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Abstract
Real world routing problems, e.g., in the airline industry or in public and rail transit, can feature
complex non-linear cost functions. An important case are costs for crossing regions, such as
countries or fare zones. We introduce the shortest path problem with crossing costs (SPPCC) to
address such situations; it generalizes the classical shortest path problem and variants such as
the resource constrained shortest path problem and the minimum label path problem.

Motivated by an application in flight trajectory optimization with overflight costs, we focus on
the case in which the crossing costs of a region depend only on the nodes used to enter or exit it.
We propose an exact Two-Layer-Dijkstra Algorithm as well as a novel cost-projection linearization
technique that approximates crossing costs by shadow costs on individual arcs, thus reducing the
SPPCC to a standard shortest path problem. We evaluate all algorithms’ performance on real-
world flight trajectory optimization instances, obtaining very good à posteriori error bounds.

1998 ACM Subject Classification “F.2.2 Nonnumerical Algorithms and Problems”, “G.1.6 Op-
timization”, “G.2.2 Graph Theory”

Keywords and phrases shortest path problem, resource constrained shortest path, crossing costs,
flight trajectory optimization, overflight fees, cost projection

Digital Object Identifier 10.4230/OASIcs.CVIT.2016.23

1 Introduction

In this work, we introduce the shortest path problem with crossing costs (SPPCC), which
seeks to find a minimum-cost path between two given nodes in a directed graph. As opposed
to the classical shortest path problem (SPP), where the objective function is the sum of
weights corresponding to the arcs of the path, we also consider crossing costs. These are
associated with regions in the digraph, which are defined as sets of arcs. Every time a path
intersects a region, the corresponding crossing costs are determined using the region’s cost
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function, which depends on the arcs in the intersection. Crossing costs come up as overflight
costs in aircraft routing, where the regions correspond to countries [15], in passenger routing
in public and rail transport, where fare zones and air distance dependent tariffs are common
[?], and in intermodal routing, when modes are changed [?].

The SPPCC constitutes a generalization of the classical SPP, see [18] for an excellent
survey, and of several NP-hard variants such as the resource constrained shortest path
problem and the minimum label path problem [11]. While the first can be approximated in
polynomial time [16], the second cannot within a polylogarithmic factor unless P=NP [13].
Exact algorithms for the resource constrained shortest path problem have been suggested by
[14], and for a simplified version of the minimum label path problem, the problem of finding
a path with the smallest number of different colors in an arc-colored graph, by [7].

We focus on a variant of the SPPCC that arises from assuming linear crossing costs that
depend only on the first and last nodes used in each region. To the best of our knowledge,
this problem has not yet been studied in the optimization community. The paper makes the
following contributions:
1. The Two-Layer-Dijkstra Algorithm, which solves the problem to optimality in polynomial

time.
2. Two cost-projection methods (one combinatorial, one LP-based) that transform crossing

costs into regular arc weights, these are used to transform the problem into a related
standard shortest path problem.

3. A computational evaluation of all algorithms presented.
We will show that cost projection allows to deal with complex crossing costs in a way that is
highly accurate, computationally efficient, and allows to deal with changes of arc weights
acoording to, e.g., weather.

Our motivation for studying the SPPCC stems from an application in flight trajectory
optimization, as described in [15]. This problem can be described as follows. The input is
an airway network, origin and destination airports, an aircraft of a given weight, a weather
forecast, and countries’ overflight fees functions, among other factors. The output is a flight
route. The objective is to minimize the trajectory-dependent costs (as opposed to constant
costs such as airport fees), which are usually the sum of fuel costs, overflight costs, and
time costs. Fuel costs and time costs are in general directly proportional to the length of
the trajectory, and can thus, after some simplifications, be projected down onto the airway
segments (i.e., the arcs of a graph representation), essentially reducing the problem to a
(time-dependent) shortest-path problem, which can be solved to optimality by using a variant
of Dijkstra’s algorithm. Overflight fees, however, are determined by very diverse cost models,
many of which make Dijkstra’s algorithm deliver suboptimal solutions.

Overflight costs, also known as ATC charges, are the means by which Air Traffic Control
authorities finance themselves. For each cost airspace (in general corresponding to a country)
used during a flight, airlines are required to pay a fee, determined by factors such as the type
of aircraft and the way in which the airspace is overflown. To the best of our knowledge,
all currently used models define the overflight cost on an airspace as a function that takes
three parameters: The distance defined by the flight trajectory in the airspace, the aircraft’s
maximum take-off weight, and the origin-destination pair. Since the last two are independent
of the trajectory, we will assume from here on that the overflight cost function is solely
dependent on the distance.

There exist two widely used definitions of the distance determined by the intersection of a
flight trajectory and an airspace. The first and most natural variant is to consider the flown
distance (FD), which is the total ground distance traversed by the aircraft in the airspace.



M. Blanco et. al. 23:3

The second variant uses the great-circle-distance (GCD), defined in this context as the length
of the great circle connecting the coordinates where the aircraft enters and exits the airspace.
If a trajectory intersects an airspace multiple times, the distance considered is the sum of
the distances defined by each intersection.

The cost function itself is always non-decreasing and usually linear, constant, or piecewise-
constant. This results in six different combinations, which encompass nearly all cost models
currently in use, and which lead to problems with varying degrees of difficulty. The only
outliers, as of April 2016, are India, Argentina, Philippines, Democratic Republic of Congo,
and Kenya; where the function used is piecewise-linear or even non-linear. In the remainder of
this paper, we will ignore these cases. In Table 1 we list some representative airspaces which
use the aforementioned models. Notice that when the cost function is constant for an airspace,
it is irrelevant whether the distance type used is GCD or FD. Official documentations of
overflight cost models can be found for example at [1], [2], or [10].

Table 1 Examples of airspaces and different cost models, as of April 2016.

Function
Distance GCD FD

Linear European countries,
USA, Thailand

Brazil, Ghana,
Saudi Arabia, Iran

Constant Egypt, Sudan, Myanmar, Japan

Piecewise-constant Ethiopia ASECNA1, Angola,
Vietnam

Other India, D.R. Congo Argentina, Kenya

The problem of flight trajectory optimization under consideration of overflight costs is
essential for minimizing airlines’ operational expenses. In a case reported in [8], an airline
could save 884 USD in overflight charges on a single flight from San Francisco to Frankfurt
by deviating from the standard, most direct route; thus avoiding Canada’s expensive charges.
However, despite their obvious importance, the literature on overflight costs is scarce. The
problem is presented in [15], but no solution approaches are discussed. The authors in [6]
consider the linear/GCD model, but their optimal control algorithm approximates overflight
costs by using FD instead of GCD. Similarly, in [19], several variants of overflight charges
are introduced (including linear/GCD and flat-rate), but the optimization algorithm deals
only with linear/FD costs. [17] introduces the linear/GCD model as well as the piecewise-
constant/FD model, but their heuristic solution method allows no à posteriori quality
assessment.

In this paper, we study the flight trajectory optimization problem with overflight costs
through the more abstract shortest path problem with crossing costs (SPPCC). We present
the first formal framework for classification of existing overflight cost models. Furthermore,
we introduce efficient algorithms to handle a problem variant that is one of the most relevant
in practice. The paper is structured as follows. In Section 2.1, we formally introduce the
SPPCC, which models the problem of flight trajectory optimization with overflight costs. In
Sections 3 and 4, we focus on one of the most important variants of the SPPCC. We present

1 ASECNA is a cost airspace encompassing 18 African countries, with an area of approximately 1.5 times
that of Europe.

CVIT 2016
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both the Two Layer Dijkstra Algorithm, a polynomial, exact algorithm; as well as two novel
cost-projection techniques that reduce the problem (heuristically) to a standard shortest
path problem. In Section 5 we present computational results on real-world data.

2 Problem Description

This section gives a formal definition of the shortest path problem with crossing costs. For
consistency with the literature, we will first introduce a general, NP-hard version and then
proceed for the remainder of the paper with a polynomially solvable version, which is relevant
for the applicatons in aircraft (and intermodal) routing that we have in mind.

2.1 The General SPPCC
Let D = (V,A) be a directed graph, with source and target nodes s and t. Let d : V × V →
[0,∞) be a metric function that we call distance. For the special case where (u, v) = a ∈ A,
we use the notation da := d(u, v). We also have a constant factor ϕ > 0, which represents
the unit weight on arcs. For each a ∈ A, we refer to ϕa := ϕ · da as the weight of arc a.

Let R = {R1, . . . , Rk} ⊆ 2A be a family of sets of arcs, not neccessarily disjoint, that we
shall call regions, such that

⋃
R∈RR = A. Furthermore, let RG,RF ⊆ R be a partition of

R. RF represents the regions where every arc belonging to a solution path is important for
computing the costs. For regions in RG, only the nodes used to enter and exit the region are
relevant. For every R ∈ R, let fR : [0,∞)→ [0,∞) be a non-decreasing function. For a path
p in D and a region R ∈ R, let Pp

R be the set of all maximal subpaths of p contained in R.
The nodes t(p) and h(p) denote the first and last nodes in a path p, respectively. Similarly,
for an arc a = (u, v), we use the notation t(a) = u, h(a) = v.

Finally, we can define the crossing cost corresponding to R ∈ R and an (s, t)-path p:

γR(p) =





fR


∑

q∈Pp
R

d (t(q), h(q))


 if R ∈ RG and R ∩ p 6= ∅

fR


 ∑

a∈R∩p

da


 if R ∈ RF and R ∩ p 6= ∅

0 if R ∩ p = ∅

I Definition 1. The shortest path problem with crossing costs (SPPCC) is defined as follows:
Input: Directed graph D = (V,A), arc weights ϕ : A ≥ R+, regions R ⊆ 2A, crossing costs
γ, nodes s, t ∈ V .
Objective: Compute an (s, t)-path p in D that minimizes the cost function

c(p) =
∑

a∈p

ϕa +
∑

R∈R
γR(p). (1)

I Example 2. We illustrate the definition of the SPPCC with the example in Figure 1.
There, we have regions R = {R1, R2, R3, R4, R5, R6}, with the corresponding crossing cost
functions given in Table 2. In this example, we define the arc weights as ϕa := 2da for each
a ∈ A. We also suppose R2, R4 ∈ RG; R1, R5 ∈ RF . Since fR3 and fR6 are constant, it is
irrelevant whether they belong to RG or RF , but for the sake of completeness let us say
R3, R6 ∈ RF . Given that R2 and R4 belong to RG, we use the distances between the first
and last nodes of the intersecting subpaths to evaluate the crossing cost functions. The total



M. Blanco et. al. 23:5

Table 2 Crossing cost functions for Example 1.

i 1 2 3 4 5 6

fRi(x) 3x 2x 10
{

8 if x ≤ 6
20 if x > 6

{
5 if x ≤ 10
10 if x > 10 15

cost of the example path is thus:

c(p) =
∑

a∈p

ϕa + γR1(p) + γR2(p) + γR3(p) + γR4(p) + γR5(p) + γR6(p)

=88 + fR1(9) + fR2(4) + fR3(7) + fR4(10) + fR5(10) + 0 = 158.

s

t

4

3
2

3

1
2

1
2

3 2

4

1

6
1

4

5

4

4

6

R1 R2 R3 R4

R5

R6

Figure 1 Example of an SPPCC instance with six regions. Arcs are labeled with the distances
da between their endpoints, and the (s, t)-path p is represented by the continuous arrows. Dashed
arrows represent distances between nodes that are not connected by an arc in the path.

The problem of flight trajectory optimization with overflight costs, as described in Section
1, can be modeled using the SPPCC as follows: We use V to represent waypoints and A
to represent airway segments. The nodes s and t represent the departure and destination
airports. An airspace, which is defined as a geographical region, can be modeled by a set
R ∈ R. For each a ∈ A, the cost ϕa can be seen as the fuel cost corresponding to traversing
airway segment a, multiplied by a wind distortion that will be explained in the next subsection.
Furthermore, the great-circle-distance between two points u and v is represented by the
function d(u, v). RG represents the set of airspaces that use the GCD-model for measuring
distance, RF those that use FD.

The five important airspace cost models outlined in Section 1 induce several different
variants of the SPPCC. An extensive analysis of their complexity can be found in [5]. In this
paper, we will focus on a variant which is of particular interest in our application.

2.2 The SPPCC With Wind Influence
In the remainder of the paper, we will focus on a case that best matches our application and
turns out to be polynomial. We assume that RG = R, RF = ∅, and that fR is linear for all
R ∈ R. This allows to model the overflight fees used, for example, in Canada, USA, and
most European states. We also assume that the regions in R are pairwise disjoint. This
is natural, since usually there is a one-to-one correspondence between cost airspaces and
countries, and the latter do not overlap. What about the weather? Of course, overflight
fees do not depend on the weather, but the time needed to fly between two nodes (and

CVIT 2016
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Figure 2 Typical distributions of the weight distortion factors ωa over all arcs, for two different
weather prognoses (November 2016 on the left, April 2017 on the right).

thus the corresponding fuel consumption) varies greatly as the wind speed and direction
change with time, see [4] for a more detailed discussion of this phenomenon. Luckily, these
tow cost factors can be separated in such a way that we can deal with crossing costs in
in a preprocessing step independently of the weather, and with the wind at query time by
multiplying each arc weight ϕa with an appropriate distortion factor ωa. Figure 2 tries to
provide some intuition on the distribution of these factors in our application. Motivated
by this data, we will assume ωa ∈ [0.7, 1.4] ∀a ∈ A throughout the paper.1 We refer to the
resulting variant of the SPPCC as SPPCC-W:

I Definition 3. The shortest path problem with crossing costs and wind influence (SPPCC-W)
is defined as follows:
Input at preprocessing time: Directed graph D = (V,A), arc weights ϕ : A ≥ R+,
regions R ⊆ 2A, crossing costs γ.
Input at query time: Nodes s, t ∈ V , distortion factors ω : A→ [0.7, 1.4].
Objective: Compute an (s, t)-path p in D that minimizes the cost function

c(p) =
∑

a∈p

ωaϕa +
∑

R∈R
γR(p). (2)

3 The Two-Layer-Dijkstra Algorithm

We introduce in this section the Two-Layer-Dijkstra Algorithm (2LDA), which solves the
SPPCC-W to optimality in polynomial time. Recall that RG = R, that is, for each region,
crossing costs are given by a linear function evaluated at the distance between the first and
the last nodes used in that region (or the corresponding sum of distances, in case a region is
intersected multiple times). The main difficulty is that two different paths crossing a region
and using the same nodes to enter and leave it incur the same crossing costs. It can be
overcome by considering a coarse graph on a subset of the nodes of the original (fine) graph,
whose arcs correspond to shortest paths traversing a region in the fine graph. We run a
Dijkstra algorithm on the coarse graph, determining arc costs on-the-fly by repeatedly using
Dijkstra’s algorithm on the fine graph. Finally, from the optimal path in the coarse graph,
the minimum-cost path in the fine graph is reconstructed. We recall that, in Section 2.2,
we assumed that the arc weights are multiplied with a distortion factor after preprocessing.

1 We do not use these bounds explicitly, but the knowledge that ωa is always “close to 1” is an important
motivation for our algorithms in Section 4.
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Since the 2LDA does not have a preprocessing phase, we will ignore distortion in this section,
without loss of generality.

Let p be a path in D, whose intersections with a region R ∈ R are the subpaths pR
1 , . . . , p

R
r .

By the assumption of linearity of all crossing cost functions, there exists αR > 0 such that the
crossing costs of p inR can be written as γR(p) = αR·

(
d(t(pR

1 ), h(pR
1 )) + · · ·+ d(t(pR

r ), h(pR
r ))
)
.

Recall that t(·) and h(·) denote a path’s first and last nodes, or an arc’s tail- and head nodes.
Some more definitions are necessary before introducing the algorithm. For R ∈ R, define

the sets of nodes that can be used to enter or exit R as follows:

V entry(R) :=
{ {v ∈ V |δ−(v)\R 6= ∅, δ+(v) ∩R 6= ∅} ∪ {s} if δ+(s) ∩R 6= ∅
{v ∈ V |δ−(v)\R 6= ∅, δ+(v) ∩R 6= ∅} if δ+(s) ∩R = ∅

V exit(R) :=
{ {v ∈ V |δ−(v) ∩R 6= ∅, δ+(v)\R 6= ∅} ∪ {t} if δ−(t) ∩R 6= ∅
{v ∈ V |δ−(v) ∩R 6= ∅, δ+(v)\R 6= ∅} if δ−(t) ∩R = ∅ ,

where δ−(v) is the set of arcs incident to v and δ+(v) is the set of arcs going out from
v. V entry(R) and V exit(R) will be referred to as the sets of entry and exit nodes of R,
respectively. We assume that for R ∈ R we have V entry(R) ∩ V exit(R) = ∅. If this is not the
case, we can achieve it through a simple transformation that duplicates nodes and assigns
incident arcs in an appropriate way, which does not affect the hardness of the problem.

Consider a directed graph D̄ = (V̄ , Ā), where

V̄ :=
⋃

R∈R
(V entry(R) ∪ V exit(R)) and Ā :=

⋃

R∈R
(V entry(R)× V exit(R)).

Given that a node cannot simultaneously be an entry- and an exit node of the same
region, and since we assume that R partitions A, there exists a unique region Rā for each
ā ∈ Ā such that the tail node of ā is an entry point of Rā and its head node an exit point. Let
D|Rā denote the subgraph of D induced by Rā. We define the function ComputeCost(ā)
as follows, for every ā ∈ Ā: First we compute the shortest (t(ā), h(ā))-path in D|Rā

using
arc weights ϕ. Let zā be the corresponding optimal value, or +∞ if no such path could be
found. ComputeCost(ā) then returns zā + fRā

(d(u, v)).
Given these definitions, the Two-Layer-Dijkstra Algorithm is very simple. It runs in two

phases, and works as follows:
Phase 1 is identical to the classical Dijkstra algorithm searching a shortest (s, t)-path on

D̄ except for one detail. Whenever an arc ā is examined by the algorithm, we do not know
its costs a priori. Instead, we compute them on-the-fly by calling ComputeCost(ā). In
Phase 2, each arc ā in the optimal solution is expanded to a subpath in D by recomputing
the shortest (t(ā), h(ā))-path in D|Rā using arc weights ϕ. Finally, all such subpaths are
concatenated to return an (s, t)-path in D. See Appendix A.1 for a formal description.

I Theorem 4. The Two-Layer-Dijkstra Algorithm returns the optimal solution to SPPCC-W.

Proof. Analogously to the classical Dijkstra algorithm, a simple inductive process on the
number of visited nodes in D̄ shows that the Two-Layer-Dijkstra Algorithm finds the optimal
solution from s to every v̄ ∈ V̄ ; and in particular to t. J

Since the algorithm does O(|V |2) iterations of the Dijkstra algorithm, it has a total
running time of O(n2m+ n3 log(n)), where n = |V | and m = |A|. Thus, we conclude:

I Corollary 5. SPPCC-W can be solved in polynomial time.

CVIT 2016
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4 The Cost Projection Method

While polynomial, the 2LDA is too slow for practical purposes. This motivates the devel-
opment of fast heuristics. For this purpose, we introduce what we call the cost projection
problem. It is based on the idea of replacing crossing costs in a preprocessing phase with
shadow arc weights xa and adding these to the original arc weights ϕa, thus resulting in
a related SPP instance. Intuitively, the goal is to define the arc shadow weights in such
a fashion that the path hierarchy (with respect to total costs) is preserved after the cost
transformation. Formally:

I Definition 6. The cost projection problem (CPP) is the following:
Input: SPPCC-W instance (see Definition 3).
Objective: In a preprocessing phase (i.e., without knowledge of s, t and ω), construct
projected costs x : A→ R+ so that, for any two paths p, q in D, it holds:
∑

a∈p

ωaϕa +
∑

R∈R
γR(p) ≤

∑

a∈q

ωaϕa +
∑

R∈R
γR(q)⇔

∑

a∈p

(ωaϕa + xa) ≤
∑

a∈q

(ωaϕa + xa).

It is clear that, if we could successfully solve the CPP, then the SPPCC-W could
be reduced to a simple SPP, and then solved very efficiently. Unfortunately, due to the
enormous number of potential paths, the non-linear nature of the crossing costs, and the
non-deterministic properties of the distortion factors ω, the CPP does not have a feasible
solution in general. Some progress can be made by observing that, for our purposes, it would
suffice if the optimal path in the original SPPCC-W instance were mapped to the optimal
path in the transformed SPP instance. However, this is an equally unrealistic goal. We
will therefore try to construct projected costs in such a way that the path found by solving
the transformed SPP instance to optimality has a small optimality gap w.r.t. the original
SPPCC-W instance. We suggest to do this by focussing on the subpaths in each region that
are likely to be contained in the optimal SPPCC path.

I Definition 7. For each region, we define a set of good paths: Given R ∈ R, r ≥ 1, u ∈
V entry(R) and v ∈ V exit(R), we say that a (u, v)-path p is r-good if
∑

a∈p

da ≤ r · d(u, v). (3)

We denote the set of r-good paths in R by GR
r . For any subset G ⊆ GR

r , the subset of arcs in
R used by at least one path in G is denoted by A(G).

Intuitively, since arc weights ϕ are defined as a constant multiple of arc lengths, a path is
good if it is not much longer than the theoretically shortest possible path. Recalling the
assumption we made in Definition 3 on the possible ranges for the distortion factors ωa, it is
clear that the shortest paths within an airspace at query time are likely to be good paths,
after a suitable choice of the parameter r (see Section 5). Finally, note that the size of GR

r is
exponential in the number of arcs.

We propose two approaches for solving the CPP.

4.1 Averaging Unit Costs: A Combinatorial Cost Projection Method
The first method we discuss is purely combinatorial and very simple, we call it Averaging
Unit Costs (AUC). The idea behind the approach has the following motivation:
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Suppose all paths in GR
r in a region R are pairwise disjoint. A path p ∈ GR

r has length
d(p) =

∑
a∈p da and costs γR(p). A natural way to define projected costs on an arc a ∈ p is

to do so proportionally to its length:

xR,p
a := da ·

γR(p)
d(p) . (4)

As a consequence of regions being disjoint, an arc a ∈ A belongs to exactly one region
R ∈ R. Hence, to ease notation, we omit the index R in xR,p

a . Since, in addition, all paths
in GR

r are disjoint, projected costs (4) for each arc in a good path are unique. Particularly,
for each path p ∈ GR

r , there holds

x(p) =
∑

a∈p

xp
a = γR(p). (5)

If (5) were to hold for all paths in all regions, then the CPP would be solved. However,
this assumption is not realistic. In practice, an arc a ∈ CR is usually contained in more
than one good path. Furthermore, as noticed above, the size of GR

r is exponential, making
the iteration over all good paths impractical. For that reason, we restrict ourselves to a
polynomially-sized subset ḠR

r ⊂ GR
r (a possible way of constructing ḠR

r is presented in Section
5), and define the final projected costs xa of an arc a as the average over the projected costs
(4) of a derived from all paths p ∈ ḠR

r covering it. Formally:
Let a ∈ A(ḠR

r ), and let GR
a ⊆ ḠR

r be the subset of good paths in ḠR
r containing a. Note

that GR
a 6= ∅, since a ∈ A(ḠR

r ). Then, the final projected cost xa of a is defined as

xa :=
∑

p∈GR
a
xp

a

|GR
a |

, (6)

Note that at this point, projected costs xa have been defined only for arcs a ∈ A ∩A(ḠR
r ),

i.e., all arcs covered by at least one good path in our set. By construction, the optimal
path of the SPPCC-W instance is likely to be fully or mostly contained in this set. For
that reason, we assign projected costs that are higher than average to the other arcs. We
define mR := max

a∈A(ḠR
r )

xa

da
. That is, mR is the maximum cost-distance ratio in R. Then, for

a ∈ A\A(ḠR
r ), we define xa := mR · da.

A computational evaluation of the AUC approach is presented in Section 5.

4.2 Bound Underestimation: An LP-Based Cost Projection Method
In this section, we present linear programming (LP) based method for computing projected
costs that we call BOUND. We use the following formulation:

(LP-B)

min
∑

a∈R

xa (7a)

s.t. x(p) ≥ η · γR(p) ∀p ∈ GR
r (7b)

xa/da ≥ α ∀a ∈ R (7c)
xa/da ≤ β ∀a ∈ R (7d)
β ≤ τ · α (7e)
α , β ≥ 0 (7f)

where 1 > η > 0, τ > 0 are parameters. The heart of (LP-B) is given by constraints (7b),
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which can be seen as a relaxation of equality (4). For a good path it ensures that the
total projected costs are not allowed to underestimate the corresponding crossing costs by
much. Combined with the objective function (7a), it forces crossing costs and corresponding
projected costs to be close to each other. Constraints (7c)-(7f) are meant to keep unit costs
within reasonable bounds, thus avoiding projected costs that are negative or very close to zero.
Note that the number of constraints (7b) is exponential. However, we have the following:

I Proposition 8. (LP-B) can be solved in pseudo-polynomial time.

Proof. Given x ∈ RR
+, α, β > 0, our goal is to show that we can separate over all constraints

of (LP-B) in pseudo-polynomial time. This reduces to separating over constraints (7b), since
all others are polynomial in number. Given an entry-exit pair (u, v) ∈ V entry(R)× V exit(R),
we know that the right-hand side of (7b) will be the same for all (u, v)-paths in R, say
γR

uv. Thus, we would like to know whether there exists an (u, v)-path in GR
r such that∑

a∈p xa < γR
uv. We recall that, by definition, p ∈ GR

r if and only if
∑

a∈p da ≤ r · d(u, v).
It is thus clear that (since there is a polynomial number of entry-exit pairs), solving the
separation problem is equivalent to solving an instance of the resource constrained shortest
path problem (RCSPP) with costs x, resources d and resource limit r · d(u, v) for each
entry-exit-pair (u, v) of a region. It is well-known [12] that the RCSPP can be solved in
pseudo-polynomial time, thus completing the proof. J

5 Computational Results

In this section, we evaluate the performance of the algorithms on real-world instances.
All algorithms were implemented in C++ and compiled with GCC 5.4.0. All computations

were performed on machines with 132 GB of RAM and an Intel(R) Xeon(R) CPU E5-2660 v3
processor with 2.60GHz and 25.6 MB cache. The computation of projected costs was carried
out in parallel using 28 threads. All other computations were carried out in single-thread
mode. We used Gurobi 7.0.2 as our LP-solver.

5.1 Instances
All instances used in our computations correspond to real-world data, provided by Lufthansa
Systems GmbH & Co. KG. This data comprises the airway network graph, the weather
prognoses, and the set of overflight charges.

For our queries, we use a list of 4917 Origin-Destination (OD) pairs for which a commercial
aircraft route exists and such that the optimal route does not leave the European airspace for
any of the given weather prognoses. The reason for selecting these particular instances is that
all airspaces involved define overflight fees using linear functions and the great-circle-distance
(see Table 1), which is the variant that we considered in this paper.

The directed graph D corresponds to an horizontal layer of the airway network at 30, 000
feet altitude, which is a flight level common for cruising. It consists of 97, 534 nodes and
136, 903 arcs. Moreover, we consider three weather prognoses corresponding to January 6th
2015, November 21st 2016, and April 25th 2017. We identify them by the names Jan, Nov,
and Apr, respectively. These prognoses contain the wind information defining the distortion
factor ωa for each arc a ∈ D (see Figure 2). We use overflight charges and average fuel costs
corresponding to an Airbus 320 aircraft. The fuel cost used is 1.73USD/km.

To gain some perspective on the size of the regions used for our computations, in Table 3
we describe a few properties of some of the instances used.
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Table 3 The first three columns show the number of arcs, entry- and exit nodes corresponding
to a few European airspaces. The fourth column represents the cost per km used for the airspaces’
overflight charges, i.e., the factor αR defined in Section 3.

entry nodes
(#)

exit nodes
(#)

arcs
(#)

cost per km
(USD)

Germany 1938 1906 6361 1.58
Italy 1078 1258 7361 1.82
Norway 1705 1636 6863 1.08
Sweden 4922 4905 9561 1.39
USA 5689 5341 88782 0.22

5.2 Computational Results
The two cost-projection methods presented rely on sets of good paths ḠR

r and GR
r , respectively.

For comparability and computational efficiency, in this section we restrict both algorithms to
use a single set ḠR

r , which we define as follows for every region R ∈ R.
We start with an empty set ḠR

r . For every entry-exit pair (u, v) in R and for every a ∈ R,
we compute the ϕ-shortest (u, v)-path in R that contains the arc a (easily obtainable by
concatenating two ϕ-shortest paths and a), and insert it to ḠR

r only if it is cycle-free and it
satisfies (3). Furthermore, for every (u, v) we store only the 10 shortest paths obtained in
this way. For our experiments, we use r = 1.2.

We also set the parameters in (LP-B) to η = 0.98 and τ = 1.1.2
While the LP models for all European airspaces could be solved in a reasonable time by

Gurobi, and we only consider OD-pairs crossing these regions, the long-term goal is to use
these methods worldwide. For that reason, we also compute projected costs for the USA
airspace, which is particularly challenging, due to its size (see Table 3). In particular, even
after restricting the set of good paths used as described above, the number of constraints
(7b) exceeds 58 million. In conjunction with approximately 88, 000 variables, this leads to
Gurobi quickly running out of memory. Inspired by the framework presented in Section 4.2,
we implemented a rudimentary constraint generation algorithm which stores all constraints
in memory, then iteratively adds subsets of those that are violated to the model and solves
it, until no constraints are violated. This simple approach makes it possible to solve the
LP model for USA. For completeness, we ran this constraint generation approach on all
instances.

Figure 3 shows the preprocessing times needed to compute projected costs in each
European region. As could be expected, the LP-based approach is always slower than
the combinatorial AUC method. In our testing environment, we can handle the size of the
generated models using the BOUND method. In nearly all cases, the latter is easier to solve in
a single run than using constraint generation. However, for a couple of large regions (Norway
and USA), the reverse is true.

Using constraint generation for the USA region enables us to solve the corresponding
model. To do so, Gurobi requires 63.6GB of memory and it takes 8, 696s to find an optimal
solution. Only 27.9 million constraints have to be added to the model, since all others never
get violated.

2 This seemingly deliberate selection of parameters yielded the best results among some tested variants.
However, there is definitely plenty of room for further parameter optimization.
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Figure 3 Time needed to compute projected costs using different methods on all airspaces

Finally, in Table 4 we measure the quality and efficiency of our algorithms. Both cost-
projection heuristics find solutions with a very small optimality gap. In particular, there is
a large percentage of instances for which they find the optimal solution. Furthermore, the
speedup of more than a factor of 350 with respect to 2LDA is remarkable.

Table 4 For each weather prognosis, we present the time needed by 2LDA. For both heuristics,
the average error, relative error, and speedup with respect to 2LDA is shown. Column exact lists
the percentage of perfect hits, i.e., instances for which the error is zero.

AUC BOUND

abs err
(USD)

rel err
(%)

exact
(%)

speedup
(×)

abs err
(USD)

rel err
(%)

exact
(%)

speedup
(×)

Jan 34.84 1.03 35.27 382.63 4.83 0.16 36.89 380.00
Nov 34.60 1.03 34.29 362.15 4.73 0.16 36.81 363.48
Apr 35.44 1.06 35.57 361.63 4.70 0.16 37.60 364.44

6 Conclusions

In this paper, we introduced the SPPCC and the SPPCC-W, which models the flight trajectory
optimization problem under influence of overflight fees and wind. We presented the Two-
Layer-Dijkstra Algorithm for solving the SPPCC-W to optimality in polynomial time. We
also developed a novel cost-projection method and suggested two computational procedures.
In the corresponding computations, we showed that they achieve approximation errors well
below 1%, while yielding a speedup of over 350 with respect to the Two-Layer-Dijkstra
Algorithm.
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A Appendix

Here, we give a detailed description of the Two-Layer-Dijkstra Algorithm presented in Section
3.

A.1 The Two-Layer-Dijkstra Algorithm
The complete version of the Two-Layer-Dijkstra Algorithm can be found in Algorithm 1.
We use the same notation as in Section 3. In particular, we make use of the subroutine
ComputeCost(ā) defined before. We also define the subroutine ShortestPath(s, t,D, ϕ),
which takes a directed graph, a pair of nodes in that digraph, and a non-negative real function
on the arcs; and uses Dijkstra’s algorithm to return the shortest path connecting the two
nodes in the digraph.

Algorithm 1 Two-Layer-Dijkstra Algorithm for SPPCC
Input: D, s, t, ϕ, disjoint regions R and linear fR for R ∈ R.
Output: (s, t)-path p in D
1: Construct D̄, insert dummy node vnull to V̄ . D̄ as in Section 3
2: for all v̄ ∈ V̄ do
3: dist[v̄]←∞ . initialize distances
4: pred[v̄]← vnull . initialize predecessors
5: dist[s]← 0
6: Q← V̄

7: while Q 6= ∅ do
8: ū← argminv̄∈Q(dist[v̄]) . choose node with minimum distance
9: if ū = t then

10: break
11: Q← Q\{v̄}
12: for all v̄ s.t. (ū, v̄) ∈ Ā do
13: `ū,v̄ ← ComputeCost((ū, v̄)) . compute cost corresponding to arc (ū, v̄)
14: if dist[v̄] > dist[ū] + `ū,v̄ then . if new cost is better
15: dist[v̄]← dist[ū] + `ū,v̄ . update distance
16: pred[v̄]← ū . update predecessor
17: p← ∅, u← t

18: while pred[u] 6= vnull do
19: p← ShortestPath(pred[u], u,D, ϕ) ∪ p . reconstruct path in D recursively
20: return p


