment of the reaction represents the current composition of the reaction compound. If

the Raman spectrum of each reactant is considered as an individual sum of Lorentz

functions, then time-resolved Raman spectra of the reaction are convex combinations

of these sums of Lorentzians. Thereby the coefficients of these convex combinations

are given by the respective relative concentrations of the single species in the current

reaction compound.

A Lorentzian Lx0,γ,I(x) is a non-negative “peak-function”, which is characterized
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by its maximum in the base point x0 ∈ R (corresponding to the wavenumber of a

normal vibrational state), the width at half-height γ > 0 and the intensity I > 0. In

terms, a Lorentzian is defined as

Lx0,γ,I(x) = I
γ2

(x − x0) + γ2
.

In the following, we skip the parameters x0, γ, I and simply write L(x).
The spectral band of a reactant normally has more than just one peak. Thus, we

model Raman spectrum ωs of reactant s as a non-negative sum of qs Lorentzians,

written as

ωs(s) =
qs

∑
k=1

Lsk(x), s = 1, . . . , r. (1.4)

We assume the finite interval [vl, vu] ⊂ R+ ∶= [0,∞) to contain all base points of

all reactants. Alternative approaches to model the component spectra use sums of

Gaussians or even a blend of Lorentzians and Gaussians.

Next, we formalize the relative concentrations of the reactant species. Thereby, the

concentration function hs is given by

hs ∶ [0, T ] → [0,1] , s = 1, . . . , r.

Hence, hs(t) describes the relative concentration of species s at time t ∈ [0, T ] of the

reaction. Since the functions hs denote relative concentrations, the concentrations of

all r reactants sum up to 1.0 at any time t. The concentration functions constitute

the reaction kinetics.

Having defined the component spectra by ωs and the relative concentrations by hs,

the sequence of time-resolved Raman spectra of the chemical reaction is modeled as

M(x, t) =
r

∑
s=1

ωs(x)hs(t) =
r

∑
s=1

(
qs

∑
k=1

Lsk(x))hs(t). (1.5)

Now we discretize (1.5). We divide the time domain into m time steps through

0 = t0 < ⋯ < tm−1 = T and the wavenumber domain into n stages through vl = x1 <
⋯ < xn = vu. The resulting, discretized measurement matrix is then denoted by

M = [M (xi, tj−1)] ∈ Rn,m
+ .
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Next, we use the n wavenumber stages for discretization of the component spec-

tra ωs(x) to obtain vectors

ωs = [ωs(x1), . . . , ωs(xn)]T ∈ Rn
+, s = 1, . . . , r,

and consequently matrix W = [ω1, . . . , ωr] ∈ Rn,r
+ . Similarly, we use the m time steps

for discretization of the concentration functions hs(t) such that we gain vectors

hs = [hs(t0), . . . , hs(tm−1)]T ∈ Rm
+ , s = 1, . . . , r,

and the resulting matrix

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

hT1

⋮
hTr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rr,m
+ .

Thus measurement matrix M , which contains the discretized time-resolved Raman

spectra, can be expressed as

M =
r

∑
s=1

ωsh
T
s = WH.

In other words, the componentwise non-negative measurement matrix M is the pro-

duct of the two componentwise non-negative matrices W (reflecting the component

spectra) and H (reflecting the course of relative concentrations).
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2 Non-Negative Matrix

Factorization (NMF)

As we saw in Section 1.2, time-resolved Raman spectral data can indeed be mod-

eled as the product of two non-negative matrices representing the single compo-

nent spectra and the underlying reaction kinetics. Recovering these factorization

matrices only given the measured time-resolved spectra requires non-negative ma-

trix factorization (NMF). In general, NMF is an utile tool for analysis of high-

dimensional data and therefore relevant topic in present-day research in many sci-

entific fields [GV02,XLG03,Dev08]. Besides detecting a compressed representation,

NMF delivers insights into structure and features of the given data by extracting

easily interpretable factors. In this chapter we introduce theory and issues of NMF

and give an overview of different NMF approaches known so far.

2.1 Formulation, Issues and Applications

Given a componentwise non-negative matrix M of dimension n ×m and an integer

r > 0, NMF determines likewise componentwise non-negative matrices W and H of

dimensions n× r and r×m, respectively, such that M =WH. Generally, integer r is

denoted as rank of the factorization. Assuming M to represent m measurements of n

non-negative variables, we interpret the NMF task as follows: We aim to identify r

ingredients which allow for recovery of all m measurements by composition according

to respective contributions. The ingredients then are reflected by the columns of

factorization matrix W while the columns of H contain the corresponding mixing

coefficients.

In practice, considering measured data and therefore allowing noise or other forms

of data uncertainty generally rules out the existence of an exact NMF in terms of

M = WH. Thus, from now on we want to compute componentwise non-negative

matrices W and H such that WH is an approximation of M . First aspect of such

approximately NMF is the decision of how to estimate obtained approximations.

Most commonly the Frobenius norm is applied, which means minimization of the
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error calculated as

∥M −WH∥2
F = ∑

i,j

(M −WH)2
ij .

In particular the Frobenius norm is frequently used when Gaussian measurement

noise N contaminates the data through M =WH +N [Gil15]. In other settings it is

reasonable to use alternative distance measurements in order to build objective func-

tions: Examples are given by the Itakura-Saito distance for music analysis [FBD09]

or the l1 norm in order to improve robustness against outliers [KK05].

Following the discussion in [Gil15], there are three further main issues to be consid-

ered concerning NMF:

� While the unconstrained problem of matrix factorization can be solved effi-

ciently using singular value decompostion (SVD), the problem in NMF is

NP-hard in general [Vav09]. An algorithm for exact NMF has indeed been

presented in [AGKM16], but it is not used in practice because of its high com-

putational costs. Instead, most algorithms are applications of standard nonlin-

ear optimization methods. Although these algorithms may only be guaranteed

to converge to stationary points, they deliver satisfying results in many appli-

cations. Also in [AGKM16], the authors characterize near-separable matrices

as a meaningful subclass of non-negative matrices. Several efficient algorithms

have been developed to perform NMF for this subclass and we will discuss two

of them in section 2.3.

� Considering a NMF (W,H) ofM , there usually exist equivalent NMF’s (W ′,H ′)
such that WH = W ′H ′. That means NMF is ill-posed. Any matrix Q

with WQ ≥ 0 and Q−1H ≥ 0 (componentwise non-negativity) leads to such

an equivalent factorization. Note that choosing Q as the permutation of a

diagonal matrix with positive diagonal elements (this means Q is a monomial

matrix) just leads to scaling and permutation of the columns of W and the

rows of H. In practice, this option is not an issue. But if Q can be chosen

non-monomial to still satisfy the above conditions, then such an equivalent

factorization causes different interpretations. Considering, for example, the

analysis of Raman spectra, equivalent factorizations lead to different compo-

nent spectra and reaction kinetics. Main strategies to gain control of this issue

are about using other priors on the factors W and H as well as addition of
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regularization terms in the objective function [Hoy04, Gil12]. These kind of

manipulations often depend on the context of the observed data set.

� The choice of the factorization rank r is usually quite demanding. A first

strategy to handle this aspect is trial and error, which means performing NMF

for different choices of r and picking the one performing best. A second way

is to gain an estimate for r by using SVD. Thereby, we observe the decay of

singular values of the data matrix M . Thirdly, we can use an educated guess

by the insights of an expert, who is able to give a realiable estimation of r.

Further research on this issue has been presented in [KS10,BDN05].

While we face NMF techniques in this thesis primarily in order to investigate time-

resolved Raman spectral data, further application areas of NMF are given whenever

non-negative signals need to be analyzed: Experimental data in computational bi-

ology [Dev08], sizes of groups in community detection [WLW+11] or price variables

in economical processes [DRFC08]. Another interesting as vivid context for the use

of NMF is text mining and document classification [XLG03]. Thereby, we consider

each column Mt of the non-negative matrix M to represent a document and each

row to correspond to a word. Matrix entry Mij then reflects the number of times the

i-th word appears in the j-th document. Applying NMF to M with factorization

rank r generates two non-negative matrices W and H such that

Mj ≈
r

∑
k=1

k-th topic

³·µ
Wk (Hj)k

´¹¹¹¸¹¹¹¹¶
relevance of

k-th topic in

j-th document

=WHj

for all documents Mj. Each column Wk of W is interpreted as a topic and its

entries specify the frequencies of words to appear in this topic. The coordinates

in the columns Hj of H define the mixing of topics to reconstruct the different

documents. Therefore, the entries of the column Hj are considered to reflect the

specific relevances of the different topics in the j-th document. NMF in document

clustering hence identifies topics and directly classifies the documents among these

topics. We pick up on this instance in section 2.3 as it is furthermore quite illustrative

when discussing the plausibility of the recently much-cited separability assumption.
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2.2 General Numerical NMF Approaches

Having introduced intuition and issues of NMF, we now focus on the question how

to compute such a factorization. Recall that we search an approximation WH ≈M ,

where the Frobenius norm is the measure of our approximation. Thus we need to

solve the optimization problem

min
W ∈ Rn×r,

H ∈ Rr×m

∥M −WH∥2
F such that W ≥ 0 and H ≥ 0, (2.1)

where non-negativity of W and H is meant to be componentwise. In regard to

algorithms for solving (2.1), two properties of this optimization problem are quite

remarkable. Firstly, (2.1) is convex with respect to either the factors W or H. Most

standard NMF algorithms hence optimize with regard to one of the matrices while

the other one remains fixed. These kind of algorithms follow the so called two-block

coordinate descent scheme. For H fixed, for example, we need to solve

min
W ∈Rn×r

+

∥M −WH∥2
F ,

which turns out to be a Non-Negative Least Squares (NNLS) problem. Indeed

there exist many algorithms to solve NNLS problems. NMF algorithms based on

the two-block coordinate descent scheme thus mainly differ by their choice of the

specific NNLS method. The second remarkable property of (2.1) is its symmetry

in W and H since

∥M −WH∥2
F = ∥MT −HTW T ∥2

F .

Applying a two-block coordinate descent scheme with alternately one matrix fixed,

the symmetry of (2.1) enables to use the same update rule for both factorization ma-

trices. We just have to transpose the matrices where required and insert them in ad-

justed order into the update routine. Consequently, the general shape of most NMF

algorithms can be described as in Algorithm 1 [Gil15].

Besides some obvious ways to treat the generation of initial values (e.g. generating

them randomly) in Step 1 and the definition of stopping criteria (e.g. fixing a max-

imum number of iterations or a time limit) in Step 2, further research has designed

more discerning techniques regarding these algorithmic aspects. For more details
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hereof we refer to [Gil15] and the references therein. In the following, we rather

focus on different update strategies for Steps 4 and 5 of Algorithm 1.

Algorithm 1 Two-Block Coordinate Decent Scheme

Input: non-negative matrix M ∈ Rn×m
+ and factorization rank r

Output: non-negative matrices W ∈ Rn×r
+ and H ∈ Rr×m

+ such that M ≈ WH

1: Generate initial, non-negative matrices W (0) and H(0).
2: Define any stopping criterion B.
3: for k = 1, . . . ,B do
4: W (k) = update (M,H(k−1),W (k−1))
5: H(k)

T = update (MT ,W (k)T ,H(k−1)T )
6: end for
7: return W and H

Multiplicative Updates

As a first exemplary update rule for NMF according to Algorithm 1, we introduce

multiplicative updates. With respect to the constrained optimization problem (2.1),

we derive this update rule according to the depictions and assessments of Xu et

al. [XLG03].

Initially, we rewrite the objective function (2.1) as

F (W,H) = 1

2
∥M −WH∥2

F

= 1

2
tr ((M −WH) (M −WH)T )

= 1

2
tr (MMT − 2MHTW T +WHHTW T )

= 1

2
(tr (MMT ) − 2tr (MHTW T ) + tr (WHHTW T )) .

Thereby, tr denotes the function trace, which returns the sum of diagonal entries of

a quadratic matrix. We use the matrix property tr (AB) = tr (BA) to realize the

third step of conversion and we add the factor 1
2 in front of the objective function

in order to ease the upcoming calculations.

Minimizing F with respect to W and H, where both matrices are supposed to

be componentwise non-negative, is a typical constrained optimization problem and

can be solved using the Lagrange multiplier method. Defining αij and βij to be

the Lagrange multipliers for the respective constraints Wij ≥ 0 and Hij ≥ 0 such
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that α = [αij] and β = [βij], the Lagrange function L is

L(W,H,α, β) = F (W,H) + tr (αW T ) + tr (βHT ) .

Note that trace function tr ensures the correct couples of Lagrange multipliers and

matrix entries to appear in L.

Calculating derivatives of L with respect to W and H leads to

∂L

∂W
= −MHT +WHHT + α, (2.2)

∂L

∂H
= −MTW +HTW TW + β. (2.3)

According to the Karush-Kuhn-Tucker conditions [KT51], equations (2.2) and (2.3)

are equal to zero in any stationary point of (2.1) and, furthermore, αijWij = 0 as

well as βijHij = 0 for all i, j. Isolating α and β in (2.2) and (2.3) and inserting the

obtained expressions results in the following equations for Wij and Hij:

αijWij = ((MHT )
ij
− (WHHT )

ij
)Wij = 0,

βijHij = ((MTW )
ij
− (HTW TW )

ij
)Hij = 0.

Deducing update routines then gives

Wij ← Wij

(MHT )ij
(WHHT )ij

, (2.4)

Hij ← Hij

(MTW )ij
(HTW TW )ij

. (2.5)

In [LS00], the authors prove that the objective function F is non-increasing regarding

the multiplicative update rules (2.4) and (2.5) and that the corresponding iteration

is guaranteed to converge.

Recalling symmetry of the objective function (2.1), it suffices to implement just

one of the update rules (2.4) or (2.5). Furthermore, there exist several results to

improve the multiplicative updates concerning convergence properties and runtime

behaviour. For instance in order to accelerate the routine, Gillis et al. [GG12]

recommend to update W several times before updating H. On this way, the matrix

products MHT and HHT do not need to be recomputed every time (considering

update rule (2.4)).
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Further Factor Updates

Guided by the elaborations in [Gil15] we give a short overview of further commonly

used update routines to be applied, or even combined, in Algorithm 1.

� Alternating Least Squares

Applying alternating least squares, we first compute the optimal solution of

the unconstrained least squares problem minW ∥M −WH∥2
F . Afterwards, we

update W according to the rule

W ← max(arg min
W ∈Rn×r

∥M −WH∥2
F , 0) ,

where the max function works componentwise to ensure non-negativity of all

entries in W . Updating H proceeds analogously. Objective function (2.1)

often oscillates using updates according to alternating least squares. Thus Al-

gorithm 1, equipped with this update routine, usually does not converge. But

since this method is easy to implement and cheap concerning computational

costs, it is often useful for initialization purposes. That means performing

a few steps of alternating least squares initially before switching to another,

rather sophisticated update routine.

� Alternating Non-Negative Least Squares

In alternating non-negative least squares the update for W is given by

W ← arg min
W≥0

∥M −WH∥2
F ,

which means that the subproblem in W , respectively in H, is solved exactly.

Among all update routines for NMF algorithms with the shape of Algorithm 1,

alternating non-negative least squares decreases the approximation error the

most per iteration as it always computes an optimal solution of the current

subproblem. This update rule is even guaranteed to converge to a stationary

point of (2.1) [GS00]. In return, alternating non-negative least squares is

computationally expensive and the implementation is rather demanding.

� Hierarchical Alternating Least Squares

Hierarchical alternating least squares updates the columns of W one by one.

Let W∶,l denote the l-th column of W and Hl,∶ the l-th row of H. Then this
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update rule can be written as

W∶,l ← arg min
W∶,l≥0

∥M −∑
k≠l
W∶,kHk,∶ −W∶,lHl,∶∥2

F for l = 1, . . . , r. (2.6)

The non-negative least squares subproblem is thus solved exactly for each col-

umn of W . Furthermore, each of the r subproblems in (2.6) can be further

decoupled into n quadratic problems with a single non-negative variable each,

such that the optimal solution can even be expressed in closed form. Consider-

ing some soft assumptions, hierarchical alternating least squares is guaranteed

to converge to a stationary point of (2.1) [GG12]. As for the multiplicative

updates, we may speed up the hierarchical routine by performing the update

of W several times before updating H [GG12].

Alternative Approaches

Besides generally using Algorithm 1 and some update routine, we can find sev-

eral alternative approaches to compute NMF. In order to solve (2.1), Arora et

al. [AGKM16] for example determine three matrices W , H0 and H1. Thereby H0

controls the approximation quality of WH = W (H0 + H1) to M . But since H0

may include negative entries, H1 ensures matrix H = H0 +H1 to be componentwise

non-negative. In their computation of the sought-for matrices the authors then also

apply convex optimization and solve least squares problems. However, the concept

of splitting up a factorization matrix in order to satisfy the non-negativity constraint

enriches the range of NMF strategies.

Bayar et al. [BBS14] establish a sophisticated formulation of the objective func-

tion (2.1). In their approach for probabilistic non-negative matrix factorization they

factor in the characteristics of the Gaussian noise, which contaminates the measured

data. The conditional distribution of measurement data is then expressed as

p (M ∣W,H,σ2) =
n

∏
i=1

m

∏
j=1

[N (Mij ∣UiHj, σ
2)] ,

where Ui denotes the i-th column of matrix U = W T (i-th row of W , respectively)

and Hj represents the j-th column of H. N(.∣µ,σ2) is the probability density func-

tion of the Gaussian distribution with mean µ and standard deviation σ. Finally, the

authors recommend to choose the factorization matrices W and H as the minimizing
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arguments of the problem

arg min
W, H≥0

∥M −WH∥2
F + λW ∥W ∥2

F + λH∥H∥2
F .

Therein λW = σ2

σ2
W

and λH = σ2

σ2
H

, while σW and σH denote the expected standard

deviations of the noise contaminated data in the matrices W and H. Note that

in case σ = 0 this probabilistic approach reduces to the general NMF formulation

in (2.1).

2.3 NMF with Separability Assumption

Arora et al. [AGKM16] recently picked up on an interesting subclass of non-negative

matrices, for which the NMF task can be solved efficiently in polynomial time – even

in the presence of noise. The defining property of this subclass is called separability

and had already been stated by Donoho and Stodden in 2004 [DS04] in order to

derive uniqueness conditions for NMF. A non-negative matrix M is r-separable if

there exists an index set K of cardinality r and a non-negative matrix H ∈ Rr×m
+

such that M = M(∶,K)H. Thereby M(∶,K) denotes the columns of M chosen ac-

cording to the indices K. In other words, there exists a subset of r columns of M

which allows for recovery of all columns of M . Or: The convex cone, generated by

r selected columns of M , contains all columns of M .

The separability assumption is reasonable in several applications. We explain its

intuition in two exemplary contexts and thereby introduce alternative separability

expressions.

� Document Classification: We already mentioned the application of NMF

for document classification at the end of Section 2.1. The matrix entry Mij

there reflects the number of times for the i-th word to appear in the j-th

document. In this context, r-separability means that matrix M can be written

as

M =W [Ir,H ′]Π, (2.7)

where Ir is the r × r identity matrix, W and H ′ are non-negative matrices

and Π is a permutation matrix. This separability expression corresponds to
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the introduction above as Ir indeed ensures the columns of W to identically

appear in M . The other columns of M are recovered using the coefficients

in H ′. Π finally orders the columns correctly.

Concerning justification of the separability assumption, recall that NMF in

document classification leads to a words-by-topics matrix W and a topics-by-

documents matrix H = [Ir,H ′]Π. The presence of the columns of W in M can

then be interpreted as that for each topic there exists a document exclusively

about this topic. As long as the clustering of topics is not too much into detail,

this assumption may indeed be comprehensible.

For a second reasonable intuition, consider NMF of MT (which is a documents-

by-words matrix). Separability then claims that the topics-by-words matrix

H = [Ir,H ′]Π contains r columns with a single non-zero entry (the columns

of Ir). This means that for each topic there exists an anchor word appearing

only in this topic [Gil15,KSK13]. Considering for example technical terms in

science, this assumption seems credible in certain circumstances.

� Time-Resolved Raman Spectra: Note now that separability can also be

seen as that the rows of factorization matrix H occur in matrix M . In com-

parison to formulation (2.7) M is likewise called r-separable if it can be de-

composed into

M = Π

⎡⎢⎢⎢⎢⎣

Ir

W ′

⎤⎥⎥⎥⎥⎦
H, (2.8)

where again Ir and Π are identity and permutation matrix, respectively, andW ′

and H are non-negative matrices [LHKL16]. For contentual justification, recall

the model for time-resolved Raman spectral data as introduced in Section 1.2.

There matrix entry Mij reflects the intensity of scattered light in wavenum-

ber stage i at time j. Additionally, we assume measurement matrix M to be

normalized such that each row sum is equal to 1.0 (This can always be real-

ized by application of a diagonal scaling matrix from the left.). As well as in

Section 1.2 we consider factorization matrix

W = Π

⎡⎢⎢⎢⎢⎣

Ir

W ′

⎤⎥⎥⎥⎥⎦

to be a wavenumber -by-species matrix. This means M is r-separable if for
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each species s, represented by the s-th column of W , exists a characteristic

wavenumber xs such that ωs(xs) > 0 (recall (1.4)) and ωs̃(xs) = 0 for all other

species s̃ ≠ s. These characteristic wavenumbers are given by the rows of Ir.

Consequently, measurement matrix M indeed contains rows that are equal to

the rows of matrix H of reaction kinetics. In our context of time-resolved

Raman spectral data, the separability condition is satisfied for example if the

spectrum of each involved species contains a Lorentz band which does not

interfere with any Lorentz band of another species.

In most of the cases the separability assumption is not satisfied exactly. For instance

in our model for time-resolved Raman spectra in Section 1.2 the component spec-

tra are created as sums of Lorentzians Lx0,γ,I(x). Intensity values based on these

functions just vanish reciprocally to a quadratic function in the distance from the

base point x0. The modeled intensities thus are greater than zero for all r reactants

at all wavenumbers x and the separability expression (2.8) cannot hold. The defi-

nition of near-separable NMF allows for dealing with noisy data: Given the noisy

matrix M̃ =M +N , where M =WH =W [Ir,H ′]Π is r-separable (using expression

(2.7)) and N represents the noise, the objective is to approximately recover the

columns of W among the columns of M̃ . Equivalently, find a set K of r indizes such

that M̃(∶,K) ≈W . For further remarks hereof, see for example [LHKL16] and [Gil14].

The Publication of [AGKM16] renewed the great popularity of NMF techniques and

the utility of the separability assumption. Note thereby that several algorithms for

separable as well as for near-separable NMF had already been developed before. In

the following, two of them are depicted with respect to their general strategies and

computational methods.

Sparse Regression Framework

Bittorf et al. [BRRT12] proposed an approach for recovering the columns of W

among the columns of M which is referred to as HottTopixx. Their idea is to find

these characteristical columns via solving a constrained minimization problem. In

the following discussion, we assume the matrix M to be r-separable and we seek for

NMF according to (2.7).

The approach begins by normalization of the columns of M in the sense that all

columns sum up to 1.0. This normalization of columns can always be achieved by

dividing each column by its l1 norm, hence M(∶, i) ← ∥M(∶, i)∥−1
1 M(∶, i), i = 1, . . . ,m.

28



Zero columns in M can be discarded. If M is normalized, indeed the columns of

factorization matrix W = M(∶,K) fulfil the same l1 property and thus even the

columns of H = [Ir,H ′]Π sum up to 1.0: Since all involved matrices are non-

negative, for all i = 1, . . . ,m we have

1 = ∥M(∶, i)∥1 =
n

∑
k=1

M(k, i) =
n

∑
k=1

r

∑
l=1

W (k, l)H(l, i)

=
r

∑
l=1

(
n

∑
k=1

W (k, l))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∥W (∶,l)∥1=1

H(l, i) =
r

∑
l=1

H(l, i) = ∥H(∶, i)∥1.

We gain the key observation of the HottTopixx approach by recognizing that r-

separable matrix M can be written as

M =WH =W [Ir,H ′]Π = [W,WH ′]Π

= [W,WH ′]Π Π−1

⎡⎢⎢⎢⎢⎣

Ir H ′

0(m−r)×r 0(m−r)×(m−r)

⎤⎥⎥⎥⎥⎦
Π

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C∈Rm×m

+

=MC,

where C is a m ×m non-negative matrix with m − r zero rows to ensure M =MC.

Matrix C is called factorization localizing. Any factorization localizing matrix C is

an element of the set

Φ(M) ∶= {C ≥ 0 ∶ MC =M, tr(C) = r, diag(C) ≤ 1, Cij ≤ Cii for all i, j}.

Thereby tr again denotes the trace function and diag addresses the vector of diagonal

elements of matrix C. Especially the last property of Φ(M) concerning the row

entries of C is remarkable as it implies that if diag(C) is sparse then C is row sparse.

Note that this condition indeed demands initial column normalization: Because of

this preprocessing all entries in the sought-for matrix H ′ are less or equal to 1.0.

In order to gain a NMF of M we just need to find a feasible element C ∈ Φ(M)
whose diagonal is integral. Having found such a C, W is defined as the columns

of M corresponding to the indices i with Cii = 1.0. Matrix H then consists of the

nonzero rows of C. Algorithmically, this procedure is overviewed in Algorithm 2.
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Algorithm 2 Separable NMF by Sparse Regression

Input: non-negative, r-separable matrix M ∈ Rn×m
+

Output: non-negative matrices W ∈ Rn×r
+ and H ∈ Rr×m

+ such that M = WH

1: Compute C ∈ Φ(M) that minimizes pTdiag(C), where p is any vector with
distinct values.

2: Determine K = {i ∶ Cii = 1.0}.
3: return W =M(∶,K) and H = C(K, ∶)

The approach and the related algorithm can easily be modified for the noisy case

by redefining the set Φ(M) to contain approximately factorization localizing matri-

ces of M . HottTopixx has been further generalized by Nicolas Gillis and Robert

Luce [GL14]. In particular, they thereby focused into overcoming the drawbacks of

initial column normalization and the necessarity to choose the factorization rank r

in advance.

Successive Non-Negative Projection Algorithm (SNPA)

In [Gil14], Nicolas Gillis introduced a new family of algorithms for solving near-

separable NMF problems. His approach is called Successive Non-Negative Projec-

tion Algorithm (SNPA). Recalling the beginning of Section 2.3, separability can be

considered as that the convex cone of r specified columns of M contains all columns

of M . Separable NMF then needs to identify the extreme rays of the cone spanned

by the columns of M . If we again assume M to be normalized such that the entries

of each column sum up to 1.0, the task reduces to identifying the vertices of the

convex hull of the columns of M . Normalization of M and the consequences of this

manipulation for matrices W and H have been discussed in the previous paragraph.

Recall primarily that normalization of M ensures the columns of H to sum up to 1.0

as well.

Assuming this setting, SNPA basically divides into two steps: Firstly, in each turn

of the algorithm, we select the column index of the near-separable input matrix M̃

whose residual maximizes a certain function f . Secondly, we update the residuals

by projecting each column of M̃ onto the convex hull of the origin and the columns

extracted so far. Thereby the projections are computed with respect to function f .

The algorithm terminates as soon as the number of selected columns is equal to the

factorization rank r. The general algorithmic proceeding of SNPA is presented in

Algorithm 3.
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Algorithm 3 Successive Non-Negative Projection Algorithm

Input: near-separable matrix M̃ =M +N ∈ Rn×m satisfying Assumption 1, strongly
convex function f satisfying Assumption 2 and factorization rank r

Output: set of indices K of cardinality r such that M̃(∶,K) ≈W up to permutation

1: Let R = M̃ , K = {} and k = 1.
2: while R ≠ 0 and k ≤ r do
3: t = arg maxj f (R(∶, j)).
4: K = K ∪ t.
5: R (∶, j) =M̃ (∶, j) − M̃ (∶,K)H⋆ (∶, j) for all j, whereas

H⋆ (∶, j) = arg min
x∈∆k

f (M̃ (∶, j) − M̃ (∶,K)x) .

6: k = k + 1.
7: end while
8: return Index set K.

In the algorithmic description the unit simplex is defined as

∆k = {x ∈ Rk∣x ≥ 0,
k

∑
i=1

xi ≤ 1}.

Furthermore, Algorithm 3 requires the following assumptions:

� Assumption 1: Matrix M ∈ Rn×m is r-separable and can thus be written as

M =W [Ir,H ′]Π, whereas W ∈ Rn×r, H ∈ Rr×m
+ and H(∶, j) ∈ ∆r for all j. The

near-separable matrix M̃ is then given by M̃ =M +N , where N represents the

noise.

� Assumption 2: Function f ∶ Rn → R+ is strongly convex with parameter µ > 0.

Additionally, its gradient is Lipschitz continuous with constant L and the zero

vector is its global minimizer with f(0) = 0.

For further explanations and justifications of these assumptions see [Gil14]. Besides,

note that SNPA does not require the matrices M and W to be non-negative. Thus,

SNPA is even applicable to a broader class than just the non-negative near-separable

matrices. The assumption concerning the columns of H to be elements of ∆r holds

because of the column normalization of M in the preprocessing. Regarding Assump-

tion 2, a natural choice for function f is given by f(x) = ∥x∥2
2.

In case of a tie in Step 3 of Algorithm 3, we select index j whose corresponding

column of the initial matrix M̃ maximizes f . If this also results in a tie, we choose

one of the columns randomly. Considering Step 5, for each projection of a column

of M̃ onto the convex hull of the columns extracted so far, there is a constrained
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minimization problem to be solved in advance. A fast gradient method to determine

these minima is depicted in the appendix of [Gil14]. After applying SNPA matrix

W results from selecting the columns of M̃ according to the indizes K. Solving the

convex minimization problem

min
H∈Rr×m

+

∥M̃ −WH∥2
F

returns factorization matrix H and thus terminates this approximate NMF ap-

proach.

See [LHKL16] for an application of SNPA. There Liesen et al., who also developed

the model for time-resolved Raman spectral data, assume their generated spectral

data to be near-separable and apply SNPA in order to extract the characteristic

wavenumbers of the involved species. Note that the authors could use alternative

algorithms for near-separable NMF as well. Bear in mind for example Fast Conical

Hull Algorithms as explained by Kumar et al. [KSK13].
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3 Holistic NMF Approach for

Time-Resolved Raman Spectra

Analysis

In the following we pick up the concepts of both previous chapters as we introduce a

new NMF approach which is specialized on analysis of time-resolved Raman spectral

data. Recall from Section 1.2 that the thereby recovered non-negative matrices rep-

resent the component spectra of the involved species (W ) and the reaction kinetics

in terms of the evolution of relative concentrations (H). Our holistic NMF approach

differs from the methods discussed so far as it is mainly based on minimization of

an objective function which directly incorporates all known structural properties of

the sought-for matrices W and H. Furthermore, our approach is unaffected by the

restrictive separability assumption. In contrast to Liesen et al. [LHKL16], we hence

apply our method even to non-separable measurement data. Additional flexibility

and adaptability of the holistic approach will be depicted in the numerical results in

Chapter 4. Here we present the leading ideas of this approach as well as the details

of the corresponding computational method.

3.1 Preliminary Considerations

Matrix Properties

As mentioned above, our holistic NMF approach is based on an objective function

including all known structural properties of the sought-for matrices W and H. These

structural properties depend on the contentual interpretations of the desired factor-

ization matrices. Matrix W contains the component spectra of the single species

involved in the observed reaction. Thus, as long as we do not have foreknowledge

about certain reaction compounds, the entries of W are unpredictable. Only com-

ponentwise non-negativity of W is assured as light intensities in spectral bands are

always non-negative. Claiming componentwise non-negativity of the kinetics H is

reasonable since relative concentrations are generally non-negative. Furthermore,

because of representing relative concentrations, each column of H is a priori sup-
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posed to sum up to 1.0.

Consequently, the objective function in our holistic NMF approach is built up by

penalty terms evaluating three requirements: W and H are both componentwise

non-negative and H is column stochastic.

Robust Perron Cluster Analysis (PCCA+)

In the computational method of our holistic NMF approach we apply Perron Clus-

ter Analysis (PCCA+) [Web06], which is a well-known and much-cited clustering

method, in order to generate an initialization of the kinetics in matrix H. We thus

briefly introduce intention and operating principles of PCCA+ and reveal its utility

for our context.

PCCA+ belongs to the family of algorithms for characterizing objects of similar

behaviour to combine them into a certain number of clusters. In several areas of

computational life science this kind of task plays a versatile role. PCCA+ arises from

investigation of molecular conformation dynamics and the thereby main interest into

identification of metastable conformations [DW05, WG02]. There, metastable con-

formations are clusters for which the large scale geometric structure of the observed

ensemble is conserved under the influence of a spatial transition operator [Sch99].

Translating this approach into terms we consider a stochastic matrix T ∈ RN×N

(representing the discretized version of the spatial transition operator) and we

search for a non-negative matrix Y ∈ RN×NC , which columnwise contains the clus-

ters yi, i = 1, . . . ,NC , and thus satisfies three requirements: Y is non-negative and

row stochastic in order to meet the partition-of-unity constraint. Thirdly the vectors

yi build an eigenvalue cluster near 1.0 of T . This means for each i = 1, . . . ,NC we

have

Tyi ≈ yi. (3.1)

The main idea of PCCA+ is to generate Y as a linear transformation of the matrix

X ∈ RN×NC , where X columnwise contains the NC first eigenvectors of T with

respect to eigenvalues close to λ1 = 1. PCCA+ therefore computes a non-singular

transformation matrix A ∈ RNC×NC in order to gain the non-negative, row stochastic

matrix Y via

Y =XA. (3.2)
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Above, in paragraph matrix properties, we claimed that the sought-for matrix H

of reaction kinetics needs to be non-negative and column stochastic. Both require-

ments are satisfied if we consider (3.2) and choose H = Y T as an initial guess of

the kinetics. Thus, in the computational method of our holistic NMF approach, the

preprocessing prepares the application of PCCA+ in order to generate a promising

initialization of H.

Investigating (3.2) generally we may find several feasible solutions A ∈ RNC×NC

providing an appropriate matrix Y . PCCA+ tackles this issue by computing A
through solving an optimization problem with respect to a certain objective func-

tion. Given that the stochastic matrix T is the discretization of a transition oper-

ator (consider e.g. molecular conformation dynamics), maximization of this objec-

tive function is equivalent to the maximization of metastability between the gen-

erated clusters. In other contexts (consider e.g. geometrical cluster problems) the

interpretation of the objective functional may be different while still meaningful.

See [WK05, DW05, WF15] for exemplary applications and illustrations of PCCA+

in several research areas.

3.2 Computational Method

The main work stages in the computational method of our holistic NMF approach are

summarized in Algorithm 4. Note that we distinguish between the finally recovered

matrices (denoted asWrec andHrec) and their corresponding interim results (denoted

as W̃ and H̃). Furthermore, we use matlab method pinv to calculate pseudoinverses

of singular or even non-square matrices. We then label the pseudoinverse of a matrix

A as A�.

Algorithm 4 Holistic NMF for Raman Data Spectral Analysis

Input: data matrix M ∈ Rn×m and factorization rank r
Output: matrix Wrec ∈ Rn×r of component spectra and Hrec ∈ Rr×m of reaction

kinetics such that M ≈WrecHrec

1: Perform SVD for primary factorization MT = UΣV T and reshape U into U .
2: Apply PCCA+ in order to initialize H̃ = (UA)T and W̃ =MH̃� =M (ATUT )�.
3: Minimize objective function with respect to transformation matrix A.
4: Reconstruct spectra Wrec and kinetics Hrec according to the result of Step 3.
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� Step 1: Preprocessing In the preprocessing we consider MT . By sub-

traction of a reference point we transfer the columns of MT into a linear space.

Afterwards we perform singular value decomposition (SVD) such that we gain

MT = UΣV T . In order to initialize H̃ we want to apply PCCA+ to the leading

r − 1 columns of U . Thus we build a matrix U , which takes the role of X in

(3.2), as follows: The first column of U is equal to e = [1, . . . ,1]T ∈ Rm, which

is a requirement of PCCA+. We then stock up with columns 1, . . . , r − 1 of U

until U ∈ Rm×r. Subsequently, for efficiency reasons of PCCA+, we ensure

orthogonality among the columns of U [Web06].

� Step 2: Initializing H̃ and W̃ We apply PCCA+ to U . According

to (3.2), we obtain a non-negative, column stochastic matrix H̃ setting

H̃ = (UA)T ∈ Rr×m, (3.3)

whereby A ∈ Rr×r is the computed PCCA+ transformation matrix. H̃ is our

initial guess of the kinetics of relative concentrations. Accordingly we gain an

initialization of the component spectra W̃ through the relation

M = W̃ H̃

⇔ W̃ = MH̃� =M (ATUT )� ∈ Rn×r. (3.4)

Regarding (3.3) and (3.4) we express the initial guesses of both sought-for

matrices only in terms of the given and processed data (M , U) and the PCCA+

transformation matrix (A).

� Step 3: Minimizing objective function The objective function of our

holistic NMF approach only incorporates structural properties of the sought-

for matrices as discussed above in paragraph matrix properties. With respect

to each property we estimate a penalty value as stated in the following expres-

sions:

Penalty 1: α(min
i,j

W̃ij)

Penalty 2: β (min
i,j

H̃ij)

Penalty 3: γ (max
j

∣
r

∑
i=1

H̃ij − 1∣)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.5)

In regard to non-negativity of light intensities and relative concentrations,
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penalties 1 and 2 determine the smallest entries in matrices W̃ and H̃. As the

sum of penalty values is supposed to increase if these smallest entries appear

to be negative, weighting coefficients α and β are generally chosen negative,

too. The requirement on H̃ to be column stochastic is regarded by computing

the maximal deviation of a column sum from being equal to 1.0 in penalty 3.

Consider Ψ to represent the sum of penalty values. As we choose the rela-

tions (3.3) and (3.4) for initialization, the input arguments for the objective

function are the matrices M , U and A. Since we perform optimization with

respect to parameter A, the minimization problem can be written in the form

min
A∈Rr×r

Ψ2.

Minimizing Ψ2 hence numerically adjusts matrices W̃ and H̃ according to the

claimed structural properties. For computation we apply matlab method fmin-

search, which uses the simplex search method of Lagarias et al. [LRWW98].

� Step 4: Recovering Wrec and Hrec The minimization in Step 3 finally

returns a transformation matrix Aopt. We then recover the resulting kinetics of

relative concentrations Hrec and the component spectra Wrec according to (3.3)

and (3.4) as

Hrec = (UAopt)T = AToptUT ∈ Rr×m,

Wrec =MH�
rec =M (AToptUT )

� ∈ Rn×r.

In regard to NMF in the context of Raman data spectral analysis, our holistic ap-

proach offers two main advancements: Firstly, in contrast to the method of Liesen

et al. [LHKL16], our holistic NMF approach is unaffected by the separability as-

sumption. Since we only consider the general properties of the sought-for matrices

without further demands on the input data, we may apply the holistic approach to

the broader range of even non-separable spectral data. Secondly, note the possibility

to manipulate the decicive objective function in Step 3 by the choice of weighting

coefficients α,β and γ or by addition of further penalty terms. This flexibility and

adaptability of our method allows for example for special focus on certain data

properties or even extension of the recovery objectives. See Section 4.3 for some

numerical experiments hereof and a discussion of observed tradeoffs.
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4 Numerical Results

In this section we present the level of performance of our holistic NMF approach

by applying it to a sequence of artificial time-resolved Raman spectral data. After

describing the reaction data generation in Section 4.1, we prove that the component

spectra are recovered to a high quality and that we even reach meaningful approx-

imations of the underlying reaction kinetics. As well in Section 4.2, we present the

effectiveness of our method in the case of increased interference among the individ-

ual component spectra and the occurrence of measurement noise. In Section 4.3,

we investigate capabilities to adjust and vary the objective function and illustrate

corresponding recovery results. Finally in Section 4.4 we introduce a new criterion

to provide comparability of different recovery results.

4.1 Description of the Reaction Data Generation

As in Section 1.2 for the model of time-resolved Raman spectral data, we here again

follow the framework of Liesen et al. [LHKL16].

Regarding the generation of artificial time-resolved Raman spectral data we consider

a reaction scheme with five involved species A, B, C, D and E which are inter-related

by first-order reactions. These first-order reactions are characterized by a rate matrix

of transition coefficients as follows:

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.53 0.53 0 0 0

0.02 −0.66 0.43 0.21 0

0 0.25 −0.36 0 0.11

0 0 0 0 0

0 0 0.1 0 −0.1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The rows i = 1, . . . ,5 of K reflect the transition behaviour of the corresponding

species in the course of the observed reaction. So K12 says that 53% of the amount

of species A merge into species B per arbitrary unit of reciprocal time. The diag-

onal entries of K represent the sum of relative loss of each species per time unit.

Thus we already notice species D to be the only product of this modeled reac-

tion as just this species exclusively absorbs rates. Here, we let species A be the
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only educt of the reaction and therefore denote the initial concentration vector as

h0 ∶= h(t0) = [1,0,0,0,0]T . With h0 and rate matrix K we obtain the reaction

kinetics as a function of time by

h(t)T = [h1(t), . . . , h5(t)] = hT0 eKt,

where hi(t) denotes the relative concentration of species i at time t. The resulting

kinetics are displayed in Figure 4.1 (right). We gain the corresponding matrix H

of kinetics by discretization of h(t) at equidistant time steps t0, . . . , tm−1 such that

H = [h(t0), . . . , h(tm−1)].
The single component spectra are built up as arbitrary sums of Lorentzians, which

we illustrate in Figure 4.1 (left). The five columns of matrix W accordingly contain

the discretized intensity-by-wavenumber signals.
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Figure 4.1: Illustration of artificially generated component spectra (left) and kinet-
ics of first-order reactions (right) including five species A to E. The
assignment of color to species holds for both panels. The resulting time-
resolved measurement data are displayed in Figure 4.2 (top).

The spectral overlap among the single component spectra is adjustable. This means

we may increase the level of spectral interference by moving all base points x0 of

the generated Lorentzians towards certain focal points. The level of spectral inter-

ference decides the level of separability of the measurement data. While the results

in [LHKL16] are based on near-separability because of low spectral interference, we
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prove the effectiveness of our method even in the case of high interference among

the component spectra.

The resulting measurement data matrix M is obtained as the product of matrix W

of component spectra and matrix H of the underlying reaction kinetics as M =WH.

See Figure 4.2 (top) for an interpolated visualizatoin of M .

4.2 Recovery Results

Considering the measurement data according to the artificial reaction scheme as

introduced in the previous Section 4.1, our goal is now to recover the single compo-

nent spectra as well as the reaction kinetics only given matrix M . In other words,

we compute matrices Wrec and Hrec by applying our holistic NMF approach to M .

We thereby are especially interested into the reconstruction of the true component

spectra W in order to provide a powerful tool for compound identification in real-life

Raman spectral analysis. Recall that the objective function in our approach is based

on adding up the penalty terms in (3.5), which represent the structural properties

of the sought-for matrices and which are weighted by choice of the coefficients α,β

and γ. In this section we present results of our method for the predefinitions

α = −0.0001, β = −1 and γ = 1. (4.1)

Recall additionally that we applied singular value decomposition in the preprocess-

ing of our computational method. That is why the order of species in the recovered

matrices Wrec and Hrec may be permuted in comparison to the order in the exact

matrices W and H. For comparative visualization of our recovery results we thus

compute the correlation coefficients between the columns ( ∼ species) of Wrec and W

and associate the spectra as well as the reaction kinetics according to the maximal

correlation values.

Exemplary recovery results of our holistic method for the noiseless case with low

spectral interference are displayed in Figure 4.3. Especially the recovery of compo-

nents A, B and D is nearly exactly: The coordinates as well as the heights of peaks

can hardly be distinguished visually from the original data. In the bottom right

panel we also present the recovery result for the matrix H of reaction kinetics.
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Figure 4.2: Interpolated visualization of the measurement data matrix M : On top,
the case of well separation of the component spectra and no measure-
ment noise. Below, a variant of increased spectral interference and noise
contamination.
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Figure 4.3: Reconstructed component spectra of the single species and reaction ki-
netics (bottom right) for noiseless Raman data. The spectra of com-
pounds A, B and D are recovered nearly exactly. Inaccuracies in the
lower wavenumber regions occur for compounds C and E. Furthermore,
our computed kinetics reflect the rough behaviour of the real kinetics.
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As in all upcoming illustrations of the reconstructed kinetics the dotted lines are

assigned to their species through the corresponding color in the spectral panels.

For comparison, the exact kinetics (black lines) represent the kinetics from Fig-

ure 4.1 (right). Indeed our reconstructed kinetics in Figure 4.3 reflect the general

trends of the exact kinetics as in particular species A is recognized to be the only

educt and species D to be the exclusive product of the generated reaction scheme.

As the first extension of the data setting we now investigate the effectiveness of our

method in the case of increased spectral interference. As mentioned in Section 4.1,

we generate increased spectral interference among the component spectra in W by

moving the base points x0 in all species towards three focal points. We then obtain

component spectra as displayed in Figure 4.4.
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Figure 4.4: Component spectra for modest spectral interference. In comparison
to the spectra in Figure 4.1 (left), notice how the base points of the
Lorentzians have been moved closer to each other.

In Figure 4.5 we present the results of our holistic approach being applied to very

interference-rich measurement data. Besides the remaining high quality in the re-

covery of components A, B and D the reconstruction of species C and E apparently

improved compared to the results in Figure 4.3. In this interference-rich case our

method computes the coordinates of the peaks in all component spectra quite satis-

factorily. Concerning the recovery of the reaction kinetics, displayed in the bottom

right panel, we again precisely identify the educt and the product of the reaction.
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Figure 4.5: Reconstructed component spectra of the single species and reaction ki-
netics (bottom right) for the case of high spectral interference. Note
the improvements in the recovery of species C and E in comparison to
Figure 4.3. In addition, the educt and the product of the reaction are
clearly recognizable in the recovery of reaction kinetics.
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Figure 4.6: Reconstructed component spectra of the single species and reaction ki-
netics (bottom right) for interference-rich and noisy measurement data.
The spectral recoveries still show a reasonable agreement with the true
spectra. The main traits of the reaction kinetics are recognizable as well.
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As the second extension of our data setting we regard the recovery results of our

routine additionally considering contamination of measurement noise. In any practi-

cal setting Raman spectral analysis needs to deal with this issue since, for instance,

signal shot noise or background noise appear in any real experimental data. Here we

assume the noise from all different sources to be adequately represented by additive

Gaussian white noise, which disturbs the measurement matrix M according to

M̃ =M + δ abs (N) .

The entries of N thereby are generated by the normal distribution N(0,1) and

δ = 0.5 is the relative noise level. See Figure 4.2 (bottom) for an interpolated vi-

sualization of the interference-rich and noisy measurement matrix M̃ . Applying

our holistic NMF approach with the predefinitions in (4.1) to M̃ , the illustrations

of results in Figure 4.6 prove that the component spectra still show a reasonable

agreement with the exact spectra. Furthermore, the main traits of the true reaction

kinetics are recognizable in the recovered kinetics as well.

Summarizing, our holistic NMF approach returns remarkable and robust results in

the recovery of component spectra and reaction kinetics while the method is mainly

based on the general structural properties of the sought-for matrices. The recovery

results of our approach even indicate that the quality of the recovered component

spectra improves as the spectral interference among the component spectra increases.

Our holistic approach can therefore be considered as a complement to the method

of Liesen et al. [LHKL16] since the success of their method especially depends on

low spectral interference (near-separability of M).

4.3 Manipulation of the Objective Function

The objective function of our holistic NMF approach is defined by the penalty terms

in (3.5). In the previous section we gained reasonable recovery results by choosing

the coefficients α,β and γ according to the predefinitions in (4.1). In order to illus-

trate the influence of each penalty term and to document the announced flexibility

of our method, we now present particular choices of penalty coefficients and dis-

cuss the corresponding recovery results. We thereby consider M̃ to represent noisy

measurement data including modest interference of the true component spectra.
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The first penalty term in (3.5) refers to the non-negativity of radiation intensities.

In our artificial setting intensity values of the generated spectra are in the scale

of 104. Choosing α = −0.0001 in (4.1) causes a rather weakened influence of this

penalty. If we, in contrast, consider a predefinition of coefficients such that

α = −1, β = −1 and γ = 1, (4.2)

application of our method to M̃ leads to recovery results as illustrated in Figure 4.7.

While the offset value is equal to 1 × 104 (as in all spectral visualizations), the

component spectra in Wrec now appear clearly above the offset level. In comparison

to Figure 4.6 this observation is especially noticeable for components B and E.

Enforcing the impact of the spectra penalty thus leads to strict non-negativity of

the recovered spectra. In the same time the recovery quality of reaction kinetics

decreases as several relative concentrations are displayed to be negative in large

time intervals.

The second penalty term, ruled by coefficient β, corresponds to the non-negativity of

the relative concentrations of the five species during the reaction process. As we saw

in the visualizations of results in the previous section, the predefinition of coefficients

in (4.1) leads to recovery results with at least partly negative concentrations of

several species. In comparison, a predefinition like

α = −0.0001, β = −100 and γ = 1 (4.3)

causes recovery results as illustrated in Figure 4.8. In regard of the kinetics we notice

the impact of the strengthened coefficient β since all reconstructed concentrations

in Hrec are greater or equal to zero in any moment of the recovered reaction scheme.

However, we gain negative intensities in the spectral bands of components A and B

which in a sense meanwhile decreases the quality of our results.

In the panel of kinetics in Figure 4.8 we added a dashed line representing the course

of the column sums of the recovered kinetics Hrec. As the column sums of Hrec

represent the sums of relative concentrations of the five species during the course

of the reaction, ideally, this line continuously keeps the level 1.0. On the one hand,

we may of course satisfy this constraint through column normalization of Hrec. On

the other hand, we achieve this goal through the third manipulation of coefficients.

Thereby we increase γ and thus strengthen the penalty concerning the columnwise
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Figure 4.7: Recovery results for penalty coefficients according to (4.2). The recon-
structed component spectra are strictly non-negative as they appear even
slightly increased compared to the offset level 1×104. However, the recov-
ered reaction kinetics display negative relative concentrations of several
compounds in large time intervals.
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Figure 4.8: Recovery results for penalty coefficients according to (4.3). As a re-
sult, in the kinetics panel the recovered relative concentrations of all
compounds are non-negative at any time. Meanwhile we obtain some
negative intensities in the recovered spectra of species A and B.
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partition of unity property of matrix Hrec. Our predefinition of coefficients for this

case is

α = −0.0001, β = −1 and γ = 10 (4.4)

and we display the recovery results in Figure 4.9. Indeed, in the bottom right panel

of kinetics, now the dashed line of column sums of Hrec is steadily on the level 1.0.

However, the recovered matrices again include some negative intensities in the com-

ponent spectra as well as negative relative concentrations in the reaction kinetics.

Consequently, each manipulation of penalty coefficients results in a recovery trade-

off between improvements concerning certain desired properties and decline in the

quality of others. Having discussed the influence of each single penalty term, it

particularly depends on the user to determine a composition of coefficients fitting

best to the data to be analyzed and the individual demands on the recovery results.

Besides flexibility in terms of coefficients weighting our holistic NMF approach is

distinguished by its capability to contentual extension. This is because the objective

function of our computational method, as introduced in Section 3.2, obviously allows

for addition of further penalty terms. For example in case of detailed foreknowledge

about the measured data, the recovery results may improve through formalized

inclusion of the foreknowledge in the objective function. Alternatively, we may

extend the objective function in order to identify other and even further recovery

objectives. Recall, for instance, the reaction rate matrix K in the generation of

artificial reaction data in Section 4.1, which basically characterizes the course of

first-order reactions among the five involved species. High-quality recovery of such

rate matrices thus enables deeper insight and better understanding of the underlying

reaction processes. Involving the recovery of rate matrix K in the objective function

of course firstly requires an expression of a K–approximation K̃ in terms of the

given or preprocessed measurement data. Secondly, a suitable coefficients weighting

among all resulting penalty terms needs to be developed. Although our experiments

hereof so far did not lead to convincing recovery results of K, we generally assume

big potential in the flexibility to further adjust and extend our objective funcion.
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Figure 4.9: Recovery results for penalty coefficients according to (4.4). The panel of
kinetics displays that the recovered relative concentrations indeed satisfy
the partition of unity property at any time as the column sum of Hrec

is consistently equal to 1.0. However, note some negative intensities in
the recovered spectra as well as partly negative concentrations.

51



4.4 Evaluation of Recovery Results by Peak

Comparison

In Raman data spectral analysis we are mainly interested into the spectral peaks as

they reveal meaningful information about the scattering properties of investigated

samples. Concerning the evaluation of recovery results it is therefore reasonable

to especially focus on the peaks. A new method, which exemplary determines a

benchmark of the recovery quality by comparison of peaks in the true and the

recovered spectra, is depicted in Algorithm 5.

Algorithm 5 Evaluation of Spectral Recovery by Peak Comparison

Input: true component spectra W , recovered spectra Wrec, sensitivity δ and coef-
ficients α, β

Output: benchmark of the quality of spectral recovery

1: Set Φ = 0 and let c be the number of columns in W . Then c is equal to the
number of involved component spectra.

2: for k = 1 to c do
3: Find all peaks in the k-th column of W which have higher intensity than δ.
4: For each identified peak in Step 3 consider a neighborhood of its base point

location in the corresponding column of Wrec and detect in there the peak of
highest intensity.

5: For each couple of peaks from Step 3 and Step 4 determine the differences
in intensity values (i) and base point locations (w) and update the evaluation
sum according to Φ = Φ + α∥i∥ + β∥w∥ .

6: end for
7: return Φ

The main idea of this method is to evaluate recovered spectra according to the

differences in intensity values (i) and base point locations (w) of the true peaks in

comparison to the peaks in the recovered spectra. See Figure 4.10 for an exemplary

illustration of the functionality of this evaluation method. Note that the impacts of

the evaluation components i and w depend on the choice of the coefficients α and β.

Applying Algorithm 5 to our recovery results in Section 4.2 with δ = 500, α = 0 and

β = 1 returns the following benchmark values:

Φ ≈ 41 (spectral data from Figure 4.3),

Φ ≈ 46 (spectral data from Figure 4.5),

Φ ≈ 79 (spectral data from Figure 4.6).
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Because of our choice of α and β the obtained Φ-values simply reflect the sum

of differences in the base point locations of the compared peaks. In contrast we

evaluate the same data only focused on the sum of intensity differences by choosing

δ = 500, α = 1 and β = 0. In this case, we obtain

Φ ≈ 8.8 × 104 (spectral data from Figure 4.3),

Φ ≈ 7.5 × 104 (spectral data from Figure 4.5),

Φ ≈ 8.0 × 104 (spectral data from Figure 4.6).

It turns out that the recovery results from Figure 4.5 cause the lowest sum of dif-

ferences with respect to the intensity values while the data from Figure 4.3 return

the lowest Φ-value according to the evaluation of the base point locations. Rank-

ings of recovery results via Peak Comparison thus basically depend on the focus of

investigation and the corresponding choice of weighting coefficients.
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Figure 4.10: Illustration of the Peak Comparison method for an expanded view of
a wavenumber region. For the base point location of the peak in the
true spectrum (black) the method considers a neighborhood in the cor-
responding recovered spectrum (blue) and determines the highest peak
in there. According to the weighting coefficients α and β the obtained
differences in intensity (i) and base point location (w) constitute the
value added to the evaluation sum Φ.
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Conclusion and Open Questions

Having discussed different previous NMF methods and their application areas, we

introduced our new holistic NMF approach, which is especially designed for analysis

of time-resolved Raman spectral data. We proved the effectiveness and versatility of

our method in different data settings as well as the individual impacts of the three

penalty components in the objective function. However, we are aware of remaining

potentials for generalization and extension of the holistic approach. Concluding, we

hence briefly outline three topics for possibly further research:

Firstly, in order to further improve the recovery results of the component spectra as

well as of the reaction kinetics, adjustments in the setup of the objective function,

in the coefficients weighting in there and in the preprocessing may for example be

considered.

Secondly, reasonable recovery of the underlying reaction rate matrix K is desireable

for profound analysis of chemical processes. At the end of Section 4.3 we therefore

pointed out the flexibility of the objective function, which in particular allows for

extension of the recovery objectives.

Thirdly, the holistic NMF approach so far considers the number of involved species

to be given in advance. In order to provide applicability to real-life measured data of

time-resolved Raman spectroscopy, criteria or routines for independent identification

of the number of component spectra (∼ the factorization rank) constitute important

potential of the holistic NMF approach.
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Zusammenfassung

Die Analyse von Schwingungsspektren erlaubt die Bestimmung einzelner Substan-

zen innerhalb einer Probe und findet daher vielseitige Anwendung in Forschung

und Industrie. Neben Infrarot- ist Ramanspektroskopie die häufigste Methode zur

Ermittlung solcher Schwingungsspektren. Eine Weiterentwicklung, die so genannte

zeitaufgelöste Ramanspektroskopie, erfasst in kurzen Abständen Schwingungsspek-

tren einer Probe über ein Zeitintervall. Eine solche Serie von Schwingungsspektren

einer chemischen Reaktion kann z.B. Aufschluss geben hinsichtlich der auftretenden

Zwischenprodukte (Transienten) sowie deren relativer Konzentrationen im Zeitver-

lauf. Die Entwicklung mathematischer Verfahren zur Analyse solch zeitaufgelöster

Ramanspektren ist daher vielseitiger Gegenstand aktueller Forschung. Ein vielver-

sprechender Ansatz ergibt sich aus der Übertragung der Problemstellung in den

Kontext Nicht-Negativer Matrix Faktorisierung (NMF): Die Serie der aufgezeichne-

ten Spektren wird hier durch Diskretisierung in Matrix-Schreibweise überführt und

mittels NMF bezüglich der Spektren der beteiligten Substanzen einerseits und des

zeitlichen Verlaufs der relativen Konzentrationen andererseits entschlüsselt.

Zur Motivation führten wir zu Beginn dieser Arbeit ein in die Grundlagen und An-

wendungsgebiete der Ramanspektroskopie und erläuterten daraufhin eine mathema-

tische Modellierung zeitaufgelöster Ramanspektren. Wir gaben anschließend einen

Überblick über bisherige NMF-Ansätze und gingen dabei insbesondere auf die Klasse

der separablen NMF ein. Im folgenden Verlauf erweiterten wir das Instrumentari-

um um einen neuen, ganzheitlichen NMF-Ansatz, der konzeptionell speziell auf die

Analyse zeitaufgelöster Raman-Spektraldaten ausgelegt ist. Die Leistungsfähigkeit

unseres zugehörigen Algorithmus testeten wir an künstlichen Spektraldaten unter

Berücksichtigung verschiedener Interferenz-Grade der Einzelsubstanz-Spektren so-

wie Rauschen und diskutierten die Ergebnisse. Als Stärken unserer neuen Methodik

identifizierten wir deren Flexibilität durch Anpassungsfähigkeit der Zielfunktion so-

wie die Unabhängigkeit von der Separabilität der Eingangsdaten. Darüber hinaus

erläuterten wir einen neuen Ansatz zur Bewertung von Rekonstruktionsergebnis-

sen, welcher die spektralen Peaks der vorgegebenen Spektren jenen der berechne-

ten Spektren gegenüberstellt. Zum Abschluss der Arbeit benannten wir einige viel-

versprechende Erweiterungs- und Optimierungspotentiale des ganzheitlichen NMF-

Ansatzes.
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[GV02] David Guillamet and Jordi Vitrià. Non-negative Matrix Factorization for Face
Recognition. In Topics in Artificial Intelligence, pages 336 – 344. Springer,
2002.

[Hoy04] Patrik O. Hoyer. Non-negative Matrix Factorization with Sparseness Con-
straints. Journal of Machine Learning Research, 5:1457 – 1469, 2004.

[KK05] Qifa Ke and Takeo Kanade. Robust L1 Norm Factorization in the Presence
of Outliers and Missing Data by Alternative Convex Programming. In IEEE
Conference on Computer Vision and Pattern Recognition, volume 1, pages 739
– 746. IEEE Computer Society, 2005.

[KP01] Jyrki Kauppinen and Jari Partanen. Fourier Transforms in Spectroscopy.
Wiley-VCH, 2001.

[KS10] Bhargav Kanagal and Vikas Sindhwani. Rank Selection in Low-Rank Matrix
Approximations: A Study of Cross-Validation for NMFs. In Advances in
Neural Information Processing Systems, 2010.

[KSK13] Abhishek Kumar, Vikas Sindhwani, and Prabhanjan Kambadur. Fast Con-
ical Hull Algorithms for Near-separable Non-negative Matrix Factorization.
Journal of Machine Learning Research, 28(1):231 – 239, 2013.

[KT51] Harold W. Kuhn and Albert W. Tucker. Nonlinear programming. In Proc.
Second Berkeley Symposium on Mathematical Statistics and Probability, pages
481 – 492. California University Press, 1951.

[Kud08] Andrzej Kudelski. Analytical Applications of Raman spectroscopy. Talanta,
76(1):1 – 8, 2008.

[LC14] Ying-Sing Li and Jeffrey S. Church. Raman spectroscopy in the analysis of
food and pharmaceutical nanomaterials. Journal of Food and Drug Analysis,
22(1):29 – 48, 2014.

[LHKL16] Robert Luce, Peter Hildebrandt, Uwe Kuhlmann, and Jörg Liesen. Using
separable non-negative matrix factorization techniques for the analysis of time-
resolved Raman spectra. Applied Spectroscopy, 70(9):1464 – 1475, 2016.

[LRWW98] Jeffrey C. Lagarias, James A. Reeds, Margaret H. Wright, and Paul E. Wright.
Convergence Properties of the Nelder–Mead Simplex Method in Low Dimen-
sions. SIAM Journal of Optimization, 9(1):112 – 147, 1998.

[LS00] Daniel D. Lee and H. Sebastian Seung. Algorithms for Non-Negative Matrix
Factorization. In Advances in Neural Information Processing Systems, pages
556 – 562. MIT Press, 2000.

62



[Sch95] Bernhard Schrader. Infrared and Raman Spectroscopy. Wiley-VCH, 1995.
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