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Combining NP-Hard Reduction Techniques and Strong

Heuristics in an Exact Algorithm for the Maximum-Weight

Connected Subgraph Problem

Daniel Rehfeldt∗ · Thorsten Koch

Abstract

Borne out of a surprising variety of practical applications, the maximum-weight con-
nected subgraph problem has attracted considerable interest during the past years. This
interest has not only led to notable research on theoretical properties, but has also brought
about several (exact) solvers—with steadily increasing performance. Continuing along this
path, the following article introduces several new algorithms such as reduction techniques
and heuristics and describes their integration into an exact solver. Based on the presented
new algorithms and a new formulation our solver is able to outperform previous methods by
two orders of magnitude on average. Moreover, one large-scale benchmark instance from the
11th DIMACS Challenge can be solved for the first time to optimality and the primal-dual
gap for two other ones can be significantly reduced. Although this article is set against the
backdrop of improved practical solving, theoretical properties (such as NP-hardness) of the
algorithmic components will receive considerable attention.

1 Introduction

The past five years have witnessed a surge of research articles dealing with the maximum-weight
connected subgraph problem (MWCSP). As practitioners, for instance in computational biology,
have become more aware of this problem and its practical potential, their work has in turn
(re-)fueled the interest of mathematicians and computer scientists. The source of this symbiotic
interplay is a surprisingly plain looking problem: Given an undirected graph G = (V,E) and
vertex weights p : V → Q, the task is to find a connected subgraph S = (V (S), E[S]) ⊆ G
such that

∑
v∈V (S) p(v) is maximized. While computational biology [3, 12, 22] seems to be

the predominant application field for the MWCSP, one also encounters the problem in other,
disparate, areas such as wildlife conservation [11] and computer vision [9].

The MWCSP has been discussed in various publications, see e.g. [5, 12, 19]. Several articles
have contributed to a solid theoretical understanding of the problem [8, 33] while others have ad-
dressed exact solving approaches [7, 16, 17]. Recently, also the scope of preprocessing techniques
has been considerably enhanced [29].

This article aims at further enhancing the state of the art in exact solving by combining several
approaches: The introduction and analysis of new reduction techniques in Section 2. The use of
an integer programming (IP) formulation based on a transformation of the (rooted) MWCSP to
the directed Steiner tree problem in Section 3. And finally the development of several empirically
strong primal heuristics in Section 5. This section will also discuss the incorporation of the new
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techniques into an exact MWCSP solver and furthermore analyze its performance. The combined
exact algorithm will be embedded in the Steiner tree problem framework SCIP-Jack [17, 23].

1.1 Preliminaries and Notation

Throughout this article it will be assumed that in each MWCSP at least one vertex is assigned
a negative and one a positive weight. In the case of only non-negative vertex weights, the
MWCSP reduces to finding a connected component of maximum vertex weight; in the case of
only non-positive vertex weights, the empty set constitutes an optimal solution. Moreover, in
the remainder of this article it will usually be presupposed that an MWCSP PMW = (V,E, p) is
given such that the underlying graph (V,E) is connected. The latter assumption does not limit
the generality, as one can optimize each connected components of a non-connected MWCSP
separately.

As to notation, to denote the vertices and edges of a specific graph G we will write V (G) and
E(G), respectively. In contrast, for a subset of vertices W ⊆ V we define

E[W ] :=
{
{vi, vj} ∈ E | vi, vj ∈W

}
.

Given an MWCSP, the weight of a subgraph S = (V (S), E(S)) will be denoted by P (S) :=∑
v∈V (S) p(v). Further, the notation n := |V | and m := |E| will be used. Moreover, we define

T := {v ∈ V | p(v) > 0}, set s := |T |, and write for the sake of simplicity V := {v1, ..., vn} as
well as T := {t1, ..., ts}.

Paths will be considered as subgraphs, and the subpath of a path Q between two vertices
vi, vj ∈ V (Q) will be denoted by Q(vi, vj). A path between two vertices vi, vj will be referred to
as (vi, vj)-path. This article introduces for an MWCSP instance (V,E, p) the distance function
d : V × V 7→ Q ∪ {−∞} defined as

d(vi, vj) := sup{P (Q) | Q is a (vi, vj)-path and (V (Q) \ {vi, vj}) ∩ T = ∅}

for any vi, vj ∈ V . In particular, d(vi, vj) = d(vj , vi) and d(vi, vi) = p(vi). Also, with the
convention sup ∅ = −∞, one observes that d(vi, vj) = −∞ if and only if there is no path
between vi and vj without intermediary positive vertices. Given a vertex v0 and two additional
vertices vi, vj ∈ V \ {v0}, it will be said that for v0 vertex vi is d-nearer than vertex vj if
d(v0, vi) ≥ d(v0, vj). For each vertex vi the k d-nearest vertices of positive weight (if existent)
are denoted by vi,1, vi,2, ..., vi,k. In [13] a similar distance function is defined for the Steiner tree
problem in graphs that looks for paths of minimum edge weight without intermediary terminals.

For any function x : M 7→ Q with M finite, and any M ′ ⊆ M define x(M ′) :=
∑
i∈M ′ x(i).

Additionally, for W ⊆ V define δ(W ) := {{u, v} ∈ E | u ∈ W, v ∈ V \W} and for a subgraph
G′ ⊆ G and W ′ ⊆ V (G′) define δG′(W

′) := {{u, v} ∈ E(G′) | u ∈ W ′, v ∈ V (G′) \W ′}. A
corresponding notation is used for directed graphs (V,A): For W ⊆ V define δ+(W ) := {(u, v) ∈
A | u ∈W, v ∈ V \W} and δ−(W ) := δ+(V \W ).

2 Reduction Techniques

Reduction techniques for the MWCSP have not been widely studied in the literature. This
characteristic sets the MWCSP in stark contrast to kinsmen such as the Steiner tree problem
in graphs for which a plethora of research articles has addressed preprocessing, see e.g. [13, 27].
For the MWCSP the first ground was broken in the course of the 11th DIMACS Challenge, with
two articles [4, 15] containing reduction techniques as part of an exact solving approach. Two

3



years later a significantly more comprehensive reduction package for the MWCSP was introduced
in [29] and a dual-ascent based branch-and-bound algorithm with strong reduction properties was
described in [21]. The reductions techniques introduced in the following continue the work started
in [29] by introducing both bound-based and alternative-based reduction methods. To render
proof techniques more perspicuous, throughout this section it will without loss of generality
be assumed that each solution to PMW is given as a tree (and not as an arbitrary connected
subgraph).

2.1 Bound-Based Reductions

The term bound-based reductions describes preprocessing methods that identify edges and vertices
for elimination by examining whether they induce an upper bound that is lower than a given
lower bound (or vice versa) [26, 29]. In the following we will introduce a new reduction technique
that could also be used to generalize the bound-based Voronoi reduction concept for the Steiner
tree problem in graphs [26] and the prize-collecting Steiner tree problem [29]—in this way the
proof technique for the followings three propositions is similar to the Voronoi reduction proofs
in [26] and [29] and is therefore presented in the appendix only.

The base of the reduction technique is the following, new, concept: a positive-vertex decompo-
sition of PMW—with underlying graph (V,E)—is a partition H =

{
Hti ⊆ V | T ∩Hti = {ti}

}
of V such that for each ti ∈ T the subgraph (Hti , E[Hti ]) is connected. Each of the Hti is
called region with center ti. Furthermore, a vertex vj ∈ Hti adjacent to a vertex vk /∈ Hti

is called boundary vertex of region Hti ; the set of all such vertices to a region Hti will be de-
noted by B(Hti). Additionally, an edge {vi, vj} with vi and vj in different regions will be called
H-boundary edge.

To set the stage for the computation of an upper bound, define for all ti ∈ T the positive-vertex
decomposition radii :

rH(ti) := max{d(ti, vk) | vk ∈ B(Hti)} (1)

and
r+
H(ti) := max{rH(ti), 0}. (2)

Definition (2) allows to establish three bound-based reduction criteria presented in the fol-
lowing. An important observation underlying all these criteria is that for each positive vertex ti
that is part of an optimal solution S with |V (S)∩T | ≥ 2 there needs to be a path in V (S)∩Hti

from ti to a vertex in B(Hti)—and the weight of this path is bounded by rH(ti). Since ti does
not have to be in V (S), one cannot use rH(ti) to obtain a bound on the weight of S; however,
one can use r+

H(ti) instead. Moreover, one can observe that if a negative vertex vi is part of an
optimal solution, there need to be two paths in S connecting vi to positive vertices and having
no vertices but vi in common. These two observations lead to:

Proposition 1. Let H be a positive-vertex decomposition of PMW and assume that |T | ≥ 2.
Furthermore, let vi ∈ V \ T and assume that for each optimal solution S to PMW it holds that
vi ∈ V (S). Finally, let

U2 :=
∑
t∈T

r+
H(t)−min{r+

H(t) + r+
H(t′) | t, t′ ∈ T, t 6= t′}. (3)

Thereupon,

U := U2 + d(vi, vi,1) + d(vi, vi,2)− p(vi) (4)

is an upper bound on the weight of S.
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A proof can be found in Appendix A.1. It follows from the proposition that vertex of non-
positive weight can be eliminated if the associated upper bound U in (4) is smaller than a known
lower bound (e.g. the weight of a given solution). An application of the proposition is exemplified
in Figure 1 for a simple MWCSP instance. Denote the upper left positive vertex by t1, the lower
left by t2 and the lower right by t3. With H being the positive-vertex decomposition as marked
by the dotted ellipses it holds that r+

H(t1) = 1, r+
H(t2) = 2, and r+

H(t3) = 0.5. Consequently, for
Proposition 1 with vi being the (upper right) filled vertex it holds that U2 = 2 and U = 2.5.
Therefore, vi can be eliminated if a lower bound higher than 2.5 is given.

2

2 1.5

-1

-1 -1

-2

-1.4

-2

Figure 1: A positive-vertex decomposition of an MWCSP instance with regions marked by dotted
ellipses.

The following proposition can be used to moreover eliminate vertices of positive weight. It
can be proven similarly to Proposition 1 (see Appendix A.2).

Proposition 2. Let H be a positive-vertex decomposition of PMW and assume that |T | ≥ 2.
Furthermore, let vi ∈ T and assume that an optimal solution S exists such that vi ∈ V (S) and
|V (S) ∩ T | ≥ 2. Define

U1 :=
∑

t∈T\{vi}

r+
H(t)−min{r+

H(t) | t ∈ T \ {vi}}. (5)

Then

U := U1 + d(vi, vi,1) (6)

is an upper bound on the weight of S.

The positive vertex decomposition concept does not only allow for direct elimination of ver-
tices, but can furthermore be used for a criterion that guarantees that a vertex cannot be of
degree higher than 2 in any optimal solution. This information will be utilized in Section 2.2.

Proposition 3. Let H be a positive-vertex decomposition of PMW and assume that |T | ≥ 3.
Furthermore, let vi ∈ V \ T and assume that for an optimal solution S to PMW it holds that
|δS(vi)| ≥ 3. Finally, let

U3 :=
∑
t∈T

r+
H(t) (7)

−min{r+
H(tj) + r+

H(tk) + r+
H(tl) | tj , tk, tl ∈ T ; tj , tk, tl disjoint}.
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Thereupon,

U := U3 + d(vi, vi,1) + d(vi, vi,2) + d(vi, vi,3)− 2p(vi) (8)

is an upper bound on the weight of S.

To efficiently apply Proposition 1, one would like to minimize (3)—and for Proposition 2 and
Proposition 3 to minimize (5) and (7), respectively. Unfortunately, this problem turns out to be
NP-hard.

The decision variant of the problem can be stated as follows. Let α ∈ N0 and let G0 = (V0, E0)
be an undirected, non-empty graph. Furthermore, let p0 : V0 → Z, set T0 := {v ∈ V0 | p(v) > 0},
and assume that α < |T0|. For each positive-vertex decomposition H0 of G0 choose T ′0 ( T0 such
that |T ′0| = α and r+

H0
(t′) ≤ r+

H0
(t) for all t′ ∈ T ′0 and t ∈ T0 \ T ′0. Let:

CH0
:=

∑
t∈T0\T ′0

r+
H0

(t). (9)

We now define the α-positive-vertex decomposition problem as follows: Given a k ∈ N, is there
a positive-vertex decomposition H0 such that CH0

≤ k? In the following proposition it is shown
that this problem is NP-complete, which forthwith establishes the NP-hardness of finding a
positive-vertex decomposition that minimizes (3), (5), or (7)—which corresponds to α = 2,
α = 1, and α = 3, respectively.

Proposition 4. For each α ∈ N0 the α-positive-vertex decomposition problem is NP-complete.

Proof. Given a positive-vertex decomposition H0 it can be tested in polynomial time whether
the associated CH0

is less than or equal to k. This can be be done for instance as follows:
Consider the set of (directed) arcs A′ := {(v, w) ∈ V0 × V0 | {v, w} ∈ E} and define edge costs
c′ : A′ → Z≥0 such that for a = (vi, vj) ∈ A′:

c′(a) =

{
−p0(vj), if p0(vj) < 0

0, otherwise

Thereupon, CH0
can be computed by running (the directed version of) Dijkstra’s algorithm for

each subgraph (Hti , A
′[Hti ]), starting from ti and using the arcs costs c′. Consequently, the

positive-vertex decomposition problem is in NP.
Next, it will be shown that the (NP-complete [18]) independent set problem can be reduced to

the positive-vertex decomposition problem. To this end, let Gind = (Vind, Eind) be an undirected,
non-empty graph and k ∈ N. The problem is to determine whether an independent set in Gind
of cardinality at least k exists. Without loss of generality it will be assumed that Gind does not
include any vertices of degree 0.

To establish the reduction, construct a graph G0 from Gind as follows. Initially, set G0 =
(V0, E0) := Gind and define vertex weights p0(vi) := 1 for all vi ∈ V0. Next, extend G0 by
replacing each edge el = {vi, vj} ∈ E0 with a vertex v′l of weight p0(v′l) = −1 and the two edges
{vi, v′l} and {vj , v′l}. Finally, if α > 0, choose an arbitrary v0 ∈ V0 ∩ Vind and add vertices v′j of
weight −1 for j = 0, ..., α and vertices v′′j of weight 1 for j = 1, ..., α to G0. Additionally, add an
edge {v0, v

′
0}. Finally, add edges {v′0, v′j} and {v′j , v′′j } for j = 1, ..., α.

First, one observes that the size |V0| + |E0| of the new graph G0 is a polynomial in the
size |Vind| + |Eind| of Gind. Next, r+

H0
(vi) = 0 holds for a vertex vi ∈ G0 ∩ Gind if and only

if Hvi contains all (newly inserted) adjacent vertices of vi in G0. The latter condition implies
that for each adjacent vertex vk of vi in G0 ∩ Gind it holds that r+

H0
(vk) = 1. Moreover, in a

positive-vertex decomposition for (G0, p0) of minimum cost CH0 , it holds that r+
H0

(v′′j ) = 0 for
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j = 1, ..., α. Hence, there is an independent set in Gind of cardinality at least k if and only if
there is a positive-vertex decomposition H0 for (G0, p0) such that

CH0 ≤ |Vind| − k.

This proves the proposition.

Since attempting to find an exact algorithm for minimizing (3) seems to be overly optimistic,
a greedy heuristic based on Dijkstra’s algorithm will instead be used. Moreover, a local search
heuristic has been developed to improve the decomposition found by the greedy approach. The
combined algorithm runs in O(m log n), which also gives the whole bound-based reduction test
a worst-case complexity of O(m log n)—if a lower bound is already available. This reduction
test will be referred to as Positive Vertex Decomposition (PVD) test; the computation of
a lower bound will be discussed in Section 4.

2.2 Alternative-Based Reductions

This section covers several exclusion tests [13]: reduction methods that attempt to prove that a
specified part of the problem graph—usually a single vertex or edge—is not contained in at least
one optimal solution. The usual procedure is to show that for each solution that contains this
specified subgraph there is another, alternative, solution of equal or better objective value that
does not.

Bottleneck Distances

First, an exclusion concept introduced in [29] will be revisited. Define the interior cost of a
subpath Q(vk, vl) (of a path Q) in (V,E) as:

C−(Q(vk, vl)) :=
∑

v∈V (Q(vk,vl))\{vk,vl}

p(v), (10)

where the convention that the empty sum equals 0 is assumed, so the interior cost of an edge is
likewise 0. Furthermore, define the vertex weight bottleneck length of Q as:

l̂(Q) := min
vk,vl∈V (Q)

C−(Q(vk, vl)). (11)

Note that l̂(Q) ≤ 0 holds, because the interior cost of an edge is 0. For motivating the vertex
weight bottleneck length consider the deletion of a vertex vk of a solution (tree) S to PMW . This
deletion results in two trees S1, S2. Assume now that there is a path Q that contains vertices
of both S1 and S2. If l̂(Q) > p(vk), one can reconnect S1 and S2 to a solution S′ that does not
contain vk and that satisfies P (S′) > P (S). Naturally, one would like to find a maximum lower
bound. To this end, let Q(vi, vj) be the set of all paths between vi and vj . Thereupon, define
the vertex weight bottleneck distance as:

d̂(vi, vj) := max{l̂(Q) | Q ∈ Q(vi, vj)}. (12)

In [29] a reduction test based on the vertex weight bottleneck distance to eliminate vertices of
up to degree 5 was employed. The next proposition and its subsequent corollary allow to design
a complementary reduction test.
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Proposition 5. Let vi ∈ V \ T and assume that there is at least one optimal solution S to
PMW such that |δS(vi)| ≤ 2. Denote by ∆ the set of all vertices adjacent to vi. If for each two,

non-identical, vertices vj , vk ∈ ∆ it holds that d̂(vj , vk) > p(vi), then there is at least one optimal
solution that does not contain vi.

Proof. Let S be a tree such that |δS(vi)| ∈ {1, 2}. If |δS(vi)| = 1, then the (possibly empty)
tree S′ obtained by removing vi and its incident edge from S is of no lower weight than S. If
|δS(vi)| = 2, denote the two vertices contained in δS(vi) by v′i, v

′′
i and construct a new tree S′ as

follows. First, set S′ = S and subsequently remove vi and its incident edges from S′. Second,
consider a path Q corresponding to d̂(v′i, v

′′
i ). Because d̂(v′i, v

′′
i ) > p(vi) holds (by assumption), Q

cannot contain vi. Let vr, vs ∈ V (Q)∩ V (S′) such that V (Q(vr, vs))∩ V (S′) = {vr, vs}. Adding
Q(vr, vs) to S′ one obtains a tree that does not contain vi and is of higher weight than S.

If the test condition of Proposition 5 is not successful for a vertex vi, one may still be able
to delete edges incident to vi by using:

Corollary 6. Let vi ∈ V \ T and assume that there is at least one optimal solution S to PMW

such that |δS(vi)| ≤ 2. Denote by ∆ the set of all vertices adjacent to vi and let vj ∈ ∆. If

for each vertex vk ∈ ∆ \ {vj} it holds that d̂(vj , vk) > p(vi), then there is at least one optimal
solution that does not contain the edge {vi, vj}.

The reduction test based on Proposition 5 and Corollary 6 will be referred to as Extended
Non-Positive Vertex (ENPV) test. To find vertices that are of degree at most 2 in at
least one optimal solution, the criterion described in Proposition 3 and the dual-ascent criterion
mentioned in Section 3 are used. Furthermore, to limit the computation time, the ENPV test
inspects only vertices of degree smaller than or equal to 6—the number which gave the best
results in preliminary tests.

In both [29] and this article heuristics (with worst-case complexity of O(1) [29]) are employed
to compute lower bounds on the vertex weight bottleneck distance. To justify the use of heuristics,
it will be demonstrated that computing the vertex weight bottleneck distance isNP-hard—which
does not come as a surprise, since also the corresponding problem for the prize-collecting Steiner
tree problem is NP-hard [32].

First, the decision variant of the vertex weight bottleneck distance is defined. Let G0 =
(V0, E0) be an undirected and connected graph with |V0| ≥ 2. Furthermore, let p0 : V0 → Z.
Given two distinct vertices vi, vj ∈ V0 and a k ∈ Z≤0, the vertex weight bottleneck distance

problem is to determine whether d̂(vi, vj) ≥ k. TheNP-hardness of the problem can be shown by
a reduction from the Hamiltonian path problem—as in the NP-hardness proof of the bottleneck
distance test for the prize-collecting Steiner tree problem [32].

Proposition 7. The vertex weight bottleneck distance problem is NP-complete.

Proof. First, note that the vertex weight bottleneck length of a given path Q can be com-
puted in O(|V0(Q)|2); hence, the vertex weight bottleneck distance problem is in NP. Next, let
GHam = (VHam, EHam) be an undirected, connected graph with two distinct vertices vi, vj . The
Hamiltonian path problem asks whether a (simple) path between vi and vj exists that contains
all vertices. This problem can be reduced to the vertex weight bottleneck distance problem as
follows. Initially, set G0 := (V0, E0) := GHam and define p0(vi) := 1 for all vi ∈ V0. Next, extend
G0 by adding vertices v′i, v

′′
i with weights p0(v′i) = −|VHam|, p0(v′′i ) = 0 and vertices v′j , v

′′
j with

weights p0(v′j) = −|VHam|, p0(v′′j ) = 0 to V0. Finally, add edges {vi, v′i}, {v′i, v′′i } and {vj , v′j},
{v′j , v′′j } to E0. Thereupon, GHam contains an Hamiltonian path between vi and vj if and only

if d̂(v′′i , v
′′
j ) ≥ −|VHam| on (V0, E0, p0).
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Notwithstanding its NP-hardness, the vertex weight bottleneck distance maximization prob-
lem can be approximated by heuristics well enough to allow for a strong practical performance
of the ENPV test.

Dominating Connected Sets

Besides paths, one can also use general connected subgraphs for alternative-based reductions
tests. This article introduces the concept of dominating connected sets for the MWCSP: Let
X ⊂ V such that (X,E[X]) is connected and let W ⊂ V \X. Then X will be said to MWCS-
dominate W if{

vi ∈ V \W | ∃{vi, vj} ∈ E, vj ∈W
}
⊆
{
vi ∈ V | ∃{vi, vj} ∈ E, vj ∈ X

}
∪X.

Importantly, one can remove W from any feasible solution and reconnect the resulting compo-
nents by using only vertices of X. In the following, additional conditions will be formulated
that allow to remove W , or parts of it, without reducing the weight of at least one optimal solu-
tion. The first such condition is stated in the following proposition, which generalizes a lemma
from [29].

Proposition 8. Let W ⊆ V \T and X ⊆ V \W such that X MWCS-dominates W and assume∑
w∈W

p(w) ≤
∑

u∈X:p(u)<0

p(u). (13)

Then there exists an optimal solution S such that W * V (S). The set X will be said to all-
weights MWCS-dominate W .

Proof. Let S be a feasible solution with W ⊆ V (S). Note that by construction p(w) ≤ 0 for all
w ∈W . Define

∆S :=
{
v ∈ V (S) \W | ∃{v, w} ∈ E(S), w ∈W

}
.

Next, remove W from S. In this way one obtains a new (possibly empty) subgraph S′ that
contains at most |∆S | many (inclusion-wise maximal) connected components. If S′ is connected,
no further discussion is necessary. Otherwise, note that each connected component of S′ contains
a vertex vi ∈ ∆S . Therefore, these components can be reconnected as follows. First, add
X \ V (S′) to V (S′) to obtain a new subgraph S′′. Second, because X MWCS-dominates W
and because each connected component contains a vi ∈ ∆S , there exists a set of edges ẼS′′ ⊆
E[V (S′′)] that reconnects S′′. Adding ẼS′′ to S′′, one obtains a, finally connected, subgraph
S′′′. Finally, the construction of S′′′ implies:∑

v∈V (S′′′)

p(v) ≥
∑

v∈V (S)

p(v)−
∑
w∈W

p(w) +
∑

u∈X:p(u)<0

p(u)
(13)

≥
∑

v∈V (S)

p(v).

This concludes the proof.

While Proposition 8 guarantees that set W is not part of at least one optimal solution, the
same may not be true for subsets of W . Therefore, one cannot just eliminate W in general.
However, in the case of |W | = 1 one can forthwith eliminate W , and in the case of |W | = 2 with
W = {vi, vj} ∈ E one can eliminate the edge {vi, vj}. Figure 2 shows an MWCSP instance for
which an edge can be eliminated by means of the criterion formulated in Proposition 8. The
vertices of the edge drawn in bold have a summed weight of −4.3, lower than the weight of the
(sole) negative vertex in the MWCS-dominating set marked by the dotted ellipse (which is −3.5).
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Figure 2: An MWCSP instance. Considering the vertices enclosed by the dotted ellipse as the
set X, one can verify with Proposition 8 that the bold edge between the two filled vertices can
be deleted.

In contrast to Proposition 8, the following proposition allows to eliminate non-trivial (i.e.
larger than single-vertex or single-edge) subgraphs of (V \T,E[V \T ])—but also involves a more
restricting test condition.

Proposition 9. Let W ⊆ V \T and X ⊆ V \W such that X MWCS-dominates W and assume

max
w∈W

p(w) ≤
∑

u∈X:p(u)<0

p(u). (14)

Then there exists an optimal solution S such that W ∩ V (S) = ∅. The set X will be said to
max-weight MWCS-dominate W .

Proof. Let S be a feasible solution with W ∩ V (S) 6= ∅. Further, define ∆S as in the proof
of Proposition 8. Remove W ∩ V (S) from S to obtain a new (possibly empty) subgraph S′

that contains at most |∆S | many (inclusion-wise maximal) connected components. Assume
that there are at least two connected components. Each of these components contains a vertex
vi ∈ ∆S . These components can therefore be reconnected as in the proof of Proposition 8 to
obtain a connected subgraph S′′′ with W ∩V (S′′′) = ∅. Because of (14) it holds for the resulting
connected subgraph S′′′ that

∑
v∈V (S′′′) p(v) ≥

∑
v∈V (S) p(v).

Figure 3 shows an MWCSP instance that can be reduced by Proposition 9. Associated with
Proposition 8 and Proposition 9 the subsequently sketched reduction test will be used. For each
vertex vi ∈ V \ T the union of vi and all non-negative adjacent vertices of vi is considered as
the set X in Proposition 8. Thereupon, one attempts to eliminate neighboring vertices of X by
using the conditions of Proposition 8—testing for all vi ∈ V \ (X ∪ T ) whether they are MWCS-
dominated by X proved to be too expensive. If the test fails for a neighbor vj of X but there
is only one neighbor vk of vj that is neither in X nor a neighbor of X, then it is checked: first,
whether the vertex set {vj , vk} can be eliminated by using Proposition 8 and otherwise whether
the corresponding edge can be deleted by means of Proposition 9. The number and choice of
neighbors is restricted such that the entire algorithm can be guaranteed to be of worst-case
complexity of O(m2). However, in practice one observes a run time that is much better than
this bound suggests. This test will be referred to as Dominating Vertex Set (DVS).

For the special case of |W | = 1 a vertex set X max-weight MWCS-dominates a vertex set W
if and only if X all-weights MWCS-dominates W . Therefore, such a set will be called single-
weight MWCS-dominating. As will be shown in the following, already this special case is
NP-hard.

10
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Figure 3: An MWCSP instance. Considering the vertices enclosed by the dotted ellipse as the
set X, one can verify with Proposition 9 that the three filled vertices can be deleted.

Let G0 = (V0, E0) be an undirected, non-empty graph. Furthermore, let p0 : V0 → Z. Given
a vertex vi ∈ V0 with p0(vi) ≤ 0 the single-weight MWCS-domination problem is to determine
whether a subset of V \ {vi} exists that single-weight MWCS-dominates vi.

Proposition 10. The single-weight MWCS-domination problem is NP-complete.

Proof. Given a vertex subset X it can be verified with worst-case complexity of O(|E0| + |V0|)
whether this is an MWCS-dominating set to vi. Hence, the single-weight MWCS-dominating
decision problem is in NP.

In the following it will be demonstrated that the (NP-complete [18]) vertex cover problem
can be reduced to the single-weight MWCS-domination problem. Let Gcov = (Vcov, Ecov) be an
undirected, non-empty graph and k ∈ N. Thereupon, for the vertex cover problem it has to be
determined whether a set in Vcov of cardinality at most k exists that is incident to all edges Ecov.

To establish the reduction, construct a graph G0 from Gcov as follows: Start with G0 =
(V0, E0) := Gcov and extend this graph as follows: First, define vertex weights p0(vi) := −1
for all vi ∈ V0. In the next step replace each edge el = {vi, vj} ∈ E0 by a vertex v′l of weight
p0(v′l) := −(k + 1) and the two edges {vi, v′l} and {vj , v′l}. Moreover, add edges {vi, vj} for each
pair of distinct vertices vi, vj ∈ V0 ∩ Vcov to E0. Due to the previous step, this procedure does
not lead to multi-edges. Finally, add a vertex v?0 of weight p0(v?0) := −k to V0 and add edges
{v?0 , vi} for all vi ∈ V0 \ (Vcov ∪ {v?0}).

Scrutinizing the graphs G0 and Gcov, one can verify that a single-weight MWCS-dominating
set X to v?0 exists if and only if to each (newly added) vertex vi ∈ V0 \ (Vcov ∪ {v?0}) there is an
adjacent vertex vj ∈ V0 ∩ Vcov with vj ∈ X. The latter condition is satisfied if and only if there
is a vertex cover in Gcov of cardinality at most k.

Combining Dominating Sets and Bottleneck Distances

Although both being NP-hard, the MWCS-domination and the bottleneck distance concept can
be merged into a powerful additional reduction test. The stage for this combined routine is set
by the following:

Proposition 11. Let W ⊆ V \ T and define

∆ :=
{
vi ∈ V \W | ∃{vi, vj} ∈ E, vj ∈W

}

11



If ∆ = ∅, then no optimal solution to PMW contains any vertex of W . Otherwise, let X ⊆ V \W
such that

∆1 := ∆ ∩
({
vi ∈ V \X | ∃{vi, vj} ∈ E, vj ∈ X

}
∪X

)
is non-empty and (X,E[X]) is connected. Define

C1 :=
∑

u∈X:p(u)<0

p(u). (15)

Further, let ∆2 := ∆ \∆1 and choose for each vk ∈ ∆2 an, arbitrary, v′k ∈ X. Define

C2 :=
∑
vk∈∆2

d̂(vk, v
′
k). (16)

If

C := C1 + C2 >
∑
w∈W

p(w), (17)

then each optimal solution S to PMW satisfies W * V (S).

Proof. Let S be a feasible solution with W ⊆ V (S). Note that both C1 ≤ 0 and C2 ≤ 0. Define

∆S
1 := ∆1 ∩ V (S)

and
∆S

2 := ∆2 ∩ V (S).

In the following it will be demonstrated how to construct a connected subgraph S′′′ that does
not contain all vertices of W and satisfies P (S′′′) ≥ P (S).

Let S′ be the subgraph obtained from S by removing W and all incident edges. Note that
each maximal connected component of S′ contains at least one vertex of ∆S

1 ∪∆S
2 . Furthermore,

it holds that

P (S′) = P (S)−
∑
w∈W

p(w). (18)

Set S′′ := S′. If ∆S
1 6= ∅, add (X \V (S′′), E[X] \E(S′′) to S′′. Moreover, in this case add for

each vi ∈ ∆S
1 \ V (S′′) an edge {vi, vj} for a vj ∈ X to E(S′′). Consequently, it holds for S′′ that

P (S′′) ≥ P (S′) + C1
(18)
= P (S)−

∑
w∈W

p(w) + C1. (19)

Moreover, all ∆S
1 are part of one connected component of S′′.

Set S′′′ := S′′. Consider each vk ∈ ∆S
2 \ V (S′′′) consecutively and choose a (vk, v

′
k)-path Qk

(with v′k as defined in the statement of this proposition) such that l̂(Qk) = d̂(vk, v
′
k). If vk and v′k

are in different connected components of S′′′, there exist vq ∈ V (Qk) in the connected components
of vk and v′q ∈ V (Qk) in the connected component of v′k such that V (Q(vq, v

′
q)) ∩ V (S′′′) =

{vq, v′q}. Add Q(vq, v
′
q) to S′′′. Because of condition (17) there is at least on vertex of W that is

not contained in any of these newly added paths—otherwise it would hold that C2 ≤
∑
w∈W p(w)

and therefore also C ≤
∑
w∈W p(w). Moreover, because of condition (16) the overall procedure

12



reduces the weight of S′′ by at most |C2|. Hence, it holds for the new (now connected) subgraph
S′′′ that

P (S′′′) ≥ P (S′′) + C2

(19)

≥ P (S)−
∑
w∈W

p(w) + C1 + C2. (20)

Finally, W * V (S′′′) holds and due to (17) it follows from (20) that

P (S′′′) > P (S). (21)

Hence the proposition is proven.

Corollary 12. Assume that the conditions of Proposition 11 hold, but instead of (17) assume

C1 + C2 > max
w∈W

p(w). (22)

Then each optimal solution S to PMW satisfies W ∩ V (S) = ∅.

Proof. Let S be a feasible solution. Further, let S′′′ be a connected subgraph created from S
by the procedure described in the proof of Proposition 11. S′′′ is connected and it holds that
P (S′′′) > P (S), so only the equation W ∩ V (S′′′) = ∅ needs to be verified. By construction all
vertices of S′′′ are in one of the three sets: (V (S) \W ), X, and the set of vertices that are part

of a (vk, v
′
k)-path Qk with l̂(Qk) = d̂(vk, v

′
k) and vk ∈ ∆S

2 . By definition the first two of these
sets cannot contain any vertices of W . Furthermore, because of (22), none of the paths Qk can

contain a vertex of W since otherwise it would hold that l̂(Qk) ≤ maxw∈W p(w)—which is a

contradiction because of C1 + C2 ≤ C2 ≤ l̂(Qk). Thus, W ∩ V (S) = ∅.

3.3
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Figure 4: An MWCSP instance. Considering the vertices enclosed by the dotted ellipse as the
set X, one can verify with Proposition 11 that the (bottom left) filled vertex can be deleted.

Once again, for the special case of |W | = 1, corollary and proposition coincide. Figure 4
shows an MWCSP for which a vertex can be deleted by means of this special case. Consider the
two encircled vertices as the set X. The right neighbor of the filled vertex can be connected by
a path of bottleneck length −1 to X, so C2 ≥ −1. Since C1 = −1 and all other neighbors of the
filled vertex are also neighbors of X, one can delete the vertex.

For Proposition 11 and Corollary 12 a reduction test similar to DVS is used. It will be referred
to as Alternative Vertex Set (AVS) test. As in the ENPV test, only lower bounds for the

bottleneck distance d̂ are computed for AVS.
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2.3 Using Reduction Techniques for Preprocessing and Propagation

Within the exact solver described in this article, reduction techniques can be found in three
components: In preprocessing, in propagation during branch-and-bound, and in the heuristics.
Only the former two applications will be discussed in the following, with the latter being described
in Section 5.1.

Besides the PVD, ENPV, DVS, and AVS tests, the combined reduction package incorporates
three routines described in [29]: Basic (a set of simple reductions such as contracting adjacent
non-negative vertices), Non-Negative Paths (a method to delete redundant edges), and Non-
Positive Vertex of Degree k (a method to delete vertices based on the bottleneck distance). All
seven routines are executed iteratively within a loop that is reiterated as long as a predefined
percentage of vertices has been eliminated during the previous round. The procedure will be
referred to as Reduce-Basic. This package, is used as a domain propagation routine during
branch-and-bound: Instead of deleting edges or vertices, the corresponding variables are fixed to
zero in the integer programming formulation described in Section 3.

Reduce-Basic can be improved by using lower bound based reduction methods from Section 3.
This combination will be referred to as Reduce-Advanced and is used as a preprocessing tool
for exact solving. Strong preprocessing is instrumental for the practical performance of the
exact solver described in this article, being able to already find optimal solutions for more than
90% of all instances. While the techniques introduced in [29] are empirically already notably
successful, the combination with the new reduction methods not only enhances the strength of
the overall reduction package, but also to leads to a significantly lower total execution time, as
computationally expensive tests (such as dual-ascent) are applied on an already much smaller
problem.

3 From Dual-Ascent to Exact Solving

Dual-ascent has recently been shown to be a powerful tool for the MWCSP, both for graph
reduction and for heuristics [21, 29]. In both [29] and this article, dual-ascent is based on
the Steiner arborescence problem (SAP), which is defined as follows: Given a directed graph
D = (V,A), costs c : A → Q≥0, a set T ⊆ V of terminals and a root r ∈ T , a directed tree
(arborescence) S = (V (S), A(S)) ⊆ D of minimum cost

∑
a∈A(S) c(a) is required such that for

all t ∈ T the tree S contains a directed path from r to t.
Considering an SAP (V,A, T, c, r), one can associate with each arc a ∈ A a variable x(a)

indicating whether a is contained in the Steiner arborescence (x(a) = 1) or not (x(a) = 0).
Thereupon, an IP formulation can be stated as [34]:

Formulation 1. Directed Cut Formulation

min cTx (23)

x(δ−(W )) ≥ 1 for all W ⊂ V, r /∈W,W ∩ T 6= ∅, (24)

x(a) ∈ {0, 1} for all a ∈ A. (25)

In [34] a dual-ascent algorithm for Formulation 1 was introduced that, empirically, both pro-
vides strong lower bounds and allows for fast computation, defying its worst-case time complexity
of O(|A|min{|V ||T |, |A|}) [25]. At termination, dual-ascent provides a dual solution to the LP-
relaxation of Formulation 1, involving directed paths along arcs of reduced cost 0 from the root
to each additional terminal. This information can be used to facilitate the solving process for an
MWCSP as will be delineated in the following.
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The first step is to transform a given MWCSP to an SAP as originally described in [28].
The underlying idea is to treat the MWCSP vertices of positive weight as terminals in the
SAP. However, since all terminals need to be part of any feasible SAP solution, several vertices
(including a root) and arcs are added to the SAP that allow to model not including a positive
vertex in a feasible solution.

Transformation 1 (MWCSP to SAP).
Input: An MWCSP PMW = (V,E, p)
Output: An SAP P ′ = (V ′, A′, T ′, c′, r′)

1. Set V ′ := V , A′ := {(v, w) ∈ V ′ × V ′ | {v, w} ∈ E}.

2. Set c′ : A′ → Q≥0 such that for a = (v, w) ∈ A′:

c′(a) =

{
−p(w), if p(w) < 0

0, otherwise

3. Add two vertices r′ and v′0 to V ′.

4. Denote the set of all v ∈ V with p(v) > 0 by T = {t1, ..., ts} and define M :=
∑
t∈T p(t).

5. For each i ∈ {1, ..., s}:

(a) Add an arc (r′, ti) of weight M to A′.

(b) Add a new node t′i to V ′.

(c) Add arcs (ti, v
′
0) and (ti, t

′
i) to A′, both being of weight 0.

(d) Add an arc (v′0, t
′
i) of weight p(ti) to A′.

6. Define the set of terminals T ′ := {t′1, ..., t′s} ∪ {r′}.

7. Return (V ′, A′, T ′, c′, r′).

This transformation is utilized in [29] together with dual-ascent to eliminate both edges
and vertices of an MWCSP. In the same way dual-ascent can be used to show that a vertex
v ∈ V \ T cannot be of degree larger than 2 in any optimal solution (which is a prerequisite
for the ENPV test). In this article, Transformation 1 is additionally used to show that a vertex
v ∈ T is part of at least one optimal solution. Consider the SAP instance P ′ = (V ′, A′, T ′, c′, r′)
obtained by applying Transformation 1 on PMW . Moreover, let LDA be the lower bound obtained
by dual-ascent and U an upper bound for P ′. If the reduced cost of an arc (r′, t′i) is higher
than U − LDA, it can be deduced that the vertex ti is part of at least one optimal solution
to PMW . If at least one (positive) vertex can be shown to be part an optimal solution, the
MWCSP can be solved as a rooted maximum-weight connected subgraph problem (RMWCSP).
This problem incorporates the additional condition that a non-empty set of vertices R ⊆ V
needs to be part of all feasible solutions [6]. Note that in the exact branch-and-cut solver
SCIP-Jack 1.0 a transformation for the MWCSP similar to Transformation 1 is used [17]. A
disadvantage of both transformations is the existence of symmetric solutions in the resulting
IP formulation (for a solution S, there are |V (S) ∩ T | − 1 many). For the RMWCSP one
can instead apply the following (new) transformation, which gives way to a problem that is
not burdened with symmetric solutions. The transformation will be provided in a more general
setting, namely for the directed variant of the RMWCSP [6]: Given a directed graph D = (V,A),
vertex weights p : V → Q, a non-empty set R ⊆ V and an r ∈ R, find a connected subgraph
S = (V (S), E(S)) ⊆ D such that
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1. R ⊆ V (S),

2. each vi ∈ V (S) can be reached from r on a directed path in S,

3.
∑
v∈V (S) p(v) is maximized.

One verifies that any undirected RMWCSP can be formulated in directed form by choosing an
arbitrary r ∈ R and replacing each edge by two anti-parallel arcs. In the following it will be
assumed that all vertices in R have 0-weight.

Transformation 2 (Directed RMWCSP to SAP).
Input: A directed RMWCSP PRMW = (V,A,R, p, r)
Output: An SAP P ′ = (V ′, A′, T ′, c′, r′)

1. Set V ′ := V , A′ := A, r′ := r.

2. Set c′ : A′ → Q≥0 such that for a = (v, w) ∈ A′:

c′(a) =

{
−p(w), if p(w) < 0

0, otherwise

3. Denote the set of all v ∈ V \R with p(v) > 0 by T = {t1, ..., ts}

4. For each i ∈ {1, ..., s}:

(a) Add a new node t′i to V ′.

(b) Add an arc (r′, t′i) of weight p(ti) to A′.

(c) Add an arc (ti, t
′
i) of weight 0 to A′.

5. Define the set of terminals T ′ := {t′1, ..., t′s} ∪ {R}.

6. Return (V ′, A′, T ′, c′, r′).

The transformation is illustrated in Figure 5. Moreover, the correspondence between a di-
rected RMWCSP and the SAP resulting from Transformation 2 is established by the following
proposition.

r

p=7

p=-2.5

p=-1.3

p=-1.5

(a) Directed RMWCSP instance

r
2.5

0

0

1.5 1.3

2.5

7

0

(b) Transformed SAP instance

Figure 5: Illustration of a directed RMWCSP instance with root r (left) and the equivalent SAP
obtained by Transformation 2 (right). Terminals are drawn as squares.

Proposition 13 (Directed RMWCSP to SAP). Let P ′ = (V ′, A′, T ′, c′, r′) be an SAP obtained
from a directed RMWCSP PRMW = (V,A,R, p, r) by applying Transformation 2. Each solution
S′ to P ′ can be mapped to a solution S to PRMW defined by:

V (S) := V ∩ V ′(S′), (26)

A(S) := A ∩A′(S′) (27)
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If S′ is an optimal solution to P ′, then S is an optimal solution to PRMW and their objective
values satisfy:

p(V (S)) =
∑

v∈V :p(v)>0

p(v)− c(A′(S′)). (28)

In the following, the Directed Cut Formulation for the SAP (V ′, A′, T ′, c′, r′) obtained from
an directed RMWCSP by performing Transformation 2 will be referred to as TransCut. Note
that with the remarks prior to Transformation 2, TransCut can also be used for an undirected
RMWCSP and for an MWCSP for which a specific vertex that is part of at least one optimal
solution is known. The objective value of a solution x ∈ {0, 1}|A′| to TransCut is defined as:

v(TransCut) :=
∑

v∈V :p(v)>0

p(v)− c′Tx. (29)

The SAP resulting from Transformation 2 displays two immediate advantages as compared to
the one from Transformation 1. First, the number of arcs is reduced by at least 2|T | (with
T as defined in Transformation 1). Second, while for each (LP) solution to the Directed Cut
Formulation of the SAP from Transformation 1 there can be up to |T | − 1 equivalent solutions,
this symmetry has vanished in the TransCut formulation. In addition to these advantages, the
new SAP can be solved by the separation algorithm of SCIP-Jack without any alterations. This
algorithm is based on the SAP integer programming formulation introduced in [20]. For an SAP
(V,A, T, c, r) this formulation is defined as the Directed Cut Formulation plus the constraints

x(δ−(v)) ≤ x(δ+(v)), for all v ∈ V \ T (30)

x(δ−(v)) ≥ x(a), for all a ∈ δ+(v), v ∈ V \ T (31)

Empirically, TransCut together with (30) and (31) proves to be considerably (and consis-
tently) stronger than the formulation used by SCIP-Jack [17]. The experiments conducted for
this article revealed a speedup of more than a 200% for the main solution process on all instances
for which the transformation could be applied—which was the case for more than 80 % of all
test instances that were not already solved in preprocessing.

Although being able to reuse the separation algorithm of SCIP-Jack is practically highly
advantageous, another important question is how TransCut compares with other IP formulations
for the (directed) RMWCSP. To this end, we introduce a formulation that was used by [6] in
a branch-and-cut based directed RMWCSP solver, which displayed a strong performance on
several (real-world) test sets. Moreover, this formulation was identified in [6] as the strongest
(with respect to the LP-relaxation) of several IP formulations for the directed RMWCSP. Two
definitions are required to set the stage. Let vi and vj be two distinct vertices in a directed graph
(V,A). A subset N ⊆ V \ {vi, vj} is called (vi, vj)−separator if there is no directed path from vi
to vj in the graph (V \N,A[V \N ]). The family of all (vi, vj)−separators is denoted by N (vi, vj).
Furthermore, for a directed graph (V,A) and a vi ∈ V define D+(vi) := {v ∈ V | (vi, v) ∈ A}.

With the node-separator concept at hand, an IP formulation for the directed RMWCSP can
be stated as follows [6]:

Formulation 2. Node Separator Formulation

max pT y (32)

y(N) ≥ y(v) for all v ∈ V \ ({r} ∪D+(r)), N ∈ N (r, v), (33)

y(v) = 1 for all v ∈ R, (34)

y(v) ∈ {0, 1} for all v ∈ V. (35)
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Figure 6: Illustration of a directed RMWCSP instance with vertices R drawn as squares. For
this instance vLP (Cutr) = −2.5 and vLP (TransCut) = v(TransCut) = −3 holds.

The Node Separator Formulation is also referred to as Cutr in [6] and its optimal objective
value will be denoted by v(Cutr).

From (28) it follows that v(TransCut) = v(Cutr). However, for the optimal LP solu-
tion values vLP (TransCut) of TransCut and vLP (Cutr) of Cutr equality does not in general
hold. The next proposition shows that vLP (TransCut) ≤ vLP (Cutr) is always true, but that
vLP (Cutr) ≤ vLP (TransCut) does not in general hold—i.e., the LP relaxation of TransCut is
strictly stronger [14] than the LP relaxation of Cutr. Consequently, also the LP relaxation of
TransCut together with the constraints (30) and (31) is strictly stronger than the LP relaxation
of Cutr

Proposition 14. The relation vLP (TransCut) ≤ vLP (Cutr) is always true and there exist
problem instances for which the inequality is strict.

Proof. Due to its technical nature, the proof of the first part of the proposition—that vLP (TransCut) ≤
vLP (Cutr) holds—is provided in Appendix A.3. For the second part consider the directed
RMWCSP instance depicted in Figure 6. In the optimal LP solution to Cutr each vertex v /∈ R
has the value y(v) = 0.5. Hence, the objective is −2.5. On the other hand, vLP (TransCut) = −3;
one optimal solution is x(a) = 0.5 ∀a ∈ A, but also any (integer) optimal solution to TransCut
is an optimal LP solution.

The argumentation of the proof implies that for the directed RMWCSP in Figure 6 in par-
ticular vLP (TransCut) = v(TransCut) holds.

One might argue that despite its inferior LP-relaxation the Cutr formulation leads to a
problem with far less variables, as it only considers nodes and TransCut moreover requires
additional arcs for each positive non-terminal. However, preprocessed instances are in practice
sparse and include only a small amount of positive-weight vertices [29]. Moreover, the fact that
for none of the 147 instances considered in this article branching was necessary underlines the
practical strength of the TransCut formulation.

4 Primal Heuristics

Several primal heuristics for the MWCSP have been described in the literature. In [5], for
instance, a breadth-first-search based heuristic that makes use of the reduced cost obtained
during a branch-and-cut algorithm was suggested. In [21] several variants of a dual-ascent based
heuristic for the rooted prize-collecting Steiner tree problem were suggested and were also applied
for the MWCSP by using a transformation initially introduced in [12]. Moreover, in [17] a
connected subgraph was constructed by running a heuristic for the Steiner arborescence problem
on the problem obtained by Transformation 1.
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4.1 Constructive Heuristics

As the name suggests, constructive heuristics build up a new solution from scratch, repeatedly
extending the current sub-solution.

A Greedy Approach

The first heuristic is similar to the classical shortest paths heuristic for the Steiner tree problem
in graphs [10, 31] and is conceptually straightforward: Starting with a single vertex, the heuristic
iteratively connects the current subtree to vertices of positive weight as long as this is profitable.

In detail, the heuristic works as follows. Initially, step 1 and step 2 of Transformation 1
are performed to obtain a directed graph (V ′, A′) and arc-weights c′. Next, a start vertex vr is
chosen and the initial connected subset S is defined as V (S) := {vr}, E(S) := ∅. Then, Dijkstra’s
algorithm is started from S, using only outgoing arcs. Denote the distance function of Dijkstra’s
algorithm by d. Whenever a vertex vi of non-negative weight is scanned (i.e. removed from the
priority queue of Dijkstra’s algorithm) and d(vi) ≤ p(vi), the corresponding path from S to vi
is added to S, and all vertices of this path are reinserted into the priority queue of Dijkstra’s
algorithm with their distance value d set to 0. As soon as a vertex is scanned whose distance
exceeds the maximum among all weights of vertices that are not part of the incumbent solution
S, the computation is stopped. The final connected subset S′ constitutes a feasible solution.

If an LP solution to the MWCSP is available, the arcs weights c′ used for the heuristic can
be adapted. For instance, assume an LP solution x ∈ [0, 1]|A

′| to the SAP (V ′, A′, T ′, c′, r′)
obtained by Transformation 1 is given. Thereupon, define for each i ∈ {1, ..., n} the variable
z(i) := x(δ−(vi)). Furthermore, let A := {(vi, vj) ∈ A′ | {vi, vj} ∈ E} and set, with a slight
abuse of notation, c′(a) := (1 − z(j)) · c′(a) for all a = (vi, vj) ∈ A. Thus, a stimulus for
the heuristic to choose vertices with high (fractional) indegree in the LP solution is provided.
Moreover, the heuristic is started from a (constant) number of distinct vertices. To this end,
vertices vi with highest value z(i) in the incumbent LP solution are chosen as starting points.
In case of ties, vertices with higher weight p are preferred.

In the following the above algorithm is referred to as Greedy Construction (GC) heuristic. It
should be noted that the idea of reinserting vertices into the priority queue of Dijkstra’s algorithm
was already used in a heuristic for the Steiner tree problem in graphs [10]. Furthermore, the
concept of using LP solutions to guide primal heuristics for combinatorial optimization problems
is widely used, see for instance [17, 20].

A Reduction-based Approach

The first of two reduction based approaches described in this article builds on a concept in-
troduced as prune in [26] for Steiner tree problems in graphs. By virtue of the PVD method
introduced in Section 2, this approach can now be used for the MWCSP as well. While for the
original PVD test an upper bound is provided by the weight of a given solution, in the prune
heuristic the bound is chosen such that in each iteration a certain number of vertices is eliminated.
Thereupon, all exact reductions methods are executed on the reduced graph, motivated by the
assumption that the (possibly inexact) eliminations performed by the bound-based method will
allow for further (exact) reductions. To avoid infeasibility, initially a feasible solution is com-
puted (by using GC and the subsequently described local-search heuristics) of which no vertices
or edges are allowed to be deleted by the (inexact) bound-based method.

The second reduction-based heuristic approach is borne from the combination of the prune
heuristic and dual-ascent: the ascend-reduce method (based on an approach originally suggested
in [34] for the Steiner tree problem in graphs). Let PMW be the original MWCSP and P ′ the
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SAP resulting from Transformation 1. The ascend-reduce heuristic attempts to find a good
solution on the subproblem P̃MW constituted by the undirected edges of PMW corresponding to
zero-reduced-cost paths in P ′ from the root to all additional terminals—in this article a solution
is computed by employing reduction techniques and heuristics. This approach is motivated by
the assumption that notable similarities exist between an optimal (or near-optimal) Steiner tree
and the LP solution corresponding to the reduced costs provided by dual-ascent.

4.2 Local Search Heuristics

Given a solution S to a problem, a local search algorithm examines a neighborhood of S, i.e. a
set of solutions obtainable from S by performing a predefined set of operations. Consequently,
all heuristics described in this section assume that a feasible solution S is given.

Greedy Extension

The Greedy Extension (GE) heuristic works in two phases: In phase one all vertices V (S) are
inserted into the priority queue of Dijkstra’s algorithm with their distance values set to 0. There-
upon, the GC heuristic is executed. However, the GC algorithm is only stopped when all vertices
of positive weight have been scanned (the criterion for including vertices to the current solution
remains unchanged). Furthermore, the heuristic saves (a constant number) α ∈ N (or as many
as exist) vertices t′k ∈ T \ V (S), k = 1, ..., α such that p(t′k)− d(t′k) ≥ p(tu)− d(tu) for all other
vertices tu ∈ T \ V (S). In phase two, α iterations k = 1, ..., α are performed; in each iteration
vertex t′k is connected to S (by using the shortest path computed by Dijkstra’s algorithm) to
obtain a solution Sk. Next, the GC heuristic is executed from Sk and updates S in case a better
solution could be found. Analogously to the GC heuristic, GE can be executed with altered arc
weights if an LP solution is available.

Vertex Inclusion and Vertex Exclusion

The idea of the Vertex Inclusion (VI) heuristic is to add a vertex to a given solution such that
other negative-weight vertices of the solution can be discarded. First, compute a spanning tree
Sspan on S such that as many vertices as possible are of degree 2. Next, iterate through all
neighboring vertices vi of S: Let δS,i be the set of all edges between vi and V (S). If |δS,i| ≤ 1,
continue. Otherwise, add an (arbitrary) edge a′0 ∈ δS,i to Sspan. Afterwards, iteratively add each
edge a′j ∈ δS,i \ {a′0} to Sspan. Whenever a new edge has been added, search for a minimum-
weight sequence of vertices of degree 2 (with respect to Sspan) on the newly created cycle. If
such a sequence being of negative weight exists (including single vertices), remove it from Sspan,
otherwise remove a′j . When all edges δS,i have been checked and if the weight of the removed
vertices is smaller than that of vi, leave Sspan in its modified form, otherwise restore it. In the
implementation of the heuristic (linear) link-cut trees [30] are used. This data structure allows
to easily dis- and reconnect trees.

An adaptation of the VE heuristic could also be used for related problems such as the Steiner
tree problem in graphs, for which the literature describes a weaker version that merely seeks to
eliminate edges, see e.g. [24].

A complementary approach is taken by the Vertex Exclusion (VE) heuristic: it aims to remove
vertices of S. Consider the connected subgraph

GS := (V (S), E[V (S)])
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. Thereupon, the heuristic employs the reduction package Reduce-Basic on GS to obtain a new
graph G̃S . On this new graph the GE heuristic is used to obtain a solution S̃. Finally, this
solution is retransformed to a solution S′ to the original problem.

5 Solving to Optimality

With several algorithmic components introduced and discussed two central questions remain:
How to assemble these threads and weave them into a coherent exact solver, and, equally impor-
tant, how does the resulting algorithm perform?

5.1 A Full-fledged Exact Solver

The exact solver described in this article is realized within the Steiner tree problem solver SCIP-
Jack, which itself is embedded in the academic mixed-integer program solver SCIP [23]. As the
implementations of preprocessing (and propagation) and the IP formulation have already been
discussed in the preceding sections, only the missing pieces in-between will be explained.

The first, and indispensable, piece is the separation routine for the SAP. The separation algo-
rithm uses a maximum-flow algorithm with warm-start capabilities to detect violated inequalities
in the Directed Cut Formulation [20]. Another component instrumental for empirically successful
exact solving is constituted by the primal heuristics described in Section 4. In the implemen-
tation for this article, ascend-reduce uses the prune heuristic to find a solution on the graph
obtained by dual-ascent and employs GE, VI and VE to improve it. In turn, the prune heuristic
calls GC to obtain an initial feasible solution, calls the local search heuristics GE, VI to im-
prove it, and employs Reduce-Basic as a reduction package. Finally, to improve the solution
obtained by ascend-reduce all local search heuristics are used. This heuristic package is repeat-
edly used during preprocessing. Furthermore, the heuristics GC, GE, and VI are used during
branch-and-bound.

Finally, branching is performed on vertices—by assigning the vertex vi to branch on weight
p(vi) = ∞ in one branch-and-bound child node and removing it in the other—which seems to
be the natural choice for the MWCSP. However, none of the instances tested in this article go
past the root node, so this choice is of rather limited practical impact.

A look beyond the surface of the new exact MWCSP solver reveals an intricate synergy of
the three major solving components introduced in this article: First, heuristics and reduction
techniques are deeply intertwined. Reduction methods are crucial for the success of both prune
and ascend-reduce, while the quality of the primal bound obtained by these heuristics determines
the effectiveness of the dual-ascent reduction method. Indeed, the prune heuristic could only
be realized due to the newly introduced PVD concept. Furthermore, only the combination
of dual-bound and reduced costs obtained by dual-ascent, and the primal bound provided by
ascend-reduce consistently gives rise to the transformation of MWCSP to RMWCSP and the
subsequent application of the TransCut formulation. In turn, on the SAP obtained from this
transformation one can again execute the dual-ascent reduction method. As demonstrated in
the next section, with any of these three components—heuristics, reduction techniques, or new
IP formulation—being deactivated, the performance of the solver considerably deteriorates.

5.2 Computational Results

The computational evaluation for this article has been performed on the five test sets described
in Table 1. The ACTMOD and JMPALMK instances were all solved to optimality in the course
of the 11th DIMACS Challenge [1], whereas the SHINY test set [22] has only recently been
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introduced. The two test sets with the largest instances, HANDBI and HANDBD, are also
from the 11th DIMACS Challenge, but were originally formulated as prize-collecting Steiner tree
problems. However, the instances have uniform edge weights and can therefore be transformed
to MWCSP. Most of these large instances proved to be intractable for the solvers participating
in the 11th DIMACS Challenge and could only recently be solved to optimality [21]. Still, three
instances of these two test sets have remained unsolved until now.

Name Instances |V | |E| Status Description

JMPALMK 72 500-1500 2597-20527 solved Euclidean, randomly generated instances
introduced in [5].

SHINY 39 232-3828 202-4494 solved Real-world instances from network enrichment
analysis in computational biology [22].

ACTMOD 8 2034-5226 3335-93394 solved Real-world instances derived from
from integrative biological network analysis [12].

HANDBI 14 158400 315808 unsolved Images of hand-written text
derived from a signal processing problem [1].

HANDBD 14 169800 338551 unsolved Images of hand-written text
derived from a signal processing problem [1].

Table 1: Classes of MWCSP instances.

The computational experiments have been performed on a cluster of Intel Xeon X5672 CPUs
with 3.20 GHz and 48 GB RAM. CPLEX 12.7.11 was employed as the underlying LP solver.
SCIP-Jack also allows to switch to the non-commercial, but slower, LP solver SoPlex [35].
For all computations a time limit of one hour was set and only single-thread mode was used.

mean time [s] max time [s] solved instances

Test set [17] new [17] new [17] new

JMPALMK 0.0 0.0 0.5 0.1 72 72
SHINY 0.1 0.0 1.1 0.1 39 39
ACTMOD 0.3 0.1 1.3 0.3 8 8
HANDBD 124.6 8.3 >3600 >3600 13 13
HANDBI 127.5 8.9 >3600 >3600 12 13

Table 2: Computational comparison of SCIP-Jack 1.0, denoted by [17], and the MWCSP solver
described in this article, denoted by new.

Table 2 provides aggregated results for SCIP-Jack 1.0 and the new solver. The first column
shows the test set considered in the current row. Columns two and three show the shifted
geometric mean [2] (with shift 1) of the run time taken by the respective solvers. The next two
columns provide the maximum run, and the last two columns the number of solved instances.

The results for the first three tests sets—JMPALMK, SHINY, and ACTMOD—reveal a strong
performance of both SCIP-Jack 1.0 and the new solver. The maximum run time on the three
test sets is more than a factor of 5 faster with the solver described in this article, but most
instances of the test sets are solved within 0.1 seconds by either solver—as reflected in a shifted
geometric mean of 0.1 seconds or less on JMPALMK and SHINY. The best other results for
these test sets are reported in [21], for ACTMOD and JMPALMK, and in [22], for SHINY. The
new solver is both on average and with respect to the maximum run time more than one order of
magnitude faster than the approach in [21] and more than two orders of magnitude faster than
the solver described in [22]. Furthermore, the maximum run time in [22] on the SHINY test set
is more than a thousand seconds (with a few instances remaining unsolved), while it is less than

1http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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Primal/new primal Gap [%] Time [s]

Instance [17] new [17] new [17] new

handbd01 728.963591 – – – 22.1 2.5
handbd02 296.496486 – – – 202.5 10.1
handbd03 135.070605 – – – 89.3 7.6
handbd04 1813.95916 – – – 340.6 8.1
handbd05 105.474688 – – – 91.7 6.6
handbd06 1528.76544 – – – 248.9 9.5
handbd07 77.861959 – – – 93.3 5.4
handbd08 1368.16677 – – – 56.7 7.4
handbd09 62.71716 – – – 99.3 4.9
handbd10 1137.42973 – – – 33.3 3.4
handbd11 46.772533 – – – 96.2 4.1
handbd12 321.204744 – – – 75.7 2.8
handbd13 13.20885 13.196987 0.82 0.14 > 3600.0 > 3600.0
handbd14 4379.10424 – – – 142.9 0.5

handbi01 1358.56338 – – – 20.5 2.2
handbi02 531.810883 – – – 77.0 6.7
handbi03 243.134201 – – – 81.4 9.0
handbi04 3202.18574 3202.18574 0.02 – > 3600.0 24.7
handbi05 184.467331 – – – 75.9 8.0
handbi06 2921.54472 – – – 139.5 9.3
handbi07 150.974258 – – – 70.9 7.0
handbi08 2270.28462 – – – 38.8 4.5
handbi09 107.768806 – – – 88.4 6.4
handbi10 1874.29296 – – – 17.3 2.3
handbi11 68.944709 – – – 74.6 4.5
handbi12 138.257023 – – – 211.9 2.1
handbi13 4.268146 4.251 1.60 0.13 > 3600.0 > 3600.0
handbi14 7881.76874 – – – 228.7 1.1

Table 3: Computational comparison of SCIP-Jack 1.0, denoted by [17], and the MWCSP solver
described in this article, denoted by new.

0.1 seconds for the new solver. The computational environment for the experiments in [22] is
described as AMD Opteron 6380 CPUs with 2.5 GHz. The solver described in [21] is publicly
available and the results reported here for this solver were obtained on the same cluster (detailed
above) that was used for the new solver and SCIP-Jack 1.0.

The results for the two hardest test sets, HANDBD and HANDBI, show a more pronounced
difference between the two solvers also with respect to the shifted geometric mean, with a differ-
ence of more than an order of magnitude. More detailed results for these two sets are reported
in Table 3. The first column of the table lists the name of the considered instance. The second
column shows the solution value of the best solution found by SCIP-Jack, transformed back to
a solution to the original prize-collecting problem—which unlike the MWCSP is a minimization
problem. The third column provides the percentage of the duality gap defined as ub−lb

ub for final
upper and lower bound ub and lb. The fourth column shows the run time of SCIP-Jack for this
instance. The last three columns provide the corresponding information for the new solver de-
scribed in this article (with the primal bound only printed if the gap has improved). SCIP-Jack
leaves three instances—those that have also been intractable for the approach in [21]—unsolved,
while the new solver reaches optimality for one of them and significantly reduces the primal-dual
gap for the other two. The previously best known gaps [21] are 1.87 % for handbi13 and 0.41%
for handbd13, whereas the new solver achieves gaps of 0.14 % and 0.13 % respectively. The re-
ported gaps are already computed in preprocessing, as the remaining solving time is spent in the
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Test set Reduction tests Heuristics RMWCSP Transformation

m
ea

n
ti
m
e ACTMOD +123 +77 +31

HANDBD? +544 +27 +26

HANDBI? +462 +78 +43

m
a
x
ti
m
e ACTMOD +125 +150 +100

HANDBD? +698 +1415 +224

HANDBI? +1194 +11150 +678

Table 4: Each column reports the results of the MWCSP solver without the specified new
methods. The values denote the percentual change with respect to the default settings (see
Table 2).

first LP-solve. The handbi04 instance has not been solved to optimality before. Furthermore, as
compared to SCIP-Jack also the run times of the new solver are notably reduced—all instances
are solved faster, many by more than one order of magnitude. A prominent example for the
improved run time is the instance handbi14 for which the difference in run time is more than
two orders of magnitude. Similarly, the new solver is on all instances faster than the framework
described in [21]; for several instances by more than one or even two orders of magnitude.

To get some insight into the individual impact of the three main algorithmic components
described in this article, Table 4 shows results for the new solver when deactivating either the
new reduction tests, the heuristics, or the transformation to RMWCSP. As the vast majority of
the JMPALMK and SHINY instances can be solved in less than 0.01 seconds by both SCIP-Jack
and the new solver, these two test sets are not considered in the experiment. The first three rows
list the percentual change in the average run time (with respected to the shifted geometric mean);
the last three rows provide the corresponding percentual change with respect to the maximum
run time. In this way, the first column of each row states the test set to be considered. Ensuing,
each of the next three columns provides the result of excluding the solving component specified
in the head of the table. It should be noted that positive values signify a favourable impact of
the respective algorithmic component on the new solver. The (unsolved) instances handbd13 and
handbi13 are not considered in the experiment—the corresponding smaller test sets are denoted
by HANDBD? and HANDBI?.

The results of deactivating the new reduction techniques are dramatic, both the mean and the
maximum run time increases by more than 100 % on all test sets. The HANDBD? and HANDBI?

instances show the strongest effect, an increase of more than a factor of 5 in both categories.
Interestingly, the maximum run time increase does not differ significantly from the increase of the
mean time, which suggests that most instances are similarly affected by the reduction techniques.
It should be noted that part of the performance change derives from a new (more cache-efficient)
implementation of the dual-ascent reduction method. While the new implementation does not
affect ACTMOD, SHINY, and JMPALMK (as their instances are already drastically reduced
when dual-ascent is applied), it leads to most HANDBD? and HANDBI? instances being solved
by a factor of around 2 faster than by SCIP-Jack.

Also the heuristics exert a strong impact on all three test sets, especially with respect to the
maximum run time. In contrast to the reductions techniques, there is a large difference between
the maximum and mean time increase. This observation suggests that the heuristics are more
effective on the subset of hard instances. And indeed, while most instances are not strongly
affected from deactivating the new heuristics, the run times of a few harder instances such as
handbi06 is notably increased. Similarly, the formerly unsolved handbi04 instance cannot be
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solved anymore when the new heuristics are deactivated. Also (although this cannot be seen in
the table) the dual gaps of handbi13 and handbd13 are more than doubled. An explanation for
this behavior is that without the new heuristics the duality gaps for the bound-based reduction
methods (dual-ascent and PVD) significantly increases on the hard instances, which notably
reduces the strength of the reduction methods. In the same way, the number of instances for
which the transformation to RMWCSP can be applied is reduced—which again is only important
for the harder instances that are not solved before the transformation could possibly be applied.

Finally, of the three components the transformation to RMWCSP shows the least overall
impact, although for the harder instances it is still considerable—with a run time increase of
more than 600 % for the handbi04 instance. A reason for the comparatively smaller impact
is that most instances are already solved to optimality or at least drastically reduced before
the transformation can even be applied. Still, the performance on the hard instances strongly
demonstrates its use.

Overall, the computational results reveal a strong performance of the new solver, which
outperforms the previous state of the art on all test sets.

6 Conclusion and Outlook

This article has introduced an exact solving approach for the MWCSP based on three central com-
ponents: Preprocessing, an integer programming formulation based on graph transformations,
and heuristics. Arguably, each of these components deserves individual interest, be it of more
practical (as for the heuristics) or likewise theoretical (as for the reduction techniques) nature.
Notwithstanding, only the—surprisingly symbiotic—synergy of all three components ultimately
gives rise to paramount computational advancement, outperforming previous approaches, and
allowing to solve three sets of benchmark instances in fractions of a second. Furthermore, one
large-scale benchmark instance from the 11th DIMACS Challenge originally formulated for the
prize-collecting Steiner tree problem can be solved for the first time to optimality, and the best
known primal-dual gap of two other ones can be considerably reduced.

Further work could focus on developing new reduction techniques, which are, at least in the
setting of this article, a pivotal solving ingredient. Hopefully, the analyses provided in this article
contribute to a better understanding of reduction techniques for the MWCSP and set the stage
for further developments. Moreover, it might be well worthwhile to study new IP formulations
for the MWCSP to further improve the strength of the LP-relaxation.

The integration of the algorithmic framework developed in this article into SCIP gives way
to a solver freely available for academic use and completely open in source code—as part of the
next SCIP release. Therefore, this article and the accompanying exact solver provide access to
both researchers interested in particular solving techniques or implementations and to practi-
tioners (for instance from computational biology) who acquire to solve their MWCSP instances
to optimality. In this way, the authors hope to contribute not only to further improvements of
solving technology for the MWCSP, but also to increased utilization of the MWCSP for solving
real-world problems.
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[6] Eduardo Álvarez-Miranda, Ivana Ljubić, and Petra Mutzel. The Rooted Maximum Node-
Weight Connected Subgraph Problem, pages 300–315. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013.

[7] C. Backes, A. Rurainski, G. Klau, O. Müller, D. Stöckel, A. Gerasch, J. Küntzer, D. Maisel,
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A Further Proofs

A.1 Proof of Proposition 1

Proof. Let S be an optimal solution to PMW such that vi ∈ V (S). As before, it is assumed
(without limiting generality) that S is a tree. Denote the (unique) path in S between vi and a
tj ∈ V (S) ∩ T by Qj and set Q := {Qj | tj ∈ V (S)}. First, note that |Q| ≥ 2, because if Q
just contained one path, say Qj , it would follow for S′ := {tj} that vi /∈ S′ and P (S′) ≥ P (S)
(which contradicts the assumptions of the proposition). Second, if a vertex vk is contained in two
distinct paths of Q, the subpaths of these two paths between vi and vk coincide. Otherwise there
would need to be a cycle in S. Additionally, there are at least two (distinct) paths Qk, Ql ∈ Q
such that V [Qk] ∩ V [Ql] = {vi}. Otherwise, due to the precedent observation, all paths in Q
would have one edge {vi, v′i} in common, which could be discarded to obtain a tree S′ with
vi /∈ V [S′] and P (S′) ≥ P (S).

Now, choose two distinct paths Qk ∈ Q and Ql ∈ Q with minimum number of combined
H-boundary edges and V [Qk] ∩ V [Ql] = {vi}. Further, define Q− := Q \ {Qk, Ql}. For all
Qr ∈ Q−, denote by Q′r the subpath of Qr from tr up to the last vertex still in Htr . Suppose
that Qk has a vertex vq ∈ V (S) in common with a Q′r. Consequently, Ql ∩Qr = {vi}, because S
is cycle-free. Furthermore, according to the preceding observations, Qk and Qr have to contain
a joint subpath including vi and vq. But this implies that Qk contains at least one additional
H-boundary edge (in order to be able to reach tk, which is by definition not in Htr ). Therefore,
and due to V [Ql] ∩ V [Qr] = {vi}, the path Qr would have initially been selected instead of Qk.
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Following the same line of argumentation, one validates that likewise Ql has no vertex in
common with any Q′r. Conclusively, the paths Qk, Ql have only the vertex vi in common and
all paths Q′r are vertex disjoint and also do not have any vertex in common with both Qk, Ql.
Using their combined weight, one can obtain an upper bound on the weight of S by:

P (S) =
∑

v∈V (S)

p(v)

≤
( ∑
Qr∈Q−

P (Q′r)

)
+ P (Qk) + P (Ql)− p(vi)

≤
∑
t∈T

r+
H(t)−min{r+

H(t) + r+
H(t′) | t, t′ ∈ T, t 6= t′}+ P (Qk) + P (Ql)− p(vi)

≤
∑
t∈T

r+
H(t)−min{r+

H(t) + r+
H(t′) | t, t′ ∈ T, t 6= t′}+ d(vi, vi,1) + d(vi, vi,2)

− p(vi).

The first inequality follows from above discussed properties of the paths in Q− and the paths
Qk and Ql. The second inequality uses the fact that the weight of each path Qr ∈ Q− can be
bounded from above by r+

H(tr). Finally, the third inequality exploits that the paths Qk and Ql
do not contain any intermediate vertices of positive weight and that there weight can therefore
be bounded by using the distance function d. Consequently, the proposition is proven.

A.2 Proof of Proposition 2

Proof. Let S be an optimal solution to PMW (and, as before, a tree) such that vi ∈ V (S) and
|V (S) ∩ T | ≥ 2. Define Q as in the proof A.1 and note that Q 6= ∅ (because of |V (S) ∩ T | ≥ 2).
Next, choose a path Qk ∈ Q with a minimum number of H-boundary edges. Further, define
Q− := Q\ {Qk}. As before, for all Qr ∈ Q−, denote by Q′r the subpath of Qr from tr up to the
last vertex still in Htr . As in proof A.1, one validates that the Q′r are pairwise vertex disjoint
and that Qk has no vertex in common with any Q′r. One goes on to obtain an upper bound on
the weight of S:

P (S) =
∑

v∈V (S)

p(v)

≤
( ∑
Qr∈Q−

P (Q′r)

)
+ P (Qk)

≤
∑

t∈T\{vi}

r+
H(t)−min{r+

H(t) | t ∈ T \ {vi}}+ P (Qk)

≤
∑

t∈T\{vi}

r+
H(t)−min{r+

H(t) | t ∈ T \ {vi}}+ d(vi, vi,1).

These inqualities conclude the proof of the proposition.

A.3 Proof of Relation vLP (TransCut) ≤ vLP (Cutr)

Proof. Let PRMW = (V,A,R, p, r) be a directed RMWCSP and let
P ′ = (V ′, A′, T ′, c′, r′) be the corresponding SAP obtained from applying Transformation 2.

Furthermore, define D := (V,A) and D′ := (V ′, A′). Let x ∈ [0, 1]
|A′|

be a solution to the
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LP-relaxation of the TransCut formulation such that the following minimality condition holds:
none of the values x(a) for a ∈ A′ can be reduced without making the solution infeasible (this
condition is satisfied for at least one optimal LP solution). In the following it will be demonstrated
that there exists an LP solution y ∈ [0, 1]|V | to the Cutr formulation to PRMW of value pT y =∑
v∈V :p(v)>0 p(v)− c′Tx.

To this end, define y as follows: For each v ∈ V set y(v) := x(δ−D′(v)). Next, let vi ∈ V
such that y(vi) > 0 and let N be an (r, vi)-separator. One needs to verify that y(N) ≥ y(vi)
and that y(vi) ≤ 1. In order to acknowledge these properties, first define Svi := {v ∈ V ′ |
N is (r, v)-separator}.

To facilitate notation, δ will in the following be used as an equivalent for δD′ (and δ−, δ+

correspondingly). In this way, denote by ∆ the set of all a ∈ δ−(vi) with x(a) > 0. Let
W1, ...,Wu ⊂ V ′ such that

1. for q = 1, ..., u:

(a) Wq ∩ T ′ 6= ∅, r′ /∈Wq, x(δ−(Wq)) = 1

(b) ∆q := ∆ ∩ δ−(Wq) \
⋃q−1
j=1 δ

−(Wj) 6= ∅

2.
⋃u
q=1 ∆q = ∆

The existence of such sets follows from the initial minimality assumption on x. Moreover, set
Wu+1 := Svi . In the following, we will define a finite series of arcs sets (A′q) that converge to a
subset of δ−(Svi) such that the sum of its x values is at least x(∆). From there it is a short way
to proving the proposition.

Define the sets Xq, Aq, A
′
q and A′q iteratively for q = 1, 2, ..., u. Initially, set A′0 := ∅ and

Aq := δ−(Wq) ∩ A′q−1 for q ∈ {1, ..., u}. Let Xq be the set of all vertices v ∈ (∩u+1
j=q+1Wj) \Wq

such that there is a directed path in (∩u+1
j=q+1Wj) \Wq from v to the tail of an arc in Aq ∪∆q.

Furthermore, set

A′q := (

u+1⋃
j=q+1

δ−(Wj)) ∩ (δ−(Xq) ∪Aq ∪∆q). (36)

and

A′q := (

q⋃
j=1

A′j) ∩ (

u+1⋃
j=q+1

δ−(Wj)). (37)

Next, we iterate from q = 0 to q = u, and show that in each iteration q ∈ {0, 1, ..., u} the
invariant

x(A′q) ≥ x(

q⋃
j=1

∆j) (38)

holds. For q = 0 the invariant is trivially satisfied (as x(∅) = 0), so consider 1 ≤ q ≤ u. Due to
x(δ−(Xq ∪Wq)) ≥ 1 and Xq ∩Wq = ∅ it holds that

x(δ−(Wq)) ≤ δ−(Xq ∪̇ Wq) = (δ−(Wq) \ δ+(Xq)) ∪̇ (δ−(Xq) \ δ+(Wq)). (39)

30



This equation implies that

x(δ+(Xq) ∩ δ−(Wq)) ≤ x(δ−(Xq) \ δ+(Wq)) (40)

≤ x(δ−(Xq) ∩ δ−(

u+1⋃
j=q+1

Wj)), (41)

where (41) follows from δ−(Xq) ⊆ δ+(Wq) ∪ δ−(∪u+1
j=q+1Wj). One can go on to conclude that

x(Aq) + x(∆q) = x(Aq ∩
u+1⋃
j=q+1

δ−(Wj)) + x(Aq ∩ δ+(Xq)) + x(∆q) (42)

≤ x(Aq ∩
u+1⋃
j=q+1

δ−(Wj)) + x(δ−(Xq) ∩ δ−(

u+1⋃
j=q+1

Wj)) + x(∆q) (43)

= x(A′q). (44)

Equality (42) follows from the construction of Xq, and inequality (43) follows from Aq ⊆ δ−(Wq)
and from the inequalities (40)-(41). Finally, equality (44) holds because all three sets are disjoint;
in particular, ∆q and Aq are disjoint because ∆q∩∪q−1

j=1δ
−(Wj) = ∅ and therefore ∆q∩A′q−1 = ∅.

Using definition (37), one obtains that

x(A′q) = x((

q−1⋃
j=1

A′j ∩
u+1⋃
j=q+1

δ−(Wj)) ∪ (A′q ∩
u+1⋃
j=q+1

δ−(Wj))) (45)

≥ x(A′q−1 \ (δ−(Wq) ∩A′q−1) ∪A′q) (46)

= x((A′q−1 \Aq) ∪A′q) (47)

≥ x(A′q−1)− x(Aq) + x(A′q) (48)

≥ x(A′q−1) + x(∆q). (49)

First, equality (45) follows from the definition of A′q. Inequality (46) follows from the definition
of A′q and A′q. Similarly, equality (47) follows from the definition of Aq. Inequality (48) follows

from A′q−1 ∩A′q ⊆ Aq. Finally, inequality (49) follows from the system (42)-(44).
Consequently, by an induction argument it can be concluded that invariant (38) is satisfied.

Finally, at the end of the iterations (at q = u) it holds that A′u ⊆ (δ−(Svi)), which implies that

x
(
δ−(Svi)

)
≥ x(

u⋃
j=1

∆j) = x(∆). (50)

Due to δ−(Svi) ⊆ δ−(N), one can moreover verify that x
(
δ−(N)) ≥ x(∆) is satisfied. Finally,

because of x(δ−(N)) ≤
∑
v∈N δ

−(v) = y(N) it holds that

y(N) ≥ x(∆) = y(vi). (51)

It remains to be shown that y(vi) ≤ 1. Suppose y(vi) > 1. This would imply with the argumen-
tation above that for each W ⊆ V ′ \ {r′} with vi ∈W it holds that x(δ−(W )) > 1, which would
contradict the initial minimality assumption on x.
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Comparing the objective value of y with that of x, one observes that

pT y =
∑
v∈V

(
p(v)

∑
a∈δ−D(v)

x(a)
)

=
∑

v∈V,p(v)>0

(
p(v)

∑
a∈δ−D(v)

x(a)
)

+
∑

v∈V,p(v)≤0

(
p(v)

∑
a∈δ−D(v)

x(a)
)

=
∑

v∈V :p(v)>0

p(v)−
∑

a∈D′\D

c′(a)x(a)−
∑

v∈V,p(v)≤0

( ∑
a∈δ′D(v)

c′(a)x(a)
)

=
∑

v∈V :p(v)>0

p(v)−
∑

a∈D′\D

c′(a)x(a)−
∑
a∈D

c′(a)x(a)

=
∑

v∈V :p(v)>0

p(v)−
∑
a∈D′

c′(a)x(a)

=
∑

v∈V :p(v)>0

p(v)− c′Tx.

This establishes the required relation.
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