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Abstract

We investigate metastable dynamical systems subject to non-stationary forcing as
they appear in molecular dynamics for systems driven by external fields. We show,
that if the strength of the forcing is inversely proportional to the length of the slow
metastable time scales of the unforced system, then the effective behavior of the
forced system on slow time scales can be described by a low-dimensional reduced
master equation. Our construction is explicit and uses the multiscale perturbation
expansion method called two-timing, or method of multiple scales. The reduced
master equation—a Markov state model—can be assembled by constructing two
equilibrium Markov state models; one for the unforced system, and one for a slightly
perturbed one.

Keywords: Markov state model, non-equilibrium molecular dynamics, two timescale
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1. Introduction

This article aims at studying metastable dynamical systems with non-stationary exter-
nal forcing. The goal is to understand the effect of a weak forcing on the transition
probabilities between the metastable sets of the dynamical system. This question is
of high interest for understanding the dynamical behavior of biomolecular systems un-
der non-equilibrium conditions caused by external fields. Such systems have attracted
a considerable attention recently, for example, the potential effects of electromagnetic
radiation on the human body tissue, in particular on the molecular and cellular level



(e.g. on DNA, proteins), has been extensively investigated in a vast number of articles,
e.g. [APSDT03, BD14, AGT12].

Molecular dynamics (MD) simulations have proved particularly useful for understand-
ing the response of biomolecular conformations to external fields because of their ability
to resolve molecular details that cannot be resolved in experiments and allows for study-
ing non-equilibrium processes in a statistically reliable and thermodynamically consistent
way [WSCDS14]. Despite their many advantages, MD simulations have severe limita-
tions. One of the main problems is that the maximal possible simulation length often is
shorter than the timescale of interest.

This article is mainly concerned with circumventing the latter obstacle by introduc-
ing non-equilibrium Markov State Models for MD with weak external forcing. Markov
State Models (MSMs) have been well developed over the past decade in theory and
applications, see [SS14, BPN13], but for systems under equilibrium conditions or in non-
equilibrium steady states only! The principal idea of equilibrium MSMs is to approximate
the original high-dimensional MD system by a reduced Markovian dynamics whose (dis-
crete) states represent the dominant metastable sets of the MD system which are iden-
tical to the main conformations of the molecular system under consideration [SS14]. It
has been shown that for molecular systems exhibiting such metastable sets the dynamics
given by a MSM allows very close approximation of the longest relaxation processes of the
underlying molecular system, at least under equilibrium conditions [SNS10]. Moreover,
it has been demonstrated that in such cases MSM building requires short equilibrium
MD trajectories only, much shorter than the timescales of interest [NSVE 09, BPN13].
Thus, standard MSM building exhibits two main advantages: It allows to study the dy-
namical behavior on long timescales (i) without requiring MD trajectories of comparable
length, and (i) the MSM has to be constructed only once to study all times, at least
under equilibrium/steady state conditions.

MSM building for MD systems with external forcing have already been discussed,
in particular for strictly periodic forcing [WS15] and for the case of strong forcing in
which the metastable sets of the system are moved in state space and become coherent
sets [KCS16]. The first case can be mapped into the equilibrium/steady case by intro-
ducing Floquet states, but is of limited interest for applications since most external fields
show slowly varying amplitudes of the oscillatory field strength. In the latter case the
resulting MSM has to be repeatedly re-calculated during the system’s evolution, thus
destroying the advantage (ii) of MSMs. Furthermore, in many applications, a forcing
so strong that it allows to move the metastable sets in state space would be unreason-
able since the associated influx of energy would destroy the molecular structure itself.
In contrast, most interesting applications belong to cases of highly oscillatory external
fields with slowly varying small amplitudes [AGT12]. This is the case we consider in
this article. We will demonstrate it allows for a version of MSM building that inherits
the two main advantages (i) and (ii) from MSM building in equilibrium.

More precisely, we will show that a certain class of forced systems—where the forc-
ing influences the system’s conformation dynamics in a non-trivial way—can be mod-
eled by a MSM that can be constructed once to study the forced system for all times.
The construction is based on two equilibrium Markov state models; one for the un-



forced equilibrium system, and one for a slightly perturbed one. To this end we use
the multiscale perturbation expansion method called two-timing, or method of multiple
scales [Lic69, O'MT70], [Kuel5, Section 9.8]. In order to set this up we choose a spe-
cific scaling of the external forcing that explicitly depends on the dominant metastable
timescales of the underlying unforced system. This seems reasonable since this article
aims at showing that there exist cases in which a weak and slow forcing induces non-
trivial and significant changes in the conformation dynamics of the molecular system
under consideration, instead of aiming at the most general analysis. In order to specify
this setting we first discuss details of the unforced dynamical system and the scaling of
the forcing in Section 2, before we review equilibrium MSM building in Section 3. This
prepares the ground for approaching MSM building for the forced system in Section 4.
Algorithms for constructing the resulting non-equilibrium MSMs are discussed in Sec-
tion 5; here the focus is on showing that such algorithms really require the construction
of two equilibrium Markov state models only, and not on algorithmic efficiency. In Sec-
tion 6 we give a detailed analysis of a simple test case: a diffusion in a one-dimensional
potential landscape. The article ends with concluding remarks about limitations of our
approach and future work.

2. Dynamics

We consider diffusive dynamics in a smooth, bounded from below energy landscape V/,
dXy = (b(Xy,t) — VoV (Xy))dt + /28~ 1dBy, (1)

where X; € R? is a time-dependent random variable! describing the state, B; denotes
a standard Brownian motion in d dimensions, and 5 > 0 the parameter of the inverse
temperature. The time-dependent drift term b represents external forces on the system
under consideration.

The associated Fokker—Planck equation for probability density functions u = u(z,t)
has the form

0
= Au, (2)

where A denotes the generator given by
A®)u(z,t) = 87 Agu(z, t) + Vi - (Vo V(2,t) = bz, t))u(z, 1)), (3)

where the argument b indicates that A depends on the external forces and, via them,
explicitly on time t.

As pointed out above, we are interested in perturbations that influence the system’s
conformation dynamics in equilibrium but does not reshape the energy landscape com-
pletely. The literature on MSMs indicates that the conformation dynamics in equilibrium
is determined by the dominant spectrum of the generator A(0) for b = 0, or, respectively,
by the associated transfer operator T; = exp (£.A(0)): The longest time scales of the con-
formation dynamics are encoded by the low-lying spectrum of A(0) (which corresponds

'Bold face capital letters denote random variables.



to the dominant eigenvalues of T}); since A(0) is the generator of a reversible process,
its eigenvalues A all are real-valued and non-positive, A < 0, where the largest eigen-
value A = 0 is simple if the process is ergodic [SS14]. In the following we assume that the
spectral gap condition is satisfied: there are m low-lying eigenvalues of A(0), that are of
the order of some small parameter €, while the remaining eigenvalues are significantly
larger in modulus (order 1). A precise statement is given in Section 3 below. In order
to stress this assumption notation-wise, we use the small parameter € as an index to the
generator, that is, we denote the generator by A.(b) in the following. The m low-lying
eigenvalues induce m slow time scales of order e~! in the solution of (2) that are the
dominant relaxation time scales of the conformation dynamics in equilibrium.

What kind of relation between the external force b and the internal conformation
dynamics in equilibrium do we consider? On one hand, we do not allow for the driving
force to shift the main wells of the energy landscape around. That is, we restrict ourselves
to the consideration of weak external forces. On the other hand, as we will see later, the
interaction of the external forces b with this internal conformation dynamics will only
be “non-trivial” if they also depend on the slow time scale e~! and not only on faster
time scales (otherwise the external driving force and the internal conformation dynamics
would be adiabatically decoupled). These two aspects lead to the following form of the
external forcing that we will consider in the following:

bz, t) = ef (t,et)b(z),

where f denotes a time-dependent pre-factor that may depend on fast and slow time
scales, and b depends a force that depends on the state of the system but no longer
explicitly on time. Choosing the strength of the forcing to be O(e) ensures that the
total energy injected into the system on the slow time scales of length O(¢7!) is at
most O(1), thus the forcing does not overwhelm the original potential, as desired. Of
course, other magnitudes of the forcing strength might be possible here too, but already
this choice will lead to interesting and non-trivial behavior.

Solving the Fokker—Planck equation exactly is infeasible in general. Therefore, we
want to approximate its solution by spatial discretization, e.g., based on a finite element
or finite volume discretization of the generator A.. By choosing an arbitrarily fine
discretization one can in principle reduce the discretization error as much as wanted,
i.e., a very fine discretization will yield an arbitrarily accurate solution of (2). This
might not be practically realizable in some example cases (e.g. due to the dimension d of
the state space being too large), but theoretically possible. Also, this allows us to work
with matrices instead of operators, and hence the presentation will not be obscured by
functional-analytic technicalities, as generators of the form (3) are unbounded operators.

When discretizing the generator A. appropriately, the transpose L. € R™ ™ of the
resulting discretization matrix has the form of a generator or rate matriz whose dimen-
sion n is given by the number of discretization elements used. A matrix L € R™ " is



called rate matrix if it satisfies the following properties:

Lij >0 for 4 7§ j, (4&)
L; <0 for all ¢, (4b)
Z Lij =0 foralli. (4c)

J=1

That is, by such discretization we replace the Fokker—Planck equation (2) by the master

equation,
d

dt
on a finite dimensional state space, i.e., u(t) € R", where n typically is very large. With
our above assumptions, the rate matrix £, € R™*" will have the form?

u(t) = Lu(t), ()

Lo(t) = L. +cf(t,et)L,

where L. denotes the rate matrix that results from discretization of A.(0) alone, and L
the remaining part of A.(b) originating from the external force b. We introduce time ¢
as an argument of L. in order to mark that fact that L. is explicitly depending on ¢ in
contrast to L.

3. Stationary equilibrium MSM

3.1. Key assumptions and properties

If external forces can be ignored, i.e., if b = 0, then, under weak growth condition® on V,
the process is ergodic and has the unique invariant measure pu(x) o exp(—fV(z)). In
addition it is reversible, i.e., it satisfies the detailed balance condition. This is the case
of molecular dynamics in equilibrium. In this case L. = L. is a self-adjoint matrix due
to the reversibility of the underlying process.

We will consider this situation first and show how to construct a Markov State Model
for L. = L. that allows to replace (5) by a low-dimensional coarse grained master
equation. Subsequently, we will return to the general case with non-zero b, where L.
depends explicitly on time ¢ and where we no longer can use properties like ergodicity,
existence of an invariant measure or reversibility.

In the equilibrium situation, £. = L. inherits the form of the spectrum of A.. That
is, we assume that L. exhibits the following properties:

2Note that if L is a rate matrix, —L is not, but we would like fL to be a rate matrix independent of
the sign of f. This can be achieved, as done also earlier in [KV14], by having a discretization L
and L_ for b and ,57 respectively, and using | f|Lgign(s) as discretization of the corresponding term
in A(b). Here, sign(f) € {+,—}. We will refrain from pointing this out again, and use the simpler
notation, fL, keeping this comment in mind. If € is sufficiently small, £, will be a rate matrix, even
if fL is not.

3B.g., V(z) > c||lz||® for some ¢ > 0 and sufficiently large ||z|| implies the desired properties [MS02,
MSHO02]. Here, || - || denotes the Euclidean norm in R.



(A1) The generator L. is irreducible and aperiodic with unique invariant measure ., fur-
thermore, due to reversibility the detailed balance condition holds, i.e., p;Lc ;j =
pejLe ji for all 4,5 =1,...,n.

(A2) For small enough ¢ the generator L. exhibits m eigenvalues
0=Xc1 >A2=6Xa > ... > A = €Ay, (6)

where the identities are up to order 2 and the Xj < 0,7 =2,...,m, denote &-
independent constants. In contrast, the other eigenvalues satisfy

Aei < —T, i=m-+1,...,n, (7)
with some e-independent r > 0.

(A3) The dependence on ¢ is smooth and for ¢ — 0 the family L. converges to a generator
Lo (entry-wise).*

While (A1) directly results from the assumptions on V' and a structure-preserving dis-
cretization, e.g. [LMHS11], and (A2) from the spectral gap condition, (A3) allows us to
study the asymptotic behavior of L. for ¢ — 0 which will show instrumental for deriving
the coarse grained master equation for the equilibrium/stationary case as well as for the
explicitly time-dependent case.

Note that € does not need to be a parameter with physical meaning. It is tempting
but misleading to think of € being proportional to the temperature 3~'. In that case,
every local minimum of the potential V' would become arbitrarily metastable as the
temperature decreases to zero, and potentially many more eigenvalues than just the
first m would accumulate at zero. Instead, Lg is an artificial rate matrix not necessarily
belonging to a diffusion of form (1), which decouples exactly those metastable sets which
we want to model for a given €.

Example 1. Let us consider the double well potential
V(z) = (z* = 1),

for which (1) exhibits two metastable sets, the neighborhoods of x = £1, if b = 0. Al-
though, as mentioned above, we do not view the inverse temperature as the small param-
eter €, in general, here it allows for a simple construction by doing so. We consider the
dominant eigenvalues A\g;, i = 1,2,..., of A(0) for B = 108, € = —1,-0.9,...,1.8,1.9,2,
by discretizing A(0) on a very fine grid (2000 grid points on [—5,5] with Dirichlet zero
boundary conditions). While Ag1 = 0 (numerically) and A\g3 < —3 for every 3, the
second eigenvalue decreases in magnitude exponentially in B, cf. Figure 1 (right). As
long as the magnitude of \g o is larger than machine precision, we observe exponential
decay, i.e., |Aga| WP for some 0 < w < 1. Thus, here we can set € = wP.

4In the undiscretized, operator-based case such a strong assumption would hardly hold, since A. is
already an unbounded operator. In that case we would have to reformulate (A3) and turn to operator
theoretic methods [PS08].
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Figure 1: Left: the double well potential. Right: the dependence of the second eigen-
value, Ag 2 on the inverse temperature 3. Before reaching the order of magni-
tude of machine precision, [Ag 2| ox w? for some 0 < w < 1.

Under above assumptions on L., the matrix Ly has an m-fold eigenvalue A = 0.
Since Ly is a rate matrix this means that the state space {1,...,n} decomposes into m
(disjoint) invariant sets A, ..., A,, such that by (4c) we have

Lolj:(), jzl,...,m.

Here, 1; € R™ denotes the indicator function (vector) of A;, ie., 1;(i) =1 for i € A;
and = 0 otherwise. Lg is self-adjoint, irreducible and aperiodic if restricted to any of
the A;. Thus, the m-dimensional (right-hand) eigenspace E, of Lo for the eigenvalue A =
0 is spanned by the indicator functions 14, ..., 1,,. Moreover, for every j =1,...,m, Lg
has a unique invariant measure j; with u;‘rlj = 1 that is supported on A;, that is, yu;
is 0 outside of A;. Then, every measure of the form g = Z;n:l ajpuj with non-negative
coefficients oy is an invariant measure of Ly. Thus, the (left-hand) eigenspace E; C R”
of Ly is spanned by the p;.

The projections II; and II,. on the eigenspaces E; and E,, respectively, are thus given

by

m m
M= mli, Th=) Ly =T0.
j=1 j=1

Since Lg is reversible with respect to ug (for every feasible coefficient vector o =
(at1,...,am)T), the (right) eigenvectors of Ly span the whole space R, and they are mu-
tually orthogonal with respect to the po-weighted scalar product (-, -),,, where (u, v),, =
S8 u(i)v(i)po(i). For later use, we also introduce the orthogonal complement Ej- of E;
that consists of all v € R™ that satisfy Il;u = 0. Also, let us collect following properties of
the projections, which we will need later. They follow from straightforward calculations.

Lemma 1. We have

a) ;LY = LI, = 0; and



b) exp(tLIIL = M exp(tLE) =10, for all t > 0.
The same expressions hold if we replace both 1I; by II,. and LOT by Lg.

With these preparations we return to the master equation in equilibrium,

d
£u5(t) = LaT ue(t), us(0) = p. (8)

3.2. Perturbation expansion and secular terms

By assumption (A3) we have that L. = Lo+ G + O(e?) for some G, and let us assume
that the solution of (8) admits the perturbation expansion

u(t) = up(t) + euy (t) + O(e?)

in e, with coefficient functions ug, u; bounded uniformly in ¢. Substituting these expan-
sions into (8) and collecting the terms with the same order of € gives

d
e —up(t) = Liuo(t), uo(0)=p,

d
ets () =Liu(t) + GTuo(t), w(0)=0.

Solving the first, then the second equation yields®
t
u(t) = exp(tLi)p + 5/ exp ((t — S)Lg) GT exp(sLi)pds + O(e?). 9)
0

This result has two major shortcomings. First, the best a priori bound on u, the
integral term in (9), is O(t), since Lo being a rate matrix gives that exp(tL]) is bounded
uniformly in ¢. That means, the expansion is only valid for times t = O(1) as ¢ — 0,
since from this time on we cannot guarantee the validity of our expansion, because
the term eu;, assumed to be of size O(e) during the derivation, may grow beyond this
bound. Such unbounded terms in perturbation expansions are called secular [Kuelb,
Section 9.6], and we shall try to avoid them.

Second, expression (9) does not tell anything about the behavior of the system on
slow time scales. The eigenvalues of L. of magnitude O(e) tell us that some components
of the solution of the master equation (8) decay on time scales O(¢~!). However, the
term exp(tLl)p of (9) lacks exactly these components by the construction of Lg; it
describes only evolution on the fast time scale. The integral term, hence containing the
slow processes, stays uninformative in this respect.

We could try to obtain a perturbation expansion directly on the slow time scale 7 := t.
For this, let v.(7) := u.(7/¢). Carrying out the same procedure as above, we obtain, to
our dismay, that

& (wolr) + () = e Lfwol(r) + ..

5The solution of %u(t) = Au(t) 4 g(¢) is known to be u(t) = exp(tA)u(0) + fot exp ((t — s)A) g(s)ds.




i.e., we are unable to match the first term on the right-hand side, because there is
no other term with the same order of €. This makes perfect sense, since u. has fast
components in it, which cannot be modeled on the slow time scale otherwise. Thus,
there is no regular perturbation expansion [Kuel5, Def. 5.1.4] of our solution on the slow
time scale. Such problems are called singular perturbation problems. The literature on
singularly perturbed dynamical systems gives us a partial answer. According to [CR79],
e.g., on the slow time scale ! we have

lim ue(t/e) = exp(tTI,GTTI)T;p, (10)
e—>

see Appendix A. However, such kind of limit results do not allow to understand the
dynamics on faster scales outside of E;.

3.3. Coarse grained master equation

The following statement is a simple consequence of Theorem 2, which we will derive
later in Section 4. Note that it splits the evolution of the full mater equation into two
parts: one on the slow and on the fast time scales.

Theorem 1. Under the assumptions (A1)-(A3) the n-dimensional master equation (8)
has a solution u. of the form

u(t) = a(et) + exp(tLE)d(et) + O(e), (11)

valid for times t = O(e~ 1), where 1 € E; is given by the coarse grained master equation
of essential dimension m < n,

d
S ut) = LG Ia(t),  a(0) = Ip, (12)

with §(ct) € B} and an n x n matriz

G = lim (L. — Lo). (13)

e—0 ¢

Remark 1. Our result incorporates (10), since §(et) € Ei-, thus is contained in the span
of Lo-eigenspaces corresponding to purely negative eigenvalues, and so lim._,o exp ((t/a)Lg) i) =
0 fort > 0.

The generator II;GTTI; = (I1,GTI,.)T of the coarse grained master equation is an n x n-
matrix with rank m < n. The matrix representation G of II,.GII, with respect to the
basis {11,...,1,,} of E, is an m X m matrix given by

éij :MzTGlj? h,j=1,....,m. (14)

To see (14), we compute

m
I,GILv = Y Liuf G1u) v,
k,j=1



so that by inserting the basis expression v = ), ¢;1; of an arbitrary vector v € E, we

get
m m
I, G0 = Z Lopf Gy Ly =y (ZufGlej)lka

k,ji=1 k=1 =1

that is, IL.GII,v = ), ar1) with coefficients a; = Zj ijcj which shows that G is the
desired matrix representation.
As a consequence of (14), GT is the matrix representation of I;GTTI; in the dual basis

{p1,..., m}. Therefore, the coarse grained master equation (12) has the following m-
dimensional representation in the basis {1, ..., pm }:

d ~ AT ~ N T

PO =G,  p(0) = (15 p)j=1,..m, (15)

such that a(t) = >0, pj(t)p;. Equation (15) is thus equivalent to (12), therefore we
call (12) the coarse grained master equation of essential dimension m.

Remark 2. G need not be a rate matriz, because its off-diagonal entries need not be
non-negative and it may even have positive diagonal entries. In contrast, G is always a
rate matriz. Moreover, it is self-adjoint, and has eigenvalues 0 = M > > . > A
where the )\] are the constants introduced in (6). See Appendiz B for details.

3.4. Coarse grained transfer operator

By far the most articles on Markov State Models consider transfer operators or stochastic
matrices instead of generators or rate matrices. Thus, next we show how the coarse
grained master equation (12) is related to the coarse grained transfer operator for the
same system.

The forward transfer operator Tf associated with (8) is its solution operator, i.e.,

(TtE)T = exp(tL]),

while its transpose T is called the associated backward transfer operator. With (11), (12),
and Lemma 1b) we immediately get

I t/a) Ip = uc(t/e) = I exp(tIL,GTII) I p + O(e)
= exp(tI;GTIN);p + O(e).

Therefore,
IL Ty 11, = exp(tIL.GIL,) + O(e). (16)

The entries of the matrix representation T} of the coarse grained transfer operator HT,Tf/ Al

in the basis {11,...,1,,} are given by

Ty = 1k TF 1. (17)

10



Now, let pg denote the limit for ¢ — 0 of the invariant measures u.. Its existence and
form are given in Appendix B, in particular (42). Then

m
T
po =y ajuj, ;=17 po.
j=1

Next, recalling the scalar product (,-),, from Section 3.1, the matrix representation of
the coarse grained transfer operator is given by

a <1vat€1j>uo

T =
PR e L)

which is the classical formula appearing in articles on Markov State Modelling for the
coarse grained transfer operator. In addition, due to (16), the coarse grained transfer
operator is identical to the solution operator of the coarse grained master equation up
to order O(¢), i.e.,

Tt/a = exp(tG) + O(e). (18)

Remark 3. In the literature on Markov State Models one repeatedly finds remarks stat-
ing that the dynamics given by the coarse grained transfer operator Ty is only correct, if
the so-called lag time t is large enough [BPN13]. Our result (18) exhibits this fact in a
very clear way: The coarse grained system approximates the full solution of the original

master equation only on the slow time scale of order 1.

4. Non-stationary MSM

We will discuss now the non-stationary case, when L. is complemented by an explicitly
time-dependent part,
Le(t) = Le +cf(t,et)L,

where the stationary part L. has the properties outlined before, f is a function depending
on time and possibly on ¢ too, and L is an additional generator/rate matrix—we think
of L being the part of the generator coming from the perturbing force field b, cf. Section 2.
We again consider the associated master equation,

—ue(t) = Es(t)T ue(t), u:(0) = p, (19)

and try to understand its long-term behavior. First, we realize that the generator Lg is
still the limit of L.(t) for e — 0, since

L.(t) = Lo+ eG +cf(t,et)L + O(e?),

with G introduced in (13).
We will approach (19) again by perturbation expansion, but now taking care of secular
terms. We have different tools at our disposal, such as the composite expansion, where

11



expansions on slow and fast time scales are combined to be valid on both scales, to a large
extent motivated by boundary layers [O’M69, Fra69], [Kuel5, Section 9.1]; the Lindstedt—
Poincaré method [Lin82, Poi93], [Kuel5, Section 9.8], where a “strained time coordinate”
is used to incorporate both scales and avoid secular terms; the renormalization group
method [CGO94, CGOI6], [Kuelb, Section 9.9]; or two-timing, also called the method of
multiple scales [Lic69, O'M70], [Kuel5, Section 9.8], where multiple time scales are used
in the very same expansion as independent variables. We will use two-timing, because
it is fairly straight-forward, and serves our goal well, namely to have access to both
fast and slow scales directly. For further introductory texts on two-timing the reader is
referred to [Joh05, KC12, Jak16].

4.1. Driving force depends on slow time scale only

First, we restrict our attention to functions f that depend only on the slow time &t,
meaning,

f(t,et) = flet), (20)

with a bounded function f, i.e., there is a constant C' > 0 such that |f(¢)| < C for all
times ¢t. Later we will also consider the more general form f(t) = f(¢,et) where f also
depends on the fast time scale.

However, even with f depending only on the slow time scale, the dynamics will evolve
on both time scales: the fast one, ¢, and the slow one, 7 = ¢t. Thus, for the solution of
the master equation (19) we make the ansatz

ue = ue(t, 1), (21)

where we consider ¢t and 7 as independent variables. We are overloading the notation,
since we use u. for the solution of (19), depending on one variable, and also for this
new, auxiliary function, depending on two variables, ¢ and 7. By counting the number
of variable, no confusion should arise. The connection between them is

ue(t) = ue(t, 7')‘ = u(t,et).

T=ct

This connection shows how to substitute the ansatz into the equations:

t,7)+ es;_us(t, T),

—ug(t) = gtue(

and other appearances of u.(t) are simply replaced by u.(t, 7). Naturally, u.(0,0) = p.
Now, (19) reads

8tus(tv T) + 667’”6@7 T) = (LO + 5L(T))T u&(tv T) + 0(62)1 (22)
with the time-dependent generator

L(r) =G+ f(r)L, (23)

12



and shorthand notation

0

uw, and Oru:=—u.

O 1= g

Using an expansion of the form
ue(t,7) = ug(t, 7) + up (t, 7) + O(e?)
we obtain the following result. We defer the proof to Appendix C.

Theorem 2. Under the assumption (A1)-(A3) on the properties of L., the driven n-
dimensional master equation (22) has a solution u(t,T) of the form

ue(t, 7) = ug(t,7) + O(e) = (1) + exp(tLg )d(1) + O(e),

valid for all t and 7 = O(1) as ¢ — 0. Here, 0(7) € Kern(LY) = E; is given by the
m-dimensional (coarse grained) master equation

Di(r) =IL(GT + FOINa(r),  a(0) =, (24)

EU
and 0(7) € Ei with §(0) = Ij-p. With (7) we get
ue(t,7) = (1) + O(e™"") + O(e), (25)

that is, the solution converges exponentially fast in t to I&; and then follows the coarse
grained master equation up to errors in O(g).

Remark 4. First, note that Theorem 1 is a corollary of Theorem 2 by setting f = 0,
because u.(t) = uc(t,et) solves the master equation (8), which is the same as (19)
with f = 0.

Second, the restriction T = O(1) is not a problem in practice, since one wants to
consider the system on slow time scales O(e~Y), and that is possible. There is no need to
go beyond. If this would be desired, one could invoke higher order terms in the expansion
in Appendixz C, at the cost of additional non-trivial calculations.

To gain more intuition for our result, let us briefly consider the limit € — 0 on the
fast and slow time scales. Fix t, and note that 7 = et — 0 as ¢ — 0, thus we obtain

lim ue(t, et) = uo(t, 0) = a(0) + exp(tLT) §(0) """ exp(tLT)p.
e—0 ~—~ ~—~
=II;p :Hle

So, on the fast time scale we see in the limit the evolution driven by the rate matrix
that has the m invariant sets A;. Transitions between these sets are not observed on
this time scale. Meanwhile, on the slow time scale 7, we have t = 7/¢ — o0 as € — 0,
and we obtain

lir% ue(1/e,7) = up(co, ) = (1) 4 exp(coLd)d(r) = (7).
E— \—v_/

=0, since (5€]ElL
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Thus, on the slow time scale, the fluctuations inside the sets A; caused by Lo are
equilibrated, and we only see the slow transition processes between the A ;.

These latter slow processes have a low-dimensional coarse-grained representation, if
projected on the sets A;. The matrix representation of II;L(7)TTI; with respect to the
basis {p1, ..., pm} of By is given by R(7)T with R(7) being the matrix representation
of II, L(7)II, in the basis {11,...,1,,}, and satisfying

R(T) =G+ f(T)I:, ij = /,L?le, i}jk = ,u?le, (26)

which can be seen based on the same derivation as for (14) above. That is, the m-
dimensional coarse grained master equation reads as

SHE) = RET8),  5(0) = ()it (27)
with ﬂ(T) = Z;nzl ﬁj(r),uj.

4.2. Driving force depends both on the fast and slow time scale

What if f depends on the fast time also, i.e., if f = f(¢,et)? Just a slight modification of
the derivation of Theorem 2 is needed. With L(s,7) := f(s, )L, we make the following
assumption.

Assumption 1. Let for all t > 0 hold that
¢
/ L(s, 1) ds = tT(=)T + AL(t, )7,
0

where L is a possibly T-dependent generator / rate matriz, and AL(t, ) is bounded in t
and T.

We obviously do not need to assume that the time-dependent perturbation of L. is of
the form ef(¢,7)L. In fact, we can allow for a more general form

Le=Lo+eG+ceL(t,7), (28)

where L(t,7) is a rate matrix for all times t,7. We have the following result, shown in
Appendix D.

Theorem 3. Assume that L. = Lo + G + O(e?) has properties (A1)-(A3), listed ini-
tially. Moreover, let L(t,T) satisfy Assumption 1. Then, the solution of the driven n-
dimensional master equation,

4
dt
has the form

us(t) = (Lo + (G + L(t, et)) + O(%) ) ue (1), u:(0) = p,

ue(t,7) = () + exp(tLE)3(r) + O(e),
for allt and T = O(1) as € — 0, where §(7) € Ei", and 6(0) = I p. There, 0(7) € E; is
given by the essentially m-dimensional (coarse grained) master equation
d

() =11, (GT+Z(n)Hma(r),  a(0) = p. (29)

Let us first consider two exemplary cases, to see what can happen.

14



Case 1: External field is not changing the effective equilibrium dynamics. Let
f(t,7) = F(7)sin(wt),

with a bounded F', so that

/Ot L(s,7)l ds = t\GfT_’/—I— F(r)w (1 = cos(wt))LT .

=" =AL(t,;r)T

Then, (56) gives us 0,4(7) = ILGTIa(r), i.e., the resulting coarse grained master
equation is identical to the coarse grained master equation of the equilibrium case. In
general, if the fast-scale average lim;_ o % fg f(s,7)ds of the forcing term is equal to
zero, the coarse grained master equation is unaffected from the forcing. Things change
though, if this is not the case.

Case 2: External field is changing the effective equilibrium dynamics. Consider now

f(t,7) = F(r)sin? (wt),

again with a bounded F. We have

¢ 1 1
/ L(s,7)Tds = tGT + F(r) (ft — — sinwt cos wt) Lt
0 2 2w

such that Assumption 1 dictates the choice

1 F
= t(GT + B F(T)LT) —2(7) sinwt cos wt L .
w

~~

:ZT :AL(th)T
This yields the coarse grained master equation
1
ori(r) = (6T + 5 F(r) L7 ) T(7). (30)

Note that in this case limoo + f(f f(s,7)ds = LF(r) # 0.

Remark 5. Assumption 1 for the generators can be equivalently stated in terms of the
forcing function as follows. Let

1 [t 5
i [ fmyds = i)+ ne),
0
with the function h that decays sufficiently fast in its first argument, i.e.,
th(t,7) < Z(),

for all times t and for some Z that may depend on T but is independent of t. The
assertions of Theorem 3 would follow with L(T) = f(7)L.

15



4.3. lllustrative Example

For illustration of this result let us consider the following block diagonal 9 x 9 matrix
with m = 3:

~1 1/2 1/2 0 0O 0 0 0 0
1 -2 1 0 0O 0 0 0 0
1 1 -2 0 0O 0 0 0 0
0 0 0 -3/2 3/4 3/4 0 0 0
Ly=| 0 0o o0 09 -18 09 0 0 0 |,
o 0 0 1 1 -2 0 0 0
0 0 0 0 0 0 -3 15 15
0O 0 0 0 0 0 2 -4 2
0O 0 0 0 o o0 1 1 -2

which is self-adjoint, irreducible and aperiodic in each of the three blocks Ay = {1,2,3},
Ay ={4,5,6}, and Az = {7,8,9}. For simplicity, we set L. = Ly, i.e., the only transitions
between the invariant sets A; will only appear due to the external perturbation. This

has the form
-1

h
Il
coococoocoo
coococoococoo
coococoocoo

=EVCNoNoNeNeNoNeNe)
\
[N}

coocococoocooooO
coocococo o~
|
oooo;oooo
I35
coococoocococoo
—
coocomwoooo
A

0

o
o

0
We consider the solution u. of (22) with initial probability distribution

UE(O) =p= (17070707070707070)T7

and
f(t,et) = 2sin?(2met).
We compare the evolution of the probability of being in the set Aj,
ps(t>A1) = Z Us,j(t)7
JEAL

where u. ;(t) denote the entries of the full solution u(t) € R™ of the master equation (22),
with its coarse grained approximation

ﬁ(t Al) = ﬁl (t)v

where p denotes the solution of (27), the representation of @ in the basis {u1, po, us}-
Figure 2 shows that p(¢,A;) and p(¢,A;) are indeed e-close to each other.

According to (25), the difference u.(t) — 4(t) decays exponentially fast in ¢ and then
stays O(e)-small. This behavior is illustrated in Figure 3, where the 1-norm of the error
is shown.
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Figure 2: Comparison of the time-dependent probabilities p(¢,A;) (black, dashed)
and pi(A1) (gray, solid) for e = 0.05 (left) and £ = 0.5 (right).

Next we consider the same case with f depending on the fast time scale t explicitly;
f(t,et) = 2sin®(27et) sin?(27t).

The coarse grained master equation can be obtained from (30), since the forcing is of
the form F(7)sin?(wt). Figure 4 shows that also here the agreement is excellent.

5. Algorithms for coarse graining

In this section we very briefly outline how one could proceed to apply our approach for
non-artificial, realistic systems, where an arbitrarily fine discretization of the generators
used in the above exposition might be computationally out of reach. Note that the single
steps below might contain non-trivial tasks to perform, where one would need to consult
further literature. Thus, to give a detailed “recipe” would lead way beyond the scope of
this work. We also expect a thorough treatment of this issue to differ from case to case,
and thus will be topic of future work.

Now, we want to determine the coarse grained master equation (24) or (29) of the
non-equilibrium process

dX, = [ = V. V(X)) +ef(t, 5t)B(Xt)]dt +/28-1dB;, (31)

where (for the sake of simplicity) subsequently we restrict ourselves to potential forces,
i.e., b = —V,U with some smooth potential U. To this end, we need to determine e, m, G
and L, in order to get the coarse grained generator R = G-+¢f(t, )L associated with (31),
cf. (26). We do this in four steps:

(S1) First we consider the equilibrium process X; given by

dXt = —VV(Xt)dt + vV QﬁfldBt . (32)

17
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t

Figure 3: Evolution of ||u.(t) —u(t)|l1. The gray dashed line indicates the value of €; on

(52)

the left 0.05, and on the right 0.5. Note that the error decays exponentially
in O(1) time, then stays bounded by O(¢).

Using standard MSM building techniques [BPN13, PBB10, SS14] we construct
an appropriate n-dimensional discretization Ty of the transfer operator associ-
ated with (32) for some appropriately chosen short time ¢ = . Next, we deter-
mine m and € by determining the dominant spectrum A1, ..., A, of Ty, and setting,
e.g., €= —%log(Ag). Let us choose some 0 < v < 1 (by default, say, v = %), and
recompute a MSM Tp_ with 6. = ¢77. Note, that the restriction v < 1 is only due
to practical reasons, since for v > 1 we would need to compute a MSM on the slow
time scales, or even longer ones, and that is in general computationally infeasible.

Based on the dominant eigenvectors of Ty_ we identify its metastable sets Ay, ..., A,
and the local measures ; by standard MSM algorithm as, e.g., PCCA+ [DWO04].
This allows us to determine the coarse grained transfer operator T, p. according
to (17). We identify the generator G associated with Tp, using (18), i.e., via

1

- 1
) log(Tp) + —O(e) .

e,
:(’)(57)

exp(e0.G) = Ty, + O(e), that isf, G =

Note that the transfer operator is a semigroup generated by a self-adjoint infinites-
imal generator, thus it has spectrum lying in the interval [0, 1], whence log Ty, is
well-defined as a real-valued matrix. Alternatively, one could use the approxima-
tion G = i(fgg - Id), which is expected to be less accurate. With this choice
of 0. we can make sure that Tp_ is still computationally tractable, and the error

For v < 1 we gave that all eigenvalues of Ty, are of order one, and since log(z + O(¢)) = log(x) + O(e)
for = of order 1, the O(g) error in (18) remains under taking logarithms of the two sides of the
equation.
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Figure 4: Comparison of the time-dependent probabilities p(¢,A;) (black, dashed)

(S3)

and p(t, A1) (gray, solid) for e = 0.05 (left) and € = 0.5 (right) for f depending
on both time scales ¢ and 7.

of G vanishes for ¢ — 0. Note that for v = 0, we get error O(1), and we could not
trust our results.

Next, we consider another equilibrium process Y;, given by

dY; = — [VV(Yt) + sVU(Y;)}dt +/26-14B,. (33)
In order to approximate the transfer operator P associated with (33), we use the
approach introduced in [SNW15] where it is shown that the coarse grained transfer
operator ]59’55 can be computed based on TgE by reweighting the trajectories of (32)
that have already been computed in step (S1) for Ty_. More precisely, a procedure
is given for the computation of the entries of Py , only using information already

having been computed in (S1) along with repeated evaluations of U and VU.

Knowing the 1;,u;, j = 1,...,m, we compute PE from F;_as we compute Ty
from Ty in (17). Note that 1f we take f =1 in (31) then by (26) and (18) we
have ng = exp(e6:Q) + O(¢) with Q = G + L. Again, Pg is self-adjoint, thus its
matrix logarithm is well defined and numerically stable to compute by taking the
logarithms of the eigenvalues in its eigenvalue decomposition. Thus, we compute

A

L = G,

log (Pe ) — (34)

69

and again, this identity holds up to an error O(g?).

In light of Remark 3 it is interesting to see in (S1) and (S4) that we require a MSM
on an intermediate time scale between slow and fast time scales in order to be able to
assemble a master equation that is asymptotically correct as e — 0.
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6. Example: diffusion in a potential landscape

We now return to the diffusive dynamics (1). Let us consider the double well poten-
tial V(z) = (22 — 1)2, as we have done for b = 0 in Example 1. Set 3 = 5, which
makes the two wells of the potential metastable sets. As discussed above, L. denotes
the (fine-grid) discretization of the generator A(0). More specifically, we use a stable
finite-volume based discretization [FJK13, LeV02] of this generator on the interval [—5, 5]
with n = 2000. The two dominant eigenvalues of L. are

A1 =0, Ay=-0.011,
and we therefore set ¢ = 0.011 for the next steps. The other eigenvalues A all satisfy
A< =3,

thus m = 2.
The equilibrium dynamics is turned into a non-equilibrium process by considering

dX, = -V, [V(Xt) te f(et)U(Xt)]dt +\/25-1dB, (35)
with
U(z) ==z, f(t)=15sin(t),

such that we have a tilting potential with periodic switches between deepening the left or
right well, see Figure 5 for illustration. Despite the external time-dependent excitation
the sets A; = (—o00,0] and Ag = [0, 00) are metastable sets of the dynamics.

2

1.5

V 4+ 15¢ U

0.5 . . . . .
-1.5 -1 -0.5 0 0.5 1 1.5
X

Figure 5: Unperturbed potential V' (black solid) and tilted double well potentials V' +
15eU (gray, dashed).

We are now going to compute the coarse grained master equation associated with (35).

Thereby, we will use the steps from Section 5. However, since we are dealing with a
one-dimensional example, we have a choice between possibly multiple computationally
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tractable ways of doing one single step. We will make use of this freedom to keep the
exposition simple, and ask the reader to keep in mind that this might be infeasible in
higher dimensions.

As discussed before, we need to compute the coarse grained rate matrices G and L.
To obtain the former, we proceed as in (S1)-(S2) in Section 5, and compute first a
MSM for the unforced system, i.e. (8). As described there, we quickly obtain sufficient
approximations for 11, 19, 41, o from the appropriate eigenvectors of L.. Since the fast
fluctuations die out on time scales O(|]\3']), we take 6. = 10 ~ ¢~ %/2 to compute the
auxiliary MSM Tpy_; i.e., we choose v = 1/2 in step (S2). Note that 6 is still an order of
magnitude smaller than the slow time scale e~! ~ 100. We compute the coarse grained
MSM T, via (17), such that we solve the full master equation (8) for initial conditions iy
and peo to obtain Tg; p1 and Tg; W2, respectively. For this we used an implicit Euler method
with step size 6./20 = 0.5. Finally, as in (S2), we set G = i log(T.). Figure 6 (left)
compares the convergence of the probabilities p(t, A1) and py(t) towards their limit, 3 3
in the unforced case for initial densities u(0) = y; and 4(0) = (1,0)7, respectively. The
slopes of the graphs therein show the convergence rates Ao & 55\2, where \g is the second
eigenvalue of G.

Now, to obtain L, we repeat the same procedure, just for the equlhbrlum system havmg
the potentlal V 4+ eU. Its coarse gralned transfer operator Pg has the generator Q =

(G + L), thus we obtain L = ¢ 1Q — G. With this, all is set up for the coarse grained
master equation of (35). To validate our approach, we compute the temporal evolution
of probabilities in the metastable set A by three different means:

A) Highly accurate approximation by determining the solution u.(t) of the full master
equation (19) generated by L.(t) = L. + e f(et)L, where L is the generator associ-
ated with the tilting potential U, computed by the same method and on the same
grid as L.. The master equation is computed by the implicit Euler method with
step size 0.1.

B) Trajectory-based Monte Carlo approximation by computing N = 1000 random

realizations X, ) ,j=1,...,N of (35) by the Euler-Maruyama method with step
size 0.005, and subsequent histogram approximation up;¢ of the time-dependent
probability density functions.

C) Solution of the two-dimensional coarse grained master equation (27).

Based on these approximations we can provide several ways to compute the evolution
of the probability to be in the left well:

Pt A = > uey(t)
JEAL
MOt A) = #{j=1,....N: XY €A},
(A1) = pi(t).
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Figure 6: Left: semilogarithmic plot of the errors |p(t, A1) — 3| (gray, solid) and [py (t)— 3
(black, dotted) for the unforced system, showing that the rate of convergence to
equilibrium is essentially the same for L. and G. Right: evolution of probabili-
ties p(t, A1), pMC(t, A1), and p(t, A1) for the highly accurate approximation A)
of the non-equilibrium dynamics (black, dashed), its trajectory-based Monte
Carlo approximation B) (red dots), and its coarse grained approximation C)
(gray, solid), respectively.

Figure 6 (right) shows these different approximations. We observe that the computa-
tionally expensive approximations A) and B) are accurately approximated by the coarse
grained, just two-dimenisonal version C).

Note that even though the amplitude of the forcing is O(e), its effect on the occupation
probabilities is of order one: the occupation probabilities vary by 0.6. We would like
to stress, that the Markov state modeling technique we developed here relies on time
scale separation by a small factor €, but is describing variations of the coarse grained
probabilities on order one.

To see that it is instrumental for the approximation of the coarse grained generators G
and L to obtain them from a MSM that is computed on a sufficiently large time scale,
we repeat our calculations, only now with v = 0, i.e. 6. = 1. Note also, that the p;
and 1; are unaffected by this, because here we compute those from the full generator L..
The results are shown in Figure 7. Indeed, larger errors arise. For 8 = 0.1, even the
qualitative agreement between coarse grained and actual solution vanishes (not shown).

As a last test, we consider a case where the forcing acts both on the slow and fast
scales:

f(t,7) = 15sin(47) sin(t)? .

We can reuse the already computed coarse-grained generators G, L, but we need to
assemble the coarse grained master equation according to (30). The results are shown
in Figure 8. The inclusion of forcing on the fast time scale decreases the accuracy of the
Monte Carlo estimation (still using 1000 realizations), while the solution of our coarse
grained master equation is indistinguishable from the exact solution.
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7. Conclusions

We show, that if the strength of the forcing of a metastable system is inversely pro-
portional to the length of the slow metastable time scales of the unforced system, then
the effective behavior of the forced system on slow time scales can be described by a
low-dimensional reduced master equation that can be algorithmically constructed based
on relatively short trajectories of the unforced system only.

The main limitations of our approach lie in the explicit scaling of the forcing and the
multi scale perturbation expansion method utilized for analyzing its long-term effect,
and in the fact that we did not consider the perturbation approach for the (unbounded)
operators that appear in the Fokker—Planck equation but for their finite-dimensional
matrix discretizations only. The first limitation is a feature since we aimed at showing
that there exist cases in which a weak and slow forcing induces non-trivial and significant
changes in the conformation dynamics of the molecular system under consideration. The
second one, if overcome, would allow to understand better where the operator Ly, that
“defines” the metastable sets of the system, originates from, and how it can be defined
explicitly.

Forthcoming work will also have to discuss the consequences of the insight that even
weak fields can significantly alter the conformational dynamics of biomolecular systems,
and the discussion of potential effects of electromagnetic radiation on the human body
tissue. Furthermore, our results—at least in principle—would allow for designing an
external forcing of a biomolecular system with specific effect on certain conformations,
for example, one may design a forcing in order to control the occupation probability
of a desired conformation of long timescales, in order to stabilize certain molecular
function that is associated with this conformation. Because of the enormous complexity
of real-world biomolecular systems, however, applications regarding optimal control of
conformation dynamics seem feasible only if based on a low-dimensional reduced master
equation.
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A. Singularly perturbed linear systems

Let us consider to the master equation (8) in its state before we started the multiscale

asymptotics:
d

au

let us scale time 7 = et and consider v = u’ to get

(t) = (Lo +eL)" u(t),

d

%UE(T) = (e Lo + L) ve(7),

where the index of u,v denotes the dependence of the solution on e. This latter is
a singularly perturbed linear system and so the literature on such systems should be
helpful. Obviously

v:(7) = exp (1(e7' Lo + L)) v:(0).

Since Ly is semistable (all nonzero eigenvalues are negative), from [CR79] we get that
if v2(0) — Vipit for € — 0, then in the limit of € — 0,

v(T) = exp(TA)(Id — LY Lo)vinie, A= (I1d — LY Lo)L(Id — LY Lo) .
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Here, Lé) denotes the Drazin pseudoinverse of Ly, which in our case has the form
D ol
Ly = (L0|Eﬂ-) 115

-1
where IT+ = Id—TI,., and (LOIIE,%) is the inverse of the restriction Lo|g1 of Lo onto E-.

-1
Recall, that E, is the eigenspace of Lg for the eigenvalue zero, thus (L0|E %) exists.

As a consequence, we obtain

-1
d-LPL, = 1Id- (LO\EQ IL- Lo (IT, + IT5)
Lemz.la) Id — (LO‘E%)i H%LQHTL
—_———
=  Id-II‘=1I.

Thus,
A= (Id- LY Ly)L(Id — LY Lo) = 1. L1L,,

such that we obtain (10) and (11) & (12), namely

Ve(T) —> exp (THTLHT)HT'Uinita e—0.

B. Properties of G

G is a rate matrix. Let L., Lo satisfy the assumptions (A1)-(A3) from the main
text, and let G = lim,_ge " (Le — Lg). Since L., Ly are both rate matrices, we have
that L.1 = 0 and that Ly1=0, thus

Gl=lime ' (L. — Ly)1=0.
e—0
Each row sum of G is thus zero. Note, however, that G need not be a rate matrix itself,
we only require L. = Lo+eG+O(£?) to be one for sufficiently small ¢, thus also Lo+ £G.
Recalling the definition (4) of a rate matrix, and noting that multiplication by 1;
means summing up columns whose index belonging to A, we have

Lol; =0, (Lglj)\Aj <0, (L:1j) he = 0,
where v[4 < (>)0 means that the vector v restricted to its components given by the in-
dex set A is componentwise non-positive (non-negative), and A; denotes the complement
of Aj, ie, {1,...,n}\ A;. This implies

1 < 0 on Aj y
9 (Lg — L()) 1j (36)

>0 onAg.
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Recall that we defined p; as MJTLO = 0 and Ae = 0. Additionally, they have the
property p; > 0 componentwise. This readily gives with (36) that

<0 i=j,

= 1 J-

According to (14), these are the entries of the m x m discretization matrix G of I1,G1I,..
Moreover, II,,GII,.1 = I1,G1 = 0 implies G1 = 0. Thus, G is a rate matrix.

Eigenmodes. By assumption (A1) the eigenvalue A = 0 of L. is simple with unique right
eigenvector 1. Let the (right) eigenvectors of L. be denoted by v with eigenvalues M\,

Lovt = Aol (37)

Next, let us concentrate on the first m eigenvalues of L. that according to our assump-
tions will have to be perturbations of the m-fold eigenvalue A = 0 of Lg: For small

enough ¢ our assumptions yield that there are coefficients C; assembled into coefficient

vectors ¢ € R™, and aj; > 0in
m m
o= DGl pe=) g,
j=1 J=1
such that the vé, i = 1,...,m, span the right eigenspace E, of Ly associated with

eigenvalue A = 0, and we have an asymptotic expansion of the form

Moo= 04N +0(?),
L= g tev + 0,
pe = po+ev+ O(ED).

(%

For later use, we emphasize that vé = 1 and therefore cjl =1foral j=1,...,m,

moreover, v = 0, and A = 0. Putting the asymptotic expansion into (37), using
pl'Le = pl', and comparing orders 0 and 1 in € yields

el pd Lo =0,
Lovi =0 (38)
el ptG+vTLy=0 (39)
Gvb + Lovi = \ovj, (40)

While the two equations for order 0 are satisfied automatically (see Section 3.1 for a
discussion), equations (39) and (40) result in conditions on the unknown coefficients c;
and a;.

26



In order to see this, let i := Z;nzl vik; € R™ with 4 € R™ arbitrary, and multiply (40)
by T to obtain

" - nF1=61 i
T Y PR e LN i
E i Glycl, = A E Vit Lkcy, = Al E Y565
Jk=1 Jk=1 J=1

or, equivalently, 4 ) )
VTG = Ny for all y € R™.

Since this has to hold for arbitrary ~, we obtain
G = N (41)

Similarly simple is to obtain a condition on the coefficient vector a of pg. Multiply-
ing (39) from the right by ZTZI zj1;, where z € R™ is arbitrary, we obtain after an

analogous calculation as above that of Gz = 0 for any z, implying
of'G=0. (42)

Thus, the eigenvalue problems (42) and (41) determine the coefficients of the zeroth
order expansion terms pg and vy uniquely up to a multiplicative scalar. Uniqueness is
achieved by adding normalizing conditions; such as Y ", a; = 1 for p19 to be a probability
measure.

Reversibility. Reversibility in assumption (A1) means the self-adjointness of L. with
respect to the scalar product (-,-),., cf. Section 3.1 for this notation. That can be
expressed in two other equivalent ways, namely

(Lev,w),, = (v, Lew),, Yv,w €R™, or D, L.=L'D,,

where D, is the diagonal matrix with the entries of p. on its diagonal. Due to the
assumed smoothness of p. and L. in €, the latter expression gives D, Lo = LE‘)FDMO in
the ¢ — 0 limit. Thus Lg is po-reversible. Self-adjointness of a matrix means orthogonal
diagonalizability in the given scalar product, so we have that eigenvectors to different
eigenvalues are orthogonal, and we obtain for i # j:
0 = <Lavé’ /Ug>lla
= (Lovh + eGuj + eLov}, v] + ev]) porer + O(2)

= (Lovh, v + &0 g rer + £(GVh, U)o + e(Lovt, o + O7) .

In the last line, the first term on the right hand side vanishes due to Lovy = 0,
cf (38). The third term vanishes, because Lg is self-adjoint with respect to (-,-),,
hence (Lgvi,vg)uo = (U{,Lgvg)w = 0 due to (38) again. Since <I/€v§,vg‘)ﬂs vanishes
uniformly in €, it follows that ‘

(GG, U)o = 0 (43)
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has to hold for i # j. Using the expression of the v} in the basis {11,...,1,,}, this gives
with (14) that -
(", Gy =0, Vi#j, i,7=1,...,m. (44)

Since the v are mutually (-,-),,-orthogonal (as eigenvectors of the self-adjoint ma-
trix Lg), they form a linearly independent collection of vectors, hence the ¢ form a basis
of R™. Thus, (44) shows that G is self-adjoint with respect to (-, -)o, and so it generates
as a rate matrix an a-reversible process.

Summarizing, G is a rate matrix and has a unique, positive left eigenvector a as-
sociated with the eigenvalue 0, and G is symmetric with respect to (-,)o and thus
has real-valued spectrum. Let 0 = )\1 > )\2 > .. > )\ be the eigenvalues of G
and ¢! = 1,¢%,...,c™ be the associated eigenvectors. Then the m leading eigenvalues
of L. satisfy

AL =) 4+ O(e2),

and the corresponding right eigenvectors fulfill
m
v = vo +O(e Z i1l +O(e
k=1

Remark 6. In this context (only for transfer operators instead of generators), Deuflhard
and Weber [DW04, Lemma 1.1] show that the O(g) term in the expansion of vt is also
a linear combination of the vectors 1;, thus one has

m
=> &1, +0(e

k=1
for some coefficients cj.
C. Proof of Theorem 2
Inserting the asymptotic expansion
ue(t,7) = wuo(t,7)+eur(t,7) + O(e?).

into (22), and matching the e-terms of equal order yields the following equations for the
expansion terms:

g0 Orug = LOTuo, u0(0,0) = p (45)
et Oy + drug = LEug + L(7)Tug,  11(0,0) =0 (46)
From (45) we immediately get

ug(t, 7) = exp(tLg;)uo(O, 7). (47)
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As a consequence we find that I[;ug does not depend on ¢, but only on 7,

Muo(t, 7) "™ g (0, 7) =: a(r) . (48)

Next, multiplication of (46) from the left with II; yields

Hlatul (t, T) + Hl&—uO(t, T) Lem:- 12) f(T)HlLT'LLO(t, 7') (49)
= ILL(")T exp(tLi)ug(0, 1),
whose integration with respect to ¢ gives
t
Ty (1, 7) = Tua (0, 7) — tdma(r) + / L) T exp(sLD)uo(0, 7) s, (50)
0
Next, we define
5(7) == uo(0,7) — a(r) "= Wrue(0, 7), (51)

which, since 4 € E; and thus II;0(7) = 0, is an element of the orthogonal complement Ef-
of E;. Thus,

exp(sL)uo(0,7) = exp(sLf)(a(r) + 6(7))
= (1) 4 exp(sLi)d(r).

The advantage of this splitting is that the first term in the right-hand side, @(7), does
not depend on the fast time, here s, hence can be pulled out of the integral in (50),
giving

uq(t,7) = Muy (0,7) + ¢ (HZL(T)Tﬁ(T) — 8712(7))

t 52
JrHlL(T)T/O exp(sLE)o () ds . (52)

At this point, we need to make sure that no secular terms appear. The last term in (52)
is bounded in t. To see this, note that §(7) € Ef, thus it is spanned by eigenvectors
associated with purely negative eigenvalues of L, so the integrand exp(ng)é (1) decays
exponentially in s, and hence the integral is uniformly bounded in ¢. To assure that the
second term on the right-hand side of (52) is bounded, the expression in the brackets
has to vanish, that is,

o-u(r) = ILL(T)Ta(r), (53)

must hold. With this, we made sure that II[;u; is not secular in ¢t. Fortunately, u; itself
also cannot be secular in ¢, because by (46) wu; is governed by a forced linear system
of equations, cf. Footnote 5, where the linear part Lg is asymptotically stable on Ef
(i.e., decaying exponentially), and the forcing term has the same properties as ug, which
is bounded in t by (47) and that Lg is a rate matrix. By considering higher order
expansion terms one could obtain conditions that allow bounding u; in 7. Without
doing this, the validity of our expansion can only be secured for times 7 = 7(¢), such
that uy(t,7) = O(1) as € — 0 for fixed ¢t. As we argued above, since the order equations
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are system linear equations, u; can grow at most exponentially in 7 as well, and this
guarantees that the expansion is valid for 7 = O(1).
To put everything together, we recall that @(7) = IL;ug(0,7), thus I;a = 4, and we
can write (53) as
o-a(r) = ILL(r) T Ia(r). (54)

In more details, the generator of the coarse grained master equation (54) satisfies

ILL(7)T1L, = IL,GT 1L, + f(r)IL LTI,

D. Proof of Theorem 3

The derivation follows that from Appendix C until (50). With L(s,7) := f(s,7)L, (50)
reads as

t
Myuy (t, 7) = Wyuy (0, 7) — tO-4(T) + / ILL(s, 7)1 exp(sLE)ug(0, 7) ds,
0
and we get by using (51) that
t
My (t,7) = Tui(0,7) + Hl< / L(s,7)Tds a(r) — taTa(T))
0
t
—f—Hl/ L(s,7)T exp(sLi)d(7) ds. (55)
0

Thus, since § € ElL, exp(sLy)d decays exponentially fast in s, so that the last integral is
bounded in time ¢. The second term on the right-hand side of (55) can be guaranteed
to be non-secular if Assumption 1 holds, by setting

o-a(r) = L(r)"a(r) a(0) =p, (56)

such that 4 is bounded for all 7 because L(7) is assumed to be a generator. Thus,
the remainder of the term is bounded, since AL(t,7)74(7) is, also by this assumption.
Hence, no secular terms appear, and the rest of the derivation would follow that of
Theorem 2.
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