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Solving time-harmonic scattering problems
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Summary In this paper we study the PML method for Helmholtz-
type scattering problems with radially symmetric potential. The PML
method consists in surrounding the computational domain by a Per-
fectly Matched sponge Layer. We prove that the approximate solution
obtained by the PML method converges exponentially fast to the true
solution in the computational domain as the thickness of the sponge
layer tends to infinity. This is a generalization of results by Lassas
and Somersalo based on boundary integral equation techniques. Here
we use techniques based on the pole condition instead. This makes it
possible to treat problems without an explicitly known fundamental
solution.
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1 Introduction

Since the first paper by Bérenger in 1994 ([1]), the Perfectly Matched
Layer (PML) method has become very popular due to its accuracy,
simplicity and flexibility. In this paper we explore the connections be-
tween the PML method for time-harmonic scattering problems and
the methods based on the pole condition, which are discussed in [4].
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We start with a brief summary of the derivation of the PML equa-
tions. Let u (r,Z) denote the solution to the scattering problem in a
coordinate system consisting of a radial variable r > 0 and a vector
of angular variables z. The first step of the PML method consists
in a complex extension of the solution u (-, %) along some given path
v : [a,00) = C, a > 0 which satisfies

v(a)=a, Ry(r) =r, and Sy > 0.

In cartesian coordinates the so-called Bérenger solution u(®) (r, ) :=
u(y(r), ) satisfies a Helmholtz-type equation with an anisotropic
damping tensor. If u is outgoing, then u(®) (r, #) decays exponentially
as 7 — 0o0. On the other hand, u(® (r, ) grows exponentially if u is
an incoming field. Therefore, the Sommerfeld radiation condition for
u is equivalent to the boundedness of u(B) (r,£). In a second step, the
boundedness condition for u(®) (r, ) is replaced by the zero Dirichlet
condition u(®) (p, #) = 0 at some finite distance p > a. We end up
with an elliptic boundary value problem on a bounded domain, which
can be solved by standard finite element codes.

The analysis of this paper is based on the work of Collino and Monk
[2] and Lassas and Somersalo [8]. We show that for the Helmholtz
equation with a radially symmetric potential the solution to the PML
equations converge exponentially to the true solution within the ball
{z : |z| < a} as p = oo. In [7] Lassas and Somersalo show the expo-
nential convergence of the PML method for general convex computa-
tional domains, but constant exterior potentials. Our proof proceeds
along the same lines as in [8], but we replace integral equation tech-
niques by the representation formula derived in [4]. This allows us to
treat problems for which no fundamental solution is known explicitly.
In particular, as shown in numerical experiments the method con-
verges for general convex domains and more general inhomogeneous
exterior domains as waveguide structures, see [11,5,6]. Unfortunately,
our analysis only covers radially symmetric potentials, yet.

We also show that the exponential decay of Bérenger solutions
and the pole condtion are almost equivalent. As a consequence, the
class of applications of the PML method and methods based on the
pole condition is almost the same. For a comparison of the numerical
performance of both methods we refer to [6]. A potential advantage of
methods based on the pole condition is the possibility to evaluate the
exterior field numerically by a representation formula if the location
and the type of the singularities in the Laplace domain are known.
This is particularly relevant if a fundamental solution is not known
explicitly. Otherwise, the exterior field can be evaluated by Green’s
representation formula.
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The plan of this paper is as follows: In the next section we intro-
duce the class of problems considered in this paper and the corre-
sponding Dirichlet-to-Neumann map. In section 3 we prove the ana-
lytic continuation properties of the solution and review the correspon-
dence to the pole condition. In section 4 a more detailed derivation of
the PML equations is given. Finally, in the sections 5 and 6 we prove
our main theorem on the exponential convergence of the solutions to
the PML equations as p — oo.

2 Helmholtz scattering problem and the DtN Operator

We are concerned with Helmholtz-type scattering problems

Au(z) +k* (z)u(z) =0 in R\ 2 (2.1a)
0
. oam1 (Ou
Tlggor 2 (E — mu) = 0. (2.1c)

K C R? denotes a compact smooth set and f € H~1/?(9K). We
assume that k a is bounded, continuous function which is given by

E? (z) = (1 +p(|z])) &%, for |z| > a..

Here p (til) = >, Pmt™ has a convergence radius greater than é,

ap € (0,00] with a, > ap. As proved in [4] the above system has a

unique solution. We are only interested in the solution in the domain
2, = B\ K, where a > a,. We denote (™) (z) = u(z), z € £2,.
With the sesquilinear form u : H' (£2,) x H' (£2,) — C,

p(u,v) = VuVudz — E*uw dx —/ DtNyuvdS (2.2)
2 2 s¢t
and the continuous anti-linear functional F : H' (§2,) — C.

F(v) = | fuds (2.3)

u(™) is the unique solution to the variational problem
p(u,v) = F (v) for allv € H' (2,),

(see [4]), which corresponds to the boundary value problem
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Al 4 B2l — 0 0, (2.42)
Apul™ = f on OK (2.4b)
Aul™ — DN, u(™) = 0 on S4. (2.4¢)

Here S ! := {z € R? : |z| = a}. DtN, denotes the Dirichlet-to-
Neumann map DtN, : H'/2 (Sg_l) — H1/? (Sg_l) , which is defined
as follows. Given g € H'/? (S¢1)

DtNyg = Bru(eXt)|Sg_1,

(ext)

where u is the unique solution to the exterior problem

Au(ext) _I_ k2u(eXt) = 0 iIl Da,oo (2.5&)
U(eXt)‘asg* =g (2.5b)
B (ext)
lim 75" (8“ —mu<ext>) = 0. (2.5¢)
r—00 or

Here and in the following we use the notations Dy, g, = Bg2 \B—gl,

Dy, o = R4 \Bgl. We call the boundary condition (2.4c) transparent
because it leads to the exact solution in the interior domain without
any spurious reflections. It can be seen from the above definition of
the DtN,—operator the boundary condition (2.4c) is non-local. In
particular, it is not given as a finite sum of differential operators acting
on the boundary S2~1. Moreover due to the inhomogeneous potential
in the exterior domain the DtN,—operator is not known explicitly
as it is the case for constant potentials. Therefore with regard to a
numerical approximation of the interior problem by the finite element
method the use of the DtN,—operator is not feasible. Nevertheless the
DtN,—operator will give us the theoretical framework to prove the
convergence of the PML method. We will interpret the action of the
sponge layer as a perturbation of the DtN,—operator.

3 Analytic continuation of the exterior solution

We introduce polar coordinates r > 0 and & € S{~' in R?. With a
slight misuse of notation, we use the same letter for exterior fields
in polar and cartesian coordinates, i.e. u(r,z) = u(rz). If u is a
solution to the boundary problem (2.5) we will show that w (-, %)



Pole condition: Convergence of the PML method 5

has a holomorphic extension to C/* = {z € C : Rz > a, Sz > 0}.
Recall that the Laplace operator in polar coordinates is given by
rd%lar (rd_lar) + T%Aj, where A; denotes the Laplace-Beltrami op-
erator on the unit sphere. We replace the real coordinate r by the
complex variable z and define

1 9 4,0 1

Kl T f(E)-1(2) -
As usual, we define g f (2) := lim; o+ ,, =5 Thus, 0, is a

one sided derivative on the real axis. Later we will need the more
general result that the boundary condition (2.5b) may be posed at
a complex radius zg € CJ*. In this case we seek a solution which is
defined on C;t = {z € C : Rz > Ra, Iz > Sz} . The next theorem
is a generalization of [4, Theorem 24| for complex arguments. Since
the proof is almost the same, it is omitted here.

Theorem 1 Let zy € Ci* and g € H'/? (Sfl) be given.

1. There ewists a unique function u € C? ((CjOJr X Sf_l) , which is

holomorphic in the first variable and satisfies

Auu(z,8) + K (2)u(z,2) =0, 2z€CLT, 2 €80 (3.1a

(20,7) =g 3.1b

lim 25 <2u—mu) =0. (3.1c)
Rz—o00 0z

Condition (8.1b) has to be understood in the sense of the trace
operator.

2. There erist functions Uy, € C™ (Sf_l) and ¥ € C! (R+ X Sf_l)
and a constant a > RNzy such that the above solution is given by

u(z,i) =z 3 el (um(@)+ / et=0g (1, 7) dt) (3.2)
0

for Rz > a. ¥ (t,2) decays exponentially as t — oo. The formula
(8.2) may be differentiated any number of times both with respect
to z and T, integration and differentiation may be interchanged.
Moreover, given m € {0,1} and | € {0,1,...}, there ezists a
constant C > 0 such that

oo
o
0

HuooH(jl(stli*l) <C ||g||L2 ’ (3'3)

&f—mw (t,-)

dt < C|gll 2 - (3.4)
ci(si)
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Let us consider the restriction v(2) := u(z + a,2), z € CJ* of the
solution to a ray with direction Z € S¢~1. Tt follows from (3.2), (3.3)
and (3.4) that

v has an holomorphic extension to Cj* (3.5a)
sup |e **u(z)| < oo, (3.5b)
zE(CE)H_

i.e. that v(z) decays exponentially as Sz — oco. Since for an incoming
wave v(z) grows exponentially as Sz — oo (if the complex extension
to z € CJ* exists at all), the exponential decay of v(z) as Sz — oo
characterizes outgoing waves. At the same time it is the foundation of
the PML method, see e.g. [2]. We call the conditions (3.5) the PML
condition.

The pole condition is an alternative characterization of outgoing
waves, which is also the basis of numerical algorithms (cf. [6,5]). For
the differential equation (2.1a), (2.1c) we have shown in [4] that v
satisfies the pole condition that is

© has an holomorphic extension to {z € C: Sz < k}  (3.6a)

sup |s +ik||0(s +iK)| < c0.  (3.6b)
—m<arg s<m/2

For general differential equations, e.g. problems with waveguides,
we do not have a proof that either (3.5) or (3.6) is an appropriate
characterization of outgoing waves sufficient to show both existence
and uniqueness of solutions. However, we will give an informal argu-
ment that if one of these conditions is satisfied, then both are satisfied.
We have deliberately decided not to formulate this as a theorem as
it would require many technical assumptions on v and ¥ which would
conceal the main idea of the proof. For the differential equation (2.1a)
all these assumptions are satisfied.

Assume that v : [0,00) — C is a bounded analytic function, not
necessarily related to the differential equation (2.1a), and that « is a
nonnegative real number. Note that the case K > 0 can be reduced
to the case k = 0 by considering the function w(z) = e~*?v(z) with
Laplace transform w(s) = 0(s + ix).

We first assume that v satisfies (3.5) with k = 0. Let 0 < 0 < 7/2
and s € C\{0} with —7/2 < args < 7/2 — 6. Consider the contour in
Figure 3.1a). By Cauchy’s integral theorem, f7{3+7§+7§ e %u(z)dz =

0 for all R > 0. Due to the boundedness of v, limp_, o va e %v(z)dz =
2
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Fig. 3.1. Equivalence of the pole condition and the exponential decay of the
Bérenger functions

0. Therefore,

= lim e~ ¥u(
R—o0 {2
eieoo
=— lim e :/ e *v(z)dz.
R—00 ’7 0

A partial integration yields
st(s) = v(0)e” +/ e %' (z) dz. (3.7)
0

Using the estimate [v'(2)| < supjc_ =€ ~L|v(¢)| for holomorphic func-

(

tions we can show that sup{|v'(re®®)| : » > 0} < co. Then % has a
holomorphic extension to {s € C : R(se?’) > 0} and sup{|sv(s)] :
—m/2 + 0 < arg(se?) < m/2 — 6} < oo for any § > 0. Since 6
can be chosen arbitrarily close to m/2, ¢ has a complex extension to
{s € C: Qs < 0}. To establish the uniform estimate (3.6b), we may
either use an integro-differential equation for ¥, or choose 6 > /2 if
that is possible.

Now assume that v satisfies (3.6) with k = 0. Consider the contour
in Figure 3.1b). By the Fourier inversion theorem we have

1
= — 1. ST 5
o(r) 271 Rvoo /;,R e () ds
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for r > 0. Using (3.6b) it can be shown that limp_, o f7§+,yf e i(s) ds =
0. Hence, by Cauchy’s integral theorem

= i 525(s)d
V) =g i, [ 0

for z > 0. If the limit above exists not only for z > 0, but also for z €
(CS' T, we have obtained the desired extension of v to (C0++. Moreover,
|v(z)| is bounded at least for § < argz < m/2 — 6, § > 0. Uniform
boundedness of |v| in all of C{* can be shown if the integration
paths can be tilted into the domain {s € C : Rs < 0,Js > 0}. If
other singularities of #(s) occur on the positive imaginary axis or the
negative real axis, 'y?fz has to be deformed at these points as at s = 0.

4 The PML equation in the exterior domain

We assume that + is of the form v (r) = r (1 + £ [T o () dt), where
o € C!([a,0),R) satisfies

o(a) =0, 1a)
supo (r) < oo, (4.1b)
r>a

lim inf ! . 4.1
ngorlgra(r)>0 (4.1c)

The so called Bérenger function is defined by
u® (r, ) = ul® (v (r) &) .

Observe that u®) (az) = u(®) (at) and 9,u® (az) = 9,ul>Y (az).
Thus concerning the variational formulation of the inner domain prob-
lem, u(®) is as good as u(®*"). With this notation u(P) satisfies

1 0 ’)’dil 1o} (B) 2 1
— = k B) 4 — A;u®) =0. (4.2
Ty ar( ot )t (v(r)) u + oz (4.2)
In the next lemma we prove that u(®) ¢ H! (Rd \Bg) . We again

allow a boundary condition (2.5b) at a complex radius zy € C/ .

Lemma 2 Let rg > a. For j € H'/? (S'li_l) let u be the unique solu-
tion to (8.1) with z9 = 7y (ro) . We write uy (r, &) :=u(y(r),z), r >
ro. Then uy € H! (Dry,00) and there exists a constant C independent
of § such that ||u,|| ;1 < C ||§||H1/2(Sld_1) .
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Proof By Theorem 1, Part 2), there exist @ > a and a constant C such
that HU”Y”HI(D:LOO < C||g|lz2 - Therefore, it remains to show that

||u7||H1(DT0’d) < C||g|| g1/2 - For simplicity we assume & = 1 here. Let

{¢j,Aj : j € N} be a complete orthonormal system of eigenfunctions
and eigenvalues of the Laplace-Beltrami operator Az on the sphere
S9=1. We write §; = fsii—l g (+) ¢; dS. By a generalization of [4, equa-

tion 35] we get the modal expansion of the solution u (z,2) in C/.*

u(z, &) = z()T,z_d2;1 Z g Hj (2) wj (). (4.3)

uy (nd) =77 S gy )~ OO Gy ()

We will show that this sum converges in H' (D) - By [4, Corollary
20] there exists a constant N such

H o), (V- S ‘ Yo
H; (20) Iy (r)] v (r)
<C \/_—A] l 20 ﬁ
o\ ) ()
VA To\ VA
SC(W@M>@J

forall j > N, rg <r <aandl=0,1,2. Here and in the following C
is a generic constant. Recall that the Sobolev norm of index 1/2 on
84=1 is defined by

1052 =3 (1 + XD 2 1551

Let M > N then
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M 1 T i i T ’
v Y @) <oS- a0, @)
R P L 1C 1) | PN i A IR A G
=Y [ r g T TR | 0+ | gy e Y
N-1 M a o\ 24/ =N
<Clil+ Y 5P+ Y P (b [ (2)Y 7 ar

M
<Cllglg +C 3 1517 N[
j=N

where the generic constant C is independent of M. As ||§||§11/2 <
1/2Y |5 |2 -

O Y52y (14 ]12) 15517, we see that lu | py,. ) < C ldllge -

a

We will see that equation (4.2) has a quite simple form in cartesian
coordinates.

Lemma 3 u(®) € H' (D, ) satisfies the boundary value problem

Ayu+Eiu=0 (4.5a)
Ulgi-1 = g, (4.5b)

where k% (r) = k*(y(r)) and A, has the form A, = V - A,V +
b,V in cartesian coordinates. Here A, € C* ([a,0),C%¢) and by €
C° ([a,oo) ,(Cle) satisfy

A7(r,£):G%diag( L )G (4.6)
AR 0)
(d-1)x
and
5 = d—1 d-1 v (r) )
9= (T e ey )6

(d—1)x

for an arbitrary orthogonal matriz Gz whose first line is &.
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Proof 1) For u,v € C§° (R* \ BY) we have
/ Auvdr =
o (vt 0
/ /Sdl [’“737"(7 3T)+ Amu]vdrds
1 0 0._
/ /Sd 1 [ 2(97" ar’ + Vzu levdeS

—/ / rd=1 _l—d_l ’)’” 2u vdx
o Jgi1 T vy (v)? ) or

V3 denotes the surface gradient on S¢~1. Recall that Vu (r, #) is the
projection of rVu (rZ) to the tangential plane, which is orthogonal to
#. Since this projection is given by Gidiag (0,1,... 1) G; we get

Viu (r, i) = rG; diag (0,1,... 1) G Vu (ri) .
Analogously, ia%u (r,2) G} diag (1,0,... 0) Gz Vu (rz) . Therefore
0 0

- ) — ) = N GTdi -V (rz)
ar’u,(’f‘,.’ﬂ) arv(r,x) (Vu(rz))” G;diag(1,0,...0) GzVv (rz)

Viu(r,z) - Vv (r, &) = r? (Vu (ri))" GLdiag (0,1,... 1) Gz Vo (r#) .

Inserting this yields
Ayuvdr = / AVu - Vo + by, Vuo dz
Dll oo a,o0

for all v € C§° (Dgo). This implies the asserted form of A,. To
prove the regularity of A, and b, we may choose G such that it
locally depends smoothly on z. O

Lemma 4 The operator %Ay is strongly elliptic on Dy .

Proof By (4.6) we must show that there exists a § > 0 with

max {%7() %TWI(T)}>5>O.

a<r<oo ry (r)’ " y(r)

2\ _ 4ol Mot 1 (g) = Loy [yohdt
But ® (1‘7') = T+o? 2 T+max o2’ R v ) 1+(L [T a(t) dt) =

S — +mlax —. The assertion now follows from (4.1c). O

In Lemma 8, Part 1) we prove that u®) is the unique solution to
(4.5) in H' (Dg,00)- So far, we have replaced the exterior Helmholtz



12 Thorsten Hohage et al.

problem (2.5) by the Bérenger problem (4.5), which is still posed on
an unbounded domain. Motivated by the exponential decay of u(®)
we restrict (4.5) onto a bounded domain, say D, ,, p > a and impose
a zero Dirichlet boundary conditions on the artificial boundary ngl.
This yields the so-called PML system

Ayu + kgyu =0, z€D,, (4.7a)
Ulgi-1 =g (4.7b)
u\ngl =0. (4.7¢)

In the next sections we prove that this PML system has a unique so-

lution uE,PML) for p large enough and suitable . Further we show that

the perturbed Dirichlet -to-Neumann map DtNg;,ML) . ;H1/? (8¢1) —
H~1/2 (Sg_l) given by

(PML)

g Oruy,

is well defined and converges exponentially fast to DtN, as p tends

to +oo0.

5 Exponential Convergence of DtngML)

In the following we are repeatedly concerned with boundary value
problems of the type (4.5) and (4.7) on domains Dy, 4,, 00 > 63 >
01 > a. For a compact notation of these problems we make the fol-
lowing definitions.

Definition 5 Let co > 6y > 61 > a be given. We define the operators
£91,92 H (D91,92) —H! (D91,92) x H'/? (ngl) x H'? (Sggl)

and

‘601,00 : Hlloc (D01700) - D’ (DGI,OO) X H1/2 (Sgl_l)

by u — (Ayu + kgu, u|5g1_1,u\sg2_1) and u > (An,u + k?ru, u|Sgl_1> ,
respectively.

Remark 6 A function u € H'! (D, ) solves the Bérenger system
(4.5) if and only if it satisfies £, oou = (0, ¢) . A function u € H' (D, ,)
solves the PML system (4.7) if and only if it satisfies £, ,u = (0,9,0) .
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For the proof of the following lemma we restrict the class of admissible
paths v by the following conditions: There exist a’ > a,09 > 0 and
€ > 0 such that

v(r)= (1 +iog)r (5.1a)
and
00 . 2
9 9 Pm min (1,/$ )00
Koy Z a()”rm‘ < o] (5.1b)

m=2
for r > a' with ag := (1 4 i0g) . For simplicity we assume a’ > 1.

Remark 7 The condition (5.1a) means that v is a straight line in
the complex plane for r > a'. It is easily checked that A, = #A for
0

r > a'. Therefore (4.5a) is equivalent to
(A + agk? (ag |z))) u® =0, |z]>d

which means that u'B) satisfies a Helmholtz equation with a complez
wave number for |z| > a'.

Lemma 8 The following holds true:

1. For 6 > a the operator E;,éo is well defined and bounded from
{0} x H/? (Sg—l) to H' (Dp.00) -

2. The operator Ly , has a bounded inverse for p > a'+1, where o' is
defined in (5.1). There exists a constant C such that H[";’l/’H <Cp

for all p > a' + 1.
3. Ly, 9, 15 a Fredholm operator with index zero.

Proof (1) Let g € H/? (qu) and let u denote the unique solution
to (3.1) with zp = v(6) and §(£) = g(0Z) in Theorem 1. Then
uy € H' (Dpoo) given in Lemma 2 solves Lu, = (0,g), and there
exists a constant C such that ||uy|| < C||g||. Uniqueness is shown by
a mode-wise argument as in [4].

(2) Given (f, hqg', hyp) € H! (Da,,p) % H1/2 (5;1,—1) « H1/2 (qu) we
must show that the equation

['a’,pu = (f, hat, hp) (5.2)
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has a unique solution u € H' (Dy ,) and that ||ul| < Cp ||(f, ke, hp)
By Remark 7, equation (5.2) is equivalent to

Lu=a}f (5.3a)
u‘sd, = ha/ (53b)
ulsa = hy (5.3c)

with the operator £ : H* (Do p) = H 1 (D,,) given by

A+<1+Z mlwl )F&Qag] u.

It is obvious that there exists a constant C; independent of p such
that HE‘ < (. Select a right inverse Rj2 of the trace mapping
H'(Dyo) — H'Y? (Sf_l) x H1/? (Sg_1>, u (u|511_1,u|5§z_1>.
Using R; 2 we define a right inverse of the trace mapping H' (D, ,) —
H/2 (ngl) x HY? (8471) | u s (u|5§,_1,u|5g_1) by

U —

Rat p (hat s hp) (1) := [Rl,z (ha’ (G") vho (9/2))] (M—p%:l?d:%) .

Recall that @’ > 1, p > 2 and that

||f||H1/2(Sg_1) = G(d—l)/2 H(l _ 9_2Aj)1/4f (0_1)‘

L2 (sit)”
Now,
Bt (it )|

< de/2 max {”ha’ a'-) ||H1/2(Sf_1) ) ||hp (p/2')”H1/2(5§—1)}

(a')1/2
S de/2 max {W ||hal||H1/2(SZ'—1) ,

2(d-1)/2 7 p2\ /4
W (Z) ||hp||H1/2(S,‘f*1) }
< Copmax {|lhall o5ty s Mol oo 51y }

with a constant Cy independent of p. Therefore, ||Ra/ p” < Cyp. Let
A:Hj (Dy ) = Hj (Dy ) and P : Hj (Dy ) — Hj (Dgr ) be the
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operators defined by
((Aw + K*afw) ,7) = (Aw,v)

<m2a3 2 o el > = (Pw,v)
for all w,v € H} (Dy ). u solves (5.3) if and only if w := u —
Ry (hgry hy) satisfies

(A+P)w=0adJf— TLRy , (ha,hy)

where J denotes the canonical isomorphism between H ! (Da:,p) and
H' (Dgy ). Obviously, ||A|l,||P|| < Cs with a constant C3 indepen-
dent of p. Since () = o9 > 0, the invertibility of A follows by
standard arguments. Further we have

1 —
3 (Q—O.Au, u) = 1170‘78 (Vu,Vu) + k209 (u, ) .

Therefore
min (1, 52) oo
1+ 0(2)

1 1
(w0) < (—Au,u) < Al Jlu]
Qp |

which yields HA_1|| < ool By assumption (5.1b)

min(1,£2)og

[(Pu,v)| < max |f<a o2p (agr ‘/
rela’ d\Bd

min (1 K )00
< (;) [lull g2 [[vll g2

|vo

: 2
so ||P|| < W. This implies || A7'P|| < C4 < 1 with a constant
Cy independent of p. Hence A+ P = A (I + A_lP) is invertible and

H(A + P)_lH < 15’%4. The estimate

Jull = H(A+P)‘1 T (08F = ERut g (bt 1)) + Ry (s )|

Cg Cy
—Cy

1) Cop || (hat by)|

completes the proof.
(3) We use Theorem 13.4 in [12]|. The case d > 2 is clear. For d = 2
we must show that A, is properly elliptic. By the definitions 10.5.2
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and 10.5.3 in [12] and 4.6 it suffices to show that the polynomial

P(z) = ( ,(1))2 + 22 758) has one root with Sz > 0 and one root
5 (r
with Sz < 0. The roots are given by z4 = i) Since R (i,) =
Y (r) Y

1+0%Hf; ;’(t) 4> ——L_ the assertion follows from (4.1c). O
o +maxo

We emphasize that in the previous lemma we did not prove the
solvability of the PML system (4.7) or equivalently the solvability of
La,pu = (0,9,0) . This will be done in the following for p large enough
by a technique proposed by Lassas and Somersalo in [8]. The key
idea is to introduce propagation operators which allows an equivalent
formulation of the Bérenger and the PML problem on a fixed domain.
Then the PML problem can be interpreted as a perturbed Bérenger

problem.

Definition 9 For o’ < 0; < 0y we define the propagation operators
Py, P E2 (SE7) > HY2 (S57Y) by
(02); _ p—1
P012 h == £u/’92 (O, h,O) |S;i;1
and

Py =1 (0,h)] si

Lemma 10 1. The restriction of u'® to D, o is the unique solution
inu € H' (Da,au) to the equation

Logonu = (O,Q,Péﬁo) <u|53,—1)) . (5.4)

2. Let u € H'(D,,) satisfies (4.7a) Then u satisfies (4.7b) and
(4.7¢c) if and only if

‘Ca,a”u|Da,au = (OagaPéﬁ) ('U/|Sd’71)) . (55)

Proof 1) u(® satisfies (5.4) by construction. Let u be any solution of
(5.4) and w = [,;,,loo (u|5d71) . Then w|Sd;1 = u|5d71 and 'w|5d,71 =

| ca—1. Hence we conclude that w = u = £, , (0,w|ca—1,w| a1 ) in
Sau a,a Sa/ Sau

By \ B,r. Therefore, the function

_Ju@),zeBj\ Bl
W(m)_{w(x),xER‘i\Bd

all
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solves Lq00W = (0,g9). Hence W = u®), and in particular v =

U(B) ‘Ba” \B_ad.

(2) Any solution u to (4.7) solves (5.5) by construction. Conversely, let
u € H* (D, ,) satisfy (4.7a) and (5.5) and let w = L',;,?p (O,u|S;z’_1,O).
Then w|ga-1 = u|ga-1 and w|ga-1 = u|ga-1, and by virtue of Lemma
8 (2) u(z) = w(z) for z € BY, \ B%. By the unique continuation
principle for elliptic equations (see [3, Section 8.3]) we conclude that
u(z) = w(z) for x € Bl‘f \ BY,. In particular u satisfies (4.7¢). (4.7b)
is an immediate consequence of (5.5). O

Again, we did not prove that equation (5.5) has a solution.

Lemma 11 Let o' < a" < co. The following holds true:

1. Pa(,?o) 18 a compact operator.
2. There exists a constant C such that for all p > a" and all h €
/2 (Sd_la’)

|PEn] 0 < G Il e (5.6

3. There exists a constant C such that for all p > a"

Proof (1) We use the same notation as in the proof of Lemma (2). By
(4.4) we have

P(OO) _ P(P)

all aII

‘ < Cperoor, (5.7)

with h; = Jgi-1 b (a'Z) j (%) dZ. By [4, Corollary 20] it holds true
1
that
[yt @@ PN =y
| (o

al
o
with a generic constant C. Define the operators Py : H'/? (S;i,_l) —
1/2 ( gd—1
HY/2 (5471) by

‘ﬁj‘gc <cC

ﬁj\

N
h— T_% (a')% Zﬁj(pj (Lft) .
j=1
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Obviously, Py has finite rank and is therefore compact. Further,
pleo) o/ \V
) (), PNhH = Cmax ¢ (5 5]
>N a

Since —A; — oo we conclude that Py converge to Pé,c,x’ ), Therefore,

P(E,?O ) is also a compact operator, cf. [9, Theorem 1.4.3].
2) Let h € HY2 (S%™1) be given and let u denote the unique solu-
a g

tion to (3.1) with zg = 7y (a’) = (1 +i0¢)r and § (&) = h(a'2). By
Theorem 1, Part 2) we have

L7 0,h)) (r2) = [(1 + 0y r|(1=D)/2 girr o —raor
(L% (0,1)) (&) = [(1 + o) 7]
(uw () + / e~ H(LHio0)r-ag (1 7) dt) .
0

Further by the estimates (3.3) and (3.4) there exists a constant C
such that for all z € C} *

Jlrassy | [0 0, a0 < C ety

H1/2(5871)

Using

sy = o2 (=220 71 (71

12(s¢1)

we get

ﬁ;,’loo (0,h) |Sg—1

roop Ii
a(si-ty S Ce "l 2 sp-r)

—KOop
<Ce ”h”Hl/?(sgfl)_

Since Pp° = [,;,? (0,h) |Sd 1, this yields (5.6).
(3) Let h € H'/2 (S47") be given. By the definition of P\, and P/
we have PV — PYh = Trgai 5!, (0,0, P°h) . Using Lemma
8, Part 2) and (5.6) we obtain

|

|~

which yields (5.7). O

all

POn— PO

= |'Tr.a—
| rrsa

= s s o] < o,
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Proposition 12 There exists a constant p(eXt) > a such that (4.7)

has a unique solution for p > p( ) The operator DtN,(lp D) is well

defined for p > p(()em), and there exists a constant C such that
HDtN — DtN(PML) H < Ceroor, (5.8)
Here we use the operator norm of L (Hl/2 (S4-1) JH1/? (84-1)).

Proof Define the operator K : H' (Bd,, \ﬁ) — H 1 (BY \ BY) x
H'Y? (84-1) x H'/? (S;i,,_l) by u — (O 0, P(,, ’U,‘Sd 1) . By Lemma
10, Part 1) u(®) satisfies

Loagru® — Ku® = (0,9,0). (5.9)

The operator L, . is of Fredholm index zero and K is compact by
Proposition 11, Part 1). Hence, £, 4 — K also has Fredholm index
zero. To prove injectivity, assume ug satisfies (5.9) with g = 0. Then

L qrug = (O,O,Pa(ﬁo)u|5d'—1) and hence by Lemma 10, Part 1) ug =

‘C(;,éo (0,0) =0. Thus, (;Ca,all — K:)_l exists.
Next, consider the system (5.5). The same argument as above yields
an equation

(Cowr ~ E) ™ = (0.0,0) (5.10)

with Ku = (0,0, Py ,Try) . Applying (Loer — IC)_1 on both sides of
(5.10) yields

( (IC IC)) (PML) _ ,,(B), (5.11)

al/ all

As (/c . 1’6) (0 0, ( P P(”)) 'I‘.ra') it follows from Proposi-

tion 11, Part 3) that ‘IC - ICH < Cpe™"%90P_ Therefore (5.11) is solv-
able by a Neumann series for p large enough and we conclude that

H“(B) B ugPML)“ < Cpe "o0P H (B)H
Hl(Da,aH) 1-— C’pe"“op
< Cpe "7 ||g]| .

We claim that any v € H? (Da’an) satisfying V-A7Vu+b7Vu+k,27u =
0 has a normal derivative 0, u|5d_1 € H™'/? (84-1), which satisfies

< C'|jul| g1 with some constant C' > 0. To see this

—1/2 —
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we choose a right inverse R, : H/? (Sg_l) — H! (Dayau) of the
trace operator ¢ > ¢|ga-1 satisfying suppR,p C D asar forall ¢ €
a "y

H1/? (Sgil) . Given ¢ € H/? (ngl), we multiply the differential
equation by R,p, integrate and formally use the Gauss divergence
theorem and the identity A, (a,&) = Id to obtain

<8Tu|sg_1,<p> = /D —A,Vu-VRep +by- VuR.p + kguRaw dz.

a,p

Since the right hand side of this equation is bounded by

e {14y g 3o 182 } s W Rl

we have proved the existence of d,u € H /2 (S¢71) and the asserted
bound. Putting everything together, we obtain the desired estimate

HDtNag - DtN&PML)gH <cC Hqu’ML) — u(®) HHl(Da,au)
< Cpe "7 ||g| .

6 Convergence of the PML solution in the interior domain

So far we have only considered the PML equation in the exterior do-
main. We will now derive the complete PML system in variational
form on Bg \ K and show the convergence of the PML—solution in

the interior domain {2,. We introduce the Hilbert space H (10) (£2p) ==
{v € H' (12)) : U\ngl :0}. We extend A,, b, and k, to {2, by

Id, [0,...,0] and k?, respectively and define HS,PML) : H(lo) (£2,) x
——
dx
H(lo) (£2,) = C by

WPV (1 ) = / (A, V) Vo + b,V + kyp,uo da.
12,

The functional F' is defined in equation (2.3).
Theorem 13 There exists a constant py > p(()eXt) and C such that the
variational problem

WP (u,0) = F (v) forallv € Hly) (2,) (61
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has a unique solution ugPML) for p > po. Further, for p > po

o 2

with a constant C independent of p.

Before proving this theorem we need the following lemma, in which
the error introduced by a perturbed DtN,—operator is estimated.

Lemma 14 Let ﬁl\Ta €L (Hl/2 (84-1) ,H~1/2 (S¢1)) . There ea-
ist constants ey, C > 0 such that

‘ DiN, — DiN, || < ¢

implies the ezistence and uniqueness of a solution U, € H' (B2 \ 2)
to the system (2.4) with DtN, replaced by DtN,. Moreover,

. (6.3)

Hm _ 4, (in®)

‘ < CHB?N/(I—DtNa

Proof Let us define A, B : H' (£2,) — H' (£2,) and G,S € H™! (£2,)

(Vu, Vo) — (k*u,7) — DtNgyuv ds = (Au,v)

sd-1

/d . DtNyuvds = (Bu,v)
Sa~

/ gvds = (G,v)

on

/d DtN,u("9%ds = (S, v)
gd=1

for all v € H' (B¢\ ). B and S are defined analogously, where

P

DtN, is replaced by DtN,. As proved in [4] A~! exists and hence

—~—

u™) = A=1(G+8). To prove existence and uniqueness of u(int)

—_—

\ —1
for a given DtN, we must show that (A+ B — B) exists and is
bounded. Observe that

((-5)us)-

/d . (DtNau — m> vds
Sa~

U|Sg_1HH1/2

< |ptNa = DN |l o |,
< ¢ | DtN, — DtNG | flul [o]] -
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Hence HB —EH < cHDt a

all - The existence of
(A+B—§)71 = (A [I+A*1 (B —E)])fl

for small enough and (6.3) follow by a standard Neu-

mann series argument. 0O
To prove Theorem 13 we interpret the action of the sponge layer
as an approximation of the DtN,—operator.

Proof (Theorem 13) Let p > p(e"t) Define ji : H' (2,)x H! (2,) - C
asin (2.2) but DtN, replaced by DtN((leML) Since HDtN - DtN(PML) H

Cpe= 70" (Lemma 12) the variational problem
fi (u,v) = F (v), forallv € H' (£2,). (6.4)

as a unique solution uE,PML int) e gt (£2,) for p large enough, and

H pPML int) _ (PML)H < Cpe *% by Lemma 14. Further, with

H'(2)
g = uE,PML’mt)|Sg_1 € H'Y?(S41) the system (4.7) has a unique

solution uE,PML’eXt) € H' (D,) . A straightfoward computation shows
that

IN

_ [ (@), v e
° ugPML,eXt) (3;') , = Da,p

is a solution to (6.1). To prove uniqueness, we extend 7y to {2, by
v(r) = r. Hence v/ = 1 in £2,. Accordingly we extend A, to (2.
A solution u to (6.1) satisfies Ayu + k2u = 0 in £2,. It follows eas-

ily from Lemma 4 that the (extended) operator 7T7'A7 is strongly
elliptic. Due to the interior regularity theorem (see [10, Theorem
8.51]) for strongly elliptic equations we conclude that J,u| gd-1 exists.
Since the restriction of u to Dy o is the unique solution to (4 7) with

g = ulgi-1 € HY/% (S471) we see that 0, ru|ga-1 = DtN(PML Ul ga-1-

ugPML) (.’L‘)

Therefore, the restriction of u to {2, is the unique solution uE,PML jnt) to
(6.4). In particular u| gi-1 = uE,PML’mt) and hence u|p, , = uE,PML sext),
O
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