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Abstract. We prove combinatorial formulas for the homotopy type of the union 
of the subspaces in an (affine, compactified affine, spherical or projective) subspace 
arrangement. From these formulas we derive results of Goresky & MacPherson on the 
homology of the arrangement and the cohomology of its complement. 
The union of an arrangement can be interpreted as the direct limit of a diagram 
of spaces over the intersection poset. A closely related space is obtained by taking 
the homotopy direct limit of this diagram. Our method consists in constructing a 
combinatorial model diagram over the same poset, whose homotopy limit can be 
compared to the original one by usual homotopy comparison results for diagrams of 
spaces. 

0. Introduction. 

In this paper we describe a general method to construct the homotopy type of an arrange
ment in terms of its combinatorial data. We demonstrate its use in the cases of linear, 
affine, spherical and projective subspace arrangements. 

The key lemmas for our approach are standard tools in algebraic topology, used for 
example to define localizations of spaces in the setting of semisimplicial theory [BK]. It 
seems, however, that they have not previously been applied in a combinatorial setting. 
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To make them more easily accessible for other possible applications (e.g., arrangements of 
quadrics in projective spaces, of trains in Grassmannians, etc.), we give a summary of the 
set-up in Section 1. Simple proofs are given in the appendix to this paper. The following 
is an outline of our approach. 

0. Arrangement 
An arrangement is a finite set of subspaces A = { A i , . . . , Am} in a topological ambient 
apace U. We assume that the arrangement is closed under intersection. By the union of 
the arrangement we mean the space D := \JA = ( J i l l ^«> ky the complement we mean 
M := U\D. 

1. Combinatorial data 
The intersection poset P is a partially ordered set that is isomorphic to the set of all 
subspaces in A, ordered by reversed inclusion. Thus for every element p € P there is 
a corresponding subspace Ap € A, and q < p means Aq 2 Ap. The combinatorial data 
specify for every p E P the homotopy type of Ap, and for every q < p the homotopy class 
of the inclusion map Ap <—> Aq. 

2. Diagram of spaces 
A diagram of spaces V = V(A) is a functor V : P —• CW-Top, which associates a 
topological space Ap to every p € P and the inclusion map Ap «—• Aq to every order relation 
q < p in P. The union of an arrangement is the (direct) limit of its diagram of spaces. 
Assuming that the inclusion maps are cofibrations, this limit is homotopy equivalent to 
the homotopy (direct) limit \\V\\ [Projection Lemma 1.6]. 

3. Normalization 
From the combinatorial data, one can construct a diagram V of spaces over the same 
poset P. The homotopy limit of this model diagram serves as a combinatorial model 
for the union D(A). If there is a homomorphism of diagrams V —• V which induces 
a homotopy equivalence D,- — • D't for all i, then the homotopy limits are homotopy 
equivalent [Homotopy Lemma 1.7], which yields a combinatorial formula D(A) a \\V\\ ~ 
||2?'|| for the homotopy type of the union. 

4. Simplification 
Often the homotopy type of the model diagram can be further simplified. For example, if 
all the maps are homotopically trivial, the homotopy limit has a wedge decomposition over 
the poset P [Wedge Lemma 1.8]. If the homotopy types of the spaces and the embedding 
maps are (up to homotopy) determined by dimensions, then one can sometimes get a wedge 
decomposition over the rank levels of the poset P. 

5. Duality 
If the arrangement determines a relative (homology) manifold (f7, D), then Lefschetz du
ality yields information about the compactified complement. If the ambient space is a 
(homology) sphere, then Alexander duality can be used to deduce the cohomology of the 
complement. 

Let us give one example for the formulas derived by this approach. 
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For this, denote by A — {A\,..., Am) a set of affine subspaces (not necessarily con
taining the origin) in U = H n . Assume (without affecting the topology) that the arrange
ment A is closed under intersection, let P be an abstract poset that is isomorphic to the 
set of all non-empty intersections of subspaces in A, ordered by reversed inclusion, and let 
d : P —• INo be the dimension function. Then D := [JA is homotopy equivalent to the 
order complex A(P) - this follows from the nerve theorem. 

Theorem (2.2). The one-point compactification D = D Ö {00} is homotopy equivalent 
to 

D ~ V &(P<p)*SdW, 
P€P 

From this, it is easy to see that 

H^iZZ) a ©Ht_1_d(p)(A(P<p);ZZ) 
p€P 

and thus by Alexander duality in B/* = Sn one gets Corollary 2.3 [GM, III.1.5 "Theo
rem A"]: 

iT(lR"VD;ZZ) & ®Hn_2_ l_, ( | ) )(A(P<1));ZZ) 
p€P 

for all i € 7L. 

This result is best possible in several respects. First, neither the homeomorphism type 
of the union nor the homotopy type of the complement are determined by the combinatorial 
data. In fact, the algebra structure of the cohomology of the complement is not determined 
by the combinatorial data. These observations even apply in the special case where A is 
an "even" arrangement (as considered by Goresky & McPherson [GM, p. 257]), that is, if 
the subspaces in A have codimension 2 and all intersections have even codimensions, see 
[Zl]. 

Our approach does not utilize any differentiable structure. Thus it carries over verba
tim to arrangements of flats in an oriented matroid [BLSWZ] and their affine and projective 
versions. 

1. Diagrams of Spaces. 

A functor V : S —* A from a small category S to an arbitrary category A will be called 
an S-diagram of objects in A. All 5-diagrams of objects in A form a category, where 
morphisms are natural transformations of functors. 

A finite partially ordered set (P, <) is here seen as a small category with arrows 
pointing downwards, i.e., p —* q is equivalent to p > q. We will be solely interested in 
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(P, <)-diagrams of topological spaces, usually spheres and projective spaces and almost 
always CW-complexes, so for us a P-diagram of spaces is a functor 

V: (P ,< ) —• CW-Top 

to the category of spaces having the homotopy type of a finite CW-complex. If V is a 
P-diagram of spaces then the space associated with the element p 6 P is denoted by Dp, 
and the morphism corresponding to p > q is denoted by dpq :—• V(p —• q). 

Example 1.1. Let A be a finite collection of subspaces of a topological space M. Then 
P := (.4, D) is a finite partially ordered set and the identity map X : P —> A defines a 
P-diagram of spaces with inclusion maps as morphisms. Diagrams of this type are very 
frequent and will be referred to as subset diagrams. 

Definition 1.2. An arrangement is a finite collection A = {Ai,... ,Am} of closed 
subspaces of a topological space U such that 

(i) A is closed under intersection, that is, A, B € A implies AC\B 6 A, and 

(ii) for A, B € A and AC B the inclusion map A <—• B is a cofibration. 

The union of the arrangement A in U is D := (J A, the complement is M := U\D. 

Thus every arrangement gives rise to an associated P-diagram V = V(A), where P is 
the intersection poset of A: a finite join semi-lattice whose maximal element 1 corresponds 
to Aj = f] A, which may be empty. 

The key to our treatment of arrangements is the replacement of the limit of its subset 
diagram, which is \JA, by the homotopy direct limit [a. k. a. "the classifying space of 
the corresponding small category of spaces"], which we will now define. This construction 
belongs to the general class of "geometric realization of semisimplicial sets" constructions, 
essentially started by Milnor [Mi] and widely used in topology, see for example [Se], [BK], 
[GZ], [Vo] etc. 

The primitives for the construction are the order complex A(P) , i.e., the geometric 
realization of the simplicial complex of chains in P , and the mapping cylinder Z(f) of a 
map / : A — • B, obtained from Ax[0,1] U B by identification of (a, 1) with f(a) for all 
a £ A. The subspace Ax{0} of Z(f) is referred to as the top of the cylinder, the image of 
B as its base. 

Definition 1.3. Let V be a diagram over the finite poset P . The homotopy direct limit 

\\V\\ := hol imP is obtained from the disjoint union X := U P eP ^(-^<J>) X ^P ^ V " m a k m 6 

the obvious identifications", as follows. 

Let Y be defined by Y := U»>g A(P<9) x Dp. There exist two obvious maps a,ß : 
Y —¥ X, where a consists of the maps A(P<9) x Dp — • A(P<P) x Dp, induced by 
inclusions A(P<9) —• A(P<p) for p > q, and ß consists of the maps A(P<g) x Dp —• 
A(P<g) x Dq, induced by the maps dpq : Dp —• Dq. Now ||X>|| is the difference cokernel 
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of these two maps, i.e., ||Z>|| is the space obtained from X by identifying (x,u) and (x',u') 
whenever a(x, u) = ß(x',«'). 

A less formal and more geometric description of this construction is the following. 
One starts with the disjoint union of all spaces Dp, p 6 P . Then one attaches to this, for 
every map dpq : Dp ——> Dq, a copy of the mapping cylinder Z(dpq) by identifying the top 
with Dp and the base with Dq. The process is continued by attaching, for every p > q > r, 
a copy of Xp x A({p,q,r}), where A({p,q,r}) is a two dimensional simplex spanned by 
{p,q,r}, for example the order complex of the poset p > q > r. This space is attached 
along the sides of the triangle A({p,q, r}) to the mapping cylinders of maps dpq,dqr and 
dpr. This construction is continued inductively for the chains in P of all lengths. 

Let a : T> —• € be a morphism of P-diagrams, i.e., a collection a = (ap)p^p of contin
uous maps ap : Dp —• Ep that satisfy the usual commutation relations epqoap = aqodpq. 
Then a uniquely determines a continuous map ä : \\T>\\ —> ||£|| of the corresponding 
homotopy limits. 

There are other approaches to the definition of | |P | | , and some of them, including 
the two mentioned above, can be found in [BK, Sect. XII.2]. There exists an even more 
general approach which deals with the case of diagrams of spaces which commute only up 
to coherent homotopies, see [Vo]. 

Examples 1.4. 

(a) A map / : A —> B can be seen as a diagram V over a poset of two elements {p > q}. 
In this case \\V\\ is the mapping cylinder of / . 

(b) The mapping cone of / : A —• B is obtained as ||2?|| for the diagram over the poset 
q < p > r where Dp = A, Dq = B, Dr is a one point space, and dpq = f. 

(c) The poset P can be seen as a diagram V over itself having a one point space {p} 

associated to each p € P. In this case ||"P|| is the order complex A(P) . 

(d) In case of the diagram J : P —> A of subspaces of a given space M, see Example 1.1, 
there exists a natural "collapsing" map £ : | |J | | — • M. If A is a covering of M that 
is closed under intersections, then £ is a continuous map with contractible fibers, so 
it is "usually" a homotopy equivalence (see Projection Lemma 1.6 and Example 4.3). 

The map £ defined in Example 1.4(d) can be used for comparison of the homotopy 
limit of a subspace diagram with the underlying space. It can be seen as a special instance 
of the map arising in the following construction. 

There is one more category naturally associated with diagrams, the category of all 
diagrams over all finite posets. A morphism a : V — • E between a P-diagram V and a 
Q-diagram 6 is a pair (v, ( a p ) p € p) , where v : P — • Q is an order preserving map and 
ctp : Dp —* Ev(p), p € P , is a family of continuous maps satisfying the usual commutativity 
relations. A map 07: | |P | | — • ||£|| arises naturally and the map £ from Example 1.4(d) is 
seen as a special case of ÖT. 
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Examples 1.5. 

(a) If V is a P-diagram and P' C P is a subposet, then there is a natural restriction 
of V to a P'-diagram V = V\P', the inclusion map P ' C P induces a morphism of 
diagrams V —• T>. The corresponding map of homotopy limits embeds ||X>'|| as a 
subspace of \\T>\\. 

(b) Assume that P contains a maximal element 1 and that V is a P-diagram for which 
Di = 0. Then for P ' := P \ i and V := V\P' we get that the map | |P ' | | «-» \\V'\\ is a 
homeomorphism. 

(c) Let I> be a P-diagram, and let po be a minimal element of P . Then each of the posets 
P 1 := P \ p 0 , P 2 := P>po and P 1 2 := P>po = P 1 D P 2 inherits a diagram structure 
from D, where we write V1 = V\Pl, D 2 = D |P 2 and V12 = 2>|P12. In this situation 
we have 

UP1!! n | |D2 | | = ||T>12|| and HP11| U | |D2 | | = \\V\\. 

This leads to the "deletion and contraction" approach to the construction of V. For 
example, a Mayer-Vietoris sequence can be applied to compute the homology of V by 
induction on the size of P . 

(d) Let Q = {0} be a one element poset, so Q-diagrams can be identified with spaces. 
Then a morphism from a P-diagram D t o a space E, seen as a Q-diagram £, is just a 
collection a of maps ap : Dp —• E satisfying the condition aq o dpq = ap for all p > q. 
In this case ||£|| = E and ZF will be as in Example 1.4(d) denoted by £. Note that 
a collection a = (ap)P£p of maps which define a morphism from T> to 6, naturally 
define a diagram V over P = {0} U P where 0 < p for all p € P . For this extended 
diagram we get ||2?|| = Z^, where Z$ is the mapping cylinder of £. 
Conversely, whenever V is a diagram over a poset P with a unique element 0, then 
| |P| | is the mapping cylinder of the map | |P | | —• D5, where V is the restriction of V 
to P := P \ 0 . 

The following two propositions will serve as our primary tools for finding homotopy 
models of arrangements. The first of them, referred to as the Projection Lemma, was 
proved in [Se]. The second, called the Homotopy Lemma, is essentially proved in [tD]. 
Special cases of this result were of course known before; for this see the references of [tD]. 
A very general treatment, where it is shown that these lemmas hold under mild restrictions 
for diagrams over arbitrary small categories, can be found in [BK] and [Vo]. In this paper 
we are interested in the special case of diagrams over finite posets. So, we refer the reader 
to the appendix, where direct and elementary proofs of these statements are outlined. 

Projection Lemma 1.6. [Se] [BK, XII.3.1(iv)] 
Let A be an arrangement (Definition 1.2) in U with intersection poset P, let V be the 
corresponding P-diagrain of spaces, and \\V\\ its homotopy limit. 

Then the natural collapsing map ( : \\V\\ —• D (see Example 1.4(d)) is a homotopy 
equivalence. 
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Homotopy Lemma 1.7. [tD] [BK, XII.4.2] [Vo] 
Let a — (ap)p£P be a morphism of two P-diagrams V and £. 

If ccp : Dp —• Ep is a homotopy equivalence for all p € P, then the associated map 
ct : \\T>\\ — • \\E\\ is also a homotopy equivalence. 

We note that this homotopy lemma becomes trivial if we assume the existence of a 
homotopy equivalence between the diagrams V and £, that is, if we assume that the ho
motopy equivalences between the "stalks" Dp and Ep can be chosen compatibly. However, 
there is no compatibility assumption in Lemma 1.7, which makes it quite powerful. 

In the following we analyze the situation when V : P —• CW-Top is a diagram 
with trivial maps. It turns out that in this case the homotopy type of \\V\\ has a simple 
description in terms of the subcomplexes A(P<P) of the order complex A(P) , and the 
spaces Dp. As a consequence one obtains a direct sum decomposition of the homology 
H*(||2?||; 2Z). We refer to the Appendix (Section 4) for a list of basic constructions and for 
proofs. 

Wedge Lemma 1.8. Let P be a poset with a unique maximal element 1, and let V be 
a P-diagram so that there exist points cp € Dp for all p < 1 such that dpq is the constant 
map dpq : x i-> cq € Dq for all p > q. Then 

\\V\\ = \J (A(P<p)*Dp), 
P€P 

where the wedge is formed by identifying cp € A(P<p) * Dp with p € A(P < j ) * JDj for every 
p<l. 

Corollary 1.9. In the situation of the Wedge Lemma 1.8, 

H„(||P||;ZZ) a 0 H. (A(P < P ) * Dp). 
p€P 

2. Homotopy Types of Arrangements . 

We will now demonstrate the power of the diagram technique by computing combinatorial 
formulas for the homotopy types of four types of subspace arrangements: 

(a) affine arrangements, 

(b) compactified affine arrangements, 

(c) spherical arrangements (links of central arrangements), 

(d) projective arrangements. 

The computation of the cohomology of a complement of a hyperplane arrangement 
(subspaces of codimension 1) is a classical problem [OS] [Or] [BZ]. The cohomology of 
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the complement M of an arbitrary subspace arrangement was first computed by Goresky 
& MacPherson [GM, Part III], who used this example to demonstrate the power of their 
newly developed "Stratified Morse Theory". They show that the cohomology groups can 
be constructed from the data given by the intersection poset of the arrangement, together 
with its dimension function. (An alternative approach is due independently to Jewell, 
Orlik & Shapiro [JOS] and to Vassiliev [Va, 4.2.A], see also Section 3(e).) 

We obtain the cohomology of the complement by Alexander duality from case (c) for 
central arrangements and from case (b) for affine subspace arrangements. The computation 
in the projective case needs extra arguments, see Theorem 2.8. 

2(a) Affine Arrangements. 

Our first application of the diagram technique will be a description of the homotopy type 
of an affine real subspace arrangement. 

For this, let A = { A i , . . . , A m } be a finite set of affine subspaces in K n , closed under 
intersection. Let P be the intersection poset of .4, where p € P corresponds to Ap € A. 
We order by reversed inclusion: p > q means Ap C Aq. The poset P includes a maximal 
element 1, corresponding to Aj = f]A, which is either empty or contractible. Since all 
spaces Ap for p < 1 are contractible there is a unique homotopy class of maps Ap —• Aq, 
and a complete set of combinatorial invariants (in the sense of the introduction) is given 
by the poset P together with the information whether Aj is empty. 

Theorem 2.1. Let Abe an affine arrangement with intersection poset P. Then 

\\A ~ MCtf). ^i=0> 
^ \ {1}, otherwise. 

Proof. The P-diagram V of A is a subspace diagram that satisfies the conditions of the 
Projection Lemma 1.6, so we conclude that £ : \\V\\ — • (J A is a homotopy equivalence. 

Now let V be the trivial P-diagram, with D', = 0 if A§ = 0, and Ap = {cp} otherwise. 
Then there is an obvious map of diagrams V —• V, to which the Homotopy Lemma 1.7 
applies. Finally ||X>|| = A(P\1) if Ai is empty, and ||X>|| = A(P) ~ 1 otherwise. D 

This theorem is also proved in [GM, Chapt. III.2]. It can alternatively be derived by 
two applications of the nerve theorem [Bj], as in [BLY, Prop. 4.1]. 

2(b) Compactifled Affine Arrangements. 

If A is an arrangement of affine subspaces of R n , then another natural invariant is D = 
\JA = U-^1-1 {°°} C B,n U {oo}, the one-point compactification of D = \JA seen as a 
subspace of the one-point compactification R.n = H n U {oo} = Sn of the ambient space. 

y \ x v «*t 

We interpret D as the union of an arrangement A of compactified affine subspaces Ap 

with intersection poset P . We assume that the arrangement includes Aj = {oo} as the 
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compactification of the empty subspace. Define a dimension function d : P < j — • INo 
by d(p) := dimia-Ap. Then we get that the pair (P,d) determines the homotopy type of 
Ap 2 Sd^\ while the maps Sp — • Sq for p > q are all pointed embedding maps of a 
sphere (or a point) into a higher-dimensional sphere and thus null-homotopic. Hence we 
consider (P, d) as a complete set of combinatorial data. 

Theorem 2.2. T ie one-point compactification D of the union of all flats in an affine 
arrangement A has the homotopy type of the wedge 

D ~ {00} v y (&(p<p)*sdM). 

p<i 

Proof. For simplicity, let A also denote the P-diagram of the arrangement A. From 
the Projection Lemma we know D ~ ||,4||. Let us show now that A can be replaced 
by a P-diagram A1, defined by A^ = {00}, A'p := Sd^ for p < i , and trivial maps 
s'pq :Ap^e1 e Sd^ = Aq for p > q. 

Indeed, for every p < 1 choose cp € AP\[J > Aq. Then choose homotopy equi

valences ap : Ap —• SdW for all p < i , in such a way that the map ap contracts the 

complement of a small, open disc around cp € Sp to a point and maps it to ei € S^U')-1. 

From this construction we get that the following diagram is commutative. 

a 
Ap • A' = SdM resp. {00} 

spq spq 

Aq > A' = Sd^ 
aq

 9 

By the Homotopy Lemma ||,4|| and ||.4'|| have the same homotopy type and by the Wedge 
Lemma \\A'\\ has the homotopy type of the wedge of the associated spaces. The space 
A(P<i) * Aj, being contractible, can be omitted, so 

D ~ \\A\\ ~ \\A'\\ a V (A(P) * Sd(p)). U 

p<i 

Corollary 2.3. [GM, III.1.5 "Theorem A"] Let A be an affine subspace arrangement in 
H n with combinatorial data (P,d). Then the homology of the one-point compactification 
D of D = (J A and the cohomology of the complement M := T&n\D are given by 

H,(£;2Z) 2 © H , _ < ( J , M ( A ( / V , ) ; Z ! ) , 

pep 

H'(M;ZZ) & 0 H n _ < _ d ( p ) _ 2 ( A ( P < p ) ; Z Z ) . 
P€P 
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2(c) Spherical Arrangements. 

A subspace arrangement A is central if each of its subspaces contains the origin 0 € K n . 
In this case D = \JA is contractible, but the link L := D f) Sn~\ corresponding to the 
intersection of the arrangement with the unit sphere, is interesting. 

We interpret the situation as an arrangement of subspheres Sp := Ap D Sn~x (with 
the same intersection poset P as A) in the ambient space U = 5 n _ 1 , whose diagram we 
denote by S. Define a dimension function d : P —• INo by d(p) := dim©, Ap. Again the 
pair (P, d) amounts to a complete set of combinatorial data. 

Theorem 2.4. Let A be a, linear subspace arrangement. The homotopy type of its 
link \JA fl S " - 1 is completely determined by the intersection poset P together with the 
dimension function d : P —• INo, p *-* dim(p), as 

pep 

where the wedge is formed by identifying ei € A ( P < p ) * 5 d ( p ) - 1 withp € A ( P < i ) * 5 ( f ( p ) - 1 , 
for every p < 1. 

Note that in the case where the arrangement A is essential, with f]A = Aj = {0}, 
we get d(l) = 0, S ^ ' 1 = S'1 = 0, so that the formula can be rewritten as 

(J A n 5"1-1 ~ A(P\1) V V (A(P<P) * 5d(p)-1). 

Proof. The subspace diagram S satisfies ||«S|| ~ L, by Projection Lemma 1.6. As in the 
proof for Theorem 2.2, S can be replaced by a diagram S', defined by S' := Sd^~x and 
trivial maps s'pq : S ^ ) - 1 y-> d € Sd^~x for p > q. With this, the Homotopy Lemma and 
the Wedge Lemma finish the proof. D 

Corollary 2.5. T ie homology of the link, and the cohomology of the complement, of a 
linear subspace arrangement in ]Rn can be computed from the data (P, d) and n as 

H,(L;ZZ) St 0 H t _ , ( p ) ( A ( P < p ) ; Z Z ) , 
P€P 

S'(M;ZZ) - 0 H n _ i _ , ( p ) _ 2 ( A ( P < p ) ; Z Z ) . 

Note that every linear subspace arrangement is affine, so Corollary 2.5 also follows 
from Corollary 2.3, where. D ^ EL. 
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2(d) Real Projective Arrangements. 

Let A be, as before, a central arrangement in H n with intersection poset P and dimension 
function d : P — • INo, d(j>) := dimiR. Ap. Let VA be the projective arrangement associated 
to A, i.e., VA - {Pvo](Ap) : p € P } , where Proj(V) = {/ C V : dimia/ = 1} denotes the 
projective space associated to V. Let PL := [jVA be the "projective" link of A. Then PL 
is the direct limit of a diagram 11 = 71(A) over P defined by Rp := Proj(Ap). 

The problem of describing the homotopy type of PL seems to be more difficult than 
in previous examples. Nevertheless, the method of simplifying a diagram and relating it 
to a combinatorially defined model diagram still applies. Let us describe a combinatorial 
model diagram suitable for this purpose, which depends only on P and on d : P — • INQ. 

Definition 2.6. Let A be a central arrangement in H n with intersection poset P 
and dimension function d : P —> ]N0- Let V = V(A) = {Ap}p^p be the corre
sponding P-diagram of linear spaces. Similarly, for the projective arrangement VA, let 
K = 71(A) = {Rp}Pep, Rp = Proj(.Ap), be the corresponding P-diagram of projective 
spaces. Choose a flag F = {Fi}JL0, {0} = F0 C Pi C . . . C Fn = lRn. Then the projective 
flag diagram 7Z[F] associated with VA is defined by RP[F] := Proj(P(j(p)), where the mor-
phisms RP[F] —• Rq[F] are the obvious inclusion maps. Every two flag diagrams 7l[F] 
and 7Z[F'] are naturally isomorphic, thus the isomorphism type of 7l[F] depends only on 
P and d. Therefore, the associated projective flag diagram 7l[F] will be simply denoted 
by7l',Rp:=Rp[F},peP. 

For technical reasons, it is convenient to also introduce a linear flag diagram, de
noted by S = €[F], where Ep := Fd(p), p € P , so the diagram 7i[F] can be seen as the 
projectivization of S[F\. 

Remark 2.7. It will be convenient to choose the flag F in sufficiently general position 
with respect to the arrangement A. This means that, given a spanning basis { e i , . . . , e„} 
of the flag F, we assume that all corresponding Plücker coordinates of all flats in A are 
nonzero. 

Unlike in the previous examples, there does not seem to exist an easy way of comparing 
diagrams 71 = 71(A) and TV = 1Z[F], i.e., of constructing a morphism a : 7t —* TV such 
that ap : Rp —* R'p is a homotopy equivalence. One way of getting around this difficulty is 
to apply a stronger version of Homotopy Lemma 1.7, which says that a family a = {ap}P£P 
of homotopy equivalences, ap : Rp —• R'p, in some cases still gives rise to a homotopy 
equivalence between \\7l\\ and \\7V\\, even if the diagrams 

ap 

RP • R'p 

V 
PI 

Rq * Rq 
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are not commutative. Instead, it is assumed that these diagrams are commutative up to 
homotopy and that the homotopies can be chosen in a coherent way. A detailed treatment 
and a very general form of this result can be found in [Vo, Theorem 1.4]. 

Theorem 2.8. Let A = {Ap}p^p be a linear subspa.ce arrangement and VA the associated 
projective arrangement. Then the projective link PL = \J VA has the homotopy type 

PL * \\n% 

where TV is the combinatorially defined projective Hag diagram associated with the intersec
tion poset P and the dimension function d : P — • INo, d(p) = dim(Ap), see Definition 2.6. 

Proof. Let us assume that the flag F is chosen in general position with respect to the 
arrangement A, see Remark 2.7. This assumption permits us to deform our arrangement 
"in the direction" of the flag F. Namely, let Ct : IRn — • R n be the linear map defined by 
C£(ej) = e'e, for e > 0 and i = 1 , . . . ,n , and let A( = {Ap : p € P } , where Ap := Ct(Ap). 
The arrangement A( is linearly isomorphic to A and the corresponding projective links 
PL(A) and PL(A() are homeomorphic. By assumption, all Plücker coordinates fij(Ap), 
are nonzero, where J = {t'i < . . . < » * } , & = dim(Ap). As a consequence, if 7 = { 1 , . . . , k}, 
one has fij(Ap) = en(n-1) /2 . m(Ar) and for J ^ 7, (ij(Ap) = o(en(n~1)/2), so we observe 
that if e is small enough, all fc-dimensional flats Ap in A( will be in a small neighborhood 
ofFk. 

Our goal is to relate the P-diagram V(Ae), associated to A*, to the linear flag diagram 
€ =• €[F], Ep = F^p) for p € P, by linear isomorphisms ccp : Ap —• Ep which commute 
up to "coherently chosen homotopies", see [Vo, Definitions 2.3 and 2.7]. Actually, ctp will 
be defined as a restriction of a linear map ßp : H n —• E.n such that | |1 — ßp\\ < 1. For a 
fixed p € P, let ap,bp 6 Hom(Hn,IR'1) be defined as the orthogonal projection operators 
on Ap and Ep = F^p) respectively. Let ßp := 1 — ap — bp + 2apbp. Then it is easily 
checked that apßp = ßpbp, in particular ßp(A

e
p) C Ep and ap := ßp\Ap is well denned. 

Since | | I - ß p \ \ = \\(ap - bp){l-2bp)\\ < 1 if \\ap -bp\\< 1/3, which is certainly true if e is 
small enough, we observe that ap and ßp are linear isomorphisms. So, a = (ap)p^p defines 
a homotopy homomorphism in the sense of [Vo, Definition 2.7]. Indeed, all maps ßp, p € P, 
are contained in the unit open ball B := {x 6 Hom(lRn, !Rn) : | |1 — x|| < 1}, so the linear 
homotopies between them give rise to the required family of coherently chosen homotopies. 
This construction shows that there exists a homotopy homomorphism 7 = (7P)peP, 7p : 
•Rp(*4e) —*• R'pi between the P-diagram 1Z(Ae) of projective spaces associated to A( and 
the projective flag diagram TV such that 7p is a homotopy equivalence for all p € P . By 
[Vo, Theorem 1.4], ||ft(.4e)|| m \\K'\\, hence PL ~ ||7^'||, which proves the theorem. D 

The problem of finding a purely combinatorial description of the projective link of an 
arrangement is solved in principle by Theorem 2.8. So, the problem of studying projective 
links is reduced to the problem of understanding topological properties of homotopy limits 
of projective flag diagrams TV. As an example of this, we prove a direct sum decomposition 
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for the ZZ/2-homology of the projective link PL which is "dual" to the corresponding 
decomposition of the homology of the complement of PL, proved in [GM, ULI.7 "Theorem 
C"]. The resemblance of formulas indicates that there ought to be a natural "duality" type 
map between the cohomology of the complement and homology of the projective link. 

Proposition 2.9. Let (P,d) be a finite poset with a dimension function d : P — • INo. 
Let 11 = 1Z[F] be the P -diagram of projective spaces associated with the standard ßag F : 
{0} C B 1 C . . . C B,n , so that Rp = J R P ^ - 1 and rpq : Rp — > R q , p > q, is the canonical 
embedding. The dimension function d determines subposets p(") := {p 6 P : d(p) > u}, 
where k <u < m and k := min{dim(Pp) : p € P}, m := max{dim(Pp) : p € P}. 

Then the homology of \\1Z\\ with TL\'2-coefficients has the following direct sum decom
position: 

m 

H»(||ft||;ZZ/2) £ H*(BP*xA(P);ZZ/2) 0 0 r t ,_ a (A(pW);ZZ/2) . 
U=Jfe+l 

Proof. The proof is by induction on m — k, the case m = k being trivial. We will prove a 
slightly stronger statement which includes the description of naturally defined subdiagrams 
of 11 which induce the desired decomposition. We assume ZZ/2-coefficients for all of the 
following. 

Let T = {Tp}P£p be the "maximal" constant subdiagram of 1Z, i.e., Tp = RP and 
tpq :Tp —• r , is the identity map. Let T(*+1> be the restriction of T to p(*+x). Clearly, 

H,( | |T| |) S H„(BP* x A(P)) 2 H«(]RP*)0H,(A(P)) . 

We will prove that H*(||72.||) has the desired decomposition, where H„,(]RP x A(P)) comes 
from the subdiagram T and the rest of decomposition is determined by subdiagrams of 
ft(*+1>. By excision, H„(||ft||, ||T||) S H,(| |7e( fc+1)| | , | |r(*+1)| |), so the long exact sequence 
of the pair (\\1l\\, \\T\\) has.the form 

. . . —> H,(| |T| |) - * H.(||ft| |) -U H . d l ^ ^ 1 ) ! ! , I IT^ 1 ) ! ! ) — * . . . . 

One observes that H*(||T(fc+1) | |) is a direct summand of H*(RPfe x A(P< fc+1))) and that 
the last group, by the inductive assumption, can be seen as a part of the first summand 
in the direct decomposition of H*(||7£(fc+1)||). This implies 

m 

H*(||ft (*+1) | | , | |T<*+1>||)^ ® H*_U(A(P(»>)). 

Also, since H,(||ft<*+1>||, ||T(fc+1) | |) is a direct summand of H*(7l<*+1)) and the last group 
can be naturally embedded in H*(||7£||), one observes that 7r is an epimorphism which has 
a right inverse. So, the long exact sequence consists of short, splitting exact sequences 
which immediately leads to the desired decomposition for H»(||72.||). G 

The following proposition shows that the homology of the projective link PL with 
rational coefficients, has a different direct sum decomposition at least if all projective 
spaces are odd dimensional. 
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Proposition 2.10. Let us suppose that 71 is a P-diagram of projective spaces associated 
with the standard flag. Let us assume that all projective spaces in the diagram are odd 
dimensional. Then the homology of \\7Z\\ with rational coefficients has the following direct 
sum decomposition. 

H , ( M ; Q ) s © H i ^ P ^ i Q). 
p£P 

Proof. Let T> be the diagram of spheres associated with the standard flag and let a : V —• 
71 be the morphism of diagrams such that ap : Rp —> Dp is the double covering. The 
morphism a induces a map of corresponding spectral sequences, see Section 3(e), which 
turns out to be an isomorphism at the J32-term. Knowing that the spectral sequence 
of V collapses at the i?2-term, one easily deduces that the same holds for the diagram 
7Z. This, together with the fact that the decomposition of the homology of ||X>|| given in 
Corollary 2.5, coincides with the decomposition coming from the i?2-term of the spectral 
sequencs, leads to the desired observation. u 

We note that if A is a linear even subspace arrangement in H n , then we get the 
rational homology of the projective complement WiP2n~1\VA from Alexander duality in 
IRP2 n _ 1 , which is a rational homology sphere. 

It would be interesting to work out complete formulas for the Z-homology of (J VA 
(which exist by Theorem 2.8) and for the 2Z-homology of the complements (where they 
are known for Z/2-coefncients [GM, III.1.7 "Theorem C"], the dual result to our Propo
sition 2.9). 

2(e) Complex Projective Arrangements. 

In the problem of describing the homotopy types of linear, affine or spherical arrangements, 
one can forget the complex or quaternionic structure and deal only with the real case. In the 
case of projective arrangements the distinction is necessary, although the proofs are similar 
and without new ideas. So we will omit the details and restrict ourselves to formulation 
of results in the case of complex projective arrangements. Let us note that Definition 2.6 
can be extended by allowing scalars to be either complex numbers or quaternions. 

Theorem 2.11. Let A = {Ap}p^p be a complex linear subspace arrangement and VA 
the corresponding complex projective arrangement. Then the projective link PL = [j VA 
has the homotopy type 

PL ~ Hfc'll, 

where 71' is the projective flag diagram associated with the intersection poset P and the 
dimension function d : P —• 1N0, d(p) = dimc(;4p), see Definition 2.6. 

Proof. The proof of this theorem follows closely the proof of Theorem 2.8 and we omit 
the details. D 
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Proposit ion 2.12. Let (P,d) be a Unite poset with a dimension {unction d : P —• 
INo. Let C be the P-diagrain of complex projective spaces associated with the standard 
flag F : {0} C C1 C . . . C C n , so that Cp = C P ^ " 1 and rpq : Cp — • Cq, pq, is 
the canonical embedding. The dimension function d determines, as before, subposets 
p(tt> := {p e P : d(p) > u}, where k < u < m and k := min{dimc(Cp) : p € P}, 
m := max{dimc(C7p) : p € P}. Then the homology of \\C\\ with TL coefficients has the 
following direct sum decomposition: 

m 

H.(||C||;ZZ) .£* IL (CP*xA(P) ;2Z) © 0 H,_U(A(P<U>);S;). 
u=Jb+l 

Proof. The proof is very similar to the proof of Proposition 2.9. D 

3. Remarks. 

In this section we have collected some additional remarks about the homotopy theory of 
arrangements and some corollaries that follow from the results of Section 2. We concentrate 
on the case of spherical arrangements, only indicating the changes that occur in other cases. 

(a) Explicit Maps. 

Let A denote a spherical arrangement in S " - 1 C H n (the affine case can be treated ana
logously). In this case, Theorem 2.4 asserts a homotopy equivalence between the geomet
rically given space D = \J A and its combinatorial model T(P,d) = VPeP ^ ( P < p ) * Sd^p\ 
Here we observe that one can explicitly construct maps $ : T(P, d) —• D and \& : D —• 
T(P, d) that induce isomorphisms in homology. 

The construction of $ is actually easy. For every p € P, choose a point <j>(p) € 
Sp\Ug>n Sq = : Sp> which can be interpreted as a "generic" point on Sp. To construct $ , 
we start with a homeomorphism $ p : 5 d M - 1 —• Sp for each p € P, which maps ei to 
4>{jp) € D. For q < p, we define $p(q) := <£(<?). For every chain q\ < ... < qk < p we 
have a chain of spheres Sqi D ... D Sqk D Sp. The choice of <j>(qi) guarantees that the 
set {(f>(qi),. • •, <£(?*),Po} *s linearly independent for all po € Sp. Thus $ p and <f> together 
determine a geodesic embedding of the closed simplex [qi,..., ?jfe,po] into S(qi) Q D, which 
depends continuously on po and is natural with respect to the selection of subchains of 
(qi < ... < qk). Hence we get a continuous map $ p : A(P< p)*5 d ( , ' )~ 1 — • D. Furthermore, 
the condition $ p ( e i ) = <f>(p) ensures that the maps $ p fit together to give a continuous 
map $ : I \P ,<f ) —• D. 

The map $ is surjective since Sp is in the image of $ p . Tö see that it induces an 
isomorphism in homology, one can proceed by induction on m := \P\ — \A\, together with 
a Mayer-Vietoris argument (using Example 1.5(c) for an argument parallel to that used 
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for proofs in the appendix), and the Five-Lemma - see [Z2] for details. This yields the 
simplest proof we know for the Goresky-MacPherson homology formulas (Corollaries 2.3 
and 2.5). 

The construction of the map $! is more involved, relying on a partition of unity that 
defines a system of tubular neighborhoods for the sets S°. The basic ideas can be derived 
from [GM, p. 243]. Again we refer to [Z2] for further details. 

There are three main disadvantages to this "explicit approach": 

- it relies more than necessary on metric/differentiable structure, 

- it is easy to show that the maps are isomorphisms in homology, but it is not immediate 
they are homotopy equivalences. In fact, in order to get that $ and ^ are homotopy 
inverses, one would have to be very careful in the choice of orientations etc., 

- such explicit maps are not easily available for other cases, such as the projective ones. 

All three problems do not occur in the diagram approach. 

(b) Universality 

For every finitely presented group G there is a connected finite simplicial complex A with 
fundamental group G and such that every star of a vertex is non-empty and connected. 
(For this, one can take the CW complex with only one vertex associated with a presentation 
of G, triangulate it, and take the product with a unit interval.) 

Furthermore, for every finite simplicial complex A C 2 ^ there is an arrangement 
of coordinate subspaces A& := {spanIR{e,- : i € A} : A € A} in H n whose poset of inter
sections is the order dual of the face poset P&. (See [Z2] for more details.) With these 
observations, Theorem 2.4 implies the following universality results. 

Corollary 3 .1 . For every finite simplicial complex A there is a connected spherical 
arrangement A for which the cohomology algebra H*(A; 2Z) is a direct summand of the 
algebra H*(D; 7L) of the Unk of A. In particular, rI*(D; 7L) can contain arbitrary amounts 
of torsion. 

Corollary 3.2. For every finitely presented group G there is a connected spherical 
arrangement A with fundamental group Ti(D) = G. 

We get analogous results for affine arrangements and for compactified affine arrange
ments, the first case being trivial. The situation for projective arrangements is more subtle. 

(c) Wedges of Spheres 

In contrast to the universality results that we have just derived, one finds that many 
arrangements that "occur in nature" have the homotopy type of a wedge of spheres. 

^From Theorem 2.4 we see that the crucial condition for this is that the posets P<p 

all have the homotopy type of a wedge of spheres. (Note that this condition is completely 
independent of the dimension function). This is satisfied in particular when P is a shellable 
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poset (see [Bj]). In this case we can read off the number of spheres of various dimensions 
from the Möbius function on P := 0 Ü P. This covers in particular the cases of 

- all c-arrangements: arrangements of subspaces of codimension c in R n for which 
the codimension of any intersection is a multiple of c; this includes the cases of real 
hyperplane arrangements for c = 1, even subs-pace arrangements (including all complex 
hyperplane arrangements) for c = 2, and quaternionic arrangements with c = 4, 

- the subspace arrangements that correspond to shellable simplicial complexes (via the 
construction mentioned in Section 3(b)), and 

- the arrangements of the ß-equal problem, that is, the subspace arrangement given 
by all points in R n with at least k identical coordinates [BLY]. The poset of this 
arrangement is quite trivial if 2k > n; for 2k < n one can show that all lower intervals 
of the poset are wedges of spheres [We]. 

In the following corollary we consider the case where the intersection poset P of a linear 
arrangement A is shellable. Let r : P —• No be the rank function on P := 0 l±l P, and let 
fi be the Möbius function on P. The case when r ( l ) < 1 is trivial and can be excluded. 

We use \f Sk to denote the wedge of // copies of the fc-sphere. 

Corollary 3.3. Let A be a linear arrangement in H n whose intersection poset is shellable. 
Then the link L = S7 1 - 1 D |J A has the homotopy type of a wedge of spheres, 

IM(O,P)| 

P&P 

if r ( l ) > 2 or d(i) > 0, otherwise L is a disjoint union of spheres L ~ (±lp<i Sd^-1. 

In particular, homology and cohomology of the Hnk are free, and the cohomology 
algebra has trivial multiplication. 

Proof. We compute 

W M I IMÖ,P)| 

L~ v £'«*(/><,) ~ v E*(p) V srip)~2 - V V s d ^ + r ^ - \ 
p£P p€P P€P 

where the first homotopy equivalence is from Theorem 2.4, the second one is from shella-
bility, and the third one follows since suspension and wedge commute. U 

For complex hyperplane arrangements in €d = H 2 d , Corollary 3.3 was proved in [BZ, 

Theorem 6.6] for the case d > 4, where L is simply connected, and independently by Orlik 

& Terao. The proof given in [BZ] is equally valid for the more general situation of even 

subspace arrangements (c = 2). 

In the case of a c-arrangement in R n we have d(p) = n — c-r(p), which can be used 

to simplify the formula to L ~ V p € p \/M°'p)] 5 n - ( c ~ 1 ) r ( j , ) - 2 . In particular, if c = 1 we 
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get that all spheres in the wedge have dimension n—2. Passing to homology and applying 
Alexander duality we get the cohomology of the complement of a o-arrangements, which 
is due to Goresky & MacPherson [GM, III.1.6 "Theorem B"]. 

We note that analogously we get a wedge of spheres in the affine and the compactified 
affine cases. To see that this covers the case of affine c-arrangements we need the fact that 
their face posets are inverted geometric semilattices and thus shellable [WW]. 

(d) On the Complements 

The homotopy type of the complement M = TRn\\JA of an affine arrangement is not 
determined by the combinatorial data (P,d). For example, let A be an arrangement of a 
line and two points in the plane H 2 . If the points are on different sides of the line, then 
the complement has the homotopy type of two disjoint circles, M ~ S1 ttl S1; if the points 
are on the same side of the line, then M is homotopy equivalent to the wedge of two circles 
plus an extra point, M ~ S1 V S1 V S°. 

In fact, although the integral cohomology of M is determined by (P,d), this is not 
true for the cohomology algebra, even in the special case of even subspace arrangements 
[ZI] [Z2], (In the case of complex hyperplane arrangements the cohomology algebra is 
determined by the combinatorial data by a result of Orlik & Solomon [OS]; that the 
homotopy type is determined by (P,d) in this case is a notorious conjecture [Or].) 

Here we note that there are combinatorial formulas available for the stable homotopy 
type of the complement, as a direct consequence of Theorem 2.4 together with Spanier-
Whitehead duality [SW] [Ad, p. 9]. For simplicity, we state only the linear/spherical case. 

Theorem 3.4. The stable homotopy type of the complement M = Sn~1\D of a spherical 
arrangement is determined by its combinatorial data (P, d, n), as 

M ~ V S«-I-<*(P) S(A(P<P)), 
P€P 

where 5(A) is the Spanier-Whitehead dual [SW] [Sw, p. 321] of the simplicial complex A. 
Here "~" denotes stable homotopy equivalence, that is, 

ENM ~ Y EJV+n-i-rf(p) s(A(P<p)) 

pep 

for large enough N. 

In particular, if L is a homotopy wedge of spheres, then M has the stable homotopy 

type of a wedge of spheres. 

Proof. This follows by taking Spanier-Whitehead duals ("S-duals") with respect to 5 n ~ 1 

of the formula L ~ V p € P ^d(p)A(P<p) o f Theorem 2.5, using that ^-duality commutes 
with wedge products [SW, 4.13]. D 

We are grateful to Boris Shapiro for the observations of this section. 
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(e) Spectral Sequences 

There is a natural spectral sequence "built in" for every diagram of spaces. 

Proposit ion 3.5. Let V be a P-diagram of spaces. Then there exists a spectral sequence 

abutting to H*(||X>||) with the E2-term described by 

Here, TinCD) is the P-diagram [a.k.a. local system, or presheaf] of groups obtained by 
applying the functor Hn '• Top — • Ab, X i-> Hn(X), and E\^n is the mth homology with 
the coefficients in this diagram. 

This spectral sequence is a consequence of a very general construction given in [Se, 
Proposition 5.1], which applies to any semi-simplicial space. A closely related spectral 
sequence entered combinatorics with the paper of Quillen [Qu], see also [Ba]. It turns out 
that, if applied to diagrams of spaces associated with arrangements, this spectral sequence 
has often a form which is simple enough to assure that it collapses at the i?2-term. For 
example, in the case of an arrangement of spheres, Section 2(c), the i?2-term has the 
following simple form: ££,,„ = Hm(Wn) where 

<H (n\ _ / 22' d(p) = 0 o r n , 
nnKP) - | Q) otherwise. 

The proof of Theorem 2.4 shows, since both diagrams S and S' defined there induce 
the same spectral sequence, that this sequence collapses at the i22-term. From here one 
can easily observe that 

£ £ „ = < „ = © Hm-i(A(P<p);ZZ). 
<*(p)-l=n 

Vassiliev [Va] outlined a spectral sequence approach to the proof of the Goresky-
MacPherson formula (Corollary 2.3). Independently, Jewell, Orlik & Shapiro [JOS] gave 
a complete solution of this problem using the Mayer-Vietoris spectral sequence. Both of 
these approaches are direct and do not rely on the technique of diagrams of spaces. 

4. Appendix: Basic Constructions. 

We refer to [Mu] for definition and basic properties of the constructions of cell complexes, to 
[Wh] for homotopy theory, and to [Bj] for combinatorial notions. In this appendix, we will 
start with a review of some essential properties of spheres, wedges, joins, suspensions and 
their homology. All spaces we construct are CW-complexes, and can easily be triangulated. 
Thus path-connectivity is equivalent to connectivity, and cellular chains can be used for 
homology [Mu, §39]. 
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The ^-dimensional sphere is denoted by Sk, for k > —1. This includes the cases of 
k = —1,0, where 5 - 1 is empty and S° consists of two points. We use the first coordinate 
vector ei = ( 1 , 0 , . . . , 0) as a standard basepoint in Sk, for k > 0. 

We usually compute reduced (co)homology. This implies that contractible spaces are 
zero homology in all dimensions, and for k > — 1: 

Ei(Sk;7Z) £ ( ? ' iU = k: 
10 otherwise. 

The wedge X V Y of two spaces X, Y is obtained by identification of one point from 
each complex. The homology is given by a natural isomorphism 

H,(XVY;ZZ) <* H„(x;zz)eH,(y,zz), 
which follows from the Mayer-Vietoris sequence of (X,Y). 

The join X * Y is obtained as a quotient of the set X l±) (X x [0,1] xY) l±l Y, where 
x € X is identified with (x,0, y) for all y € Y, and 
y € y is identified with (x, 1, y) for all x E X. 

Thus X*Y can be written as a disjoint union of X, Y and a segment {(x, y, t) : 0<<<1} 
for every x £ X and y € Y. This differs from the usual definition of a join [Mu, p. 378] 
in the case when X = 0 or Y = 0, where we insist that X * 0 = X and 0 * Y = Y. The 
join operation is well-defined, commutative and associative up to homeomorphism. The 
homology of a join can again be computed from a Mayer-Vietoris sequence [Mu, §25], 

The suspension EX can be defined as the join with S°, that is, Y,X := X * S°. 
Furthermore, we have 2 5 * = Sk+1 for k > —1, so that (using associativity of the join 
operation) the fc-fold suspension is given by the join with the (k—l)-sphere, 

E * P 0 S X * S*"1 for k > - 1 . 

Since the join X * S° can be written as a union of two cones that intersect in X, the 
homology of the suspension is given by a natural isomorphism 

Ei(X*Sk;7Z,) £ H.'-fc-iCX'jZS) for k > - 1 . 

Note that this reduces to a trivial statement for k = — 1, with X * S-1 = X * 0 = X. 

We will now prove the basic lemmas about the homotopy types of diagrams. The 
assumption that the underlying small category is a finite poset permits us to prove the 
Projection Lemma and the Homotopy Lemma by elementary inductive arguments. A 
silent assumption throughout this is that all inclusion maps i : A —> X of all pairs of 
spaces which appear in subspace diagrams are closed cofibrations, i.e., these maps possess 
the homotopy lifting property. Equivalently, this property can be reformulated as the 
statement that X x {0} Li Ax I is a. retract of X x / , or that (X, A) is an NDR-pair, see 
[Wh, 1.5]. 

The following lemma and its corollary are used in [tD] for a similar purpose, namely 
for proving that a map / : X —> Y is a homotopy equivalence if it is "locally" a homotopy 
equivalence. 
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Lemma 4.1. Let f : (X, A) —> (Y, B) be a map of pairs of spaces such that both 
f : X — • Y and f = f\A : A —• B are homotopy equivalences. Let g' : B — • A 
be a homotopy equivalence and a : A x I — • A a homotopy with a(a, 0) = g' o f'(a) 
and a(a, 1) = a for a € A. Then there exist a homotopy equivalence g : Y — • X and a 
homotopy ß : X x I —• X such that g\B = g', ß{x, 0) = g o / ( x ) , ß{x, 1) = x for x € X, 
and for aii a € A, 

B(at\ - H a ' 2 ' ) ' tf'<l/2 p\,a,i) - | a ? ift> 1/2. 

Corollary 4.2. Let X = A\JB and Y = Cl)D be spaces and f : X —* Y a continuous 

map with the property f(A) C C and f(B) C D. 

Iff\A :A —• C, f\B : B — • D and f\(A nB):AC\B —• C ft D are all homotopy 

equivalences, then the map f : X —>• Y is a homotopy equivalence. 

Proof of the Projection Lemma. The proof will be carried out by induction on the 
size of the poset (P, D). For \P\ < 1 there is nothing to show. 

Choose a minimal element po in P. Let A1 = -4\-Apo be the arrangement obtained 
by deleting APo from A, and A2 := {Ap H APo : Ap € A} the arrangement of all intersec
tions with APo. By A12 := A2\APo = A1 fl A2 we denote the arrangement of all proper 
intersections with APo. 

The unions of the arrangements are D = \JA, D1 := [JA1, D2 := IJ .42 = APo and 
D12 := \JA12 = D1 n APo. The corresponding posets are P 1 := P\p0, P2 := P>Po and 
P12 := P>PQ = P1 n P2. Each of them inherits a diagram structure from V = V[A], as in 
Example 1.5(c). One has the following diagram of inclusions: 

I P 1 2 II — I P 1 II 

||D21| — ||2>|| 

The collapsing map £ : | |P | | —> M, described in Example 1.4(d), is an extension of the 
collapsing maps ^ : H^H —•+ D1, (2 : \\V2\\ —» APo and ^12 : ||I>12|| —-* D1 fl APo. 

The map ^2 is a homotopy equivalence because it coincides with the collapsing of 
a mapping cylinder to its base (Example 1.5(d)). The maps £* and £12 are homotopy 
equivalences by the inductive assumption. So, by Corollary 4.2, £ is also a homotopy 
equivalence if we can prove that all pairs of spaces involved are NDR-pairs. In other words, 
we need a statement which tells us that (| |P||, HI^II) is a NDR-pair for every subdiagram 
V of V obtained by restricting V to a filter P' C P. This statement can be proved by a 
parallel inductive argument, similar to the argument used above. To this end, one can use 
well known properties of NDR-pairs. [Wh, 1.5]. Ü 

21 



The collapsing map £ in the Projection Lemma 1.6 is always a map with contractible 
fibers. It is worth reminding ourselves that, as the following example shows, this condition 
does not guarantee that £ is a homotopy equivalence. 

Example 4.3. Let X = [0,1] x {0,1} U U~=0
 An C [0, l ] 2 , wherlt e A0 = {0} x [0,1] and 

An = {1/n} x [0,1] for n > 1. Let Y be the quotient space of X obtained by contracting 
{1/ra} x [0,1] to the point {( l /n ,0)} for n > 1, and A0 to the point (0,0). One can easily 
check that the projection map p : X —• Y is not a homotopy equivalence in spite of the 
fact that p has contractible fibers. 

Proof of the Homotopy Lemma 1.7. Again we use induction on the size of P . 

Let a = (ap)P€P be a morphism of two P-diagrams V and £ such that ap : Dp — • Ep 

is a homotopy equivalence for all p € P . Let po be a minimal element in P , P 1 = P\po, 
P 2 = P>Po and P 1 2 = P 1 n P 2 . The restrictions of diagrams V and £ to these posets will 
be denoted by £>\ £*, etc.. The restriction of the morphism a to D 1 , T>2 and V12 will be 
denoted by a1 , a2 and a1 2 , so the corresponding maps at the level of homotopy limits are 
a1 , a2 and a12. By Example 1.5(d), there is a commutative diagram 

||P21| - ^ ||52|| 

^ P o * EPo 

where the naturally defined maps £ and £' are homotopy equivalences, since they are 
just collapsing maps associated with the corresponding mapping cylinders. Since apo is 
by assumption a homotopy equivalence, so is the map a 2 . By the inductive assumption 
a 1 : HP11| — • H^H and a1 2 : | |D12 | |£12 | | are homotopy equivalences. By the remark 
at the end of proof of the Projection Lemma all spaces involved are NDR-pairs, so by 
Corollary 4.2 the map a is also a homotopy equivalence. U 

Proof of the Wedge Lemma 1.8. For every p € P , let C\p] be a diagram over P defined 
as follows: 

(Dp, if 9 = P, 
C\p]q = \ K h if 9 < P, 

10, otherwise. 

with the connecting functions inherited from V. Then again one has an obvious map 
7[p] : C\p] —• V which defines an embedding f\p] : \\C\p]\\ —• ||Z>||. 

Now observe that \\C\p]\\ is homeomorphic to the join A(P<p)*Dp and that A(P<P) = 

A(P< P )*{c ,}C| |C[p] | | . 

The structure of ||X>|| is easily described in terms of the "building blocks" \\C\p]\\ = 
A(P < p ) * Dp. One observes that \\C\p]\\ f) A(P\1) = A(P<p) , which is a contractible set, 
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and that \\C\p]\\ fl \\C[q]\\ = A(P<p) n A(P<g) C A ( P \ i ) for q ^ p and q,p < i . Hence, 
| |P | | is the space obtained from A ( P \ i ) * Dj by attaching, for every p < i , the space 
A(P < P ) * Dy to A(P \1 ) * D j , along the common copy of A(P<p) . 

The homotopy type of this space is not changed if one replaces the attaching maps of 
\\C\p]\\ to A(Pj) * Dj by wedge operations, to get 

\\V\\ = A(Pi)*Di V \J (A(P<P)*DP) 

p<i 

as claimed. D 
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