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Abstract

The aim of this thesis is to investigate the rebinding effect, a phenomenon describing a
“short-time memory” which can occur when projecting a Markov process onto a finite state
space. Under the assumption of a fuzzy clustering in terms of membership functions, a minimal
bound for the rebinding effect included in a given system is computed as the solution of an
optimization problem. Based on membership functions χ = XA, being a linear combination of
Schur vectors, this generalized approach includes reversible as well as non-reversible processes.
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Introduction

Markov processes are memoryless stochastic processes with applications in many different
kinds of areas. They are employed to describe molecular systems like protein folding[11] or
ligand-binding processes[43]. Such processes act on very large state spaces and additionally
require simulations on rather long time-scales in order to observe rare conformational changes.
Consequently, a reduction of dimension is aimed at, which can be realized by a projection onto
a smaller state space. The reduced model should represent the correct long-time behaviour of
the process, while being less complex. The existence of metastable sets can be exploited to
create such a “Markov State Model”[5, 10]. A well-established solution is the fuzzy clustering
algorithm PCCA+, which identifies metastable sets with the aid of membership functions
χ = XA, being a linear combination of eigenvectors[52].

When projecting a process onto a finite state space, it can lose its Markov property, more
precisely it can include short-time memory effects. Such memory effects were detected in
the context of ligand-binding-systems, where in certain configurations significantly increased
binding affinities were observed[50]. They are explained by an additional memory caused by
the projection: short time after a ligand unbound from its target, it is assumed to be still
nearby and thus rebinds with a high probability. Consequently, this short-time memory is
denoted as rebinding effect. This memory effect is strongly related to the overlap of the
membership functions χ determining the clustering. Hence, knowing them makes it easy to
compute the actual rebinding effect caused by this projection. However, in many cases the
original process and the membership functions are not known. For instance, a finite process
can be constructed as the solution of a differential equation and just be interpreted as the
projection of a larger process. In order to identify possible memory effects included in that
system, it is favorable to estimate the rebinding effect. This can be achieved by solving an
optimization problem, revealing a minimal bound:

“Given a clustered system, how much rebinding is included at least?”

The computation of the minimal rebinding effect included in a given kinetics has been
accomplished for reversible processes in 2014 by Weber and Fackeldey[56]. In this thesis,
the formulation of the corresponding optimization problem is extended onto non-reversible
processes. This is achieved by employing the framework of GenPCCA, a recent modification
of PCCA+ by Weber and Fackeldey[54] from 2017, which is based on Schur vectors instead of
eigenvectors and includes non-reversible processes. This generalization is of particular interest
since many real-world processes are non-reversible[17].
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A significant application of the presented topic lies in the area of computational drug design.
In order to treat diseases, ligands are designed such that they bind to pathogenic target
molecules. Improving the binding affinity is one important goal in drug design. For a precise
prediction of the binding affinity, it is important to consider possible rebinding effects, since
they can influence the binding behaviour.

The main topic and structure of this thesis is based on Weber and Fackeldey[56], though
with the addition of considering non-reversible processes as proposed by the same authors[54].
The mathematical foundations presented in the first two chapters are inspired by the book
“Metastability and Markov State Models in Molecular Dynamics” by Schütte and Sarich[42].
Furthermore, the dissertations of Huisinga[21], Weber[52], Nielsen[30] and the habilitation of
Weber[53] have been particularly useful for the deeper understanding of the mathematical
concepts behind metastability, clustering and transfer operators.
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Thesis Structure

Chapter 1 - Markov State Models

We give a short overview about Markov processes and how their evolution in time can be
described by transition functions and transfer operators. We show how such a continuous
operator can be projected onto a finite-dimensional space with the aid of a Galerkin discretiza-
tion. Finally, we analyze the discretization error and the possible loss of the Markov property
which can occur by this projection.

Chapter 2 - Dominant Structures

In order to create a suitable Markov State Model preserving the long-time behaviour of
the original process, we introduce the concept of metastability. We define metastable sets
mathematically and explain their relevance for molecular systems. We reveal their relation to
the spectrum of the transfer operator and show that the “best” metastable decomposition
is achieved in terms of fuzzy membership functions, which may be overlapping. Finally, we
extend this well-established clustering method to non-reversible processes by employing the
Schur decomposition.

Chapter 3 - Rebinding Effect

In this chapter, we characterize the rebinding effect as a memory effect which occurs in the
context of receptor-ligand systems, a special case of molecular systems. We apply the methods
presented in the first chapters in order to rigorously describe a molecular system respectively
its projection onto a finite subspace. Finally, we compute a minimal bound for the rebinding
effect as the solution of an optimization problem, for reversible as well as for non-reversible
systems.

Chapter 4 - Illustrative Examples

The results from chapter 3 are verified by means of some illustrative examples. The minimal
rebinding effect is first computed for some clusterings of a reversible system in order to evaluate
the quality of this estimation. Afterwards, this system will be perturbed to non-reversibility
and the outcome compared to the reversible case. Then, the rebinding effect is analyzed in a
real-world application, describing the chemical reaction of a molecule. As the rebinding effect
is characterized within receptor-ligand systems, such a system is examined as well.
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1 Markov State Models

In order to be able to describe dynamical systems having a nondeterministic behaviour, we
introduce Markov processes. They are memoryless stochastic processes which are commonly
used to model different kinds of real-world processes. Recently they have been applied a lot in
the research area of modelling biomolecular systems[36, 42]. As those systems are enormously
large, it is very difficult to perform simulations on feasible time scales. That is why a reduction
of complexity is needed. The originally large process is projected onto a suitable subspace,
while maintaining the most relevant dynamical properties. We present such a reduced model,
called “Markov State Model”[32].

In order to adequately define a Markov State Model, we first introduce some basic defi-
nitions and properties of stochastic processes and describe how their time-evolution can be
characterized by a transfer operator. The actual dimension reduction of the process is realized
by a Galerkin projection applied to the transfer operator. By that action, states of the original
process are clustered conveniently.

1.1 Markov Process

Markov processes are a special type of stochastic processes and a generalization of the well-
known Markov chains. Markov chains were defined as memoryless processes acting on finite
state spaces and evolving in discrete time, a behaviour that can be represented by a stochastic
matrix. For general Markov processes, both time and space can be continuous. Consequently,
more extensive formulations and tools are required in order to rigorously describe such
processes and their evolution in time.

Transition Function

We will denote by E := (E,Σ) a measurable space, that is a set E with some σ-algebra Σ
defined on it. The triple Ω := (Ω,A,P) will be a probability space, that is a measurable
space with a probability measure P defined on it; more detailed information about these basic
measure theoretic notations can be found in Bogachev[4, chapter 1].

A random variable X : Ω→ E is a measurable function from a probability space Ω into a
measurable space E, meaning that preimages of measurable sets in E are measurable in Ω:

A ∈ Σ⇒ X−1(A) ∈ A.

Then the probability measure P of Ω induces a canonical probability measure on E, by

µ(A) := P(X ∈ A) := P(X−1(A))

for all A ∈ Σ, called the distribution of X, see Øksendal[31, section 2.1].
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Definition 1.1. (Stochastic process)
A family (Xt)t∈T of random variables Xt : Ω→ E on some index set T is called a stochastic
process on a state space E.

In the following, we consider stochastic processes on real state spaces E ⊂ Rd, d ∈ N,
equipped with the Borel-σ-algebra Σ = B(E). In order to introduce Markov processes as
a special type of stochastic processes, we need a tool to describe the time evolution of a
process. This can be done using the transition function which describes the propagation of
the distribution functions of a stochastic process.

Definition 1.2. (Transition function)
A function p : T× E × Σ→ [0, 1] is a transition function if it fulfills the following properties:

i) x 7→ p(t, x,A) is measurable on E for all t ∈ T and A ∈ Σ,

ii) A 7→ p(t, x,A) is a probability measure for all t ∈ T and x ∈ E,

iii) p(0, x, E \ x) = 0 for all x ∈ E,

iv) the Chapman-Kolmogorov equation

p(t+ s, x,A) =

∫
E
p(t, x,dz)p(s, z, A). (1.1)

holds for all t, s ∈ T, x ∈ E and A ∈ Σ.

In this definition, the first three properties ensure that we get reasonable results and that the
process can only be in one state at the same time. From the Chapman-Kolmogorov equation
(1.1), it follows that the transition function p(t, x,A) can be considered as the probability to
get into a certain subset A in a time interval t starting from a point x. That means that we
can describe the time evolution of a stochastic process by a transition function. In particular,
the transition matrix of a Markov chain is a special case of the transition function since it
fulfills the above properties.

Markov Process

Since the transition function comprises all possible transition probabilities between subsets of
E, it enables us to define Markov processes.

Definition 1.3. (Markov Process)
A stochastic process (Xt)t∈T on a state space E is a Markov process if its transition function
fulfills the equation

p(t, x,A) = P(Xt+s ∈ A | Xs = x). (1.2)

for all s, t ∈ T, x ∈ E and A ∈ Σ. If that probability is independent from s, then the Markov
process is called time-homogeneous.
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We are especially interested in time-homogeneous processes, which will be presumed from
now on. As we can see from the definition, all possible transition probabilities are given
and hence, the time evolution of a Markov process is completely described by its transition
function. Thus, a Markov process is uniquely determined by its transition function and an
initial distribution µ. It is a process with “no memory” in the sense that only the last known
state has an influence on the future of the process, as we can see on the right side of (1.2).
Indeed, there is a one-to-one relation between transition functions and Markov processes, i.e.
every homogeneous Markov process defines a transition function and vice versa, see Meyn and
Tweedie[29, section 3.4]. The beginning of a Markov process Xt with the transition function
p fulfills

Pµ(X0 ∈ A,Xt ∈ B) =

∫
A
p(t, x,B)µ(dx) (1.3)

for any A,B ∈ Σ, where Pµ indicates that X0 ∼ µ, or equivalently µ(A) = P(X0 ∈ A).

The transition function for a Markov process plays the same role as the transition matrix for
a Markov chain; it propagates its distributions in time. If we choose t = 1 and transitions into
one-elementic subsets, then the transition function corresponds to the 1-step transition matrix
[pij ] = P ∈ Rn×n of a Markov chain. Having introduced the notion of Markov processes, we
can define important properties and give some examples.

Invariant Measure

Definition 1.4. (Invariant measure)
Let (Xt)t∈T be a Markov process. The probability measure µ is invariant with respect to
(Xt)t∈T if for all t ∈ T and A ∈ Σ we have∫

E
p(t, x,A)µ(dx) = µ(A).

In other words, a measure is invariant with respect to a Markov process if the probability
to be in any subset of the state space is the same as the probability to get into that subset
by the evolution of the Markov process for any fixed transition time. This means that the
process is in “equilibrium” and does not change in time under this measure, which is also
called a stationary measure for this reason.

Ergodicity

The long-time behaviour of stochastic processes can be described using ergodicity.

Definition 1.5. (Ergodic process)
Let (Xt)t∈T be a Markov process with invariant probability measure µ. Then (Xt)t∈T is
ergodic with respect to µ if for all functions u : E → R with

∫
E |u|µ(dx) <∞ we have

lim
T→∞

1

T

∫ T

0
u(Xt) dt =

∫
E
u(x)µ(dx).

for almost all initial values X0 = x0.
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In that sense, a Markov process is ergodic if its time average is the same as its average
over the probability space. In an ergodic process, the state of the process after a long time is
nearly independent of its initial state.

Reversibility

Reversibility describes the invariance of a process with respect to time-reversal. In the next
section, we will see that operators describing reversible processes yield some very favorable
properties, which makes them particularly easy to analyze.

Definition 1.6. (Reversible process)
Let (Xt)t∈T be a Markov process with invariant probability measure µ. Then (Xt)t∈T is
reversible with respect to µ if∫

A
p(t, x,B)µ(dx) =

∫
B
p(t, x,A)µ(dx)

for all t ∈ T and A,B ∈ Σ. If µ is unique, then Xt is simply called reversible.

For a reversible process, the probability to get from any subset A to another subset B in
a fixed time is the same as the probability for the reverse transition in the same time span.
This definition implies that the process keeps the same probability law even if its movement
is considered backwards in time.

Example: Markov Chain

Let (Xt)t∈T be a Markov chain on discrete time T = N and finite state space E = {1, . . . , n}.
Since we consider 1-step transitions, the associated transition function is given by p(x, y) :=
p(1, x, y) and corresponds to the entries of the transition matrix P ∈ Rn×n, that is

Pxy = p(x, y) = P(X1 = y | X0 = x).

The propagation of a probability distribution v0 ∈ Rn in the state space can be written as
vT1 = vT0 P , where vT0 denotes the transposed vector of v0. The invariant measure is given by
the stationary distribution π ∈ Rn, a normalized positive vector satisfying πT = πTP . If P is
irreducible, such an eigenvector exists due to Perron-Frobenius theorem[20, P7.3.5] and in
this case, the corresponding eigenvalue 1 is simple.

Reversibility of a Markov chain can be characterized by the detailed balance condition

πi · P(X1 = j | X0 = i) = πj · P(X1 = i | X0 = j) ∀i, j ∈ E.

A more compact way to write this equation uses the diagonal matrix D = diag(π1, . . . , πn).
Then a Markov chain is reversible if and only if its transition matrix P fulfills

DP = P TD. (1.4)

8



1.2 Transfer Operator

With the previously defined transition function, we have a tool to describe the propagation of
distributions of stochastic processes. Based on that, we define a transfer operator propagating
probability densities of Markov processes, as introduced by Schütte et al[41]. Before defining
such an operator, we have to specify the space of functions the operator is acting on.

Lr-Spaces

It seems natural to define such a density propagating operator as acting on L1(µ), the Banach
space that includes all probability densities with respect to µ. However, it is sometimes
advantageous to restrict the analysis to L2(µ), since this may yield a self-adjoint operator.
As there are different motivations for the choice of a suitable space, we define an operator
which acts on Lr(µ)-spaces, i.e. spaces of r-integrable functions.

Definition 1.7. (Lr-Spaces)
Let (E,Σ, µ) be a probability space. The corresponding Lr-spaces are defined as equivalence
classes of measurable functions

Lr(E,Σ, µ) = {f : E → R |
∫
E
|f(x)|rµ(dx) <∞}

for 1 ≤ r <∞ and

L∞(E,Σ, µ) = {f : E → R | ess sup
x∈E

|f(x)|rµ(dx) <∞},

with the corresponding norms ‖ · ‖r and ‖ · ‖∞, respectively.

In these equivalence classes, two functions f and g are identified if f = g µ-almost everywhere,
see Werner[58, section I.1]. If it is clear from the context, which probability space (E,Σ, µ) is
in consideration, we just write shortly Lr(µ) := Lr(E,Σ, µ). Due to Hölders inequality, we
have Lr(µ) ⊂ Ls(µ) for all 1 ≤ s ≤ r ≤ ∞. All Lr-spaces are Banach spaces, though L2(µ) is
the only one which can be equipped with a canonical scalar product and thereby becomes a
Hilbert space, see Werner[58, section V.1]. For f, g ∈ L2(µ), the scalar product is defined as

〈f, g〉µ :=

∫
E
f(x)g(x)µ(dx).

Now let ν0 be the density function of a given start distribution. Then the density function of
a subset A ∈ Σ at time t is given in terms of the transition function by

νt(A) =

∫
E
ν0p(t, x,A)µ(dx).

On the other hand, the density νt is given by

νt(A) =

∫
A
νt(x)µ(dx).
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Forward and Backward Transfer Operator

The two above equations result in the following definition of a transfer operator which should
“propagate” probability densities according to a given Markov process. But instead of limiting
us to density functions, we define the transfer operator as acting on any r-integrable function.

Definition 1.8. (Propagator or Forward Transfer Operator)
Let p : T × E × Σ → [0, 1] be the transition function of a Markov Process (Xt)t∈T with an
invariant measure µ. The set of propagators or forward transfer operators T t : Lr(µ)→ Lr(µ)
with t ∈ T and 1 ≤ r ≤ ∞ is defined via∫

A
T tν(y)µ(dy) =

∫
E
ν(x)p(t, x,A)µ(dx) (1.5)

for all A ∈ Σ and ν ∈ Lr(µ).

The propagator1 T is well-defined on the Banach spaces Lr(µ), 1 ≤ r ≤ ∞, see Huisinga[21].
T tν0 describes the transport of the function ν0 in time t by the underlying dynamics given by
the process Xt and weighted with respect to µ via

ν0 7→ νt = T tν0.

Since µ is invariant, we immediately see that the characteristic function 1 := 1E of the entire
state space is invariant under the action of T , that is

T 1 = 1.

It means that T has the eigenvalue 1 corresponding to the eigenfunction 1.

Definition 1.9. (Backward Transfer Operator)
The backward transfer operator Pt : Lr(µ)→ Lr(µ) with t ∈ T and 1 ≤ r ≤ ∞ is defined by

Ptf(x) =

∫
E
f(y)p(t, x,dy). (1.6)

For this operator as well, we obtain 1 as eigenvalue to the eigenfunction 1, that is

P1 = 1.

Both operators P and T conserve the norm ‖Pf‖1 = ‖f‖1 and are positive, Pf ≥ 0 for
f ≥ 0, see Schütte and Sarich[42]. If we compare the equations (1.5) and (1.6), the notion of
“forward” and “backward” becomes clear. For the forward transfer operator, the state average
with respect to a function is taken over all initial states x which are propagated forward in
time, whereas for the backward transfer operator, we take the state average over all final
states y.

1If the lag-time t is not of importance, e.g. if a property is valid for all t, then we omit it and write T := T t.
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The operator Pt is adjoint to T t, denoted by (T t)∗ = Pt, i.e. they are related via

〈T tf, g〉µ = 〈f,Ptg〉µ, (1.7)

for all f ∈ Lp(µ), g ∈ Lq(µ) with 1
p + 1

q . In order to obtain this useful adjointness-relation, it is

reasonable to restrict these operators to act on L2(µ) and L2(µ) respectively L1(µ) and L∞(µ).

In the further course of this thesis, we will be concerned with the backward transfer operator
and just call it “transfer operator”. However, because of this adjointness, many properties of
the two transfer operators coincide. The actual conceptual connection between them becomes
more comprehensible by considering their finite versions in the next section. A deeper analysis
of both transfer operators and their relation can be found in Nielsen[30].

Spectrum of Transfer Operator

Later in this thesis, we will be interested in examining the spectrum of the transfer operator
of a given Markov process. The following theorems give us an important insight about the
spectrum and its relation to the reversibility of the process.

Definition 1.10. (Self-adjoint Operator)
An operator U on L2(µ) is called self-adjoint if for all f, g ∈ L2(µ) we have

〈f,Ug〉µ = 〈Uf, g〉µ.

Theorem 1.11. (Werner[58, Theorem VI.1.2, Theorem VI.1.3, Lemma VI.3.1])
Let X be a Banach space and U : X → X a linear continuous operator. Then

|λ| ≤ ‖U‖ for all λ ∈ σ(U).

If X is additionally a Hilbert space, then

i) σ(U∗) = {λ̄ | λ ∈ σ(U)},

ii) if U is self-adjoint, then σ(U) ⊂ R,

iii) if U is self-adjoint, then each two eigenfunctions corresponding to different eigenvalues
are orthogonal.

Since we know that the operator norm of any transfer operator P is 1, it follows immediately
from theorem 1.11 that the spectrum σ(P) is contained in the unit circle of the complex plane,
that is we have |λ| ≤ 1 for all λ ∈ σ(P) ⊂ C.

Theorem 1.12. (Huisinga[21, Proposition 1.1])
Let P : L2(µ) ⊂ L1(µ)→ L2(µ) be the transfer operator corresponding to the Markov process
(Xt)t∈T. Then P is self-adjoint with repect to the scalar product 〈·, ·〉µ in L2(µ) if and only if
(Xt)t∈T is reversible.
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It follows that the transfer operator of a reversible process has a real spectrum σ(P) ⊂ [−1, 1],
a property that will be very advantageous for the later investigations.

Infinitesimal Generator

For T = R the Chapman-Kolmogorov property (1.1) of the transition functions makes the
family {Pt}t∈R of corresponding transfer operators a continuous semigroup due to

Pt+s = PtPs.

A proof for the forward as well as for the backward transfer operator can be found in Schütte
and Sarich[42, appendix A]. This leads to the following definition of the time-independent
infinitesimal generator.

Definition 1.13. (Infinitesimal Generator)
For the semigroup of transfer operators Pt : Lr(µ) → Lr(µ) with t ∈ T and 1 ≤ r ≤ ∞ we
define D(Q) as the set of all f ∈ Lr(µ) such that the strong limit

Qf = lim
t→0

Ptf − f
t

exists. Then the operator Q : D(Q)→ Lr(µ) is called the infinitesimal generator of Pt.

The infinitesimal generator is an operator which describes the behaviour of a Markov process
in infinitesimal time. That becomes clear by the relation

Pt = exp (tQ) (1.8)

in L2(µ), see [42], which implies that Q “generates” the semigroup of transfer operators
{Pt}t∈R. The whole semi-group of transfer operators can be derived from it, by choosing
the desired lag-time t and computing the corresponding transfer operator with (1.8). If the
associated Markov process is reversible, then Q is self-adjoint in L2(µ) and the spectrum is
contained in (−∞, 0], which can easily deduced from theorems 1.11 and 1.12. Consequently,
the dominant eigenvalues 1 = λ1, . . . , λn of the transfer operator Pt are related to the dominant
eigenvalues 0 = ξ1, . . . , ξn of the generator Q via

λi = exp(tξi)

for all 1 ≤ i ≤ n and the associated eigenfunctions are identical. Thus, the eigenfunction 1 of
P is as well an eigenfunction for Q to the dominant eigenvalue ξ1 = 0, satisfying

Q1 = 0,

where 0 is the constant zero function on E.
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1.3 Galerkin Projection

So far we considered Markov processes on very large, possibly continuous, state spaces. For
many applications, simulations of a given process are needed in order to obtain informations
about the system, though computations on large state spaces require an enormous amount of
computation power and time. With enlarging the state space, the computation effort increases
exponentially fast, see “curse of dimensionality”[3]. For that reason, we are interested in
reducing the number of states in order to be able to perform computations on reasonable
time-scales. Such a reduction can be realized by a projection. In this section, we present the
mathematical concept which enables us to create such a reduced model.

Galerkin Projection

The first step in order to create a finite process is to determine a convenient finite state
space D ⊂ L2(µ). For this purpose, we choose a partition of unity as a basis, which is a
generalization of a set of characteristic functions. This more general idea gives us more
flexibility for later applications. The relevance of this choice for the projection will be clarified
in section 2.3.

Definition 1.14. (Partition of Unity)
A family of measurable functions {χ1, . . . , χn} : E → [0, 1] in L2(µ) is called a partition of
unity if the following two conditions are fulfilled:

i) The χi are non-negative and linear independent.

ii)
∑n

i=1 χi(x) = 1 for all x ∈ E.

Definition 1.15. (Galerkin Projection)
Let {χ1, . . . , χn} be a partition of unity, D = span{χ1, . . . , χn} the associated finite-dimensional
ansatz space and Ŝ ∈ Rn×n with Ŝkj = 〈χk, χj〉µ. The Galerkin projection onto D is defined
by G : L2(µ)→ D via

Gf =
n∑

k,j=1

(Ŝ−1)kj〈χk, f〉µχj . (1.9)

The matrix Ŝ is invertible since it is the Gramian matrix of linear independent functions. In
the easy case that the {χ1, . . . , χn} are the characteristic functions {1A1 , . . . ,1An} belonging
to a full partition {A1, . . . , An}, equation (1.9) becomes

Gf =
n∑
k=1

1

µ(Ak)
〈χk, f〉µχk,

since the χi are orthogonal which means that χkχj = 1 if j = k and 0 otherwise. A Galerkin
projection can be applied on the transfer operator of a Markov process as well.
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Definition 1.16. (Projected Transfer Operator)
Let P be the transfer operator of a Markov process on a state space E with unique invariant
measure µ, {χ1, . . . , χn} be a partition of unity and G the Galerkin projection onto the
associated subspace D. Then an operator of the form

GPG : L2(µ)→ D

is called projected transfer operator and we abbreviate it by G(P).

Matrix Representation

We want to propagate n-dimensional vectors by the projected transfer operator. For this
reason, we consider the projection of the restricted transfer operator GP|D : D → D, denoted
by G(P) as well. Every linear map between finite-dimensional vector spaces can be represented
by a matrix which is determined by chosen bases. Accordingly, we can write the projected
transfer operator as a n× n-matrix in the following useful way.

Theorem 1.17. Let P be the transfer operator of a Markov process, {χ1, . . . , χn} a partition
of unity and G(P) the Galerkin projection of the transfer operator onto the associated subspace.
Then G(P) has a matrix representation

Pc = S−1T,

with

Tkj =
〈χk,Pχj〉µ
〈χk, 1〉µ

and Skj =
〈χk, χj〉µ
〈χk, 1〉µ

. (1.10)

Proof. Remember that Pc is a (right) matrix representation of G(P) with respect to a basis
{ψ1, . . . , ψn} of D if for any function f : D → D with

f =
n∑
i=1

αiψi and G(P)f =
n∑
i=1

βiψi (1.11)

it holds that

Pc(α1, . . . , αn)T = (β1, . . . , βn)T , (1.12)

or equivalently βl =
∑n

k=1 αk(Pc)lk. Assuming that (1.11) is true, we aim to show (1.12). For
that purpose, we choose a basis {ψ1, . . . , ψn} of D with

ψk = χk. (1.13)

As G(P) is a linear map, we have G(P)f =
∑
αiG(P)ψi. We exploit this fact, as well as the

14



definitions of the Galerkin projection and the basis to compute

G(P)f =
n∑
k=1

αkG(P)ψk

(1.9)
=

n∑
k,l,j=1

αk(Ŝ
−1)jl〈χj ,Pψk〉µχl

(1.13)
=

n∑
k,l,j=1

αk(Ŝ
−1)jl〈χj ,Pψk〉µψl

(1.11)
=

n∑
l=1

βlψl.

Comparing the coefficients of the last two equations, we can express βl as

βl =
n∑

k,j=1

αk(Ŝ
−1)jl〈χj ,Pψk〉µ

=
n∑
k=1

αk

n∑
j=1

(Ŝ−1)jl〈χj ,Pχk〉µ︸ ︷︷ ︸
!
=(Pc)lk

. (1.14)

The underbraced term should be equal to (Pc)lk because we wish that (1.12) is fulfilled.
Thus, we compute the (l, k)-th entry of Pc = S−1T , employing (S−1)lj = (Ŝ−1)lj〈χj , 1〉, as

(S−1T )lk =
n∑
j=1

(S−1)ljTjk

=

n∑
j=1

(Ŝ−1)lj〈χj , 1〉µ
〈χj ,Pχk〉µ
〈χj , 1〉µ

=

n∑
j=1

(Ŝ−1)lj〈χj ,Pχk〉µ

and discover that it is equal to the underbraced term in (1.14), since Ŝ is symmetric. Hence,
(1.12) is true and consequently Pc is the requested matrix representation of G(P).

The proof of theorem 1.17 has been conducted similar to Schütte and Sarich[42, chapter
5]. They proved an analogous statement for the forward transfer operator T , yielding a
left matrix representation TS−1, employing a normalized basis ψk = χk/〈χk, 1〉. These two
matrices are the transposed of each other, which can be explained as follows: each matrix can
be interpreted as representing two linear maps - by left and right multiplication with a vector.
If we consider Pc as a row-stochastic matrix, then it propagates a probability distribution v0

by multiplication vT0 Pc from the left, while it computes probabilities to reach a subset A via
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Pc1A by multiplication with a characteristic vector from the right. The first map corresponds
to the forward transfer operator T , the latter corresponds to the backward transfer operator
P. Consequently, the projection Pc can be interpreted as a unified matrix representation for
both transfer operators. That is plausible since they describe the stochastical behaviour of
the same Markov process (Xt)t∈T, encoded in the transition function p(t, x,A).

Theorem 1.18. The matrices S and T from theorem 1.17 are stochastic.

Proof. In order to be stochastic, each row must sum up to 1. We exploit the partition of
unity property

∑
j χj = 1 and P1 = 1 to obtain

n∑
j=1

Skj =
〈χk,

∑
j χj〉µ

〈χk,1〉µ
=
〈χk,1〉µ
〈χk,1〉µ

= 1,

n∑
j=1

Tkj =
〈χk,

∑
j Pχj〉µ

〈χk, 1〉µ
=
〈χk,P1〉µ
〈χk,1〉µ

=
〈χk,1〉µ
〈χk,1〉µ

= 1.

Non-negativity follows from the non-negativity of the {χ1, . . . , χn}.

Since both S and T are stochastic, they have the constant vector e = (1, . . . , 1)T as right
eigenvector to the eigenvalue 1. The same holds for Pc, i.e. its rows sum up to 1 and thus
the product S−1T is at least pseudostochastic. However, non-negativity is not assured since
inverting S can provoke negative entries. The non-negativity depends on the choice of the
partition of unity.

Theorem 1.19. The matrix representation Pc from theorem 1.17 has the left eigenvector
µ̂ ∈ D with the entries

µ̂j = 〈1, χj〉µ =

∫
E
χj(x)µ(dx).

Proof. We observe that µ̂TS = µ̂T and µ̂TT = µ̂T since

(µ̂TS)j =
n∑
k=1

〈1, χk〉µ
〈χk, χj〉µ
〈χk,1〉µ

= 〈1, χj〉µ = µ̂j

and

(µ̂TT )j =
n∑
k=1

〈χk,Pχj〉µ = 〈1,Pχj〉µ
(1.7)
= 〈T 1, χj〉µ = 〈1, χj〉µ = µ̂j .

We can deduce that µ̂TPc = µ̂TS−1T = µ̂TSS−1T = µ̂TT = µ̂T .

The eigenvalue λ = 1 of Pc has the associated right-eigenvector e = (1, . . . , 1)T and left-
eigenvector µ̂T . If the transfer operator has a simple and dominant eigenvalue 1 and the
continuous part of the spectrum is bounded away from the discrete part, then the process is
irreducible and aperiodic which is inherited by the matrix T . In particular T has the simple
and dominant eigenvalue λ = 1 which is the only eigenvalue with |λ| = 1 and the discrete
invariant density µ̂ is the unique invariant density of T , see [42].
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Example: Full Partition Discretization

Let A1, . . . , An be a partition of the state space E, i.e. they are pairwise disjoint sets such
that ∪Ai = E. We consider the family of the corresponding characteristic functions

χi(x) = 1Ai(x).

Since they are orthogonal, the matrix S is the identity matrix and therefore, the matrix
representation of the Galerkin projection is Pc = T . We can compute it by combining

〈1Ai ,P1Aj 〉µ =

∫
Ai

(P1Aj )(x)µ(dx)
(1.6)
=

∫
Ai

p(t, x,Aj)µ(dx)
(1.3)
= Pµ(Xt ∈ Aj , X0 ∈ Ai)

and

〈1Ai , 1〉µ =

∫
E

1Ai(x)µ(dx) = µ(Ai) = Pµ(X0 ∈ Ai).

The entries of the resulting matrix representation are given by

Tij =
〈1Ai ,P1Aj 〉µ
〈1Ai ,1〉µ

= Pµ(Xt ∈ Aj | X0 ∈ Ai).

Thus, Pc is a Markov chain on the partition sets Ai, i.e. each state of the projected process
represents one of the Ai. The stationary distribution µ̂ of this Markov chain Pc is just
the projection of the invariant measure µ onto {A1, . . . , An} with the entries µ̂i = µ(Ai)
corresponding to the stochastic “weights” of the partition sets.

According to their definitions, the matrix T represents the dynamical behaviour of the
original process P, while the matrix S merely contains informations about the partition of
unity, i.e. the basis of the clustering. For that reason, T is also called “coupling matrix”
as it describes how the clustered subsets are interacting. This is particularly visible in the
example of a full-partition decomposition, where the entries of T correspond to the transition
probabilities between the clustered states, while S has no influence. However, the further S
deviates from the identity matrix, the more it contributes to the projection Pc. The actual
influence of S and its meaning for the clustered system will be of high interest and elaborated
in chapter 2.

Projected Infinitesimal Generator

The Galerkin projection of an infinitesimal generator yields a similar matrix representation as
the transfer operator. It can also be written as the product of two stochastic matrices, one of
them being the inverted mass matrix of the partition of unity functions.
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Theorem 1.20. (Schütte and Sarich[42])
Let Q : L2(µ) → L2(µ) be the generator of a semigroup of transfer operators with unique
invariant measure µ and satisfying Q1 = 0. Let χ be a partition of unity with a projection G
onto the associated subspace spanned by χ. Then the projected generator G(Q) has the matrix
representation Qc = S−1R with the stochastic mass matrix S from (1.10) and

R(k, j) =
〈χk,Qχj〉µ
〈χk,1〉µ

.

For both Qc and R the largest eigenvalue is λ = 0. The associated right eigenvector is
e = (1, . . . , 1)T and the associated left eigenvector is µ̂T from theorem 1.19.

The proof is similar to theorem 1.17. There exist obviously many possible Galerkin
projections for a given transfer operator or infinitesimal generator. We showed the example of
a full-partition discretization, yielding a matrix representation Pc = T with no contribution
of S. As arbitrary partitions of unity χ1, . . . , χn are allowed, there will be differing results,
which require a further analysis of the matrices S and T . In chapter 2, we will see which
choice of χ results in a good discretization in the sense that it represents the correct long-time
behaviour of the process in terms of so called metastability.

1.4 Recrossing Effect

Concluding the first chapter, we give a short outlook about the so called recrossing effect,
being closely related to the main topic of this thesis, the rebinding effect, which will be
introduced in chapter 3. Furthermore, we explain how the quality of a Markov State Model
can be measured by examining the iteration error.

Initial Situation

Assume we are given a Markov process (Xt)t∈T on a continuous or very large state space E,
described by the transfer operator P := P(τ). In order to get a discrete process out of it, we
project the time onto N and the state space onto a finite set {1, . . . , n}. Discretizing the time
can be done naturally without problems since for every lag-time τ > 0, the process (Xkτ )k∈N

is again Markovian.

However, the state-space discretization has to be observed a bit more elaborated. We do
this on the example of a full partition discretization. We consider the operator G(Pk), that is
we first propagate the process and project it afterwards. Then for all k-multiples of τ , we
assign the partition set belonging to the current state of Xt to the projected process X̃k:

X̃k = i⇔ Xkτ ∈ Ai.

The process X̃k describes the snapshot dynamics of Xt with lag time τ between the partition
sets A1, . . . , An. This process is not necessarily Markovian, since (G(Pk))k is in general not a
semigroup, see Schütte and Sarich[42].
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Recrossing in a Double Well Potential

Let Xt be the Markov process corresponding to the double-well potential V (x) = (x2 − 1)2.
We consider a full-partition of the state space into two sets A and B around the local minima
of the energy landscape, as shown in figure 1.1. We are interested if the induced process X̃k

inherits the Markovianity of Xt or if it contains any memory effects.

Figure 1.1: Full-partition of a double-well potential

For a small lag-time τ = 0.1 we consider the probability of X̃k to make a transition from
B to A in one time-step and compare it to the probability of the same transition with
the additional information of having been in A one time-step before. If the process was
Markovian, then this additional information about the past should make no difference and
consequently, both probabilities should be equal. However, the following two probabilities

Pµ[X(k+1)τ ∈ A | Xkτ ∈ B], (1.15)

Pµ[X(k+1)τ ∈ A | Xkτ ∈ B,X(k−1)τ ∈ A]. (1.16)

are different, which has been shown by Sarich[35, chapter 2]. For such a short lag-time τ , the
process X̃k is not independent of the past and hence not a Markov process. Equation (1.15)
describes the probability to get from B to A, where “being in B” could mean everything from
“close to the transition region” to “far away from the transition region”. This probability
is averaged over all possible starting points in B, since the spatial arrangement inside of
B is not included in this reduced model. We compare it to (1.16), where having been in A
shortly before being in B increases the probability to return to A again. This behaviour
can be interpreted such that for a short time after a transition, the process is still likely to be
inside of the transition region. In this example, the transition region is the area close to the
maximum of potential energy. Thus, there still is an increased probability to return to the
previous state, because of the spatial situation shortly after the transition.

This issue is called the recrossing effect, since additional memory leads to an increased
probability to “recross” the energy barrier shortly after a transition. On the other hand, if we
choose a large lag-time, e.g. τ = 100, then the past transition from A to B in (1.16) took
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place a long time ago. In that case, the probability of the process to still be in the critical
transition region is reduced; during that long lag-time it also could have moved anywhere
else. This means that the memory effect included in X̃k diminishes for larger lag-times and
consequently can be considered as a “short-time memory”.

Quality of Markov State Model

After having observed the recrossing effect as a memory effect occurring when projecting the
time-series of a continuous process onto a finite subspace, we want to compare that result to
the corresponding Markov State Model. So far, we considered the process X̃k belonging to
the operator G(Pk). Let (X̂k)k∈N be the Markov chain that is described by the transition
matrix Pc, i.e. the matrix representation of the discretized transfer operator G(P). Then the
quality of the Markov State Model can be measured by considering the iteration error, i.e.
the deviation of (Pc)

k from the projected time-series for the same time-step. More clearly, we
are interested if the Markov State Model behaves equally to the original process, represented
by the projected time-series.

The iteration error of Pc(τ) is zero if the Galerkin projection of (P(τ))k is equal to the
iteration (Pc(τ))k. That is the case if the actions of iteration and projection are commutative,
i.e. if diagram 1.2 commutes. Then, it does not matter if we project the propagated process
or if we propagate the projected process.

Figure 1.2: Projecting and propagating a transfer operator.

In general, this diagram is not commutative and hence, in general we have

G(Pk) 6= (Pc)
k.

Consequently, we have to distinguish between two kind of “errors” that can occur:

• Rebinding Events: Projection of time-series can include some kind of memory effect,

• Iteration Error: Deviation of G(Pk) and (G(P))k.

In order to work with a “correct” model, we aim at minimizing the iteration error. There
exist upper bounds for this deviation by Sarich[35], indicating that the iteration error ceases
for more iteration steps. We will not go into further details about it, since in chapter 2, we
will present a projection under which this iteration error vanishes and the diagram in figure
1.2 commutes. However, despite not having to deal with an iteration error, the recrossing
effect can occur and will be examined in chapter 3 in a different context.
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2 Dominant Structures

With the Galerkin discretization, we introduced a method to reduce the dimension of a Markov
process by projecting it onto a smaller state space. However, we did not yet specify how
to choose a partition of unity such that this projection yields a reasonable Markov State
Model, in the sense that important properties of the original process are maintained. The
long-time behaviour of a process, which usually is of particular interest, is often determined
by so called metastabilities. We explain why it makes sense to project a process onto its
metastable sets and, in order to detect them, analyze their relation to the dominant spectrum
of the transfer operator. Abandoning the non-overlapping approach, we demonstrate that the
optimal metastable decomposition is rather fuzzy than crisp.

Additionally, we introduce a rather new concept to create a Markov State Model with the
aid of a Schur decomposition. In contrast to the spectral approach, it includes nonreversible
processes and provides some additional advantages, such as being able to identify different
kinds of dominant structures.

2.1 Metastability

There exist several definitions of metastability. Shortly said, metastability is the property of
a process to act on particular regions such that transitions between these regions are rare
events while the duration of stay inside of each of them is comparatively long. Some possible
characterizations of that behaviour are based on large hitting times or small exit rates, see
Schütte and Sarich[42, chapter 3], where a good overview of the most common definitions can
be found.

Mathematical Concept of Metastability

In order to describe the concept of metastability, it is a good way to start with so called stable
or invariant subsets. A measurable subset A ⊂ E of the state space of a Markov process
Xt is called stable or invariant if it cannot be left, i.e. if P(Xt ∈ A | X0 ∈ A) = 1 for all
t. Analogously, we can define a metastable or almost invariant subset as a subset in which
the process will stay for a very long time before exiting it into any other subset, that is
P(Xtf ∈ A | X0 ∈ A) ≈ 1 for a convenient timescale tf . Thus, a full partition A1, . . . , An of
the state space E is called metastable if

n∑
k=1

Pµ(Xtf ∈ Ak | X0 ∈ Ak) ≈ n. (2.1)

Then each of the sets Ak is almost invariant with respect to timescale tf ; the probability
to stay in one of the partition sets being started there is almost 1, while the probability to
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change between any two different partition sets is almost 0. Such a partition is also called a
metastable decomposition.

Obviously, being “close to 1” or “close to n” are rather vague statements. However, that
lack of concreteness will be eliminated later, since we will only be interested in the “best”
metastable decomposition. That means that we want to obtain a decomposition where the
probability to stay inside of each metastable set is as close as possible to 1, resulting in the
sum (2.1) being as close as possible to n. Likewise, the choice of the timescale tf is not
specified in general and depends on the particular system in consideration. Hence, the only
parameter in (2.1) that has to be determined is the number n of subsets we are looking for.

Metastability in Molecular Systems

Metastability is a very important concept for stochastic processes corresponding to molecular
systems. Such processes describe the movement of atoms or molecules in space and have
the characteristic behaviour to oscillate or fluctuate around equilibrium positions on the
smallest time scales. In contrast to these fast oscillations, the process often remains inside
of a certain region, called conformation, for a long time before switching to another region.
Since transitions between conformations are relatively rare events, they can be identified as
metastable sets if we choose a convenient timescale. Such a behaviour is depicted in figure
2.1 on the example of the dihedral angle of a molecule, taken from Weber[53]. The dihedral
angle of the presented molecule can take values between +45◦ and −45◦. There are two
regions, highlighted red and blue, where the process stays for a rather long time and oscillates
inside, while transition between these regions happen more infrequent. Accordingly, these
two conformations can be identified as metastable sets.

Figure 2.1: Two conformations of the dihedral angle of a molecule.

As transitions between metastable sets are rare events, long-time simulations of a process
are required in order to observe conformational changes. However, long-time simulations of
such large systems are not feasible in reasonable time even with the best computers nowaday,
see Anton[44] or its successor Anton2[45], two supercomputers which have been designed with
the special purpose to perform extensive molecular dynamics simulations.
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Hence, in order to be able to execute long-time simulations of a molecular system, a
reduction of complexity is needed. This can be achieved by a clustering of the state space via
a Galerkin projection as described in section 1.3. Different states are clustered appropriately
such that a process on a smaller state space is obtained.

This point of view also motivates the following terminology. A state in the original state
space is called a micro state, as it is a state considered on the microscopic or atomistic level.
In order to obtain a smaller state space, micro states are grouped together and such a cluster
is called a macro state, since we are now considering the process on a macroscopic level.
Consequently, we lose some information and cannot distinguish between the micro states in
the reduced model anymore.

For instance, coming back to figure 2.1. The dihedral angle of the presented molecule can
take infinitely many values between +45◦ and −45◦, representing the micro states. We can
decompose the state space into two macro states, depicted red and blue. In doing so, we
achieved a significant reduction of dimension from infinitely many micro states to two macro
states. However, when working on this smaller state space, we cannot distinguish between
the angular values from +10◦ and +45◦ anymore. From the macroscopic point of view, they
are “the same”.

Clustering into Metastable Sets

The question how to cluster a process such that the long time-scales are maintained can be an-
swered with the following intuitive approach: As the long-term behaviour of a process is mainly
determined by rare conformational changes, we choose the metastable sets as clustering sets.
More clearly, a new process is created such that each macro state is identified to one of the
metastable sets. In order to correctly represent the original process, the transition probabilities
between the macro states should correspond to the transition rates between the metastable sets.

As metastability is determined on long timescales, the projected process maintains the
long-time behaviour of the original process, but forgets about short-time transitions, i.e.
transitions inside of a conformation. Since there is not one unique metastable decomposition
of the state space, we need to find a decomposition which is in some sense “the best”. In the
next sections, we will clarify how to find such a decomposition.

Most importantly, the clustered process has the desired property of a reduced complexity
since the model acts on a smaller state space. Therefore, the computation effort for long-time
simulations is significantly decreased. Furthermore, we get a better overview of the system,
since it is easier to consider a process on a few states in comparison to a process on a very
large or even continuous state space. However, it has to be guaranteed that the clustered
process represents the correct long-term behaviour of the process. That will be ensured in
section 2.3, where we present a suitable projection under which the projection error vanishes.
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2.2 Spectral Approach

In this section, we demonstrate the strong relation of the metastability of a Markov process to
the spectrum of the associated transfer operator. More precisely, the existence of metastable
sets implies the existence of dominant eigenvalues of the transfer operator and vice versa. The
idea to detect metastable sets via dominant eigenvalues has been first proposed by Dellnitz
and Junge[12] and transferred to molecular dynamics by Schütte et al[39, 40].

Existence of Dominant Eigenvalues

We consider the transfer operator P := P(τ) of a Markov process for some fixed lag-time τ
in the Hilbert space L2(µ). We are interested in dominant eigenvalues of P, that is large
eigenvalues which are close to 1 and separated from the rest of the spectrum. The discrete
spectrum σdiscr(P) is the set consisting of all eigenvalues λ ∈ σ(P) that are isolated and of
finite multiplicity. The essential spectral radius ress(P) is defined as

ress(P) = inf{r ≥ 0 | λ ∈ σ(P) with |λ| > r implies λ ∈ σdiscr(P)}.

The existence of dominant eigenvalues requires that the continuous part of the spectrum is
bounded away from the dominant elements of the discrete spectrum. To ensure that the
process actually possesses metastable sets, we need to pose some conditions on the spectrum
of the transfer operator:

C1 The essential spectral radius of P is less than one, i.e. ress < 1.

C2 The eigenvalue λ = 1 of P is simple and dominant, i.e.

η ∈ σ(P) with |η| = 1 implies η = 1.

We will not go into further details for which processes the two above conditions are fulfilled;
some criteria can be found in Huisinga[21, chapter 4]. Since we are interested in a metastable
behaviour, we assume that the processes under investigation satisfy these conditions. We
need condition C1 to ensure that the continuous part of the spectrum is bounded away from
the discrete eigenvalues. Otherwise they would not be dominant anymore and the process
would rather be rapidly mixing than having any metastable sets. Condition C2 however is
important because the state space of a transfer operator with more than one eigenvalue of
absolute value 1 can be decomposed into invariant sets, i.e. subsets which cannot be left.
However, such a case is not interesting for us. Instead, we want to know more about almost
invariant sets and their critical transition regions.

The transfer operator P : L2(µ)→ L2(µ) of a reversible process satisfying the properties
C1 and C2 is self-adjoint by theorem 1.12 and has a spectrum of the form

σ(P) ⊂ [a, b] ∪ {λn} ∪ · · · ∪ {λ2} ∪ {1}

with −1 < a ≤ b < λn ≤ · · · < λ1 = 1 and isolated, not necessarily simple eigenvalues of finite
multiplicity that are counted according to multiplicity.
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Relation of Dominant Spectrum to Metastability

In order to assess the quality of an arbitrary decomposition, we present upper and lower
bounds for the metastability of the decomposition in terms of dominant eigenvalues and
eigenfunctions of the transfer operator. We will denote by metastability of a decomposition
the sum of the metastability of its subsets.

Theorem 2.1. (Huisinga and Schmidt[22, Theorem 2.4 and Theorem 2.5])
Let P be the transfer operator of a reversible process (Xt)t∈T satisfying C1 and C2. Let
λ1, . . . , λn denote its isolated eigenvalues and X1, . . . ,Xn the corresponding eigenfunctions,
normalized to ‖Xi‖2 = 1. The metastability of an arbitrary decomposition into sets A1, . . . , An
of the state space E can be bounded by

n∑
i=1

ρiλi + c ≤
n∑
i=1

Pµ(X1 ∈ Ai | X0 ∈ Ai) ≤
n∑
i=1

λi,

where ρj = ‖QXj‖2L2(µ) ∈ [0, 1] and c = a(1− ρ1) · · · (1− ρn) and Q denotes the orthogonal

projection of L2(µ) onto {1A1 , . . . ,1An}.

Theorem 2.1 reveals the connection between metastable sets and the dominant spectrum of
the transfer operator. It allows us to evaluate the quality of a decomposition by comparing the
lower and the upper bound of metastability. The upper bound shows that eigenvalues far away
from 1 worsen the metastability of a decomposition, i.e. high eigenvalues are necessary for a
high metastability. The lower bound is close to the upper bound if the dominant eigenfunctions
X1, . . . ,Xn are almost constant on the subsets A1, . . . , An, implying ρj ≈ 1 and c ≈ 0, i.e.
such eigenfunctions guarantee a high metastability. Moreover, Huisinga and Schmidt[22]
show that the lower and upper bounds from theorem 2.1 are sharp and asymptotically exact.
That provokes the question if there exists an optimal decomposition with the highest possible
metastability. By all means, this theorem indicates that the number of metastable sets should
be determined by the number of dominant eigenvalues.

Figure 2.2 provides a good overview of the relation between the eigenfunctions of the
transfer operator and the metastable sets of the corresponding process. We consider a finite
random transition matrix P consisting of four highly metastable regions with small transition
probabilities between them. We clearly identify four dominant eigenvalues λ1, . . . , λ4, which
are well separated from the rest of the spectrum, indicating the number of metastabilities.
The corresponding eigenvectors X1, . . . , X4 are almost constant on the metastable sets.

This relation can be explained as follows. A process consisting of n invariant sets
{A1, . . . , An} has the n-fold eigenvalue 1 and the corresponding eigenvectors 1Ai are constant
on the invariant sets. A metastable process consists of almost invariant sets and can be
interpreted as the perturbation of a process with invariant sets, by introducing small transition
probabilities between the invariant sets. Accordingly, the eigenvalues and eigenvectors are
perturbed. This results in one eigenvalue 1 and n− 1 eigenvalues close to 1, corresponding to
eigenvectors that are almost constant on the almost invariant sets. A detailed perturbation
analysis can be found in Deuflhard et al[13].
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Figure 2.2: Relation of the transition matrix to its spectrum with regard to metastability

There exist algorithms[13] to identify the metastable sets of a Markov chain by exploiting
the sign structure of the dominant eigenvectors of the transition matrix. That is one possible
method to cluster a process with respect to metastability, though it bears some disadvantages.
In particular, such a full-partition decomposition of the state space does not take into
consideration the existence of transition regions and can lead to an iteration error.

This section has been presented mainly with the aim to emphasize the strong relation of the
spectrum of the transfer operator to the metastability of the system. However, this approach
does not represent the state of the art. In the next section, we deduce an enhanced method,
as well based on the dominant spectrum, though resulting in a soft clustering instead of a
full partition decomposition.
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2.3 Fuzzy Clustering

The above considerations yield a metastable full decomposition of the state space, assigning
each state to exactly one of the partition sets. Indeed, there exist more accurate solutions,
considering the fact that states in transition regions are adjacent to several conformations and
therefore cannot be uniquely assigned to one of them. We introduce a more general concept,
allowing some “overlap” between the conformations.

Set-based vs. Function-based Approach

The intuitive approach to decompose the state space of a process is to determine a certain
number of metastable sets which form a full partition, such that each micro state belongs to
exactly one of them. The problem with that approach is that likewise each state in a transition
region has to be assigned to one of these partition sets. Though why would we assign a state
in a transition region to one particular adjacent conformation and not to another one? Such
a strict assignment is obviously not an accurate description of the actual behaviour of the
process.

Therefore, this set-based clustering method has been replaced by a function-based method,
which means that the states are assigned with certain “degrees” to the conformations. This
approach is justified by the existence of transition regions. A state inside of a transition region,
for instance around a local energy maximum, can enter into different adjacent metastable
sets with similar probabilities. Therefore, instead of assigning it to a single conformation, we
define that it should belong to each of these adjacent conformations with a certain degree. In
that sense, the conformations may be “overlapping”.

Membership Functions

We consider the transfer operator P of a Markov process having n dominant eigenvalues.
Consequently, we aim to create a Markov State Model on n states, representing the metastable
sets of the process. We follow the approach of Weber[52] to define macro states as overlapping
partial densities. They can be identified by membership functions assigning degrees of
membership to the micro states.

Definition 2.2. (Membership Function)
The functions χ1, . . . , χn : E → [0, 1] are called membership functions if they fulfill

• χj(x) ≥ 0 ∀i ∈ E and ∀j ∈ {1, . . . , n} (positivity),

•
∑n

j=1 χj(x) = 1 ∀x ∈ E (partition of unity).

The value χj(x) is the degree of membership of micro state x to macro state j. In the following,
the membership function χj will also be denoted as the conformation j it represents.

The example of a full-partition discretization corresponds to the choice of characteristic
functions {1A1 , . . . ,1An} as membership functions. Each micro state is uniquely assigned to
one of the partition sets, without any overlap. Therefore, such a clustering is called crisp or
hard, whereas the general, possibly overlapping, membership functions result in a fuzzy or
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soft clustering. As there are many possible membership functions, we need to find a choice
that yields a reasonable metastable decomposition.

Usually they are chosen to be close to a characteristic function, also called almost char-
acteristic function, as depicted in figure 2.3. Such a choice is plausible, since it puts the
emphasis of a conformation on a certain region by assigning a high degree of membership,
though likewise includes the adjacent transition regions by a low degree of membership. Thus,
they fulfill the following two desired conditions:

• There should be a soft assignment inside of a transition region, in order to respect the
ambiguous membership of transition states.

• The clustering should be crisp enough to distinguish the conformations.

0

0.2

0.4

0.6

0.8

1
crisp A

fuzzy A

Figure 2.3: The crisp set A is represented by a characteristic function and approximated by
an “almost characteristic function”.

These requirements are clarified in figure 2.4 at the recurring example of a double-well
potential, i.e. a system consisting of two conformations with one transition region between
them. A crisp clustering does not consider the transition region (a), while a “very fuzzy”
choice of membership functions does not represent the conformations (c). The degrees of
membership are no actual probabilities, yet they can be interpreted as such. Consider for
instance the energy maximum of the double well potential. This transition state tends with
the same probability to the left and to the right well. Therefore it seems plausible to assign it
with the same degree of membership to both conformations. On the other hand, a state in
the middle of a well cannot immediately jump into the other well, therefore this transition
probability is 0 and the state can be assigned with degree of membership 1 to the conformation
corresponding to its well. That is fulfilled by the almost characteristic functions in figure 2.4 (b).

This illustrative justification for the choice of almost characteristic functions as membership
functions can be combined with theorem 2.1, stating that the metastability of a decomposition
A1, . . . , An is high if the eigenfunctions X1, . . . ,Xn are well approximated by characteristic
functions 1A1 , . . . ,1An . This high metastability is preserved by choosing a linear combination
of the eigenfunctions. Consequently, we aim to find membership functions χ1, . . . , χn in
span{X1, . . . ,Xn} with

χi ≈ 1Ai .
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(b) Almost characteristic functions
resulting in a soft clustering.
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(c) Very soft and useless membership
functions.

Figure 2.4: Possible membership functions χ: From hard to fuzzy clustering.

Perron Cluster Analysis

The term Perron Cluster Analysis denotes the objective of clustering a Markov process into
metastable sets using the Perron eigenvalues and Perron eigenfunctions, being eigenvalues
close to 1 and their associated eigenfunctions. Perron Cluster Analysis respectively its algo-
rithmic implementation PCCA (“Perron Cluster Cluster Analysis”) has been developed by
Deuflhard et al[13], employing the sign structure of the dominant eigenvalues of the transition
matrix. This approach has been improved by Deuflhard and Weber[14] who transformed the
system of eigenvectors into a system of membership functions resulting in a fuzzy clustering
of the state space; their algorithm is called PCCA+ (“Robust Perron Cluster Analysis”). The
formulation is even valid for continuous processes, see Weber[53].

Let P := P(τ) on L2(µ) be the transfer operator describing a reversible process, i.e. P
is µ-self-adjoint by theorem 1.12. We consider the set of dominant eigenvalues {λ1, . . . , λn}
with the corresponding set of normalized eigenfunctions X = {X1, . . . ,Xn}. They fulfill the
eigenvalue equation PX = XΛ of the transfer operator P, with Λ = diag(λ1, . . . , λn). The
set of membership functions χ = {χ1, . . . , χn} can be built as a linear combination XA of the
dominant eigenfunctions, that is

χj(x) =
n∑
i=1

AijXi(x), j = 1, . . . , n, (2.2)

where A = {Aij}i,j=1,...,n ∈ Rn×n is a regular matrix. It has to be chosen in such a way that
the resulting membership functions χ fulfill the positivity and partition of unity constraints.
As there are infinitely many such transformations A of the eigenfunctions, we have to
determine one that satisfies some optimality condition. The algorithm PCCA+ computes the
transformation matrix A as the solution of a convex maximization problem, see Weber[52].
With the resulting membership functions, the Galerkin projection is given by

Pc(τ) = G(P(τ)) = (〈χ, χ〉µ)−1(〈χ,P(τ)χ〉µ). (2.3)
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The following theorem shows that for any such linear combination of the eigenfunctions
χ = XA, the discretization error of the projection vanishes. Hence, diagram 1.2 commutes,
implying that propagating and projecting of a transfer operator are commutative actions. In
particular, such membership functions preserve the Markov property.

Theorem 2.3. (Weber [53, Theorem 2])
Let P := P(τ) be a µ-self-adjoint transfer operator with a set X = {X1, . . . ,Xn} of normalized
eigenfunctions s.t. PX = XΛ, where Λ = diag(λ1, . . . , λn) is the eigenvalue matrix. Let
χ = XA be a set of functions that is a linear combination of the eigenfunctions X with a
regular n× n-transformation matrix A as defined in (2.2). Then the iteration error for the
Galerkin discretization Pc = G(P) vanishes.

Proof. The Galerkin projection of the transfer operator P is computed by

G(P)
(2.3)
= (〈χ, χ〉µ)−1(〈χ,Pχ〉µ)

(2.2)
= (AT 〈X ,X〉µA)−1(AT 〈X ,PX〉µA)

= (AT 〈X ,X〉µA)−1(AT 〈X ,X〉µΛA)

= (ATA)−1(ATΛA)

= A−1ΛA.

The last two lines are obtained by inserting the eigenvalue problem PX = XΛ and employing
the µ-orthogonality of the eigenfunctions by theorem 1.11, and therefore 〈X ,X〉µ = I, being
the identity operator. In particular, after k time-steps we have

(G(P))k = (A−1ΛA)k = A−1ΛkA = G(Pk).

In this proof, the reversibility of the process is essential. Otherwise the transfer operator
is not self-adjoint and possibly possesses complex eigenvalues, leading to complex-valued
eigenfunctions, which cannot be transformed into meaningful membership functions. In order
to tackle non-reversible processes as well, an enhanced method is presented in section 2.4.

Even though the algorithm of PCCA+ is valid for continuous processes defined by a transfer
operator P, for real applications a discretization of P to a matrix P is necessary:

P → P → Pc.

One possible approach for that intermediate step are direct sampling methods, counting
transitions between subsets. However, since long-time simulations are required in order to
obtain valuable informations about transitions between metastable sets, they are not the best
choice. Another option are adaptive sampling methods, for instance Voronoi tesselation, see
Weber[53]. Having a discrete matrix P , it is easy to compute the eigenvalues and eigenvectors
in order to apply PCCA+ and obtain a clustered matrix Pc.
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Objective Function: Crispness of Membership Functions

Each macro state yields a statistical weight

wj = 〈χj ,1〉µ =

∫
E
χj(x)µ(dx).

The statistical weight vector w = (w1, . . . , wn) coincides with the left eigenvector of the matrix
representation Pc = S−1T , see theorem 1.19. The diagonal matrix D = diag(w1, . . . , wn)
consists of the statistical weights of the membership functions. Then the matrices S and T
can be expressed as

T = D−1〈χ,Pχ〉µ = D−1ATΛA and

S = D−1〈χ, χ〉µ = D−1ATA.
(2.4)

Different objective functions for PCCA+ are possible, some are proposed in Weber[52, chapter
3.4]. Originally, one objective was to maximize the metastability of the conformations by
maximizing trace(T ). In the context of stochastic matrices, a high trace corresponds to a
high determinant, since trace(T ) is bounded by above from n and det(T ) by 1. This upper
bound is achieved only for the identity matrix, thus for a “strong diagonal”. Increasing the
trace towards n is equivalent to increasing the determinant towards 1. Since the trace is not
multiplicative, we resort to the determinant to calculate the following relation:

det(T ) = det(S) det(A−1ΛA)

= det(S) det(Λ)

= det(S)Πn
i=1λi.

In order to obtain a high metastability, both factors on the right side need to be high. The
term det(Λ) is high if the dominant eigenvalues λi are as close as possible to 1, whereas det(S)
is maximized if the membership functions χ = XA are as crisp as possible. That means that
they are as orthogonal as possible, having only few overlap. Since S is a stochastic matrix as
well, maximizing its determinant is equivalent to maximizing its trace.

Thus, maximizing trace(S) is a plausible objective, since it provides a clustering with high
metastability, while the metastable sets are well distinguishable because of the crispness.
This choice was proposed by Röblitz[33]. Moreover, trace is a convex function, which is a
necessary criterion for the objective function of PCCA+:

max
A∈Rn×n

trace(S) such that χ = XA ≥ 0 and
∑
j

χij = 1. (2.5)

One example for the presented procedure is shown in figure 2.5, continuing the example
from section 2.2. The optimal membership functions χ = XA are computed as a linear
combination of the dominant eigenvectors X1, . . . , X4 by PCCA+ and have only few overlap,
according to the objective (2.5). The Galerkin projection yields the low-dimensional matrix
representation Pc revealing the four strongly metastable subsets.
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(b) Matrix Pc with a reduced dimension.

Figure 2.5: Clustering of a metastable process by fuzzy membership functions (PCCA+).

Matrix Representation of Projection

For the later investigations, we are interested in analyzing the matrix representation Pc = S−1T .
The entries of S are defined by the scalar products of the membership functions, meaning that
the crispness of a clustering can be measured by the matrix S. Nonoverlapping membership
functions yield a matrix S equal to the unit matrix, while overlapping membership functions
result in a matrix with non-zero outer diagonal elements. The higher the outer diagonal
elements, the higher the overlap. Therefore the diagonal of S can be seen as a “measure of
crispness” of the χ1, . . . , χn. We recall that a full-partition decomposition yields a matrix S
being equal to the identity matrix, justified by the orthogonality of the characteristic func-
tions. With the motivation to choose almost characteristic functions as membership functions,
the χi are still close to being orthogonal and therefore, S should be close to the identity matrix.

The dynamical behaviour of P is encoded in the coupling matrix T , while S merely describes
the overlap of the membership functions. If S is close to the identity matrix, then the dynamics
of the projected process is almost completely determined by T . In contrast, if S deviates
from identity, then it may influence the dynamics rather strongly. The actual meaning of this
contribution of the overlap to the dynamics will be emphasized in chapter 3.

The fuzzy clustering method presented in this section unifies many significant advantages.
In contrast to crisp decompositions, the soft approach takes into consideration the ambiguous
membership of states in transition regions. The choice of overlapping membership functions
ensures that the projection error vanishes, which is crucial for a correct mapping. Most
importantly, PCCA+ maximizes the metastability of the conformations and thereby provides
the “best” clustering. However, this result is restricted to reversible processes, since orthogonal
and real eigenfunctions were required for theorem 2.3.

32



2.4 Schur Decomposition

All previous projections of processes onto their metastable sets were based on the assumption
of reversibility. Unfortunately, many real-world processes are not reversible. In that case, the
transfer operator is not self-adjoint and might have complex eigenvalues and eigenfunctions,
which cannot be transformed into real membership functions. This problem can be circum-
vented by considering a real Schur decomposition instead of the spectral decomposition. This
approach yields an invariant subspace of real Schur vectors spanning the same subspace as the
corresponding eigenvectors[20] and fulfilling the required conditions for the use of PCCA+.
Thus, we employ the same method as before, though replace eigenvectors by Schur vectors.
Beyond enabling us to analyze non-reversible processes, this new approach has some more
advantages, like allowing us to identify dominant cycles.

NESS processes

A Markov process is called nonequilibrium steady state (NESS) process if it is nonreversible, but
still has a steady state, given by an invariant measure π, such that the process is ergodic with
respect to π. As a NESS process is nonreversible, there are regions where the detailed balance
equation is not fulfilled, i.e. there is an effective probability flow p(τ,A,B)− p(τ,B,A) 6= 0
between some subsets A,B ⊂ E of the state space.

In the following, we consider an ergodic Markov chain on the finite state space E =
{1, . . . , N} given by the transition matrix P . By irreducibility, the process possesses a unique
stationary distribution π being positive everywhere. Then π is the normalized eigenvector of
P associated to the unique eigenvalue λ1 = 1.

Definition 2.4. (Flow Matrix)
The probability flow associated to a Markov chain is given by the flow matrix

F = DP,

where P is the transition matrix of the process andD the diagonal matrixD = diag(π1, . . . , πN )
with the entries of the stationary distribution π.

The steady state probability flow from state i to j is given by Fij = πiPij . If the process is
reversible, the flow matrix F is symmetric due to detailed balance. For a NESS process, F is
not symmetric since there are states i, j ∈ E with Fij 6= Fji.

Schur Decomposition

We have the same objective as in the previous section: given a Markov process acting on a
large state space E, a projection onto a smaller state space {1, . . . , n} is aimed at, such that
each cluster represents one metastable set of the process. For this purpose, we introduce a
matrix decomposition generalizing the spectral decomposition.
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Definition 2.5. (Schur Decomposition)
Let P ∈ RN×N be a transition matrix. Then it can be written as

X−1PX = Λ, (2.6)

where X is a unitary matrix and Λ is an upper triangular matrix, having λ1, . . . , λN as
diagonal entries, which is called a Schur decomposition of P . If X = [v1 | · · · | vN ] is a column
partitioning of X, then the vi are referred to as Schur vectors.

The existence of such a matrix X is shown in Golub and van Loan[20, theorem 7.1.3].
Since Λ is similar to P , both matrices have the same eigenvalues. Since Λ is triangular, they
correspond to the diagonal entries λ1, . . . , λN of Λ. The Schur vectors vk satisfy

Pvk = λkvk +

k−1∑
i=1

nikvi, k = 1, . . . , N,

and therefore span an invariant subspace given by

Sk = span{v1, . . . , vk}.

Moreover, if we choose a matrix Xk = [v1 | · · · | vk], then σ(X−1
k PXk) = {λ1, . . . , λk}. The

eigenvalues λi in (2.6) can be arbitrarily ordered by an appropriate choice of X. Thus, each
subset of k eigenvalues induces at least one k-dimensional invariant subspace.

For our purpose, decomposition (2.6) is not sufficient, since it can include complex Schur
vectors. As P is a real matrix, its non-real eigenvalues come in complex conjugate pairs[20].
This fact can be utilized to build a real Schur decomposition, where both X and Λ are real
matrices. This alternative decomposition does not yield a triangular matrix, but only a
quasi-triangular one, allowing 2× 2-blocks on its diagonal.

Theorem 2.6. (Real Schur Decomposition)
If P ∈ RN×N , then there exists an orthogonal matrix X ∈ RN×N such that

X−1PX = Λs,

where Λs is block-triangular with 1 × 1 and 2 × 2-blocks on its diagonal. The 1 × 1-blocks
contain the real eigenvalues of P and the eigenvalues of the 2 × 2-blocks are the complex
eigenvalues of P .

A proof can be found in Golub and van Loan[20, theorem 7.4.1]. Each real matrix can be
decomposed into such a quasi-triangular matrix. Thus, the real Schur decomposition can be
considered as an “eigenvalue-revealing” decomposition; the real and the imaginary part of the
complex eigenvalues are easily obtained from the 2× 2-blocks.

Block-diagonal Structure

We want to make use of the real Schur decomposition to analyze transition matrices. Con-
sidering the quasi-triangular matrix Λs, we can not only find out informations about the
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eigenvalues of P , but also on the reversibility of the process. A case study is presented in
Weber[54] and shortly summarized in the following.

By definition, the reversibility of a process is determined by the flow matrix F = DP .
According to detailed balance, a process is reversible if and only if this matrix is symmetric.
However, nonreversibility of P can as well be identified by its real Schur decomposition Λs,
having a block-diagonal shape. The meaning of an 1× 1-block as an eigenvalue is clear, so we
simply analyze the shape of such an 2× 2-block and its influence on the reversibility and the
spectrum of P . Assume we are given the Schur decomposition

Λs =

1 0 0

0 λ2 ε

0 −δ λ3




with non-negative parameters ε, δ ≥ 0. We examine the properties of this matrix by inserting
different values for ε and δ in the 2× 2-block.

Reversible If ε = δ = 0 and furthermore λ2 6= λ3, then Λs is a diagonal matrix and P is
reversible. In this case, the Schur decomposition is identical to the spectral decomposition
and in particular, the Schur vectors correspond to the eigenvectors.

Reversibility of P is equivalent to the symmetry of Λs.

Nonreversible with real eigenvalues Adding an additional upper diagonal element ε > 0
makes Λs asymmetric. The eigenvalues of P correspond to the entries λ1, . . . , λn on the
diagonal of Λs. The eigenvectors of P are real, but not π-orthogonal anymore. In
contrast to that, the Schur vectors are still π-orthogonal.

Non-reversibility of P can be seen by the fact that the Schur matrix Λs is not symmetric.

Nonreversible and not diagonalizable If λ2 = λ3 with ε > 0 and δ = 0, then P has an
“incomplete” 2× 2-block, implying that it has an eigenvalue with different geometrical
and algebraic multiplicity. Therefore, P has no spectral decomposition and is not
diagonalizable, whereas the Schur decomposition still exists.

Since P is not diagonalizable, it is non-reversible.

Nonreversible with complex eigenvalues If λ2 = λ3 and additionally ε, γ > 0, then we have
a “complete” 2× 2-block, encoding the existence of two complex eigenvalues.

The complex-valued spectrum implies the non-reversibility of P . However, the Schur
decomposition still yields real Schur vectors.

Summarized, there are several problems that can occur when dealing with the eigen-
decomposition of non-reversible processes. The existence of a spectral decomposition is not
always given. Moreover, it can happen that the eigenvectors are not π-orthogonal or contain
complex entries, which is problematic for the use of PCCA+. However, we can circumvent
these issues by employing the real Schur vectors instead.
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GenPCCA: Clustering in terms of Schur vectors

The aim is to cluster a given process P into metastable sets based on membership functions
χ = XA. However, the application of PCCA+ requires certain conditions to be fulfilled in
order to yield a meaningful projection, which is in general not the case for eigenvectors of
a non-reversible process. A solution replacing them by Schur vectors has been proposed by
Fackeldey and Weber[16]. Their approach is a generalization of PCCA+ and therefore called
Gen-PCCA (“Generalized-Perron Cluster Cluster Analysis”).

Looking back to the proof of theorem 2.3, we identify two conditions implying a correct
projection, i.e. a projection without discretization error. The matrix X ∈ RN×n has to span
an invariant subspace by

PX = XΛ (2.7)

for Λ ∈ Rn×n. Furthermore, the orthogonality relation

XTDηX = I, (2.8)

has to be satisfied with respect to some initial distribution η.

These properties are in general not fulfilled for the spectral decomposition of a nonreversible
process, as we can see from a comparison with the previous case study. For a non-reversible
process, the eigenvectors can be complex or non-orthogonal. Moreover, it is not even guaranteed
that P is diagonalizable. In contrast to that, a set of real Schur vectors for a stochastic
matrix P can always be constructed such that it satisfies both criteria. In order to do so, the
following symmetrization trick can be applied. If X̃ are n Schur vectors of P̃ = D0.5PD−0.5,
with D = Dη, then we get

P̃ X̃ = X̃Λs

⇔ D0.5PD−0.5X̃ = X̃Λs

⇔ PD−0.5X̃ = D−0.5X̃Λs

⇔ PX = XΛs, with X = D−0.5X̃.

Since Schur vectors of a symmetric matrix are always orthogonal, the same holds for its
multiplication with a diagonal matrix. Thus, we are guaranteed that X fulfills conditions (2.7)
and (2.8). A further advantage in comparison to the previous section is that orthogonality
can be achieved for any initial distribution η. However, since we assume NESS processes
with a stationary distribution π, we can as usual just employ orthogonality with respect to π.
By this procedure, we obtained a set of orthogonal vectors X spanning an invariant subspace
and we can compute an optimal transformation matrix A by applying PCCA+. Gen-PCCA
can be summarized as follows:

i) Compute a real Schur decomposition (X̃,Λs) of the symmetrized matrix P̃ = D0.5PD−0.5.
Then X = D−0.5X̃ fulfills the conditions (2.7) and (2.8).

ii) Sort the Schur values and the 2× 2-blocks by using SRSchur by Brandts[6] such that
they are in a descending order of their absolute value. Pick the dominant Schur values.
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iii) Determine the submatrix X ∈ RN×n of n dominant Schur vectors and apply PCCA+ in
order to determine the membership functions χ.

Besides metastable sets, nonreversible processes can also contain dominant cycles. They
are different dominant structures representing a cyclic behaviour of the process, as described
by Kalpazidou[23].

Figure 2.6: Possible structures that can be revealed by GenPCCA.

GenPCCA+ is not only able to identify metastable sets, but also cycles or mixtures of both
structures, as depicted in figure 2.6. They can be detected since we consider the dominant
eigenvalues and Schur blocks with respect to their absolute value. Dominant cycles are induced
by complex eigenvalues |λ| ≈ 1, see Djurdevac Conrad et al[15].

Conclusion

Even though the Schur decomposition is known for a long time, being described by Schur[38]
in 1909, the approach to utilize it for identifying metastable sets is relatively new, proposed by
Röblitz[33] in 2009 and implemented with GenPCCA[16] in 2017. There is a huge amount of
scientific papers using eigenfunctions or eigenvectors to cluster a process into metastable sets.
The entire framework of Markov State Models is built on the spectral analysis of the transfer
operator respectively transition matrix; at the beginning in terms of hard sets, nowadays
in terms of fuzzy sets. However, the employment of a Schur decomposition seems to be an
appropriate enhancement of this well-known clustering method.

The main advantage is that it represents a generalization of the spectral fuzzy clustering
method and thereby includes reversible as well as non-reversible processes. In contrast to
the spectral decomposition, a real Schur decomposition exists for all transition matrices. The
fact that the orthogonality of the Schur vectors is not restricted to the stationary measure,
but can be chosen with respect to any initial distribution, makes this method more flexible.
The detection of different dominant structures is a further advantage. In contrast, the
disadvantages of this method are not too severe. A Schur decomposition is not unique and
does not exist for a continuous transfer operator. This does not matter for most applica-
tions. Employing PCCA+ for continuous processes requires a discretization as well, even
though the theory of this method is valid for continuous processes. The multitude of favorable
points implies that Gen-PCCA is a very powerful tool, improving some weak points of PCCA+.

Consequently, many problems that are already solved for reversible processes can be tackled
with this enhanced method in order to obtain the according results for non-reversible processes
as well. For a particular optimization problem, this will be done in the next chapter.
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3 Rebinding Effect in a Given Kinetics

In this chapter, we examine receptor-ligand-systems, a type of molecular systems consisting
of so called receptors and ligands. These molecules interact in such a way that under certain
conditions they can bind to each other and dissociate again afterwards. Such a process is
originally Markovian and can be described by a transfer operator. However, by projecting this
operator onto a finite-dimensional state space, the Markov property of the process may be
spoiled, in a similar fashion as described in section 1.4. We explain this memory effect, the so
called rebinding effect, and examine its influence on the stability of a receptor-ligand-system.
We show how this effect can be measured with the tools known from the first two chapters.
In particular, we present a lower bound for the rebinding effect included in a given system as
the solution of an optimization problem. This estimation is deduced for reversible processes,
according to Weber and Fackeldey[56], and finally extended to non-reversible processes by
employing a Schur decomposition, as demonstrated in section 2.4.

3.1 Receptor-Ligand System

After introducing the basic biochemical knowledge necessary for the understanding of receptor-
ligand-systems, we model a simple receptor-ligand-system mathematically using a differential
equation. We discuss the so called rebinding effect included in this system and set it in relation
to the recrossing effect known from section 1.4. As a motivation for further investigations, we
explain its relevance in the application of computational drug design.

Molecular Dynamics vs Molecular Kinetics

A molecular system consists of molecules, i.e. atoms which are connected by covalent bonds.
The motion inside of such a system can be characterized in different ways. The term molecular
dynamics denotes the analysis of a single trajectory and is mainly employed in the context
of simulations. It means that one initial configuration of the system is fixed and its evolution
in time is observed. One example was depicted in figure 2.1, representing one trajectory of a
stochastic system. This can give an insight about the structure of the system, like identifying
possible metastabilities. However, it is not representative in the sense that a second simulation
with high probability yields a different trajectory. In contrast to that, in molecular kinetics,
an ensemble of trajectories is considered. Accordingly, it is formulated in terms of densities,
concentrations or transition rates. However, these quantities are related to the molecular
dynamics approach as they represent an average of many single realizations of a process. In
this thesis, we follow the molecular kinetics approach by examining transition rate matrices.
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Receptors and Ligands

The following presentation of receptor-ligand systems is based upon Lauffenburger and
Linderman[27], providing a comprehensible introduction into this topic. In biochemistry, a
receptor is a molecule, often a protein, that is usually located on the surface of a cell and can
receive signals from outside the cell. A molecule that has the ability to bind or associate to a
receptor is called a ligand. Each receptor will only bind with ligands of a particular structure,
which is often referred to as the “key-lock principle”. Both receptor and ligand need to have
specific complementary geometric shapes that fit exactly into one another, as exemplarily
depicted in figure 3.1.

+

Ligand

Receptor

Receptor-ligand complex

Figure 3.1: Ligand (“key”) binds to a receptor (“lock”). Their shapes fit together.

Such a binding between a receptor and a ligand can activate (“unlock”) the receptor by
producing some kind of a chemical signal and thereby provoke a physiological response. For
instance, that could be a conformational change in a protein, caused by a hormone binding to
it. However, instead of engaging into the actual physiological consequences of a binding, we
focus on the act of binding events.

The action of binding is typically reversible1 through dissociation of the involved receptor
and ligand. Ligand binding is a chemical equilibrium process, which means that the reaction
rates of the binding and dissociating events are equal, once this equilibrium is reached. From
then on, the concentrations of the reactants (ligands) and the products (complexes) are
constant. It is a dynamic equilibrium, since reactions take place, even though no net change
in the concentrations can be observed.

The binding behaviour of a simple receptor-ligand system is formalized as follows. A ligand
(L) can bind to a receptor (R) and form a receptor-ligand complex (LR) which can dissociate
again into its original components. This process can be represented by a reaction equation

L + R
kon


koff

LR. (3.1)

Being a process in chemical equilibrium, the law of mass action states that the ratio between
the concentration of reactants and products is constant. The corresponding dissociation

1We remark that in this context, reversible means that a ligand can bind and unbind to a receptor, i.e. the
reaction can run forward and backward, in contrast to the mathematical “reversible”, meaning that a
process in equilibrium behaves equally when running backwards in time.
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constant kd is given by

kd =
koff

kon
=

[L] · [R]

[LR]
,

where [L] represents the concentration of unbound ligands, [R] the concentration of unoccupied
receptors and [LR] the concentration of receptor-ligand complexes, respectively. This constant
is used to describe the binding affinity between a ligand and a receptor, that is how strongly
the ligand can bind to his particular receptor. If the dissociation constant is small, then there
are relatively many complexes in comparison to unbound molecules, and for this reason, the
binding affinity between the ligand and the receptor is high. The association constant ka is
the inverse of the dissociation constant

ka =
kon

koff
=

[LR]

[L] · [R]
.

There are different factors which can influence the binding affinity of a process. It depends on
the nature of the constituent molecules, like their shape, size and possible charge. The binding
affinity of a particular ligand-protein interaction can also significantly change with solution
conditions, e.g. temperature, pH or salt concentration. For instance, a higher temperature
leads to a faster movement of the molecules and therefore increases the probability of binding
events. In general, high-affinity binding results in a higher degree of occupancy of the receptors
than it is the case for low-affinity binding; the residence time does not correlate.

Mathematical Model of Receptor-Ligand-System

Starting from the reaction equation (3.1), we claim that a ligand can be found in two different
macro states: “unbound” (L) or “bound” (LR). Then the probabilities of the ligand to
be in one of these states are described by the probability vector xT = 1

s ([L], [LR]), where
s = [L] + [LR] = const. is the normalization constant. This leads to an ordinary differential
equation

ẋT = xTQc.

The matrix Qc consists of the rates of reaction,

Qc =

(
−ka[R] ka[R]
kd −kd

)
, (3.2)

where ka and kd are the association and dissociation constants. It corresponds to the tran-
sition rate matrix of a Markov chain, that means it describes a memoryless process. The
two possible macro states for a ligand-binding-system consisting of one receptor and one
ligand are depicted in figure 3.2. We notice that the spatial arrangement of the recep-
tor and the ligand in the unbound state is not included in the above model. Therefore, we
cannot distinguish if, at a given time, the receptor and the ligand are close to each other or not.
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(a) “unbound” (b) “bound”

Figure 3.2: Two possible macro states of a ligand-binding system.

Rebinding Effect

By switching from the macroscopic to the microscopic point of view, we find out that the
stochastic process modelled by (3.2) is actually not memoryless. That is due to the spatial
arrangement of the system after a receptor-ligand-complex dissociated. Shortly after such
a dissociation, it is more likely that the corresponding receptor and ligand will bind again,
since they are still close to each other. Such a binding shortly after a dissociation is called a
rebinding. The memory effect which thereby occurs is called rebinding effect. On large
timescales, this effect diminishes since the favorable spatial situation is not given anymore
and the system is more likely to be rather mixed again. Thus, Markovianity can be spoiled
by the rebinding effect. It is depicted in figure 3.3.

(a) Spatial constellation
shortly after dissociation.

(b) Spatial arrangement at
an arbitrary time.

Figure 3.3: Rebinding effect: these two configurations represent the same macro state (“un-
bound”) and are not distinguishable in model (3.2), even though different binding
probabilities are expected by the receptor-ligand-distance on the microscopic scale.

This phenomenon reminds us of the recrossing effect, as described in section 1.4. As well as
the recrossing effect, the rebinding effect denotes a kind of “short-time memory” caused by
the spatial arrangement immediately after a transition between macro states took place. In
both cases, this effect can be interpreted as the consequence of a projection: by reducing the
dimension, informations about the original state space are lost and consequently, favorable
spatial situations after a transition are not taken into account in the reduced model.

The rebinding effect coincides with the recrossing effect in the special context of a receptor-
ligand-system. The different nomenclatures are justified by the use in their original context.
While the term recrossing effect denotes the act of recrossing an energy barrier, the term
rebinding effect denotes the rebinding of two molecules in a receptor-ligand-system.
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In order to measure the magnitude of the rebinding effect, we interpret model (3.2) as the
projection of a larger system. As demonstrated in chapter 2, a crisp clustering does not yield
a correct model and should be replaced by the fuzzy approach. Accordingly, we consider the
macro states “unbound” and “bound” as overlapping states. This allows a micro state to be
in the “unbound” macro state with a high degree of membership to the “bound” state, for
instance shortly after a dissociation, which could be interpreted as an “almost bound” state.
Thus, if these states are strongly overlapping, then a high rebinding effect can be expected. In
the next sections, we quantify the rebinding effect by its relation to the magnitude of overlap
of the conformations.

The rebinding effect and its occurence in natural science has been described and analyzed
by several authors[19, 50]. In chemistry, it has been discussed in the context of clustered
receptors and clustered ligands[9, 50]. A mathematical investigation of the rebinding effect
has been realized by Weber et al[55, 56].

Application: Drug Design

The term drug design denotes the development of new medications based on the knowledge of
a biological target, playing the role of the receptor. Drug design is basically about designing a
molecule which is complementary in shape and charge to the biomolecular target and therefore
will bind to it[48]. More precisely, drug design describes the design of ligands, that is molecules
that will bind tightly to the given target. In general, we can distinguish between the following
two most common functionalities of drugs[49]:

• Activators are able to activate, or even deactivate, a receptor and result in a strong
biological response. An example for such a drug is morphine, which acts directly to the
central nervous system, mimics the actions of endorphins and thereby reduces pain.

• Inhibitors bind to a receptor without activating it. Though, as they “block” the binding
sites of receptors, they prevent possibly disease causing particles to bind. A well-known
example are protease inhibitors, a class of antiviral drugs that are widely used to treat
HIV and hepatitis C.

Independently of the fact whether a drug activates or inhibits receptors, a high binding
affinity is required in order to be an efficient drug. The central dogma of receptor pharmacology
(“occupation theory”) is that a drug effect is directly proportional to the number of receptors
that are occupied. Furthermore, a drug effect ceases as a drug-receptor complex dissociates.
Thus, a low binding affinity needs to be compensated by a higher concentration of ligands,
which should be avoided because of possible side effects. Accordingly, the most fundamental
goal in drug design is to predict whether a given molecule will bind to a target and if so how
strongly. Computational drug design[1, 7] is of particular interest, since binding interactions
between molecules and receptors can be estimated on the computer, which reduces the
necessity to synthesize these molecules at each step of development. One example is the
newly designed nontoxic pain killer by Spahn et al[46]. In order to correctly predict binding
affinities, the consideration of possible rebinding effects is essential[50, 51].
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3.2 Molecular Kinetics as a Projection

In this section, we deduce a rigorous description of molecular systems, in particular receptor-
ligand-systems, basically by embedding the mathematical concepts from chapter 1 into an
adequate physical context. When considering such systems, we can distinguish between two
points of view: we show how we can get from the microsopic or atomistic to a macroscopic
scale by a projection. In doing so, we are particularly interested in the resulting rebinding
effect included in the clustered system.

Micro States

A micro state of a molecular system with N atoms can be represented in a 6N -dimensional
phase space Γ = Ω× R3N , consisting of the configuration space Ω = R3N and the momentum
space R3N . In the following, we consider systems in thermodynamical equilibrium. One possible
model is given by the Boltzmann distribution π : Ω × R3N → R, a probability distribution
assigning to each micro state a probability depending on its energy and temperature, see
McQuarrie[28]. It can be expressed as

π(q, p) =
1

Z
exp (−βH(q, p)), (3.3)

where β = 1/(kBT ) is the inverse of the temperature T multiplied with the Boltzmann
constant kB and Z =

∫
Γ exp−βH(q, p) d(q, p) is the normalization factor. The Hamilton

function denoted by H is given by H(q, p) = K(p) + V (q), the sum of the kinetic energy K(p)
and the potential energy V (q). Thus, the Boltzmann distribution π can be decomposed into
π = πpπq,

π(q, p) =
1

Zp
exp (−βK(p))︸ ︷︷ ︸

πp

· 1

Zq
exp (−βV (q))︸ ︷︷ ︸

πq

,

where πp : R3N → R is the probability density function of the kinetic part in the momentum
space R3N and πq : Ω → R is the probability density function of the potential part in the
configuration space Ω. As we are interested in examining conformations, that are objects in
configuration space, we will restrict ourselves to Ω, see Huisinga[21]:

“A conformation C ⊂ Ω will be identified with the particular metastable sub-
ensemble µC×R3N corresponding to the particular subset C × R3N ⊂ Γ. Hence,
for every position q ∈ C, the conformation contains all states with q ∈ Ω and
arbitrary p ∈ R3N .”

In this sense, conformations contain no information on momenta and are determined in
configuration space only. We consider a reduced model with the reduced density πq =∫

R3N π(q, p) dp.
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Macro States via Membership Functions

As the configuration space of an average molecular system is very large, we aim to reveal the
underlying discrete Markov State Model by clustering a collection of the micro states having
the same or similar values in one observable. For instance, that could be the macro states
“bound” or “unbound” for a simple receptor-ligand system. We apply the function-based fuzzy
clustering method presented in section 2.3. We define macro states as overlapping partial
densities, which can be identified as membership functions χ1, . . . , χn : Ω→ [0, 1], forming a
partition of unity, i.e.

n∑
i=1

χi(q) = 1.

By grouping micro states, the corresponding macro states yield statistical weights

wi = 〈χi, 1〉π :=

∫
Ω
χi(q)πq(q) dq, (3.4)

corresponding to the “probability for the system to be in conformation χi”.

Transfer Operator

Each micro state (q, p) ∈ Γ determines a probability density function Ψ−τ (· | (q, p)) describing
the possible evolutions of the system in configuration space Ω in time τ , being started in the
initial state (q, p). Weber[53] defines a transfer operator P(τ) : L1,2

πq (Ω)→ L1,2
πq (Ω) acting on

membership functions via

P(τ)f(q) =

∫
R3N

(∫
Ω
f(q̃)Ψ−r(q̃ | (q, p)) dq̃

)
πp(p) dp. (3.5)

In this definition, the density function Ψ−τ (· | (q, p)) can be interpreted as a transition
function as defined in section 1.1. This operator corresponds to a backward transfer operator
as introduced in section 1.2. It is a generalized transfer operator in the sense that it includes
deterministic as well as stochastic dynamical models. In order to describe deterministic
dynamics, the density function Ψ−τ has to be chosen as a Dirac delta function, since an initial
state (q(0), p(0)) determines exactly the future states in configuration space.

The transfer operator P(τ) also defines a projected Markov operator P(τ) acting in config-
uration space Ω, see Weber[53], by

P(τ) = πq ◦ P(τ) ◦ (πq)
−1,

which propagates density functions and corresponds to a forward transfer operator. The
previous equation shows that the space of membership functions is connected to the space of
density functions by multiplication with πq. We will keep that relation in mind, though just
use P in the following.
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Markov State Model for reversible Processes

Let P := P(τ) be the transfer operator describing a reversible process. Then P is self-adjoint
with respect to πq and has a real spectrum with σ(P) ⊂ [−1, 1], according to theorem
1.11. In order to apply the spectral approach from section 2.2, we assume that P has n
dominant eigenvalues 1 = λ1 > λ2 ≥ · · · ≥ λn which are all close to 1 and bounded away
from the essential spectrum. The corresponding dominant eigenfunctions are denoted by
X = {X1, . . . ,Xn} and the eigenvalue problem is given by PX = XΛ, with the eigenvalue
matrix Λ = diag(λ1, . . . , λn). As the number of metastable sets is determined by the number
of dominant eigenvalues, we create a Markov State Model on n macro states. The state
space of this model consists of the conformations of the molecular system and its transition
behaviour is described by a n × n-transition matrix Pc := Pc(τ). In order to obtain this
discrete matrix from the continuous operator P, we need at first to determine the size and
shape of the membership functions χi. As described in section 2.3, this can be done by
computing a linear combination of the dominant eigenfunctions via

χj(q) =

N∑
i=1

AijXi(q), j = 1, . . . , n, (3.6)

where the transformation matrix A = {Aij}i,j=1,...,n is the solution of PCCA+, providing an
optimal clustering. As a linear combination of orthogonal eigenfunctions X , the membership
functions χ might be overlapping; they are not orthogonal, but span the same subspace as X .
The Markov State Model is created by applying the Galerkin discretization

Pc = G(P) = (〈χ, χ〉π)−1(〈χ,Pχ〉π).

According to the proof of theorem 2.3, it can as well be written as

Pc = A−1ΛA.

Theorem 2.3 also implies that there is no discretization error under this projection, i.e. we
have G(Pk) = (Pc)

k. In particular, Markovianity is preserved. We can use the matrix
representation Pc = S−1T from theorem 1.17. Then S and T are stochastic matrices with

T = D−1〈χ,Pχ〉π = D−1ATΛA and

S = D−1〈χ, χ〉π = D−1ATA,
(3.7)

where D = diag(w1, . . . , wn) is the diagonal matrix of statistical weights from (3.4).

Measuring the Rebinding Effect

Again, we analyze the matrix representation Pc = S−1T of the Markov State Model. The
stochastic matrix T represents the dynamical behaviour ot the process, though the Markov
State Model differs from T by

SPc(τ) = T.

This “deviation” of the Markov State Model Pc(τ) from the coupling matrix T is caused
by the overlap of the membership functions, included in the matrix S. If S is equal to the
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identity matrix, then the Markov State Model is solely determined by T . If S is close to the
identity matrix, then Pc(τ) is close to T and not strongly influenced by S. The more the
overlap matrix S differs from the identity matrix, the more the Markov State Model Pc(τ)
differs from the transition matrix T . This is due to the rebinding events. The larger this
deviation, the larger the occurring memory effects. Thus, the rebinding effect, introduced in
section 3.1 as a memory effect provoked by a projection, can be measured by the matrix S.
The more the membership functions are overlapping, the more the matrix S deviates from
the identity matrix and thereby includes stronger memory effects.

Thus, the rebinding effect can be measured by the trace of the matrix S, being the sum of
its diagonal elements. It can lie between 0, implying very much rebinding, and n, implying
no rebinding. This approach to measure the rebinding effect has been introduced by Weber
and Fackeldey[56] and will be used in the next chapter to detect a minimal bound for the
rebinding effect included in a projected system.

Infinitesimal Generator to Transition Rate Matrix

Often it is more convenient to analyze transition rate matrices instead of transition matrices.
Thus, we consider the infinitesimal generator Q, which is defined from P(τ) via

Q = lim
τ→0

P(τ)− I
τ

.

and connected by the useful relation

P(τ) = exp (τQ).

Since the eigenfunctions of Q and P are the same and their eigenvalues are related via
exp (ξi) = λi, we can apply the same Galerkin Projection for the infinitesimal generator as
for the transfer operator. We obain a n× n-matrix

Qc = A−1ΞA = (〈χ, χ〉π)−1(〈χ,Qχ〉π), (3.8)

where Ξ is the diagonal matrix consisting of the n leading eigenvalues 0 = ξ1 > ξ2 ≥ · · · ≥
ξn of Q and A is the transformation matrix of (3.6), which analoguously transforms the
eigenfunctions of Q into membership functions of the macro states. The clustered matrix Qc
can be interpreted as a transition rate matrix.
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3.3 Minimizing the Rebinding Effect

So far, we were mainly concerned to compute the projection of a large process and, of partic-
ular interest, to analyze how such a projection introduces memory effects in the clustered
process. In most of the cases though, we don’t know the continuous transfer operator or
infinitesimal generator describing a system. Instead, we are often given a finite matrix, for
instance stemming from experimental data or, like in the example of a simple receptor-ligand
system from section 3.1, as the solution of a differential equation. In either case, such a finite
matrix can be interpreted as a projection, since it is basically a model for an originally
continuous process, describing the movement of molecules in R3.

Assume we are in the situation that we only know the projected process Qc. Nevertheless,
we would like to know how much rebinding is included in that system, originating from the
unknown projection. Since we don’t know on which membership functions the projection is
based on, we can only compute an estimation for that. Considering all possible membership
functions, how much rebinding is included at least in the system?

We showed that the overlap matrix S from (3.7) provides a measure for the quantity of
the rebinding effect. In particular, being close to the identity matrix implies a low rebinding,
while high outer diagonal elements of S result in a high rebinding effect. In order to reveal
the actual impact of the rebinding effect, we set it in relation to the stability of the clustered
system Qc. Afterwards, we formulate an optimization problem in order to deduce a lower
bound for the rebinding effect included in a given system. For the sake of simplicity, we assume
in the further course that the transition rates can be measured experimentally. Accordingly,
we examine the given transition rate matrix Qc of a process.

Influence of Rebinding to Stability

If the eigenvalues ξi ∈ (−∞, 0] of Qc are close to 0, then the macro states are very stable in
the sense that the probability to stay inside of such a state is close to 1. The trace of Qc
corresponds to the sum of the dominant eigenvalues of Q. Thus, we can measure the stability
of the molecular system by the quantity F := −trace(Qc) ∈ (0,∞). If F is close to 0, then
the system is very stable, while it is less stable for a high value of F . We want to set the
stability F in relation to the measure of the rebinding effect, the overlap matrix S.

Lemma 3.1. (Weber and Fackeldey[56])
Let Qc be the projected infinitesimal generator of a process and Pc(τ) the corresponding
projected transfer operator with the matrix representation Pc(τ) = S−1T , then the quantity
F := −trace(Qc) can be measured by

F = τ−1(log(det(S))− log(det(T ))), (3.9)

if we assume that T is metastable, i.e. diagonal dominant.
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Proof. We use the trace formula[2, p. 208] for matrices exp(trace(Qc)) = det(exp(Qc)), the
fact that Qc “generates” Pc(τ), theorem 1.17 and multiplicativity of determinants to obtain

F = −trace(Qc)

= −τ−1 log(exp(trace(τQc)))

= −τ−1 log(det(exp(τQc)))

= −τ−1 log(det(Pc(τ)))

= τ−1(log(det(S))− log(det(T ))).

This expression is well-defined. By positive definiteness of the Gram matrix, the determinant
of S lies in (0, 1]. The diagonal dominance of T is a natural property for a metastable process
and ensures us a determinant of T in (0, 1].

Interpretation: Relevance of the Rebinding Effect

Before interpreting the result of lemma 3.1, we recall the meaning of the stochastic matrices
S and T . The coupling matrix T describes the stochastic movement of the process and in
particular, encodes the metastable behaviour between the conformations. Large diagonal
elements result in a strong metastability and a slow process, while higher outer diagonal
elements lead to faster transitions between the metastable sets. On the other hand, the
overlap matrix S merely includes informations about the crispness of the membership functions,
implying the magnitude of the rebinding effect.

Lemma 3.1 shows that both determinants of S and T influence the stability of the system,
though in opposite directions. If det(T ) is close to 1, then F is low and consequently the
process is rather stable. If det(T ) is small, then the process is rather unstable, since F is
high. These relations correspond to the observations from section 2.3; a high determinant of
T leads to a high metastability of the system and thus describes a slower process, while a low
determinant implies higher outer diagonal elements of T and thus, makes the process faster.

In contrast, if det(S) is close to 1, then the first term in (3.9) vanishes and hence, S barely
contributes to the stability, which is instead mainly determined by T . On the other hand, if
det(S) is close to 0, the system becomes more stable. This means that a higher overlap of the
membership functions, and thus a strong rebinding effect, leads to a more stable process.
This relation is not obvious at first sight, yet corresponds to the qualitative description of the
rebinding effect from section 3.1.

At first sight, it sounds plausible to equalize the stability of a system to its slowness. A
slow system has rare transitions and thereby implies a stable system. However, a stable
system does not necessarily imply a slow system. Instead, a rather fast system can gain a
certain stability by the rebinding effect. The “fast” system has many transitions between its
metastable sets. However, in case of a strong rebinding, the quitting of a metastable set can
with high probability be followed by an immediate return to the previous state. Thus, the
rapidness of the process can to a certain extent be compensated by the rebinding effect.
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Concluding, we can differentiate between two factors leading to a high stability:

• det(T ) high: The conformations have a high metastability and are well-separated.
Therefore, transitions between the metastable sets are rare and the process is slow.

• det(S) low: A high rebinding effect makes the process more stable, since transitions
out of a metastable set can be compensated by a fast transition back. In particular, a
rapidly mixing process, det(T ) << 1, can be stabilized by the rebinding effect.

A stable system is naturally reached by a strongly metastable matrix T , though can likewise
be obtained for a weaker metastable matrix T , if a lot of rebinding is included.

Optimization Problem: Lower Bound for the Rebinding Effect

In order to determine the stability of a system, it is of interest to know how much rebinding
is included. We compute a lower bound to find out how much rebinding we are guaranteed at
least. In order to derive an optimization problem, let us first remember how S is determined.
The transfer operator P is projected onto a finite-dimensional state space via membership
functions χ as a linear combination of the dominant eigenfunctions with a regular matrix A.
Thus, the choice of the matrix A determines S and in particular the magnitude of rebinding.
In order to estimate the rebinding effect included in a system, we take into consideration all
feasible transformation matrices A, see Weber[52, chapter 3.4].

According to Weber and Fackeldey[56], we formulate an optimization problem to reveal
which choice of A results in the lowest rebinding effect, measured by an optimal matrix Sopt.
This problem is equivalent to finding the largest possible determinant of S.

Given a finite matrixQc, the immediate connection to the original process are the eigenvalues
ξ1, . . . , ξn, corresponding to the dominant eigenvalues of Q. This connection is the starting
point to construct the optimization problem. The eigenvalue equation of Qc is given by

QcX = XΞ. (3.10)

where Ξ = diag(ξ1, . . . , ξn). The first column of X corresponds to the first eigenvector
X1 := (1, . . . , 1)T . By (3.8), we see that A−1 is an eigenvector matrix of Qc as well. Therefore
the columns of A−1 consist of multiples of the eigenvectors Xj , yielding

A−1 =

1
... α2X2 · · · αnXn

1


with α1 = 1 and α2, . . . , αn ∈ R. We know that a determinant of S close to 1 results in a
low rebinding effect. Thus, in order to find a lower bound, we try to maximize det(S), or
equivalently minimize |det(S)− 1|, since S is a stochastic matrix having 1 as largest possible
determinant. Then the objective function of the optimization problem is given by

min
α1,...,αn∈R

| det(S)− 1| , (3.11)
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where several side constraints have to be included. As the inverse matrix A−1 consists of
multiples of eigenvectors Xj , we have to consider

α1 = 1 and A−1
ij = αjXij ∀i, j .

Furthermore, S is a stochastic matrix and its structure is given in terms of the linear
transformation matrix A by (3.7), providing us with two further constraints

S = D−1ATA and Sij ≥ 0 ∀i, j .

A feasible solution of this optimization problem is a matrix S fullfilling all side contraints,
but not necessarily being an optimum. Any feasible solution of optimization problem (3.11)
will be called a real overlap matrix Sreal, while an actual optimum will be called an optimal
overlap matrix Sopt. Clearly, we get det(Sreal) ≤ det(Sopt) ≤ 1.

Interpretation

The real rebinding effect is high if the determinant of Sreal is low. Thus, a small determinant
of Sopt implies a high rebinding effect, while a large determinant of Sopt gives us only few
information about the actual quantity of the rebinding effect, it could be either large or small.
Unfortunately, a reversible process Qc yields a trivial solution of optimization problem (3.11)
and therefore, provides us with no information, as the following theorem shows.

Theorem 3.2. (Weber and Fackeldey[56, Theorem 1])
Let Qc ∈ Rn×n be a reversible matrix that stems from a clustering with positive definite overlap
matrix S. Then there exists a matrix A ∈ Rn×n in optimization problem (3.11) such that
det(Sopt) = 1.

This theorem does not imply that a reversible process Qc includes no rebinding effect. It
just means that for every such process, it is possible to find a transformation matrix A yielding
no rebinding. Consequently, a nontrivial estimation for the rebinding effect can be obtained
only for a nonreversible system Qc. In particular, only systems with at least three states are
of interest to examine, since Qc is reversible for n = 2. For instance, the example from section
3.1 describing a receptor-ligand system on two macro states “bound” and “unbound” yields
the trivial solution. For that reason, we will not further examine this model, though work
with a similar but slightly more complex system in the next chapter.

Using the eigenvectors of the transition rate matrix, optimization problem (3.11) is based on
the assumption of an originally reversible system. In the next section, we present a generalized
version based on Schur vectors. According to section 2.4, this approach includes reversible as
well as non-reversible systems.
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3.4 Approach for Non-reversible Processes

We extend the problem of computing the minimal rebinding effect included in a system to non-
reversible processes. Employing the ideas from section 2.4, the modification of optimization
problem (3.11) basically consists in a replacement of eigenvectors by Schur vectors.

Markov State Model based on Schur Decomposition

As demonstrated in the previous chapters, the fuzzy clustering method based on a spectral
decomposition is not feasible for non-reversible processes. Instead, we apply the approach
presented in section 2.4 to build the membership functions χ as a linear combination of real
Schur vectors instead of eigenvectors.

Given a transition rate matrix Q ∈ RN×N , we determine a subset X ∈ RN×n of real Schur
vectors associated to the n dominant Schur values and compute the membership functions
χ = XA. The transformation matrix A can be obtained by Gen-PCCA, providing an optimal
solution, though any other feasible matrix A yields a correct projection as well. As shown in
section 2.4, a reasonable result is achieved by employing Schur vectors that are orthogonal
with respect to any initial distribution η. However, considering NESS processes, we choose
orthogonality with respect to the stationary distribution π.

Then, analogously to the reversible case, the projected transition rate matrix is given by

Qc = 〈χ, χ〉−1
π 〈χ,Qχ〉π.

Since the eigenvalues of Qc coincide with the n dominant eigenvalues of Q, it can according
to the proof of theorem 2.3 as well be represented by

Qc = A−1ΞsA, (3.12)

where Ξs is the Schur matrix consisting of the n dominant Schur values, i.e. eigenvalues and
possibly 2× 2-blocks from Q.

Minimal Rebinding Effect

Again, we are interested in the rebinding effect included in the clustered system Qc. If we
know the employed membership functions χ or the transformation matrix A, then we can
easily compute the real rebinding effect which is encoded in the overlap matrix S = D−1ATA.

However, if we want to estimate the minimal rebinding effect included in a system Qc, then
it is not sufficient to solve optimization problem (3.11). It was based on the clustering with
eigenvectors, assuming an originally reversible system, while the actual clustering is based on
Schur vectors. The optimization problem has to be modified such that it is formulated in
terms of Schur vectors X. We start with considering the Schur decomposition of Qc:

QcX = XΞs. (3.13)

Comparing it to (3.12), we recognize that both X and A−1 are matrices of Schur vectors
to the schur decomposition Ξs. In the last section, we exploited the analogous relation for
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eigenvectors to deduce that the columns of A−1 are multiples of the eigenvectors X. Now,
having a possibly non-diagonal matrix Ξs, this relation does not hold anymore. We clarify this
on a simple example, similar to the one from section 2.4 and containing only the dominant
eigenvalue ξ1 = 0 and one 2× 2-block,

Ξs =

0 0 0

0 ξ2 ε

0 −δ ξ3


.

Given the matrix X of Schur vectors associated to Ξs, we aim to reveal the necessary structure
of A−1 such that its columns are Schur vectors as well. The first Schur vectorX1, corresponding
to the 1× 1-block ξ1 = 0, is independent of the other columns. Therefore, each multiple is
a Schur vector as well. However, for our purposes the leading Schur vector should be the
constant 1-vector. In contrast to that, the Schur vectors X2 and X3 belong to the 2× 2-block
and are not linear independent. Further Schur vectors for this block can be constructed as a
linear combination of X2 and X3, according to

A−1 =

1
... α2(ξ2X2 − δX3) α3(εX2 + ξ3X3)
1

 , (3.14)

where additionally α2 = α3. Consequently, the computation of a column of A−1 depends on
the corresponding Schur block. For an 1× 1-block, equivalent to an eigenvalue, the column
of A−1 is a multiple of the corresponding Schur vector. The 2× 2-blocks have to be treated
according to (3.14). The corresponding columns of A−1 are a linear combination of the two
Schur vectors belonging to that block. These relations can be used to formulate the first side
constraints the optimization problem needs to fulfill:
For a 1× 1-block in the column j of Ξs, the corresponding column of A−1 is a multiple of the
associated Schur vector Xj ,

α1 = 1 and A−1
ij = αjXij ∀i . (3.15)

For a 2× 2-block positioned in the columns j, j + 1 of Ξs, the corresponding columns of A−1

are built as linear combinations of the two Schur vectors Xj , Xj+1 associated to that block:

A−1
ij = αj(ξjXij − δXi(j+1)) ∀i and

A−1
i(j+1) = αj(εXij + ξj+1Xi(j+1)) ∀i .

(3.16)

The relation between X and A−1 is a bit more complicated than for a reversible process. The
columns of A−1 are either multiples of the corresponding Schur vector for a 1× 1-block or a
linear combination of two Schur vectors in case of a 2× 2-block. Given a Schur decomposition
Ξs, it is necessary to detect the different blocks and compute the columns of A−1 accordingly.
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Apart from that, the generalized optimization problem coincides with (3.11): we aim at
minimizing the rebinding effect by maximizing det(S), while the side constraints guarantee
the necessary structure of A, leading to a stochastic matrix S. The objective function is

min
α1,...,αn∈R

|det(S)− 1| . (3.17)

The entries of A−1 need to fulfill the side constraints (3.15) respectively (3.16), depending on
the size of the corresponding Schur block. The stochastic matrix S is constructed as usual
and implies the two further side constraints

S = D−1ATA and Sij ≥ 0 ∀i, j .

Comparison

In section 3.3, we examined originally reversible processes, clustered onto a subspace Qc. In
contrast to that, non-reversible processes are clustered in terms of Schur vectors. Then, the
initial point for the optimization problem is not given by the spectral decomposition (3.10),
but in terms of a Schur decomposition (3.13), with Ξs possibly having 2 × 2-blocks on its
diagonal, leading to a linear dependence of the corresponding Schur vectors.

Consequently, optimization problem (3.17) requires more effort to handle, because of the
necessary case distinction of different Schur blocks. However, it is a generalized version of the
original formulation (3.11) and includes reversible as well as non-reversible systems. For a
reversible system, they coincide. Thus, we can compute the minimal rebinding effect for any
system, independent of the reversibility or non-reversibility of the original process.

The quality of this estimation will be evaluated in the next chapter by means of an exemplary
reversible process, which will be slightly perturbed to non-reversibility by introducing such a
2× 2-block. The solution of optimization problem (3.17) will be computed and compared to
the outcome of the reversible case (3.11).
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4 Numerical Examples

With the aim of consolidating and illustrating the results from chapter 3, we verify them on
some easy examples. At first, we examine a reversible process and visualize some properties
of the minimal rebinding effect. Afterwards, we further analyze this process, now introducing
small perturbations to make it non-reversible, in order to observe possible consequences
for the rebinding effect. As a “real-world” application, we examine a system describing the
movement of electron densities in the chemical reaction of a molecule. Since the rebinding
effect was motivated by its occurrence in ligand-binding processes, we furthermore present a
bivalent binding system and investigate the included rebinding effect.

In the following, the minimal rebinding effect det(Sopt) is computed as the solution of the
optimization problems (3.11) and (3.17), implemented with the Matlab Optimization Toolbox.

4.1 Reversible System

Since the clustering Qc of a reversible process Q can be non-reversible, we are interested in the
relation of the rebinding effect in Qc compared to the deviation of reversibility. This deviation
will be measured by the “degree of non-reversibility” ‖DQc −QTc D‖1, i.e. the deviation of
detailed balance, for D = diag(π1, . . . , πn) being the diagonal matrix with the entries of the
stationary distribution. Furthermore, we want to compare the minimal rebinding effect
included in Qc with the real rebinding effect stemming from the particular clustering, in
order to evaluate the quality of this estimation.

Different clusterings of a system

Let a reversible metastable process be given by the transition matrix

P =


0.9876 0.0011 0.0011 0.0051 0.0051
0.0033 0.4973 0.4949 0.0036 0.0009
0.0033 0.4949 0.4973 0.0009 0.0036
0.0076 0.0018 0.0004 0.4969 0.4932
0.0076 0.0004 0.0018 0.4932 0.4969

 . (4.1)

This matrix stems from Weber[54] and obviously describes a system on three metastable sets,
having the dominant eigenvalues σ(P ) = {1, 0.99, 0.98}. Accordingly, we examine different
clusterings on a three-dimensional state space. For that aim, we employ several transformation
matrices A ∈ R3×3, turning the dominant eigenvectors X ∈ R5×3 into membership functions
χ ∈ R5×3. In order that χ fulfills the partition of unity and non-negativity properties, the
set of feasible matrices FA has to meet certain conditions, see Weber[52, chapter 3.4]. We
generate 200 random feasible transformation matrices A and examine the rebinding effect
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(c) The minimal rebinding effect det(Sopt) com-
pared to the real rebinding effect det(Sreal) included
in Qc.

Figure 4.1: The system described by the transition matrix P is clustered with 200 randomly
generated feasible transformation matrices A.

caused by the projection. The results of this example are presented in figure 4.1 and can be
interpreted as follows. We see in (a) that the minimal rebinding effect strongly correlates
with the deviation of reversibility. The higher this degree of non-reversibility, the higher the
minimal rebinding effect. This implies that for a highly non-reversible system, the minimal
rebinding effect is a better estimation than for an almost reversible system, as represented in
(b). However, det(Sopt) can be a rather good or a rather bad estimation for the real rebinding
effect, visible in (c).
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4.2 Non-reversible System

In order to compare the rebinding effect in the clustering of a non-reversible system to the
reversible case, we further examine the example from section 4.1. We modify it slightly by
introducing small perturbations in the eigendecomposition of the reversible process, leading
to non-reversibility, as proposed by Weber[54]. The outcome shall be a Schur decomposition
of the shape

Λs =


1 0 0 0 0
0 0.99 ε 0 0
0 −γ 0.98 + δ 0 0
0 0 0 0.005 0
0 0 0 0 0.001

 , (4.2)

with ε, γ, δ > 0. We compute the corresponding transition matrix by P = XΛsX
−1 with the

Schur vectors X being equal to the eigenvectors from (4.1). If Λs is a diagonal matrix, then
this equation represents the eigenvalue problem of a reversible process P . By introducing
non-zero values for ε, γ and δ, the system gets non-reversible. This example is of particular
interest, since we examine different systems, yet having the same Schur vectors and very
similar Schur decompositions. However, these small changes in the Schur decomposition lead
to different results when it comes to computing the rebinding effect.

Similar as in the example from section 4.1, we compute the real rebinding effect, when
projecting the process onto a three-dimensional subspace represented by the transition rate
matrix Qc and compare it to the minimal rebinding effect included in that subspace. Starting
from the projected process Qc, we use the Schur vectors X from QcX = XΞs, where Ξs is
the Schur decomposition with sorted Schur values. Since Ξs has a 2× 2 block on its diagonal,
we have to solve optimization problem (3.17) based on Schur vectors to compute the minimal
rebinding effect.

According to the different cases of non-reversible systems presented in section 2.4, we test
the solution of this optimization problem for several parameters.

P is reversible

P is reversible if we set ε = γ = δ = 0 in the Schur decomposition (4.2). In that case, the
Schur vectors are also eigenvectors of P and the system is equal to the one from the previous
section. Consequently, solving the optimization problem should yield the same results when
based on Schur vectors instead of eigenvectors. In order to verify that, we compute it as well
for 200 clusterings with random feasible transformation matrices. The result, depicted in
figure 4.2 coincides with the result from section 4.1; with an increase of non-reversibility, the
minimal rebinding effect increases rather evenly, (a). The quality of that estimation can be
good or bad, (c). However, the poor results are heaped around the systems Qc which are
almost reversible, (b).
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Thus, if a clustered system Qc strongly deviates from detailed balance, we can assume to
obtain a rather good estimation for the rebinding effect. However, this is not at all surprising:
as a lower bound, a high minimal rebinding effect det(Sopt) ≈ 0 implies a high real rebinding
effect det(Sreal).
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cluded in Qc.

Figure 4.2: The system described by the transition matrix P is clustered with 200 randomly
generated feasible transformation matrices A for the values ε = 0, δ = 0.

P is nonreversible with real eigenvalues

If we set ε = 0.004, then Λs is non-symmetric, leading to a non-reversible matrix P . In this
case, P has still real eigenvalues, since ε is on the upper triangle of Λs.
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The outcome for this system is displayed in figure 4.3. We only introduced a very small
perturbation to the spectral decomposition, yet some changes in the minimal rebinding effect
are clearly visible. Even though the general tendency of this estimation to change according
to the degree of non-reversibility is preserved, the plot seems a bit more “fluffy”. However, the
general distribution of det(Sopt) in (c) shows that again, there are good and bad estimations
possible.
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Figure 4.3: The system described by the transition matrix P is clustered with 200 randomly
generated feasible transformation matrices A for the values ε = 0.004, δ = 0.

P is non-diagonalizable

If we choose ε = 0.004 and δ = 0.01, then the Schur decomposition has an upper diagonal
element, while the eigenvalue 0.99 occurs algebraically twice. As explained in section 2.4, this
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system doesn’t have an eigenvalue decomposition and is not diagonalizable. Employing Schur
vectors yield the result presented in figure 4.4.
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Figure 4.4: The system described by the transition matrix P is clustered with 200 randomly
generated feasible transformation matrices A for the values ε = 0.004, δ = 0.01.

Even though the minimal rebinding effect is distributed more unevenly in (a) and (b),
the estimation is not necessarily worse than before. In fact, there are some rather good
estimations, visible in (c). However, the correlation between the minimal rebinding effect and
the degree of nonreversibility is not as distinct as in the previous cases: while there are some
good estimations for almost reversible systems, there are as well some bad estimations for
rather non-reversible systems.
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P is non-reversible with complex eigenvalues

Complex eigenvalues always occur in pairs and are indicated by a complete 2× 2-block in
the Schur decomposition. For ε = 0.004, δ = 0.01 and γ = 10−15, we obtain a pair of two
complex eigenvalues 0.99 + 2.3 · 10−9i and 0.99− 2.3 · 10−9i. The result, depicted in figure 4.5
shows the most “fluffy” behaviour of all examined systems. While in this case as well, the
estimation can be good or bad, the correlation of the minimal rebinding effect to the degree
of nonreversibility is rather weak in comparison to the preceding examples.
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Figure 4.5: The system described by the transition matrix P is clustered with 200 randomly
generated feasible transformation matrices A for the values ε = 0.004, δ = 0.01
and γ = 10−15.
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Conclusion

The general tendency of the results is similar for all tested parameters: while the quality of
the estimation can be either good or bad, there is a clearly visible correlation between the
minimal rebinding effect and the non-reversibility of Qc. However, this correlation seems
to diminish the more we “perturb” the original process from reversibility. This weakened
correlation implies that for originally non-reversible systems, the quality of the estimation is
less predictable.

4.3 Electron Densities

The occurrence of some kind of rebinding effect can be observed in all different types of
processes when projecting them. The actual meaning of this effect has to be interpreted for
each system individually. We present a process describing the change of electron densities
during a pericyclic chemical reaction, examined by Weber et al[57].

Formic Acid Dimer

Formic acid is a molecule consisting of one carbon atom C, two oxygen atoms O and two
hydrogen atoms H. In such a system, reactions between the individual molecules take place,
building hydrogen-bonded dimers, as depicted in figure 4.6. An H-atom which is attached
to an O-atom moves to the O-atom of another molecule and vice versa. These reactions are
caused by double proton tunneling, see Schild[37, chapter 4]. During that process, the electron
density changes accordingly. This process can be represented by a reversible transition matrix

Figure 4.6: Chemical reaction in formic acid dimer. Picture taken from Weber et al[57].

P consisting of the time-dependent electron densities π(t), as described by Weber et al[57].
Clustering it into four metastable sets using PCCA+ and transforming it into a transition
rate matrix yields

Qc =


−2.0040 1.6859 0.1490 0.1690
1.6192 −2.0010 0.1724 0.2095
0.1451 0.1747 −1.9548 1.6350
0.1632 0.2106 1.6217 −1.9955

 .
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The membership functions of this clustering are represented depending on the angle θ in figure
4.7. We notice that the four metastable conformations correspond to the angular regions
of the O-atoms. That means that high electron densities are detected around the O-atoms,
which is plausible since the H-atoms tend to be attached to an O-atom.
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Figure 4.7: Membership functions obtained by PCCA+.

Rebinding Effect

Even though clustered with PCCA+, having the objective of maximizing the crispness, we
identify rather strongly overlapping membership functions in figure 4.7 and expect a high
rebinding effect. However, solving optimization problem (3.17) for Qc yields a lower bound

det(Sopt) = 1,

providing us with no information, which can be explained by the reversibility of the clustered
system, ‖DQc −QTc D‖1 = 0, and theorem 3.2. Knowing the membership functions χ and the
stationary distribution π of the original process, we can compute the real rebinding effect as

det(Sreal) = D−1〈χ, χ〉π = 0.2925,

corresponding to a strong overlap of the membership functions.
Rebinding in this context can be interpreted similar to the rebinding in receptor-ligand-

systems: Shortly after a H-atom unbinds from an O-atom moving forward to the O-atom of a
different molecule, it is still spatially close and attracted to its previous O-atom and therefore
can rebind to it. That is one factor contributing to the stability of the four conformations.
The quantitative influence of the rebinding effect on the stability of the clustered system
is visualized in figure 4.8 and 4.9 for two different lag-times τ1 = 0.2 and τ2 = 0.001. The
metastability of the coupling matrix T is enhanced by the significant overlap of the membership
functions, yielding a strongly metastable transition matrix Pc = S−1T . This confirms the
result from section 3.1: the rebinding effect stabilizes a system by “compensating” a rather
weak metastability of the conformations.
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(b) Strongly metastable matrix Pc = S−1T .

Figure 4.8: Coupling matrix and projected transition matrix for a lag-time τ1 = 0.2.
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(b) Strongly metastable matrix Pc = S−1T .

Figure 4.9: Coupling matrix and projected transition matrix for a small lag-time τ2 = 10−3.

Metastable subset 1 2 3 4

Statistical weight 0.2406 0.2556 0.2520 0.2518

Metastability T (τ1) 0.5811 0.5827 0.5884 0.5815

Metastability Pc(τ1) 0.7077 0.7084 0.7135 0.7082

Metastability T (τ2) 0.7571 0.7577 0.7622 0.7577

Metastability Pc(τ2) 0.9980 0.9980 0.9980 0.9980

Table 4.1: Influence of rebinding to the stability of Pc for different lag-times τ1, τ2.
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4.4 Bivalent Binding Process

Finally, we continue to examine a ligand binding process, being the original motivation
for the investigations of the rebinding effect. In the introductional example in section 3.1, we
explained the rebinding effect as a memory effect included in a system of receptors and ligands,
without any structural connection of the ligands. However, the rebinding effect is conjectured
to play a essential role in the context of clustered receptors and clustered ligands[9, 50].

Multivalent System

One can distinguish between monovalent and multivalent binding processes. Whenever the
receptor molecules are spatially preorganized, the corresponding binding process is denoted
as multivalent. A detailed summary about the key principles of multivalency can be found in
Fasting et al[18].

Especially the bivalent or polyvalent case is often observed in nature. These systems are of
significant interest for pharmaceutical and technical applications. If the ligands are presented
multivalently as well, i.e. they are linked to each other in an appropriate way to match the
preorganized receptor molecules, then often extremely high binding affinities are observed in
comparison to the constituent monovalent ligands[9]. The rebinding effect is discussed to be
one contributing factor for that. This is clarified in figure 4.10, representing a trivalent system.

Figure 4.10: Trivalent System. From Weber and Fackeldey[56].

Imagine that the trivalent ligand is designed such that it perfectly “matches” the trivalent
receptor. Shortly after one of the ligands dissociates from its receptor, it is assumed to still
be spatially close to it. This effect is intensified by multivalency, since the connected ligands
“keep the ligand at its place” leading to a high probability of rebinding. The rebinding effect,
as explained in section 3.1 for monovalent systems, seems to be intensified by a favorable
spatial preorganisation of the ligands.

The spacer connecting the ligands can be flexible or rather rigid. A rigid spacer leads to
a loss of entropy of the system. The influence of multivalency to the rebinding effect was
examined by Weber et al[55]. They show that using a spacer is advantageous compared to
the monovalent case, though this effect is powerful especially for low affinity ligands. In that
case, the rebinding effect is clearly visible, while its influence on high affinity ligands is rather
limited. This result conforms with the presentation of section 3.1, establishing the impact
of the rebinding effect to the stability of a system: while the rebinding effect can stabilize
systems that are rather unstable, it barely contributes to stable systems.
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Model of a Bivalent System

The mathematical modelling of a monovalent system is well understood, see[27, chapter 2].
Furthermore, if defined on the two macro states “unbound” and “bound”, the computation of
the minimal rebinding effect in such a system yields only the trivial solution, by theorem 3.2.
As the the easiest multivalent case, we consider a bivalent process. Such a system can be
described by three macro states: “unbound” (U), “singly bound” (S) and “doubly bound”
(D), depicted in figure 4.11.

Figure 4.11: Possible macro states of a bivalent system.

This model can be represented by the reversible reactions

LL + RR 
 L(LR)R,

L(LR)R 
 (LRLR),

LL + RR 
 (LRLR),

(4.3)

with the binding rate constants k01 (U → S), k12 (S → D), k02 (U → D) and unbinding
constants k10 (S → U), k21 (D → S), k20 (D → U), resulting in a transition rate matrix

Qc =

−(k01 + k02)[RR] k01[RR] k02[RR]
k10 −(k10 + k12) k12

k20 k21 −(k20 + k21)

 ,

depending on the concentrations of the bivalent receptor molecules [RR]. This matrix is
constructed in the same fashion as explained in section 3.1 for the monovalent case and
likewise describes changes of concentrations by the ordinary differential equation

ẋT = xTQc.

The vector xT = ([LL], [L(LR)R], [(LRLR)]) consists of the initial concentrations of unbound
ligands [LL], singly bound ligands [L(LR)R] and doubly bound ligands [(LRLR)]. For realistic
applications, we assume to start with a system where only unbound ligands are inserted and
the changes of concentrations are observed.

ConsideringQc, we are in the situation that we are given a process which can be interpreted
as a projection, while we do not know the original process and therefore cannot compute the
actual rebinding effect. However, we presume that by the unknown projection, there is some
rebinding effect included in Qc. Assuming a clustering in terms of overlapping membership
functions χ = XA, we again solve optimization problem (3.17) to obtain the minimal rebinding
effect as an estimation.
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Artificial Bivalent Binding Process

Model (4.3) is tested with different binding and unbinding constants shown in table 4.2. They
represent systems with rather strong association and low dissociation behaviour. For all three
systems, we employ the same binding constants and only slightly modify the dissociation
constants. In figure 4.12, we can see that all three systems show a rather similar behaviour;
the minimal rebinding effect decreases with increased receptor concentrations. However, even
though the differences between the systems are not large, det(Sopt) differs quite strongly.
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Figure 4.12: The minimal rebinding effect of different systems Qc depending on the concen-
tration [RR] of receptor molecules.

Binding constant k01 k10 k12 k21 k02 k20

Qc1 0.08 0.006 0.09 0.011 0.01 0.001

Qc2 0.08 0.005 0.09 0.010 0.01 0.001

Qc3 0.08 0.004 0.09 0.009 0.01 0.001

Table 4.2: Different binding constants between the three macro states “unbound”, “singly
bound” and “doubly bound”.

With an increasing concentration of receptor molecules, the minimal rebinding effect
decreases. That seems plausible: in a system with a large concentration of receptors, a ligand
dissociating from a receptor is more likely to be immediately close to a different receptor
and bind to it instead of rebind. Even though this result sounds persuasive, it does not take
into account the nature of model (4.3). From a mathematical point of view, binding events
between different receptors are indistinguishable under this model. In simple terms, this
model “does not know” if a binding is a rebinding or a binding to a different receptor. Instead,
according to Weber and Fackeldey[56], the decreasing rebinding effect presented in figure 4.12
can be explained by a decrease in the transition regions between the binding events caused by
the increased receptor concentration.
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For low receptor concentrations the result is reasonable though: in that case, bindings
shortly after a dissociation are likely to be a rebinding, since there are no other receptors
nearby. However, that is a rather theoretical consideration, since in realistic models we expect
a higher concentration of receptors.

Real Bivalent Binding Process

One example representing a bivalent-receptor bivalent-ligand system is shown in figure 4.4.
This presentation also demonstrates the flexibility of the spacer. For more informations about
the benefits of using of a spacer, see Weber et al[55] or Bujotzek[8]. In order to examine the

Figure 4.13: Estrogen receptor in complex with a bivalent raloxifene ligand. The spacer
is represented by the configuration density cloud (orange: rigid parts, purple:
flexible parts). The picture is taken from Weber et al[55].

rebinding effect included in this receptor-ligand system, we need to obtain the binding and
unbinding constants for model (4.3). This can be achieved by simulations or experiments.
For the resulting transition rate matrix Qc, the minimal rebinding effect can be computed.
However, we have to face the following problems: from the previous sections, we know that
the minimal rebinding effect det(Sopt) can be a good or a bad estimation and hence, we
cannot rely on it. Furthermore, the computed rebinding effect does not provide the desired
informations for large receptor concentrations. Consequently, instead of continuing to use
this model, we should aim to create a new model including the relevant spatial informations.

Interpretation

The kind of rebinding effect that we are interested in includes spatial informations. A rebinding
in that sense means that a ligand is still spatially close to the receptor from which it unbound.
In contrast to that, the presented model (4.3) for a bivalent binding process includes no
spatial informations; consequently, the kind of rebinding effect included in that system is
different from the one we introduced in section 3.1. It is like an additional memory between
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the observables “unbound” and “bound”, without being able to distinguish between bindings
to different receptors.

Accordingly, we have to differentiate between different kinds of rebinding: The rebinding
effect, as introduced in section 3.1 can be interpreted as a “spatial memory” and this is the
kind of rebinding we are interested in. In the general case though, the interpretation of the
rebinding effect for a system depends on the choice of the macro states: it can be interpreted
as a “memory between the macro states”. For this reason, we have to carefully choose the
macro states on which we are creating a model. If we want to include the rebinding effect as
a spatial memory, the macro states should represent spatial informations as well.

For instance, in the previous example describing a chemical reaction, we observed four
conformations corresponding to the four spatially arranged O-atoms. Rebinding in this
model means that electrons unbinding from an O-atom return to it with a certain probability
instead of binding to the next one. Therefore, the rebinding effect in this context corresponds
to the characterization from section 3.1.

There are different approaches which could be followed in order to correctly describe the
rebinding effect in a receptor-ligand system. The construction of a more extensive model
on macro states including spatial informations could be a reasonable solution, though it is
not straight-forward to create such a model. Another option would be to switch from the
molecular kinetics to the molecular dynamics approach in order to obtain more informations
about the rebinding effect by simulations.
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Conclusion

In this thesis, two recent research topics were combined by extending the computation of a
lower bound for the rebinding effect onto non-reversible processes. The procedure of projecting
a process onto its metastable sets in terms of membership functions has been elaborately
described. In doing so, the generalized fuzzy clustering algorithm GenPCCA has been
employed, yielding the optimal membership functions as a linear combination of the dominant
Schur vectors and including non-reversible processes. The overlap of the membership functions
is crucial for a correct mapping, though influences the observed stability of the system. The
more overlap, the more stable the macro states appear to be.

This phenomenon is denoted as rebinding effect because of its occurrence in receptor-
ligand-systems, where this “spatial memory” leads to an increased probability for a fast
rebinding after the dissociation of a receptor-ligand-complex. Under the assumption of a
fuzzy clustering χ = XA, the minimal rebinding effect included in a given kinetics has
been computed as the solution of an optimization problem, considering reversible as well
as non-reversible processes by using Schur vectors X. This optimization problem has been
implemented and tested for some illustrative examples, demonstrating the prospects and
indicating the limitations of this method.

Knowing the rebinding effect of a system can be of particular relevance for applications like
computational drug design, where it is important to correctly predict binding affinities in order
to evaluate the expected efficiency of a newly designed drug. Since many real-world processes
are non-reversible, it was important to add this case to the already existing optimization
problem for reversible processes. This extension yields an estimation for the rebinding effect of
a clustered system, without the necessity to know if the original process was actually reversible
or non-reversible.

With the existing molecular kinetics models for receptor-ligand-systems, it is not readily
possible to determine the rebinding effect in the desired way. Even though the rebinding
effect is mathematically well understood, it is still difficult to include it adequately into real
binding processes, which is due to the modelling problems. When creating such a model,
the macro states should contain spatial informations. Additionally to the issue of finding
a suitable model, we still have to face the problem that the minimal rebinding effect is not
always a good estimation for the real rebinding effect.

While the focus of this thesis lies on the molecular kinetics point of view, it seems promising
to combine it with the molecular dynamics approach in order to further advance the study of
the rebinding effect. Especially for rather complex multivalent systems, being of high interest
for drug design, a simulation-based method could be useful.
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[9] B. R. Caré and H. A. Soula, Impact of receptor clustering on ligand binding, BMC
Systems Biology, 5 (2011), p. 48.
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