
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

SEBASTIAN GÖTSCHEL, MICHAEL L. MINION

Parallel-in-Time for Parabolic Optimal
Control Problems Using PFASST

ZIB Report 17-51 (May 2017)



Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +49 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782



Parallel-in-Time for Parabolic Optimal Control
Problems Using PFASST

Sebastian Götschel∗ Michael L. Minion†

May 19, 2017

Abstract

In gradient-based methods for parabolic optimal control problems, it
is necessary to solve both the state equation and a backward-in-time ad-
joint equation in each iteration of the optimization method. In order
to facilitate fully parallel gradient-type and nonlinear conjugate gradient
methods for the solution of such optimal control problems, we discuss the
application of the parallel-in-time method PFASST to adjoint gradient
computation. In addition to enabling time parallelism, PFASST provides
high flexibility for handling nonlinear equations, as well as potential extra
computational savings from reusing previous solutions in the optimization
loop. The approach is demonstrated here for a model reaction-diffusion
optimal control problem.

1 Introduction
Gradient-based methods for parabolic optimal control problems are com-
putationally expensive due to the need to solve both a forward state equa-
tion and a backward-in-time adjoint equation to compute gradient infor-
mation in each iteration of the optimization procedure. One potential
way to reduce the overall computational time is to employ parallel-in-
time (PinT) methods for solving state and adjoint equations. Attempts
to construct PinT methods for the solution of differential equations date
back more than 50 years and have gained increasing interest in the last
15 years [8]. More recently, the application of space-time parallel meth-
ods to the solution of optimization problems governed by PDEs has be-
come an active research area, with approaches including multiple shooting
(e.g. [11] and the references therein), Schwarz methods [1, 9], the applica-
tion of parareal preconditioners [14, 18], and space-time parallel multigrid
methods [10].

Here we apply the PFASST method [7] (“Parallel Full Approxima-
tion Scheme in Space and Time”) to both the state and adjoint equation
to provide a fully time-parallel gradient- or nonlinear conjugate gradient
method. This approach is somewhat related to the time-parallel gradi-
ent type method presented in [5]. There the time interval of interest is
subdivided into time steps, which are solved in parallel using quantities
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from the previous optimization iteration as input. This leads to jumps in
the solutions of state and adjoint equation such that these equations are
not satisfied during optimization. While convergence is demonstrated in
[5] if sufficiently small step sizes for updating the control are used, it is
unclear how to automatically select such a step size. In our approach, the
usual line search criteria, e.g. the (strong) Wolfe conditions, can be used
to guarantee convergence.

2 Background

2.1 SDC, MLSDC, and PFASST
A distinguishing factor of the PFASST algorithm compared to other PinT
methods is that, in each iteration, the solution on a given time step is im-
proved using a deferred correction approach rather than being computed
in full using a given ODE method. The correction sweeps are based on
spectral deferred corrections (SDC) [6] and are applied on a hierarchy of
space-time representations of the problem as in multi-level SDC (MLSDC)
methods [17]. PFASST exposes parallelism in the time direction because
MLSDC iterations are pipelined so that SDC sweeps are done concurrently
on all but the coarsest level.

One advantage of SDC methods is the flexibility in choosing the type
of substepping for the correction sweep.

In the numerical example, we will use both a semi-implicit or IMEX
approach [15] (wherein one component of the solution is treated explicitly
and one implicitly) and a multi-implicit (MISDC) approach [2] (wherein
one component of the solution is treated explicitly and two components
implicitly but uncoupled).

The motivation for using IMEX and MISDC variants are to replace
the solution of coupled nonlinear systems in the time stepping by simpler
linear equations (see Sect. 4.1 for further discussion).

Finally, PFASST is an iterative method, and the typical way in which
the solution is initialized on each parallel time slice is by serial time step-
ping on the coarsest level. In optimal control problems, an alternative is
to use the solution from the previous optimization iteration as the initial
guess for the next state and adjoint equation solve. As the optimization
procedure converges, the initial solutions improve in quality, and hence
the number of PFASST iterations needed for convergence should decrease.
We demonstrate this savings in Sect. 4.

2.2 Optimal Control of Parabolic PDEs
We consider optimal controls problems

min
y∈Y,u∈U

J(y, u) subject to c(y, u) = 0, (1)

with c : Y ×U → Z? a semi-linear parabolic PDE on Banach spaces Y,Z
and Hilbert space U over a spatial domain Ω ⊂ Rd. We assume that there
exists a unique solution y = y(u) ∈ Y of the state equation c(y, u) = 0
for each control u ∈ U . To avoid a full, typically 4D, discretization of this
problem, methods working on the reduced functional

min
u∈U

j(u) := J(y(u), u) (2)
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are often employed. Under standard assumptions, the reduced gradient is
given by

j′(u) = Ju(y(u), u) + cu(y(u), u)?p(u),

where p solves the adjoint equation

Jy(y(u), u) + cy(y(u), u)?p(u) = 0, (3)

which is backward in time, see, e.g., [13] for details. Due to the occur-
rence of −Jy(y(u), u) as a source term, and—in the nonlinear case—the
dependence of cy(y(u), u) on the state solution y(u), the adjoint gradient
computation consists of three steps:

1. solve c(y, u) = 0 for y ∈ Y and store the solution trajectory,

2. solve cy(y, u)?p = −Jy(y, u) for p ∈ Z,
3. set j′(u) = Ju(y, u) + cu(y, u)?p.

In order to facilitate fully parallel algorithms to solve the optimal control
problem (1), state and adjoint equations need to be solved using PinT
methods.

3 PFASST for Optimal Control
Minimizing the objective function (2) is done via gradient- or nonlinear
conjugate gradient (ncg) methods

uk+1 = uk + αkdk

dk+1 = −j′(uk) + βkdk,

where d0 = −j′(u0), αk denotes the step size, required to satisfy the
(strong) Wolfe conditions [16], and the choice of βk defines the type of
method (βk = 0 for the gradient method; various possibilities for βk lead-
ing to different ncg methods, see [4] for a brief overview and the method
used in the experiments). For the numerical solution we apply a method
of lines approach, discretizing first in space, then in time.

Parallelization in time for these methods requires three ingredients:
time-parallel computation of inner products, step size selection, and the
solution of state and adjoint equations. The first two ingredients are
straightforward: on each time interval, local scalar products are computed,
and then communicated to all other processors, summing them up. These
scalar products are used to compute βk, as well as to check sufficient
decrease and curvature conditions during step size selection. For the time-
parallel solution of state and adjoint equations we propose two different
strategies using PFASST. In the first approach, the state and adjoint
problems are solved separately using PFASST for both. The state solution
at each time step and quadrature node is stored for subsequent use in the
solution of the adjoint equation. Alternatively, PFASST could be used
to solve the state and adjoint equation at the same time. Each SDC
sweep of the state equation would be followed by a backward sweep of
the adjoint equation on the same nodes, leading to more complicated
communication patterns. In the numerical example, we focus on the first
approach. Details and results for the second approach will be reported
elsewhere.
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4 Numerical Example
Here we consider the following optimal control problem ([3, 12]) governed
by a semi-linear reaction-diffusion equation on Ω = (0, 20):

min
y,u

1

2

∫ T

0

∫
Ω

(y − yd)2 dx dt+
10−6

2

∫ T

0

∫
Ω

u2 dx dt,

where T = 5, and y(x, t) is subject to

yt − yxx + y(
1

3
y2 − 1) = u(x, t) in Ω× (0, T )

y(x, 0) = y0(x) in Ω,
(4)

with homogeneous Neumann boundary conditions. The initial condition
and desired state are

y0(x) =

{
1.2
√

3, x ∈ [9, 11]

0, elsewhere

and

yd(x, t) =

{
ynat(x, t), t ∈ [0, 2.5]

ynat(x, 2.5), t ∈ (2.5, T ],

where ynat denotes the solution to the PDE (4) for u ≡ 0. Here, an exact
optimal control is known:

uexact =

{
0, t ≤ 2.5
1
3
y3
nat(x, 2.5)− ynat(x, 2.5)− ∂2

∂x2 ynat(x, 2.5), t > 2.5.

4.1 IMEX and MISDC Formulations
As mentioned in Sect. 2.1, there is great flexibility in how the substepping
procedure in SDC is constructed since it need only be a first-order approxi-
mation. For our numerical example, two strategies are investigated, IMEX
SDC and multi-implicit SDC. In both cases, the diffusion term in (4) is
treated implicitly to avoid the severe time-step restriction inherent in ex-
plicit temporal methods, but there is some flexibility in how to treat the
other terms. In the IMEX strategy, only the diffusion term is treated
implicitly, while in the MISDC method, both diffusion and reaction are
treated implicitly, but the implicit solutions are done independently as in
operator splitting methods. In addition, we employ a lagging of nonlinear
terms in MISDC iteration to turn the implicit nonlinear diffusion solve
into a linear problem.

Methods that employ (possibly multiple) operator splitting are desir-
able when the reduced cost of split implicit solvers compared to coupled
solvers is significant. The overall accuracy of the SDC or PFASST meth-
ods (assuming convergence of SDC iterations) does not depend on the
form of the substepping, rather on the choice of number and type of in-
tegration nodes. Hence, the main concern in terms of efficiency is the
computational cost of each SDC iteration and the number of iterations
required for convergence.

The IMEX and MISDC approach are explained by examining a single
substep of an SDC sweep. Letting k denote the SDC iteration, m the
substep index, and D2 the discretization of the second derivative term,
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then the correction equation for a single fully implicit, backward-Euler
type discretization of the substep for (4) will take the form

y
[k+1]
m+1 = y[k+1]

m + ∆tm(D2y
[k+1]
m+1 − y

[k+1]
m+1 (

1

3
(y

[k+1]
m+1 )2 − 1)) + S

[k]
j , (5)

where the term S
[k]
j contains terms that either depend on the previous

iteration [k] or values at iteration [k + 1] already computed at substep
j < m + 1, including the control terms arising from the discretization of
u(x, t). Note that the implicit equation couples nonlinear reaction and
diffusion terms and hence would require a global nonlinear solver in each
substep.

For problems in which the reaction terms are non-stiff and can be
treated explicitly, the reaction terms do not appear in the implicit equa-
tion, giving the form

y
[k+1]
m+1 = y[k+1]

m + ∆tm(D2y
[k+1]
m+1 − y

[k+1]
m (

1

3
(y[k+1]

m )2 − 1)) + S
[k]
j . (6)

Each substep now requires only the solution of a linear implicit equation,
and hence is computationally cheaper than a fully implicit approach, as-
suming that the explicit treatment of the reaction term does not impose
an additional time step restriction.

When the reaction term is stiff, and hence it is advantageous to treat
it implicitly, a standard MISDC approach applies an operator splitting
between diffusion and reaction in the correction equation. For example,

y∗ = y[k+1]
m + ∆tmD

2y∗ + S
∗,[k]
j , (7)

y
[k+1]
m+1 = ym + ∆tm(D2y∗ − y[k+1]

m+1 (
1

3
(y

[k+1]
m+1 )2 − 1)) + S

[k]
j . (8)

For the numerical methods here, the MISDC approach is further modified,
so that the nonlinear solve for reaction in (8) is made linear by lagging
terms in [k]:

y
[k+1]
m+1 = y[k+1]

m + ∆tm(D2y∗ − y[k+1]
m+1 (

1

3
(y∗)2 − 1)) + S

[k]
j . (9)

This form creates an implicit solve with roughly the same cost as treat-
ing reaction explicitly but is more stable. In all the numerical examples
presented here, a DIRK type approach [19] is used so that the generic
form of S[k]

j contains both the usual SDC terms from iteration [k] and
a linear combination of previously computed right-hand-side terms from
SDC iteration [k + 1].

4.2 Results
In this section we show the results for IMEX and MISDC approaches to
solve the state and adjoint equation. In both cases, a method of lines is
employed by using a spectral discretization in space with spatial deriva-
tives computed with the fast Fourier transform. The PFASST iterations
are stopped when the relative or absolute residual falls below 10−11. For
solving the optimization problem we use the ncg method from [4], with
initial control u0 = 0.5uexact. As described in [3], the ncg method con-
verges quite slowly for this particular problem; it was stopped after at
most 200 iterations.
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Figure 1: Computed optimal control (left), difference to exact control (middle)
and optimal state (right) using IMEX.

IMEX. Since the reaction terms in our example are not highly stiff, an
IMEX approach can be used for the state and adjoint equations. PFASST
is employed using three levels (32/64/128 spatial points and 3/5/9 Lobat-
toIIIA nodes in time) with 20 parallel time intervals. Note the temporal
method is formally 16th order. Running on 20 processors in parallel, the
final objective function value after 200 ncg iterations is 2.4 · 10−3, and
the computed control has a relative L2-error of 0.15 compared to uexact.
In contrast, the sequential version stops with a slightly worse objective
function value of 3.2 · 10−3, and a relative L2-error of 0.15 in the com-
puted control. A plot of the computed control, the error in the computed
control, and the corresponding computed optimal state can be found in
Fig. 1. By parallel execution, the overall runtime was reduced by a factor
3.8, yielding a parallel efficiency of 19%.

MISDC. For testing MISDC we used 20 parallel time intervals with
two PFASST levels consisting of 64/128 spatial points and 5/9 LobattoI-
IIA nodes. After 200 ncg iterations, the sequential version reached an
objective function value of 3.8 · 10−3 and a relative L2-error of 0.15 in the
computed control. Running in parallel reduced the computation time by
a rather small factor 2, but lead to improved results (objective: 1.8 ·10−3,
control: relative L2-error 0.14). Initializing the state solution at the col-
location nodes in optimization iteration k with their values from iteration
k−1 (“warm start”) reduced the required sweeps by 48% while reaching a
slightly better objective function value of 1.5 · 10−3 and relative L2-error
in the control of 0.13. The reduction in sweeps translates to a significant
reduction of overall computation time by 45%. This is in contrast to the
IMEX experiment, where for a reduction in sweeps by 39% the gain in
overall speed was a mere 7%.

For this example, it is unreasonable to attempt to compare the IMEX
and MISDC approaches in terms of overall efficiency since MISDC is de-
signed for problems where both diffusion and reaction components are
stiff. The pertinent point here is that employing the MISDC procedure
with a lagged linearization of reaction terms does not appear to increase
the number of PFASST iterations needed for convergence substantially. In
more realistic simulations in multiple dimensions and with more compli-
cated reaction terms, MISDC offers the possibility of greatly reducing the
cost of implicit substepping compared to fully implicit methods, but this
could be partially offset by an increase in required PFASST iterations.
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5 Discussion
A simple approach using PFASST for the time-parallel solution of PDE-
constrained optimization problems has been presented, and non-trivial
parallel speedup and efficiency have been obtained. It is important to
note that the parallel efficiency of PFASST is improved when solutions on
coarsest levels are much cheaper than in finer levels, and spatial coarsening
has a larger effect in multiple dimensions compared to the one-dimensional
example used here. In addition, applying PFASST simultaneously to state
and adjoint equations with proper handling of communication offers fur-
ther improved parallel speedup. The flexibility of SDC/PFASST has been
used to reduce the cost of implicit solutions in the substepping and also to
re-use information from previous optimization iterations. Future research
will, for example, deal with adaptive control of the accuracy for inexact
gradient computations, and different strategies for storing or recomputing
state solutions for the adjoint solve.
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