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Abstract. “Interior point algorithms are a good choice for solving pure
LPs or QPs, but when you solve MIPs, all you need is a dual simplex.”
This is the common conception which disregards that an interior point so-
lution provides some unique structural insight into the problem at hand.
In this paper, we will discuss some of the benefits that an interior point
solver brings to the solution of difficult MIPs within FICO Xpress. This
includes many different components of the MIP solver such as branch-
ing variable selection, primal heuristics, preprocessing, and of course the
solution of the LP relaxation.

Keywords: mixed integer programming, interior point, analytic center,
barrier method

1 Introduction: MIP and the Analytic Center

Mixed integer programming (MIP) is one of the most important techniques in
Operations Research and Discrete Optimization. A mixed integer program is an
optimization problem of the form:

min{ctx : Ax = b, x ≥ 0, xI ∈ Z
I}, (1)

with matrix A ∈ R
m×n, vectors b ∈ R

m and c ∈ R
n, and a subset I ⊆ N :=

{1, . . . , n}. The LP relaxation of a MIP is the continuous optimization problem
which we get by dropping the integrality requirements of (1). The feasible region
of the LP relaxation is a polyhedron. For an introduction to MIP, see [19].

The analytic center xac of a bounded polyhedron given in equality form
(Ax = b, x ≥ 0) has been introduced by Sonnevend [21] and is defined as

xac = argmin{−
∑

j∈I

ln xj : Ax = b}. (2)

The analytic center can be efficiently computed by using a barrier algorithm, see
next section. Note that the strong convexity of the logarithm implies that the
analytic center of a bounded polyhedron is indeed uniquely defined. Furthermore,
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it maximizes the distance to the boundary due to the logarithm going towards
minus infinity when going to zero. If the polyhedron is a simplex, the analytic
center is also the barycenter of the polyhedron [22].

The FICO Xpress Optimization Suite is a toolbox for mathematical opti-
mization [6, 15]. It features software tools used to model and solve linear, integer,
quadratic, nonlinear, and robust optimization problems. The core solver of this
suite is the FICO Xpress-Optimizer (from here on: Xpress), a state-of-the-art
MIP solver which combines ease of use with speed and flexibility. All computa-
tional results mentioned in this paper have been conducted with Xpress.

MIP solvers like Xpress feature a variety of algorithmic components which
extend the basic branch-and-bound search and which are the reason that modern
MIP solvers can solve some of the most complex optimization problems. These
include primal heuristics to find feasible solutions, presolving techniques to re-
duce the problem size and branching strategies to efficiently split the problem
into disjoint subproblems. All of the named techniques will be addressed in the
present paper.

2 Impact of Barrier for LP solving

Unlike the simplex algorithm which iterates over extremal vertex solutions, the
Newton barrier method iterates through solutions in the interior of the feasible
region of the LP [13]. The name barrier comes from replacing the non-negativity
constraints in the LP by logarithmic penalty terms, as in 2, and solving the
problem

min{ctx− µ
∑

j∈N

ln xj : Ax = b}. (3)

When µ converges to zero, the solution of the barrier problem converges to an
optimal solution of the original LP (the barrier solution xbar). The set of solutions
for different µ describes the so-called central path which connects xac with xbar.
Note that xbar is the analytic center of the optimal face of the LP. The barrier
algorithm can be generalized to convex programming and thereby in particular to
convex quadratic programming. Besides the nice property of being of polynomial
complexity, the barrier method excels by its practical running time in particular
on sparse problems. For an overview on interior point methods, see [20]. The
barrier algorithm in Xpress is based on the solver described in [16]. It is a primal-
dual algorithm extended by predictor-corrector and target-following techniques.

The observation that there is no clear dominance between simplex and bar-
rier algorithm in terms of solving speed leads to the first, probably most obvious,
application of an interior point solver within a MIP solver. For solving the ini-
tial LP relaxation, it is the default behavior of Xpress to run primal simplex,
dual simplex and barrier (with a subsequent crossover) side-by-side in separate
threads. Primal and dual each use one thread, all other threads are occupied by
barrier. This method is known as concurrent LP solving. It will be interrupted
when one of the algorithm solves the LP relaxation to proven optimality.



Interior Points in MIP solving 3

For MIP solving, the impact of concurrent LP solving on the overall running
time is limited, about 2% speedup on MIPLIB [14]. However, the time for solving
the initial LP relaxation improves by 36%. As a side effect of solving the initial
LP faster, the time to find a first MIP solution improves by about 4%.

Note that even if barrier plus crossover is not the concurrent winner, barrier
alone might have finished before the winning simplex algorithm. In this case, we
might use xbar without the need to compute it from scratch.

3 Using the Analytic Center for Presolving

The barrier solution is in the center of the optimal face, hence it minimizes the
number of variables which are at their bound. In particular, it maximizes the
number of fractional binaries. Similar to simplex solutions, the barrier solution
comes with a dual solution, from which a set of reduced costs can be computed.
These can be used for reduced cost fixing, a bound tightening algorithm.

The analytic center of the optimal face provides a maximal set of non-zero
dual values and hence of non-zero reduced costs. If a variable has a zero reduced
cost in this solution, it must have a zero reduced cost in any optimal LP solution.
Note that this is different from, but related to a recent work by Bajgiran et al. [3]
who compute a set of reduced costs s.t. a maximal set of variables can be fixed
w.r.t. a given primal MIP solution value. Conversely, if we wanted to find an
integer solution in the optimal face, we could safely fix all variables with non-
zero duals to their current bounds. This could, also be used in the context of
pump-reduce [1] to reduce the size of the auxiliary LP.

Besides using the dual values, there is a direct, primal way to use the analytic
center for fixing variables. Assume for the remainder of this section, that we
have an analytic center solution xac for the whole feasible region. By definition,
this solution is strictly in the relative interior of the feasible region. Hence, any
variable that is at its bound in this solution must therefore be at its bound in
any feasible solution. This allows us to fix and remove such variables from any
further consideration during a MIP solve. Principally, the same holds for slack
variables. This is potentially beneficial for ranged rows, where fixing the slack
will result in the ranged row to be tightened to an equation.

Note that the fixed variables would have been at their bound in any LP or
MIP solution anyway. So the direct impact of this presolving step is limited.
There is a certain benefit from the sheer reduction in the problem size if many
variables can be fixed that way. Additional benefit might occur indirectly from
extra presolving that has been enabled by the analytic-center-based fixings . In
our computational experiments, we observed about 2% improvement from fixing
variables w.r.t. the analytic center of the whole problem. The impact of using
reduced costs from barrier solutions was performance neutral.
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4 An Analytic Center Heuristic

Naoum-Sawaya [18] introduced (recursive) central rounding, which is based on
the idea to round the analytic center to the nearest integer vector. Their intuition
was that for general integer variables, a point in the “middle” of the relaxation’s
feasible region is more likely to have an integer feasible solution in its vicinity
as compared to an extremal solution of the relaxation.

We suggest a different way to interpret the analytic center of the whole prob-
lem in a heuristic context. It can be seen as an indicator for the direction into
which a variable is likely to move when going towards feasibility. This is par-
ticularly interesting for variables that are close to zero or one in a pure binary
problem. However, not all of them might be simultaneously set to their corre-
sponding bound value; thus a pure rounding approach might not be sufficient. We
propose to rather apply a soft rounding in a large neighborhood search fashion,
compare, e.g., proximity search [9].

Thus, we set up an auxiliary objective function, whose coefficients are pro-
portional to the analytic center solution values. That is, the closer a binary is
to one in the analytic center solution, the more the objective will try to push
it towards one. Further, we tentatively fix some variables that are very close to
one of their bounds and finally apply an auxiliary MIP solve with strict working
limits on the modified problem. Note that this heuristic, similar to the feasibil-
ity pump [8], completely disregards the original objective function of the MIP.
Thus, it makes most sense as a start heuristic to find a first feasible solution,
not so much as an improvement heuristic.

This heuristic is relatively expensive, as it involves computing the analytic
center xac and solving at least some nodes of a MIP of similar size as the original.
Thus, Xpress only uses it in rare cases. For instances for which it is particularly
cumbersome to find a feasible solution, however, it makes a big difference. We
observed an overall speedup of 40% on the Feasibility benchmark of Hans Mit-
telmann [17]. This big difference is due to the fact that there are a few instances
for which this heuristic is the only one finding a solution within the time limit
of that benchmark.

5 Branching w.r.t. Analytic Centers

Finally, we present a branching strategy that makes use of the analytic center
of the whole problem. As argued in the previous section, the analytic center can
be understood as an indicator in which direction variables are easiest to move
while maintaining feasibility. The analytic center branching in Xpress branches
on binary variables that are close to one. Additionally, it searches the subtree
resulting from the up-branch first.

This is applied only for extremely dual degenerate MIPs and only on the
top levels of the branch-and-bound tree. This follows the idea that when the
analytic center has only a few binaries close to one, then it is likely that those,
or at least most of those, should be one in any optimal MIP solution. While for
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the variable fixing procedure in Section 3 it is important that we use the actual
analytic center, for the heuristic in Section 4 or for branching, other interior
points might work similarly well.

As said, this strategy is only applied in a few cases, but relatively efficient
on those. Overall, branching w.r.t. analytic centers gives 2% speedup on MI-
PLIB. This comes from few instances on which this branching strategy improves
performance by orders of magnitude.

6 Conclusion

Taking all the uses of the barrier solver and analytic center solutions together,
having a barrier available makes up for 10% speedup in solving MIPs to proven
optimality and three more MIPLIB2010 problems being solved by Xpress. The
number of branch-and-bound nodes reduces by 6% and the primal-dual inte-
gral [5] by 9%.

Within Xpress, the proposed presolving, heuristic, and branching strategy
all improve performance, but come with the computational burden of having to
compute the analytic center first. For each of the individual procedures, this is
a rather big overhead. However given that the analytic center only needs to be
computed once to enable the application of all of them, it seems worthwhile to
consider further applications of the analytic center within MIP, even if a single
application will not justify the computational cost. This includes, e.g., extensions
of the feasibility pump which make use of the analytic center [2, 7]. In the present
paper, we did not discuss possibilities to use the analytic center for generating
cutting planes, as it is done in convex programming [12, 11] or for filtering cuts.
Compare also [4, 10] for the use of interior points for cutting plane separation.
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