XA/

\V4

YN
sea
X X 1]

XXX
e

(X
0
@
X

(7

XX
(X

[[X XXX >
\V4

7

‘z‘Y X

e
(X
A

TAX X

%

XX
AKX KK XA
V.9.9.0.0.0.0.9.,

<P
>
g

TakustraBe 7
D-14195 Berlin-Dahlem
Germany

Konrad-Zuse-Zentrum =
fur Informationstechnik Berlin —

MARTIN GROTSCHEL SVEN O. KRUMKE,
JORG RAMBAU

Online Optimization of Complex
Transportation Systems

ZIB-Report 01-17 (July 2001)

ONLINE OPTIMIZATION OF COMPLEX TRANSPORTATION SYSTEMS

MARTIN GROTSCHEL, SVEN O. KRUMKE, AND ORG RAMBAU

ABSTRACT. This paper discusses online optimization of real-world transportation sys-
tems. We concentrate on transportation problems arising in production and manufacturing
processes, in particular in company internal logistics. We describe basic techniques to
design online optimization algorithms for such systems, but our main focus is decision
support for the planner: which online algorithm is the most appropriate one in a particular
setting? We show by means of several examples that traditional methods for the evaluation
of online algorithms often do not suffice to judge the strengths and weaknesses of online
algorithms. We present modifications of well-known evaluation techniques and some new
methods, and we argue that the selection of an online algorithm to be employed in prac-
tice should be based on a sound combination of several theoretical and practical evaluation
criteria, including simulation.

1. INTRODUCTION

The strategic planning of complex transportation systems such as public transportation
networks, automatically guided vehicles in warehouses, etc. has received a considerable
amount of attention in the last decad8trategic plannings the stage of system design
where an object (e.g., a telecommunication network) is designed that will remain static for
a certain planning period (the network topology, and edge capacities will not change) such
that a few control parameters (e.g., routing and switching) will allow an (almost) optimal
handling of all input data (within a certain realistic or predicted range). The system itself is
usually not yet operational when this “strategic optimization” takes place. Here, methods
of offline optimizatiorapply. The increasing computing power and significant advances in
traditional optimization techniques have resulted in substantial savings of resources in this
area.

Despite many successes of this approach, e.g., for transportation systems, it has turned
out that achieving savings also requiresagtimized operational controlSuch a control
involves actions to be executed while a system is running; i.e., input data arise over time,
have to be processed, and (irrevocable) decisions have to be made before all input data are
known. This means that methods afline optimizatiorhave to be employed. In many
cases decision making has to satisfy certaad-time requirementsevery decision has to
be made within strict time limits.

In this paper, we survey some new methods (beyond standard competitive analysis) to
obtain decision support for the choice of online algorithms in real-world transportation
systems. In each case, we are looking for a “good” online control on the basis of online
algorithms. The methods discussed @menpetitive analysis against restricted adversaries
(a variant of competitive analysis where the offline adversary is given less panatysis
underA-reasonable loagwe compare the cost of the online algorithm to a certain property
of the input) a-posteriori-analysigwe perform an approximate, instance wise competitive
analysis to compute a lower bound on the unavoidable cost)camgarative simulation
(we compare algorithms that run simultaneously in simulation experiments).

These concepts are employed along with standard competitive analysis in real-world
examples. We indicate which combination of methods could support decisions best.

Supported by the German Science Foundation, Priority Programme 469.
1

2 M. GROTSCHEL, S. 0. KRUMKE, AND J. RAMBAU

The rest of the paper is structured as follows: We start out by sketching our real-world
examples in Section 2. In Section 3 we present the above mentioned evaluation methods
for online algorithms. In Section 4 the applications of traditional and new methods to real-
world systems is discussed. Section 5 summarizes what we consider the key findings of
our research.

2. FOUR REAL-WORLD EXAMPLES AND WHY THEY RAISE QUESTIONS

In this section we introduce four real-world online optimization problems. One common
feature is the difficulty to evaluate online algorithms for them.

The first example is the automated stacker crane in a production plant of Siemens Nix-
dorf Informationssysteme AG (SNI). The question is in which order the stacker crane
should perform storage and retrieval operations so as to minimize the unloaded travel time.
We show that for the related objective “minimize the makespan” (the time the system
needs to serve a set of requests) we firs/2-competitive algorithm. This is thee-
PLAN-heuristics already discussed in [10]. This algorithm is, however, not competitive
with respect to the minimization of the total unloaded travel distance. Shall we use this
algorithm anyway?

The second example studies a system of automated guided vehicles for commissioning
greeting cards in a large distribution center of Herlitz PBS AG, Falkensee, one of the main
distributors of office supply in Europe. Orders specifying a combination of greeting card
sets have to be assigned to vehicles. These must stop at the shelf positions where the corre-
sponding cards have to be collected (“order picking”). The question is how orders should
be assigned to vehicles so that the total number of stops over all vehicles is minimized.
It turns out that competitive analysis tells us nothing about which algorithm to choose in
practice. For a greatly simplified problem we show that competitive analysis is even in
favor of an intuitively senseless algorithm. Is there an evaluation method that proves dumb
algorithms to be dumb?

The next example is a pallet elevator in the same distribution center. In this case it
was already difficult to isolate a single objective function to be optimized. We decided to
consider several objectives: We want to guarantee a small average and/or a small maximal
flow time over a set of pallets requesting transportation. It turns out that for these objectives
there is no competitive algorithm, mainly because the cost of an offline solution cannot be
bounded from below. Can we evaluate algorithms without using a lower bound on the
offline cost?

Finally, we investigate the integrated elevator system plus conveyor belt that distributes
the pallets among the elevators. We find out that a similar analysis as in the single ele-
vator case is still valid; the improvements, however, are leveled off by the conveyor con-
trol. Therefore, we studied an integrated optimization model for the combined elevator-
conveyor system. Does this help to improve the overall performance of the system?

We will give answers to the above questions in Section 4 after we have introduced our
“evaluation toolbox” in Section 3. Some of the answers are quite satisfactory, others show
the need for further research.

3. MODELING AND EVALUATION TECHNIQUES

In this section, we present a sequence of methods to analyze the performance of online
algorithms. The methods are ordered by decreasing mathematical strength, that is to say,
the first method—if successful—yields the most rigorous analysis of the ones in this sec-
tion, the last one is merely experimental. (Classical competitive analysis as described in
[10] would belong to the very beginning of the section.)

ONLINE OPTIMIZATION OF COMPLEX TRANSPORTATION SYSTEMS 3

3.1. Competitive Analysis with Restricted Adversaries. In restricting the class of algo-
rithms for the adversary, one attempts to deal with the (justified) objection—frequently en-
countered against competitive analysis—concerning the unrealistic power of the adversary
against which performance is measured. In standard competitive analysis the adversary is
an optimal offline algorithm which has complete knowledge about the whole input in ad-
vance. There have been a number of approaches in the literature to devise “more realistic”
adversary models for specific problems than the omnipotent standard offline adversary.

For the exposition we consider the online traveling salesman proBiemNE TSP oN
the non-negative real numbétg endowed with the Euclidean metric (see [10, Example 4]
for the ONLINETSPin general metric spaces). The origin of the salesman is the Point
the ONLINETSP requests for visits to cities (points in a metric space) arrive online while
the salesman is traveling. The salesman moves at unit speed and starts and ends his work
at the origin0. The objective is to find a route for the salesman which finishes as early as
possible.

Eachrequesis a pairo; = (tj,%;), wheret; € R is the time at which request is released
(becomes known to an online algorithm), and: Ry is the point requested to be visited.
It is assumed that an online algorithm does neither have information about the time when
the last request is released nor about the total number of requests. An online algorithm
must base its decisions at timeolely on the requests released up to time

Notice that the offline version of th@eNLINETSPin R{ can be solved very easily even
in the presence of release times (the problem is almost trivial!). However, in the online
case, there does not exist an algorithm that always finds an optimal solution. More specif-
ically, it can be shown that there is no deterministic online algorithm that achieves a com-
petitive ratio smaller thaB/2. The competitive ratio 08/2 is achieved by the following
very natural and simple strategRrIN (see [7] for the proofs):

Strategy MRIN(“Move-Right-If-Necessary”): If a new request is released and the
request is to the right of the current position of the server operatediloy, then
the MRIN-server starts to move right. The server continues to move right as long
as there are yet unserved requests to the right of the server. If there are no more
unserved requests to the right, then the server moves towards theGrigin [

In the lower bound construction the (standard) offline adversary abuses his power in the
sense that he can move to points where he knows a request will pop up without revealing
the request to the online server before reaching the point. This has motivated the concept
of a “fair adversary” in theONLINETSP. A fair adversary always keeps its server within
the convex hull of the requested points released so far. As shown in [7] this adversary
model indeed allows for lower competitive ratios. For instance, the above men8ged
competitive algorithnMRIN against the conventional adversaryj8-competitive against
the fair adversary. In addition, one can prove the following:

theorem 3.1([7]). There exists an online algorithm for ti@NLINETSPin R} with com-
petitive ratio”Tﬁ7 ~ 1.28 against a fair adversary. Moreover, no deterministic online al-
gorithm can achieve a competitive ratio smaller tﬁéa@ against the fair adversary.

The use of a restricted adversary falls within the concepbofparative analysjsvhich
was introduced by Koutsoupias and Papadimitriou [14]. The authors compare the perfor-
mance of an online algorithm for the Paging Problem with that of the best paging algorithm
having limited lookahead. Ld@ be a minimization (online) problem. Themparative
ratio of an algorithmaLG for IM relative to a clas$B of algorithms is defined as the worst
case ratio between the solution cost producedilry and the best solution produced by an
algorithm in‘B. If B is the class of all offline algorithms fdét, then the comparative ratio
reduces to the standard competitive ratio.

The comparative ratio has also been studied in the context of online financial problems.
For most of these problems the standard adversary also appears to be too strong. To obtain

4 M. GROTSCHEL, S. 0. KRUMKE, AND J. RAMBAU

meaningful (theoretical) results about the performance, e.g., of online portfolio selection
algorithms, a comparison with a restricted class of offline algorithms is used. We refer to
[8, Chapter 14] for details.

3.2. Reasonable Load.This concept was motivated by the problem of minimizing the
maximal or average flow time of pallets transported by an elevator. Such a system can
be modeled by the so-callazhline dial-a-ride problemONLINEDARP. The concept of
reasonable load also works in a more general setting. However, we do not want to go too
much into abstraction in this paper, and we restrict our attenti@ddNioiNE DARP, which
we explain in the sequel.

We are given a metric spa¢¥, d) with a special poinb € X (the origin). Requests are
triplesr = (t,a,b), wherea is the start point of a transportation taskits end point, and
its release time, which is—in this context—the time whetecomes known to an online
algorithm. Atransportation movés a quadruplam = (t,x,y,R), wherex is the starting
point,y the end point, antithe starting time, whil® s the set (possibly empty) of requests
the server has loaded during the move. We say in this case, thermoagiesR. The
arrival time of a move is the sum of its starting time ad(X, y). A (closed) transportation
schedulgs a sequencémy,my, . ..) of transportation moves such that

e the first move starts in the origim

e the starting point ofny is the end point ofn;_1;

e the starting time ofn carryingR is no earlier than the maximum of the arrival
time of m and the release times of all requestgi(it maybe later, though);

e the last move ends in the origm

An online algorithmfor ONLINEDARP has to move a server i so as to fulfill all
released transportation tasks without preemption (i.e., once an object has been picked up
it is not allowed to be dropped at any other place than its destination), while it does not
know anything about requests that come up in the future. In order to plan the work of the
server, the online algorithm may maintain a preliminary (closed) transportation schedule
for all known requests, according to which it moves the server. A posteriori, the moves of
the server induce a complete transportation schedule that may be compared to an offline
transportation schedule that is optimal with respect to some objective function (competitive
analysis). For a detailed set-up see [4].

Recall that thdlow timeof a request is the difference between its completion time and
its release time, while thevaiting timeis the difference between its service starting time
and its release time. In the sequel, we are concerned with the following objectives:

e Minimize themakesparalso called the&eompletion timgfor the given set of re-
quests. This is the time the server needs to fulfill all the transportation tasks.

e Minimize themaximal flow timéor waiting timé of the requests.

e Minimize theaverage flow tim¢or waiting timeg.

We will consider the online heuristicePLAN andiGNORE from [10]. Since we did not
choose a particular objective function yet we need to specify according to which objective
function REPLAN andIGNORE will solve the corresponding offline problems. We will
even evaluat®EPLAN- andIGNORE-heuristics that use a different objective for the local
optimization than the one that is to be minimized globally in the online problem.

Thus, for an arbitrary objective functiabj we denote bREPLANY resp.IGNORECD!
the following online heuristics:

REPLAN®Y: Follow the current plan. Whenever a new request becomes available
compute a new plan minimizingpj starting at the current position.

IGNORE®Y: Follow the current plan; while executing it collect upcoming requests in
a buffer. When done and there are non-served requests in the buffer compute a
new plan for all these requests minimiziobj.

The motivation to consider the concept of reasonable load in this situation was two-fold.

ONLINE OPTIMIZATION OF COMPLEX TRANSPORTATION SYSTEMS 5

First, competitive analysis @NLINEDARP provides the following [4]:

e The two online heuristicssNOREMKeSPaRNJREPLANMKESPARre3 /2-competitive
for the goal of minimizing thenakesparf the schedule.

e For the tasks of minimizing theaaximal (or average) waiting timer themaximal
(or average) flow timé¢here can be no algorithm with constant competitive ratio.

e In particular, the algorithmesNORE™akesPangnd REPLANT3KESPAthat repeatedly
minimize themakesparof all known requests have an unbounded competitive
ratio for the overall task of minimizing the maximal or averdigev time

Second, in simulation studies a fundamental difference in the behavieNaiRE and
REPLAN was observed: the maximal flow times on similar inputs produceddBLAN
varied a lot while the ones produced yNORE were better predictable. The concept of
reasonable load was developed to find a mathematical explanation of this phenomenon.

We start with some useful notation.

Definition 3.2. Theoffline versiorof a request = (t,a,b) is the request
rofiine.— (0,a,b).
Theoffline versiorof a request seR is the request set
Roffline:: {rofﬂine = R}. O

An important characteristic of a request set with respect to system load considerations
is the time period in which it is released.

Definition 3.3. Let R be a finite request set f@NLINEDARP. Let the release time of a
request be denoted by(r). Therelease spad(R) of Ris defined as

O(R) := rpEath(r) - rrréiFrgt(r). O

Provably good algorithms exist for the makespan and the weighted sum of completion
times. How can we make use of these algorithms in order to get performance guaran-
tees for minimizing the maximum (average) waiting (flow) times? We suggest a way of
characterizing request sets which we want to consider “reasonable”.

In a continuously operating system we wish to guarantee that work can be accomplished
at least as fast as it is presented. In the following we propose a mathematical set-up that
models this idea in a worst-case fashion. Since we are always working on finite subsets
of the whole request set the request set itself may be infinite, modeling a continuously
operating system.

We start by relating the release spans of finite subsets of a request set to the time we
need to fulfill the requests.

Definition 3.4. Let Rbe a request set for t@eNLINE DARP. A weakly monotone function

i BR—= R
1 8 = f(3);

is aload boundon R if, for any & € R and any finite subse$ of R with §(S) < 9, the
makesparopTMakespapgofiiine) of the optimum schedule for the offline versigtfi™e of S
is at mostf (8). In formula:

OPTmakespaTs)ffline) < f(5), O

Remark3.5. If the whole request s is finite then there is always the trivial load bound
given by the makespan & For every load bound, we may seff (0) to be the maximum
completion time we need for a single request, since nothing better can be achieved.

6 M. GROTSCHEL, S. 0. KRUMKE, AND J. RAMBAU

A stable situation would be characterized by a load bound equal to the ideniitylon
that case we would never get more work to do than we can accomplish, even if we had an
optimal offline algorithm at hand.

If Rhas a load bound equal to a functiolip, whereid is the identity and wherg > 0,
thenp measures the “tolerance” of the request set: An algorithm that is by a fasctorse
than optimal will still accomplish all the work that it gets. However, we cannot expect
that the identity (or any linear function) is a load bound @wLINEDARP because of the
following observation: a request set consisting of one single request has a releaselspan of
whereas in general it takes non-zero time to serve this request. In the following definition
we introduce a parameter describing how far a request set is from being load-bounded by
the identity.

Definition 3.6. A load boundf is called(A,p)-reasonablgor someA, p € R, if

f(d) < 0 foralld>A

5
A request seR is (A,p)-reasonabldf it has a A,p)-reasonable load bound. Fpr= 1,
we say that the request setfsreasonable and we call a request set or a load bound
reasonabléf it is (A, p)-reasonable for some,p € R.,.. O

In other words, a load bound {&,p)-reasonableif it is bounded from above bg/p-
id(x) for all x > A and by the constant function with valag¢pA otherwise.

Remark3.7. If A is sufficiently small so that all request sets consisting of two or more
requests have a release span larger th#imen the first-come-first-serve strategy suffices

to ensure that there are never more than two unserved requests in the system. Hence,
the request set does not require “scheduling” the requests in order to provide for a stable
system. (By “stable” we mean that the number of unserved requests in the system does not
become arbitrarily large.) O

Resonable load is a plausible restriction:

Observatior8.8 (Justification of Reasonable Loadyssume, a request set fONLINEDARP
is not reasonable. Then the following holds: Foralt O there is a request set with release
span at leash whose offline makespan is larger than its release span.

In other words: no matter how long one collects requests there is provably no method
to accomplish their service in a time equal to the collection time.

Finally, we state the theorem that mathematically shows the (somewhat surprising) fun-
damental difference atsNORE™2keSPaandREPLANT2KESPAHN ONLINEDARP. (See [11]
for a proof.)

theorem 3.9. For the ONLINE DARP underA-reasonable load|GNORE™MaKeSPajia|ds g
maximal and an average flow time of at m@at whereas the maximal and the average
flow time of REPLAN™2KeSPazre ynbounded.

In Sections 4.3 and 4.4 we present practical applications where an analysis under rea-
sonable load is possible.

3.3. A-Posteriori-Analysis. Competitive analysis—even in the case of existing competi-
tiveness results—does often not provide performance guarantees that appear convincing in
an efficiency oriented industrial environment. Consider a statement such as “The solution
produced is in each and every situation at n®8mes worse than the optimum”. Will a
user be happy to hear that? Such a result is too weak in terms of the performance ratio and
too strong in the sense that it covers too many (from a customer’s point of view probably
irrelevant) situations.

The same problem occurs in the framework of approximation algorithms: a perfor-
mance guarantee for all instances of a problem is often not required. One approach that

ONLINE OPTIMIZATION OF COMPLEX TRANSPORTATION SYSTEMS 7

made combinatorial optimization methods have impact in real life was the delivery of
instance-wisgerformance guarantees via the computation of so-ciledr boundor
the very special instance of the problem to be solved in a particular situation.

Lower bounds can usually be derived by relaxing side constraints of a problem. The
most prominent relaxation technique in combinatorial optimization is to relax the integral-
ity constraints, thereby transforming notoriously difficult (Mixed) Integer Programs into
efficiently solvable Linear Programs [10]. Optimal solutions of these may be easier to
come by, and an optimal solution of the original problem cannot be cheaper than the one
of the relaxed problem. On the other hand, the value of any feasible solution to the original
problem yields ampper boundor the optimal solution. The gap between lower and upper
bound at any stage of the optimization process provides, thus, an instance specific qual-
ity guarantee: the difference between the objective function values of the current feasible
solution and a presently unknown optimal solution is not bigger than this gap.

In this framework the role of fast approximation algorithms is to provide for good fea-
sible starting solutions. Good initial solutions often help to close the gap between lower
and upper bounds fast and, thus, help to speed up the optimization process.

One can similarly compute lower and upper bounds for a special instance of an online
optimization problem. This leads to an instance-wise competitive analysis. Since, in an on-
line situation, a special instance is not known in advance, this kind of analysis can only be
applied after all decisions have been made. Therefore, this approach isacalbstieriori
analysis

We now state an observation that shows what a-posteriori-analysis can achieve. We
concentrate on online optimization in the time stamp model (see [10] for details). We may
assume w.l.o.g. that all time stamps are positive, and we assume also that the way how a
request sequence is served by an online algorithm does not influence this sequence. (This
assumption is not always satisfied in real systems, since after observing how an algorithm
has handled the first elements of a request sequence, the remaining requests may be altered
or their order may be changed.)

Suppose thdtis an instance of an online optimization problem in the time stamp model
and thatA is an online algorithm for this problem. Denote Ayl) the value of the solution
A produces on. Denote byJ the corresponding instance of the offline optimization prob-
lem induced byl where all requests are known in advance and where a feasible solution
has to respect all release times. Denot<he corresponding instance of the offline op-
timization problem induced blywhere all time stamps are removed (set to zero). Denote
the optimal solution values dfandK by opT(J) andopT(K), respectively.

Then the following simple observation can be made.

Observation3.10 (Justification of A-posteriori Analysis).etl, J, K be as above. Then,
under the above assumptions, there exist real nundger&) andc’(1,A), depending o
and on the online algorithm, satisfyingc/(l,A) > ¢(I,A) > 1, such that

oPT(K) < opPT(J) < A(l) =c(l,A)orT(J) = c/(I,A)oPT(K).

The above chain of equations and inequalities yields two versions of instance-wise com-
petitive analysis depending on the chosen relaxatians. Usually, the quality guarantee
c(l,A) is reported as the relative gap

A(l)—oPT(J
It is, however, not clear how the instantean be solved. The corresponding combina-
torial offline problems may, in fact, be hard. Even worse, it is often not apparent how to
formulate these offline problems properly. The reason is that online problems in real life
may come along with implicit restrictions that are difficult to model. In this sense, online
problems coming from practice are sometimes “ill-posed”. In such cases, one has to relax

8 M. GROTSCHEL, S. 0. KRUMKE, AND J. RAMBAU

further side constraints in addition to assuming full knowledge of the input sequence in
the beginning. The resulting offline problems may then turn out to be useless in practice
because of rather poor instance specific gaps. (Even for the relakatius is often the
case.)

Thus, a-posteriori analysis is often used as follows: find relaxations betivardK
that model the online restrictions as faithfully as possible and relac¢J) by the opti-
mal objective function value of this modified problem. An example of this technique can
be found in 4.1.2.

3.4. Comparative Simulation. The draw-back of a-posteriori analysis is that all deci-
sions have irreversibly been made when the analysis of these decisions is available. One
way out is testing the system behavior in a simulation experiment. An a-posteriori analysis
can be made for every possible online algorithm. If the data used for the runs of the simu-
lation system is “typical enough” then one can hope that a strategy whose gap in the sense
of Observation 3.10 is convincingly small will behave well in reality.

Sometimes even this is too much to ask for: even in an instance-wise analysis the opti-
mal offline algorithm may be too strong in the sense that the computed gap is quite large
for every conceivable, non-clairvoyant online strategy. Then we are left with a comparison
of online algorithms in simulation experiments.

One feature that makes this (somewhat “soft”) method valuable is that evaluation is not
limited to the computation of a single scalar objective function. Visualization of the system
behavior may, e.g., help to grasp the influence of various online strategies from different
perspectives: efficiency, stability, predictability, maybe others. Some of these aspects are
very difficult to hard-code in a mathematical model so that the evaluation of simulation
experiments by experienced human operators is still one of the most commonly accepted
ways of evaluating online algorithms. We describe simulation experiments in all of our
applications in Section 4.

4, THE TOOLBOX IN ACTION

In this section we apply the methods outlined in Section 3 including standard compet-
itive analysis to the real-world problems sketched in Section 2. We describe the systems
and the corresponding mathematical models in more detail, show that classical methods of
evaluation of online algorithms are not sufficient, and apply combinations of the methods
from Section 3. Where a greater level of detail is beyond the scope of this paper we provide
references to the original research articles.

4.1. Automated Stacker Cranes. Siemens Nixdorf Informationssysteme AG (SNI) main-

tains a production plant where all their personal computers (PCs) and related products are
assembled. Parts are brought into one of six automatic storage systems (AUSS). The AUSS
serve as material buffers between the receiving area and the assembly lines located at each
side of the AUSS. For each of the AUSS, there is one stacker crane fulfilling transportation
tasks between the receiving buffer, the storage locations, and the buffers for the assembly
line. (For a more detailed description of the layout, see [1].) The goal is to minimize the
unloaded travel time of the stacker crane.

4.1.1. Mathematical ModelsIf we were to minimize the total travel time (makespan) of
the stacker crane then our problem would be known asitiiee stacker crane problem
ONLINESCP, a special case of thONLINEDARP, explained in Section 3.2. Here we are
concerned with a slightly different objective function.

The offline problem without release times can be modeled as an Asymmetric Traveling
Salesman ProblemAfsP). An instance ofATsP consists of a complete directed graph
D = (V,A,). Each node iV corresponds to a transportation task, and the the weight of the
arc fromv to w corresponds to the travel time from the end point of task the starting
point of taskw.

ONLINE OPTIMIZATION OF COMPLEX TRANSPORTATION SYSTEMS 9

If release times have to be taken into account we are concerned wilsyanmetric
Traveling Salesman Problewith release timesa special case of the Asymmetric Travel-
ing Salesman Problem witime windowsthe ATSFTW: here, for each requestthere is
a time window[e,, ¢] given with a release timesdrliest possible start of service) and a
deadline latest possible completion of servidg)

We investigated théTsPTW because there were given deadlines for the service of
requests anyway.

Time windows impose precedence constraints on the order in which the requests are
served. Relaxing the time windows of an instance of AlsPFTW to the corresponding
precedence constraints yields an instance of the so-cakedential Ordering Problem
SoP: here we are given a partial order on the set of requests and we try to find a shortest
tour through all requests respecting the given partial order.

The problemsATsP, Sop, and ATSPTW are NP-hard. While much attention had al-
ready been paid to the investigation of thesp a thorough polyhedral study &op and
ATSPTW was carried out for the first time in [6].

Those results were later strengthened in [1]. The goal was the design of a branch&cut
algorithm able to solve on the one hand typical instances oAt used for theREPLAN
online heuristic and on the other hand the lar§er resp. ATSPTW instances used for
the a-posteriori analysis of several online heuristics (see Section 3.3). In the following we
summarize the achievements for tBep as an example for the polyhedral investigations
contained in this article.

There are related results for theaspTW. We do not include them here since they are
of similar nature and their statement would not shed more light on the principle situation.
The interested reader may want to check again [1].

Let us start with the graph theoretic formulation ®bp. Recall that we are given a
complete directed graph = (V = {1,...,n},A,) onn nodes with non-negative arc costs
cij > 0. Moreover, in theSop we are given a partial orde<” on'V with 1 < i < nfor all
i €V, w.l.o.g. Afeasible solution to thBoris a set of arcs forming a path that visits all
nodes inV exactly once and that visits nodbefore nodg whenevei < j. The goalis to
find a feasible solution with minimal total arc costs.

There are several possibilities to formulate 8wP as an integer program. The polyhe-
dral model chosen here is the following. We definefdasible arc seA as follows:

A=AN\N{(j,hehA 1 i<jlu{(i,keA,: FjeV:ii<jVvj=<k}).

For all feasible arc$i, j) € Awe introduce binary arc variableg meaning thak;; = 1 if
and only if arc(i, j) is chosen to be in the solution.
With the notation

X(B) = Xij forBC A,
(i.5)eB
AW) = {(ww)eA:ww cW} forw cCv,
87(1) :={(i,]) - eV \{i}},
o (i) :={(0,1) : jeV\{i}},
X(i:W):={(i,w) e A: weW},
XW:i):={(wi)cA:weW}

10 M. GROTSCHEL, S. 0. KRUMKE, AND J. RAMBAU

an integer programming formulation of ti®P can be stated as follows:

minc’x
(1) st. x(0 (i) =1 VieV\ {1}
2 x(&F(i)) =1 VieV\{n}
3) XAW) < W[-1 WCV,2< W]
4) x(j:W)+xAW))+x(W :i) < |W] Vi< ,WCV\{i,j},W#0
(5) Xij € {0, 1} V(i, j) eA

The object of study is theequential ordering polytopgOPdefined as
SORN, <) := conv{x € R : x satisfies (1)—(5)

This polytope had already been studied in [6], where new inequalities such as the pre-
decessor/successor inequalities were derived. The following theorem summarizes the new
results achieved in our project group. For details see [1].

theorem 4.1(Offline Problems—Polyhedral Studylror SORn, <) the following hold:

() If “ <" is satisfies a certain regularity condition then the dimensionS@Rn, <)
equals|A| — 2n+ 3+ |F|, whereF is the set of nodes whose position in the path is
fixed by “<”.

(i) There are three types of new valid inequalities ®ORn, <): the strengthened
Ds-inequalities, the strengthendg@-inequalities, and the strengthened two-matching
constraints.

We refrain from explicitely listing the inequalities here because the overhead in notation
would not pay off given the purpose of this article. The corresponding results on the
ATSPTW can be found in [2].

4.1.2. Evaluation of Algorithms.The online versiofONLINEATSPof the ATsPis defined

in the same way as th@NLINETSP, except that the distances are not symmetric. A com-
petitive analysis of th©NLINEATSP with the objective to minimize unloaded travel time
cannot provide additional insight. The reason for this is the following: one can find request
sequences that can be served by an offline algorithm without unloaded travel time and that
incur a positive cost for any online algorithm. Thus, the competitiveness ratio would be
infinite: not particularly helpful.

If one, however, replaces the objective “minimize total unloaded travel time” by the
objective “minimize total travel time (makespan)” then—as we mentioned already—we
are concerned with a special case of@eLINEDARP. Note that these objective functions
are equivalent in the sense that their function values only differ by an additive constant
and that, therefore, the sets of optimal solutions are equal. From the point of view of
competitive analysis, however, this change in the objective makes a huge difference.

As an application of a result in [4] we mention the following (see Theorem 4.10):

theorem 4.2(Competitive Analysis) For the problem of minimizing the makespan of the
stacker craneREPLAN is 5/2-competitive.

Such a performance guarantee does not really help a decision maker. Therefore, it does
make sense to evaluate tREPLAN-strategy by other means. An a-posteriori analysis was
also made: we investigated thgsp, theSop, and theATSPTW as relaxations in the spirit
of Section 3.3.

Observatio.3 (A-Posteriori Analysis) Real data sets from SNI provided the following
a-posteriori analysis for theEPLAN-strategy repeatedly solving thersp of all known
requests:

ONLINE OPTIMIZATION OF COMPLEX TRANSPORTATION SYSTEMS 11

(i) The online solution is between 46% and 120% worse than an optimal a-posteriori
solution for theATsP.
(i) The online solution is between 24% and 98% worse than an optimal a-posteriori
solution for theSorp.
(iii) The online solution is between 3% and 72% worse than an optimal a-posteriori solu-
tion for theATSPTW.

Since these gaps are not small enough to convince decision makers to R&® thai-
heuristics, simulation experiments were made.

Observatiort.4 (Comparative Simulation}On real data sets tirePLAN-heuristic slightly
outperforms other online heuristics such as best insertion heuristics. The at SNI previously
used priority strategy witlfiIFO as a tie breaker performs roughly 50% worse than

PLAN; the FIFO priority algorithm is no better than a random sequencing of request.

Thus, the conclusion was to implement thieP LAN-heuristic.

4.1.3. Implemented Solution and Practical Impa<hough the subproblems to be solved
within the REPLAN-heuristics are NP-hard, there are codes available so thaEhean-
heuristics can be used in real-time situations in practice. In order to obtain an any-time
algorithm [10], we implemented an optimization process working in three phases:

Phase 1:: Perform cheapest insertioBESTFIT).

Phase 2:: Run a random insertion. Then pick the winner of Phase 1 and 2.

Phase 3:: Solve theATsP to optimality (branch&bound from [2]) and replace the
old sequence completely by the optimal oREFLAN).

Phase 1 runs in time linear in the number of requests and is always completed. For the
typical problem sizes that occur in our application (the number of requests is lesgQ)han
this is done in fractions of a second. Even Phase 3 could always be completed within a
few seconds. If the stacker crane becomes idle before Phase 3 is finished, the optimization
process is interrupted, and the best sequence found so far is passed to the stacker crane.

Our simulation experience showed tmtPLAN empirically gives the best results on
average. SNI provided data for one week of production. During this period on one AUSS
each generated task and each move of the stacker crane were recorded. It turned out that
in heavy load periods the times needed for unloaded moves could be reduced by approx.
30%.

As a result the optimization package was put in use on five AUSS, and the results were
confirmed in everyday production.

4.2. Commissioning of Greeting Cards. One of the commissioning departments in the
distribution center of Herlitz is devoted to greeting cards. The cards are stored in four
parallel shelving systems. In accordance with the customers’ orders, the different greeting
cards are collected in boxes that are eventually shipped to the recipient. Order pickers on
eight highly automated guided vehicles collect the orders from the storage system, follow-
ing a circular course. The vehicles are unable to pass each other. Moreover, due to security
reasons, only two vehicles are allowed to be in the middle aisles at the same time, whereas
three are allowed in the first and last aisle.

At the loading zone, each vehicle is logically “loaded” with ud&orders from a pool
that changes over time. A dispatcher decides when to send a vehicle onto the course. Af-
ter leaving this area the vehicles automatically stop at a position where cards have to be
picked from the shelf according to the logical load. The goal is the minimization of the
makespan of all requests generated on one day subject to some side constraints explained
in [3, 13]. Congestion among the vehicles should be avoided. This is important because
congestions lead to undesirable side-effects (that are very difficult to evaluate mathemati-
cally). These include human order pickers leaving for an extra-break when their vehicles
run into congestions. (For more details consult [13].)

12 M. GROTSCHEL, S. 0. KRUMKE, AND J. RAMBAU

4.2.1. Mathematical ModelsFor the theoretical analysis it is necessary to provide a proper
mathematical formulation of the problem under consideration. We remark again that the
modeling phase may already result in a heuristic approach because the practical prob-
lem comes in day-to-day terms that have no straight-forward mathematical translations.
The Commissioning Vehicle Routing Proble@\VRpP) to be considered in the competitive
analysis in Section 4.2.2 is the following.

An instance ofCVRP consists of a sdt = {1,2,...,m}, the pick positions, and a set of
empty vehicles/, ..., vq, each with capacit¢. A request sequenee=r1,rp,... consists
of a chronologically ordered collection of sets of pick positions.

A vehicle to whichC requests have been assigned is replaced by a new empty vehicle.
In the online situation we require that requesis permanently assigned to vehiclé;)
beforer;, 1 becomes known and that the length of the sequence is unknown until the last
request comes in. That meai®/RP is an online problem in the sequence model (see [10]
for basic facts on online problems).

For a sequence of requests, a solution toGk&Pp is an assignment of every request
to a vehiclev(r;) so that the number of requests assigned to each vehicle does not€xceed
The objective is to minimize the total number of pick positions assigned to the vehicles.
In [13] it was shown that the offline version @vRP with no release times is already an
NP-hard problem. In fact, solving the corresponding integer program in reasonable time
turned out to be out of reach for commercial software packages like CPLEX.

One explanation for the intrinsic difficulty of this variation of a capacitated assignment
problem is given by the following result that we state informally here (see [13] for details):

theorem 4.5(Offline Problem) The optimal solution of a (certain) linear-programming
relaxation of CvRP corresponds to the evenly distributed fractional assignment, i.e., every
request is partially assigned to each available vehicle.

This observation yields that the linear programming relaxation does not provide any
exploitable information on how to assign requests to vehicles.

4.2.2. Evaluation of Algorithms.n [13] the following result was shown:

theorem 4.6(Competitive Analysis) The following hold for theCvRP:

(i) Any rule for the assignment of requests to vehicles yiel@scampetitive algorithm
for the CvrP, whereC is the capacity of a vehicle.
(i) No online algorithm for theCvRP can be better tha@-competitive.
(iii) The algorithmBESTFIT—setv(r;) to the vehicle whose number of pick positions gets
the least increase—is no better th@rcompetitive.

In other words: competitive analysis does not provide much insight. In particular, the
intuitively “reasonableBESTFIT-heuristic is, from a competitive analysis point of view,
not better than any stupid rule.

Even worse: recent investigations showed that even for a substantially simplified version
of the CvRP we run into the odds of competitive analysis. In the following excursion into
theoretical online optimization we sketch the result.

Consider the followingdnline Bin Coloring ProblenONLINEBC: We are given a nat-
ural numbeig > 0, infinitely many numbered bins with volume capacityand a sequence
of requests1,rp,... consisting of colored items of unit volume. We have to place the
items into the bins so that, at any time, no more thaims contain more than zero and less
thanC items. We have to stuff, into a bin before we get to know, 1 (sequence model).

The goal is to minimize the number of colors in the most colorful bin, i.e., the maximum
number of items of distinct colors in a bin over all bins.

This translates to the language of commissioning as follows: every request has only one
stop position, and we try to minimize over all vehicles the maximal number of stops of

ONLINE OPTIMIZATION OF COMPLEX TRANSPORTATION SYSTEMS 13

a vehicle, rather than the total number of stops. (This is a useful objective that helps to
balance the vehicle load and, thus, to reduce congestion).
Consider the following online algorithms f@NLINEBC:

o Algorithm ONEBIN puts all items into one single bin until it is full. Then it picks
another bin etc. (This is a truly dumb algorithm.)

e Algorithm BESTFIT puts every item into the bin that already contains that color,
if such a bin exists. Otherwise, it puts the item into the bin with the least number
of colors so far, with ties broken arbitrarily.

The following theorem shows that standard competitive analysis is problematic for this
class of problems:

theorem 4.7(Competitive Analysis) The following hold for théONLINEBC:
(i) BEsTFITis min{C,2q+ |(qC—3g+1)/C|}-competitive.
(i) ONEBIN is min{C, (2q— 1) }-competitive.
(i) BESTFIT is no better thar2g-competitive whenev& > 29° — ¢ — q+ 1.
(iv) No deterministic online algorithm can be better thafr)-competitive.

This proves that competitive analysis does not provide any hint as to which algorithm
should be chosen in practice, even in the restricted models of this section.

4.2.3. Implemented Solution and Practical Impa&everal heuristics that reduce the total
number of stops and distribute them evenly among the vehicles were implemented. These
are versions of thBesTFIT algorithm, together with local exchange heuristics. The com-
putation times of these algorithms are short so that they can be run in a real-time situation.

We implemented a detailed simulation model for the whole commissioning area in
which we compared our approach to the one used so far. Herlitz provided production
data from a period of about six weeks, which were the basis for the comparison. The main
results are the following:

o A significant improvement with respect to the completion times of the orders can
be achieved.

e The number of vehicles, used at Herlitz, can be reduced from eight to six without
any negative impact on the system performance.

e Congestions over a few seconds can be avoided completely.

We conclude thaBesTFIT—although not distinguished in the competitive analysis—
was the basis for significant improvements in practice. The simulation results convinced
Herlitz to test a prototype of the simulation program as a decision support tool for the
dispatcher.

4.3. Elevators. The automated pallet transportation system in the Europe-wide distribu-
tion center of Herlitz PBS AG has been designed to handle all pallet transportation taks
from/to the receiving docks, the production and commissioning departments, the auto-
mated shelf system, and the loading dock from where the products are shipped to the
customers by trucks. This pallet transportation network runs on nine floors and is quite
complex. The overall goal is to run the operations “smoothly”, a mathematically not well-
defined term that means something like: each individual transportation task should be
executed quickly, time windows (existing for some of the tasks) should be observed, and
the whole system should be congestion free. The last objective may be in conflict with the
others, and a difficulty is to find an appropriate balance.

We address here the elevators, one of the building blocks of the pallet transportation
system. There are two systems of five elevators. Each elevator can carry at most one
pallet. Transportation requests occur (unpredictably) throughout the day and are somehow
distributed to the elevators. Congestion does frequently occur at the entry points and should
be avoided by running the elevators “well”. Of course, congestion depends on both the

14 M. GROTSCHEL, S. 0. KRUMKE, AND J. RAMBAU

assignment of requests to the elevators and on the control of the elevators. We discuss here
the second issue.

At Herlitz, each elevator is controlled independently from the others; there is no “master
control” watching over the whole elevator system simultaneously. It is therefore clear that
optimizing the individual elevators may not result in the desired congestion-free system,
but it will at least help running the system faster. We decided to investigate the following
problems for individual elevators and systems of elevators (compare to Section 3.2):

e Minimize themakespatior the given set of requests.
e Minimize themaximal flow timeof the requests.
e Minimize theaverage flow timef the requests.

While the makespan is a measure for how fast the system is as a whole the other two
objectives are rather a measure for the speed of the system as “experienced” by the indi-
vidual pallets. Note that in contrast to the makespan the maximal and average flow times
also make sense in a continuously operating system, i.e., with infinite request sets.

4.3.1. Mathematical ModelsThe basic model chosen for investigating algorithms for the
control of elevators is thONLINEDARP, which we introduced in Section 3.2. In the sequel

we first investigate the control of a single elevator. Briefly, this is the problem of how to
serve online transportation requests in a metric space which is a path, where the server is
assumed to have capacity one.

In the context of pallet transportation there is a subtle additional side constraint in-
volved: we do not have random access to the pallets waiting on a particular floor. That
means that requests from the same floor need to be scheduled in their order of appearance,
while requests on different floors can still be shuffled. This leads to the probdrmNE-
FIFODARP. Here the subset of requests occuring at a particular point in the metric space
must be served in the order of appearance.

As an extension oONLINEDARP we also investigated the corresponding problem with
capacity larger than one, ti@NLINE CDARP.

In order to be able to useEPLAN- or IGNORE-heuristics for any of the online problems
in real-time we need to find efficient algorithms for the corresponding offline problems. In
the following theorem we summarize the results:

theorem 4.8(Offline Problems) The following complexity results hold for the dial-a-ride
problems under consideration:

(i) There is a polynomial time algorithm fdDARP on paths.
(i) DARP on trees (even on so-called caterpillars) is NP-hard.
(iii) There is a polynomial time algorithm fdFIFODARP on paths.
(iv) CDARPis NP-hard on paths. O

theorem 4.9(Offline Problems) The following approximation results hold:

(1) There is &/3-approximation algorithm foFFIFODARP on trees.
(2) There is &/4-approximation algorithm foFFIFODARP on general graphs.
(38) There is a&3-approximation algorithm foCDARP on paths. O

The observed performances of the approximation algorithmd$-fBlODARP on in-
stances occuring in the online situation (e.g., while applyingRiBeLAN-heuristics) are
much better. Therefore, these approximation algorithms can be used to produce a starting
solution for a branch&bound procedure to find reasonably good offline solutions to feed
the REPLAN-heuristics in real-time.

4.3.2. Evaluation of AlgorithmsMotivated by results on thONLINETSPIn [5] we car-
ried out a competitive analysis f@NLINEDARP for the minimization of the makespan.
The results are the following:

ONLINE OPTIMIZATION OF COMPLEX TRANSPORTATION SYSTEMS 15

theorem 4.10(Competitive Analysis) For the problem of minimizing the makespan in
ONLINEDARP the following hold:

(i) No deterministic online algorithm can be better thartcompetitive. (This follows
easily from[5].)
(i) The REPLAN- and thelGNORE-heuristic are5/2-competitive.
(iif) There is a2-competitive algorithm (calledMARTSTART in [4]).

In other words, we found one optimally competitive online algorithm for our problem.
For the other objective functions, the approach via competitive analysis yields the strongest
conceivable negative result, i.e., no decision support at all:

Observation4.11 (Competitive Analysis) There are no competitive algorithms for the
tasks of minimizing the maximal or average flow time<ORLINE DARP.

The concept of reasonable load (see 3.2) was developed to get at least a weaker perfor-
mance evaluation. We have already seen two canonical online heuristics in that section:
REPLANMakesPaynd G NOREMaKESPaN Recall that both work by repeatedly minimizing the
makespan: whil&EPLANTEKESPA.omputes a new plan whenever a new request becomes
available,IGNORE™MaKesSPapes not compute a new plan before the old plan is completely
served. What abowepPLANTEXOW pep) anavaflow | gnoreMaXflow | g NoREAVSIOW) \What
about the problem®NLINECDARP and ONLINEMDARP (more than one server)? Some
answers are collected in the following theorem:

theorem 4.12(Analysis Under Reasonable Loadjor ONLINEDARP, ONLINEFIFO-
DARP, ONLINECDARP, ONLINEFIFOCDARP, ONLINEMDARP, ONLINEFIFOMDARP
the following hold unden-reasonable load:

(i) The maximal and average flow timesiagiNORE™aKeSPayre gt mosPA.
(i) The maximal and average flow times REPLANTKESPAMayhe arbitrarily large.
(iii) The maximal and average flow times REPLAN91OWmayhbe arbitrarily large.

We do not know the performance REPLANT0Wat present. We have, however, found
another provably good algorithm that imposes additional restrictions on the repeatedly
computed plans. We assume that this algorithm, caledraAREPLAN, knowsA. The
algorithm DELTAREPLAN follows the current plan. Whenever a new request comes up
DELTAREPLAN computes a new plan minimizing the makespan subject to the condition
that all requests in the plan have a flow time of no more t@anIf the optimal plan is
shorter tham then it is accepted as the new plan. Otherwise itis rejected, and the algorithm
proceeds with the old plan. When the old plan is done, a new plan is accepted in any case.

We could prove the following in [9]:

theorem 4.13(Analysis Under Reasonable Loadjor ONLINEDARP, ONLINEFIFO-
DARP, ONLINECDARP, ONLINEFIFOCDARP, ONLINEMDARP, ONLINEFIFOMDARP
the following holds undeh-reasonable load:

The maximal and average flow timesm#LTAREPLAN are at mosRA.

This theorem motivates the problem of finding outth&hile working on aA-reasonable
request set. Observe that for, eJGNORE™aKeSPat js not necessary to have information
on the correch\. B

Assume thabELTAREPLAN dynamically computes and uses an approximafimf A
while working on aA-reasonable request set. If alwalys= 0 then we observe that all
plans are rejected and the algorithm behaves IlikeoRe™2keSPa1 thys the performance
guarantee in Theorem 4.12 takes effect. More general: whenever we undereAtiinete
DELTAREPLAN achieves the same performance guarantee as in Theorem 4.13.

In the following we define a modificationyNDELTAREPLAN Of DELTAREPLAN that
needs not know the reAl Algorithm DYNDELTAREPLAN works similar toDELTAREPLAN
except that it computes a dynamically changihgThis A is defined to be the makespan

16 M. GROTSCHEL, S. 0. KRUMKE, AND J. RAMBAU

of the latest accepted plan. The first value fois the length of the first plan computed.
Whenever a new request OCCUFSNDELTAREPLAN computes a potential new plan with
all flow times at mos®A. If the makespan of the potential plan is at mAsthen DYN-
DELTAREPLAN accepts it as the new plan.

The following result could be achieved.

theorem 4.14 (Analysis Under Reasonable Loadjor ONLINEDARP, ONLINEFIFO-
DARP, ONLINECDARP, ONLINEFIFOCDARP, ONLINEMDARP, ONLINEFIFOMDARP
the following holds undeh-reasonable load:

The maximal and average flow timesSmfNDELTAREPLAN are at mosRA.

A “heuristic reason” for the correctness of this result is the following: whenever we
underestimaté we may get fewer accepted new plans. But whenever no new plan is
accepted and the old plan is accomplished we are workingdikeRe™akesPan which is
fine because of Theorem 4.12.

In order to get some idea how the investigated algorithms behave on the average with
respect to speed, stability, and predictability we carried out simulation studies for the basic
elevator control problem. In addition to our algorithms we tested the heuristicsand
NN. The latter one always serves the nearest request next. Moreover, we included the
heuristicNN-MAXAGE. This heuristic works likeiN except that whenever a request is older
than a maximal age parameter this request has to be served next. These three heuristics are
implemented as possible elevator controls in the Herlitz system.

Observatiom.15 (Comparative Simulation)A simulation experiment on several random
data sets for th©NLINE DARP yielded the following results:

e The FIFO-heuristic is suitable only for very low load situations. Otherwise, the
maximal and the average flow times explode; heavy system congestion is apparent.

e TheNN-heuristic produces very low average flow times on the average. The max-
imal flow times are—especially in medium load situations—unpredictable, i.e.,
sometimes very high.

e The NN-MAXAGE-heuristic cures the problem of unreliability afv only in low
load situations. In high load situations it suddenly behaves likeihe-heuristic
and leads to heavy system-congestion.

e TheREPLANMaKeSPaDheristic shows mostly good average flow times. Its maximal
flow times are comparable tov, i.e., at times very bad.

o TheicNoOREMaKesPalheyristic produces slightly worse average flow times thian
or REPLAN™aKesPan The maximal flow times, however, are among the best for all
load situations. This heuristic is in a sense self-calibrating.

e The DYNDELTAREPLAN-heuristic behaves likesNORE™akesPanyyt shows on the
average a little bit worse maximal flow times and slightly better average flow
times.

The additional benefit of the simulation studies over a mere evaluation of an objective
function is the possibility of watching the system behavior as a whole. The algorithm
that is chosen eventually depends on the preferences of the administrator of the system
under consideration. At Herlitz, there is a strong focus on stability over mere speed so that
IGNORE™Makespaynd related heuristics seem suitable.

4.4. Integrated Elevator Systems.We mentioned in the previous section that the soft-
ware at the Herlitz plant does not support a so-called synchronized pallet transportation.
This means the controls for the individual elevators make their decisions without taking
into account each other’s and the conveyor system’s states. Thus, we investigated the con-
trol of single elevators as discussed in the previous section. The interplay between these
modules of the transportation system is not negligible, though.

ONLINE OPTIMIZATION OF COMPLEX TRANSPORTATION SYSTEMS 17

In simulation studies where the conveyor belts from and to the elevators were included
in the simulation system we found out that many effects observed for single elevators are
leveled out. This motivated the investigation of the integrated system of conveyor belts and
multiple elevators. Since the software base of the transportation system at Herlitz cannot
be changed easily; research results in this area do not have direct bearing in practice.

Having this in mind we simplified the layout of the combined conveyor/elevator system
in order to approach an integrated system control in reasonable steps. At Herlitz, on each
floor, the conveyor system lets the pallets move on a circular belt with one entry and one
exit to the production and commissioning area. There are five elevators in the interior of
the circle. The pallets can reach and leave the corresponding waiting slots via switches.
The waiting/leaving slots have capacity one. A pallet may move to the waiting slot only if
the corresponding leaving slot on its destination floor is empty.

The coupling in this system is very difficult to model. Moreover, one question that arises
in this context is whether layouts of this type are suitable for efficient control. Thus, we
started our investigation on the basis of the following hypothetical layout: Pallets line-up in
a waiting queue of infinite capacity. Behind that queue they enter separate waiting queues
in front of the elevators. We call this probleamline multi server sequential ordering
problem ONLINE m-COST-Sop for short. The task is to distribute pallets online to the
elevator queues and to control the elevators so that the maximal or average flow times are
minimal.

The idea is to use a variant of theNoRE™akesPalheyristic. This requires minimizing
the makespan in the corresponding offline problem. In this case, the makespan is the time
when the last elevator has finished. In contrast to the case of single elevators, not all types
of REPLAN-heuristics can be employed (at least not in a straight-forward form) because
of the following problem: Once a set of pallets is distributed among the elevator queues
the pallets will immediately move into their queues. Because the pallets cannot change the
elevator the decision which elevator a particular pallet should take can not be revised.

4.4.1. Mathematical ModelsThe main idea is to model the problem asA&rsp on the
request digraph (cf. Section 4.1.1) with two modifications: first, there is more than one
server. Second, the pallets in the waiting queue at a particular elevator on some floor need
to be served in a FIFO order. Each of these generalizations dtbe has been studied
already in the literature: the first one in the case of a single server type was reduced to the
single server case in [15]; in a more general form for servers with distinct properties (
CosTATsP) itwas studied in [12]. The second one was already discussed in Section 4.1.1.
We decided to investigate the combined problerCosTSopr: themulti server sequential
ordering problem

There is one further subtlety involved: since in eCosTSopP-model the maximal
length of a tour in the request graph over all servers is minimized we need to take into
account the loaded travel time in the arc costs. Otherwise we might get a solution where
all the servers have similar unloaded travel times but their total travel times (makespans)
may vary a lot and the makespan of the whole system is not optimal at all. That means: in
the case of more than one server minimizing the makespan and minimizing the unloaded
travel times are no longer equivalent.

Having this in mind, our model is almost the same asth€0ST-ATSPin [12] except
that it also contains the corresponding precedence forcing constraints. These look like the
constraints (4) in 4.1.1. We do not want to reproduce the complete model here. We just
state that several properties of tBep and them-CosTATSP survive in their common
generalizatiom-COSTSOP.

theorem 4.16(Offline Problems—Polyhedral StudyJhe following hold for then-CosT
SoPp-polytope:

18 M. GROTSCHEL, S. 0. KRUMKE, AND J. RAMBAU

¢ The dimension of tha-CosTSoP-polytope for regular precedences equai? —
IR|) — n, whereR is the set of comparable pairs of nodes.

e Modified versions of the so-called 11, vo-0 and vp-Teinequalities are valid for
them-CosTSopr-polytope.

e Facets of the one-server subproblermefCosT™SoP can be lifted to facets of the
m-COST-SOP.

Computational experiments have shown that the integrated optimization of all servers
yields an improvement in the unloaded travel times of 50% on the average.

4.4.2. Evaluation of Algorithms.t turns out that, also for thONLINE m-COSTSoP, the
analysis under reasonable load is analogous to the previously discussed cases.

theorem 4.17(Analysis Under Reasonable Loadjhe maximal and average flow times of
IGNOREMaKesPaYgr the ONLINE m-CoST-Sop underA-reasonable load are at mo2A.

This theoretical result is hard to implement in a real-time compliant waymt@osT
Sopturned out to be very difficult. It rarely happens that one can find optimal solutions for
instances witl20 requests in less than a minute. The real-time restrictions on an elevator
control rather require answers within seconds. Thus, only heuristic solutions can be used
in the online situation. Evaluation of such heuristics is research in progress.

There is one other strong argument against an unmodified usaofREMakespan gj|
servers but one would very frequently wait idle for the last server to finish its part of the
plan. This can be by-passed by, e.g., letting the servers work on some requests inbetween.
Still, the theoretical analysis matches reality much less than in the single server case.

Preliminary simulation studies on the basis of simple heuristics fort#@sTSop
and on modifiedGNORE- and NN-heuristics are no longer in favor for theNORE-
approach for certain parameter settings.

This shows among other things that it is quite hard to find a well-performing online
control of an integrated transportation system.

5. CONCLUSION

We have discussed new evaluation methods for online optimization problems on the
basis of four real-world examples. | turns out that, usually, only a combination of such
methods is able to deliver convincing advice to decision makers.

To meet real-time requirements fast offline optimization algorithms are needed, in gen-
eral, as building blocks for the online heuristics such@soRE andREPLAN. We have,

e.g., introduced fast approximation algorithmsBxRP that enable us to run these heuris-
tics in real-time in the elevator control problem.

We have shown that, for the evaluation of online algorithms, classical competitive anal-
ysis may lead to either void conclusions (all algorithms are equally bad for the minimiza-
tion of flow times forONLINEDARP) or may even be in favor of a senseless algorithm
(ONEBIN is best possible foONLINEBC). New methods such as analysis under reason-
able load provide new insight in some of these cases. For example, we could tell which
of the two online heuristicsGNORE and REPLAN is more suitable with respect to the
minimization of flow times for th@ONLINEDARP.

The observation of the system behavior as a whole in simulation experiments is still
unavoidable because, this way, it is possible to monitor more complex effects than the
projection to a one-dimensional objective function can possibly detect.

REFERENCES

1. N. AscheuertHamiltonian path problems in the on-line optimization of flexible manufacturing sysimnis.
thesis, Technische UniverattBerlin, 1995.

2. N. Ascheuer, M. Fischetti, and M. &schel Solving the asymmetric travelling salesman problem with time
windows by branch-and-cu®reprint SC 99-31, Konrad-Zuse-Zentruin Ihformationstechnik Berlin, 1999.

w

10.
11.

12.

13.

14.

15.

ONLINE OPTIMIZATION OF COMPLEX TRANSPORTATION SYSTEMS 19

N. Ascheuer, M. Gitschel, S. O. Krumke, and J. Ramb&ambinatorial online optimizatigrProceedings
of the International Conference of Operations Research (OR'98), Springer, 1998, pp. 21-37.

. N. Ascheuer, S. O. Krumke, and J. Ramb@uline dial-a-ride problems: Minimizing the completion time

Proceedings of the 17th International Symposium on Theoretical Aspects of Computer Science, Lecture
Notes in Computer Science, vol. 1770, Springer, 2000, pp. 639-650.

. G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talahigorithms for the on-line traveling

salesmanAlgorithmica (2001), To appear.

. E. Balas, M. Fischetti, and W. Pulleyblankhe precendence constrained asymmetric traveling salesman

polytope Technical Report 15213, Carnegie Mellon University, Pittsburgh, 1992.

. M. Blom, S. O. Krumke, W. E. de Paepe, and L. Stougle online-TSP against fair adversarjéyoceed-

ings of the 4th Italian Conference on Algorithms and Complexity, Lecture Notes in Computer Science, vol.
1767, Springer, 2000, pp. 137-149.

. A. Borodin and R. El-YanivOnline computation and competitive analys&ambridge University Press,

1998.

. B. Glick, Online-Steuerungen automatischer Transportsysteme bei vertretbarer BelaBipimmarbeit,

Technische Universit Berlin, 2000.

M. Giidtschel, S. O. Krumke, and J. Ramb&arschungsartikelch. This book, Springer, 2001.

D. Hauptmeier, S. O. Krumke, and J. RambBEe online dial-a-ride problem under reasonable lp&do-
ceedings of the 4th Italian Conference on Algorithms and Complexity, Lecture Notes in Computer Science,
vol. 1767, Springer, 2000, pp. 125-136.

C. Helmberg,The m-cost ATSFProceedings of the 7th Mathematical Programming Society Conference
on Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science, vol. 1610,
Springer, 1999, pp. 242—-258.

N. Kamin,On-line optimization of order picking in an automated warehodeD. thesis, Technische Uni-
versit@t Berlin, 1998.

E. Koutsoupias and C. Papadimitri@®eyond competitive analysiBroceedings of the 35th Annual IEEE
Symposium on the Foundations of Computer Science, 1994, pp. 394-400.

G. ReineltThe traveling salesman — computational solutions for tsp applicatlaersture Notes in Computer
Science, vol. 840, Springer, 1994.

MARTIN GROTSCHEL, KONRAD-ZUSE-ZENTRUM FUR INFORMATIONSTECHNIK BERLIN
SVEN O. KRUMKE, KONRAD-ZUSE-ZENTRUM FUR INFORMATIONSTECHNIK BERLIN

JORG RAMBAU , KONRAD-ZUSE-ZENTRUM FUR INFORMATIONSTECHNIK BERLIN

