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Abstract

Enhanced sampling methods play an important role in molecular dy-
namics, because they enable the collection of better statistics of rare events
that are important in many physical phenomena. We show that many
enhanced sampling methods can be viewed as methods for performing
importance sampling, by identifying important correspondences between
the language of molecular dynamics and the language of probability the-
ory. We illustrate these connections by highlighting the similarities be-
tween the rare event simulation method of Hartmann and Schiitte (J.
Stat. Mech. Theor. Ezp., 2012), and the enhanced sampling method of
Valsson and Parrinello (Phys. Rev. Lett. 113, 090601). We show that the
idea of changing a probability measure is fundamental to both enhanced
sampling and importance sampling.

1 Introduction

One of the main limitations of Molecular Dynamics (MD) simulations is the
so called sampling problem [Bernardi et al., 2015]. This is why many enhanced
sampling techniques, e.g. umbrella sampling [Torrie and Valleau, 1977], Meta-
dynamics [Laio and Parrinello, 2002], replica exchange (parallel tempering)
[Swendsen and Wang, 1986], and simulated annealing [Kirkpatrick et al., 1983]
have been developed. The mathematical framework of importance sampling
underlies many of these techniques. Importance sampling is used in many dif-
ferent fields, from financial mathematics to MD. A deeper understanding of the
common features of these different fields can lead to a deeper understanding of
the fundamental problems; it can potentially lead to the development of useful
strategies for MD, by adapting successful methods that have been applied in
other fields. For this reason, we think it is important to point out the funda-
mental connection between enhanced sampling and importance sampling. The
aim of this article is to explicitly formulate enhanced sampling as a method for
importance sampling, by identifying correspondences between them. We illus-
trate these correspondences using two enhanced sampling techniques for com-
plex systems [Valsson and Parrinello, 2014, Hartmann and Schiitte, 2012]. We
will also comment briefly on other methods which also fit in this mathematical
framework.



In MD, one is often interested in the stationary distribution (Boltzmann
Gibbs distribution) of the molecular system or different dynamical quantities of
interest, such as the transition probabilities between conformations or exit rates.
These quantities can be formulated in terms of expectations of path functionals,
where the expectation is taken over a trajectory Xg., of finite length 7 of the
molecular system of interest. Since it is in practice impossible to calculate
these expectations analytically, one uses a Monte Carlo approximation, e.g. the
empirical mean

N
o) = 55 506, (1)

where X{.. denotes an independent, identically distributed copy of the (random)
trajectory Xo.r of the system, and PP is the measure on path space associated to
the equilibrium Boltzmann Gibbs measure. In the simulation and MD commu-
nities, these expectations are often called ‘ensemble averages’.

Often the systems under investigation are metastable, which implies that the

path functional of interest itself is associated to some rare event, e.g. the first
time to transition from one metastable conformation to another. The presence
of metastability or kinetic bottlenecks ensures that it is difficult to collect good
statistics of such path functionals, because, with high probability, the rare event
does not occur. The methods mentioned in the first paragraph were developed
to overcome this problem, and can be divided into two groups: those which
modify the stationary distribution of the molecular system by changing the
potential, the force field, or the temperature, e.g. [Laio and Parrinello, 2002,
Huber et al., 1994, Wang and Landau, 2001, Valsson and Parrinello, 2014]
[Kirkpatrick et al., 1983][Sorensen and Voter, 2000] [Voter, 1997], and those which
do not modify the stationary distribution, e.g. [Elber and West, 2010]
[Cerou and Guyader, 2006]. The methods that modify the stationary distri-
bution can be viewed as methods for importance sampling, and they are the
methods that we shall consider in this article. Since it is impossible to cover all
the methods that have been developed for MD, we refer the interested reader to
[Leimkuhler and Matthews, 2015, Tuckerman, 2010, Chipot and Pohorille, 2007]
[Leliévre et al., 2010] and the references therein for more details.

The article is organized as follows. We motivate the formulation of molecu-
lar dynamics in terms of random dynamical systems in Section 2. In Section 3,
we present the fundamental ideas of probability theory, Monte Carlo methods,
and importance sampling. We show how enhanced sampling and importance
sampling are connected in Section 4, using the variational enhanced sampling
method of Valsson and Parrinello [Valsson and Parrinello, 2014] and the efficient
rare event simulation method of Hartmann and Schiitte [Hartmann and Schiitte, 2012]
as examples. In Section 4.5, We discuss briefly how one can view other enhanced
sampling methods, such as the adaptive biasing force method as methods for
importance sampling. We comment on the connections to other topics such as
stochastic optimal control, machine learning and Bayesian inference, in Section
5.



2 Motivation for random models of molecular
dynamics

One of the most common justifications for modeling a physical phenomenon of
interest using random variables is the often complicated dependence of the phe-
nomenon on a large number of factors. In molecular dynamics, one often wishes
to study the dynamical behavior of a large molecule immersed in a bath of a
very large number of solvent molecules. Following Newton’s laws, the molecule
evolves according to the sum of forces acting on it. These forces belong to one of
two categories: 1) the forces arising from the bonded and non-bonded (e.g. elec-
trostatic) interactions involving the constituent atoms; and 2) the forces arising
from the interactions of the molecule with surrounding molecules, e.g. solvent
molecules. The forces in the first category are related to the potential energy
function U which depends on the molecule itself; they are captured by the force
field, and lead to the Boltzmann distribution exp(—SU(x))/Z where 37! = kgT
is the Boltzmann constant multiplied by the temperature T" and = denotes the
state or configuration of the molecule. The forces in the second category are
often modeled using explicit water models or Brownian dynamics simulations;
although their magnitude is on average (much) smaller than the magnitude of
the forces from the first category, the forces from the second category are the
key to unlocking interesting phenomena, especially when the molecule exhibits
metastable dynamics. This is because, given an initial condition, and in the
absence of the forces from the second category, the molecule would evolve ac-
cording to the forces from the first category in order to reach the nearest local
minimum of the energy function U. The forces from the second category ensure
that the molecule does not come to rest at the local minimum of U nearest to
the given initial condition.

In many molecular dynamics simulations, the ratio of solvent molecules to
solute molecules is typically several orders of magnitude, so that it is computa-
tionally impossible to model the effect of each individual collision of a solvent
molecule on the solute molecule; one therefore resorts to a random variable
to model the cumulative effect of solvent-solute collisions. Thus, according to
this probabilistic model, one can consider a molecular dynamics simulation as a
series of random experiments: at every time point in the simulation, one com-
putes the dominant, deterministic forces acting on the molecule arising from the
energy function U, as well as the random forces that arise from solvent-solute
collisions, and then updates the state of the molecule using the sum of these
forces. The resulting sequence of states of the molecule thus form a particu-
lar realization of a sequence of random variables, i.e. of a stochastic process,
and repeating the molecular dynamics simulations yields different realizations.
Note that, even when considering deterministic dynamics, the chaotic behavior
of molecular systems implies that no two trajectories with the same starting
conditions will agree [Leimkuhler and Matthews, 2015, pp. 41].

One stochastic model for molecular dynamics is the overdamped Langevin
equation, which is also known as ‘Brownian Dynamics’. In mathematical terms,
this is a diffusion process given by the stochastic differential equation (SDE) as
a model of the atomistic movement of a molecule. This SDE satisfies

dX, = —VU(X,)dt + /2-1dB,, X, = x. (2)



Above, X; denotes the state of the system at time ¢ > 0, 8 > 0 is a scaling
factor for the noise associated with the temperature and the Boltzmann con-
stant often called the inverse temperature and B; is a standard n-dimensional
Brownian motion with respect to the probability measure P on some probabil-
ity space (2,IP,F), and U : R® — R is a sufficiently smooth (e.g. C') potential
energy function. This model can be extended by including a friction term c.f.
[Leimkuhler and Matthews, 2015]. In the stochastics community, the object in-
tegrated with respect to dt is called the ‘drift’, and the object integrated with re-
spect to dB; term is called the ‘diffusion’. One often also assumes that the poten-
tial U satisfies growth conditions at infinity, so that exp(—pU(x)) is integrable
with respect to Lebesgue measure on the finite-dimensional space R™. Another
model is given by the Langevin equation, in which a second equation for the mo-
mentum is included, and the stochastic perturbation only acts on the momentum
equation. In this article, we focus on the simple overdamped Langevin equa-
tion (2), and refer the interested reader to [Leimkuhler and Matthews, 2015] for
more detail on the Langevin equation.

3 Importance Sampling and Change of Measure

3.1 Fundamentals of probability theory

Importance sampling is a method for improving the estimation by Monte Carlo
of statistical quantities, such as expected values of random variables [Bucklew, 2004].
In order to properly formulate importance sampling, we first define a probabil-
ity space (Q, F,P) on which all random variables of interest are defined. In the
mathematics and statistics literature, ) is sometimes referred to as the ‘event
space’, while F is a collection of subsets of Q with specific properties (in the
mathematical terminology, F is a o-algebra on §2). The significance of F is
that it consists of all events for which one can compute fundamental statistical
quantities, e.g., probabilities, means, and variances. The measure P in turn is a
function defined on F that assigns to every element A € F a value in the unit
interval [0, 1]; this value is the probability of the event A. A real-valued random
variable defined on the probability space (2, F,P) is a function X :  — R
such that, given a Borel subset A of R, the event {X € A} that X takes val-
ues in A belongs to the g-algebra F. The concept of a probability space is
important because it justifies all the mathematical operations performed in sta-
tistical experiments, e.g. scalar multiplication, addition, powers, logarithms,
and exponentials.

A particularly nice feature of probability spaces is that they behave well
under reasonable transformations: given a nonempty set E and a c-algebra £
on F, a random variable X : Q@ — E on (Q,F,P) defines another probability
space (E,&,P o X 1), where the probability measure Po X1 on E is known
as the law or distribution of X. The law of X is particularly useful, because
it yields a so-called ’change of variables formula’. For example, when X is a
real-valued random variable (i.e. when E = R and & is the Borel o-algebra
B(R)), we have the following identity for the mean or expectation of X with
respect to PP,

E[X] ::/QX(w)d]P’(w)=/deIP’oX’1(a:), 3)



where the second equation is precisely the change of variables formula. By
defining F(z) := Po X 1((—o0,z]) = P(X < x), we obtain the cumulative
distribution function of X from its law.

3.2 Monte Carlo and importance sampling

Given a real-valued random variable X defined on a probability space (92, F,P),
consider the task of estimating the mean of X. For simplicity, we consider
only the one-dimensional case. The basic Monte Carlo estimator of E[X] is the
random variable (also known as the empirical mean)

Lo o)
0= DX
v &

where for every 1 < i < N, X® is an independent, identically distributed
(i.i.d.) copy of the random variable of interest X. A consequence of being an
identically distributed copy of X is that E[X(®)] = E[X] for all 1 < i < N.
Thus the estimator ¢ is unbiased, in the sense that E[X] = E[g]. If we wish
to estimate the mean of a given function of X, then we may similarly use the
empirical mean estimator

1Y }
0y = D F(XD), (4)
=1

which is also an unbiased estimator under the same conditions in the sense that

E[f(X)] = E[oy].
We now make an important observation. If

N
> ai=1and E[f(XW)] =E[f(X)] Vi=1,...,N, (5)
i=1

then any random variable of the form XY  a;f(X@) will be an unbiased esti-
mator of E[f(X)]. In other words, we do not need either independence of the
X @ or that the X are identically distributed copies of X. Given an expected
value that we wish to compute, we may construct estimators of this quantity
using any random variables, provided that at the very least the conditions in (5)
hold. These random variables can be chosen according to user-defined criteria,
e.g. the estimator g has a smaller variance than X. Indeed, variance reduction
is perhaps the primary consideration, because the smaller the variance of the
unbiased estimator g, the faster it converges (in some sense) to the quantity of
interest as the sample size N grows to infinity, by the law of large numbers.
An important first step in importance sampling is to find a random variable
Y that is defined on the same probability space (2, F,P) as the random variable
X, has the same range F as X, and is distinct from X. These constraints imply
that the law of Y and the law of X are two different probability measures on the
same pair (E,£). It is important that both X and Y are functions from 2 to
E, since we may then consider the property of absolute continuity of laws. The
measure Po X! is absolutely continuous with respect to the measure PoY 1 if,
for any set A € &€ for which Po Y ~1(A4) = 0, it also holds that Po X~ 1(A) = 0;



one writes Po X! < PoY~!. Absolute continuity can be understood as
the property that any event that is statistically impossible according to the
law of ¥ must also be statistically impossible according to the law of X. Two
probability measures p and v on the same pair (F, ) are said to be equivalent
or mutually absolutely continuous if p < v and v < p. The significance of two
measures being equivalent is that they share the same collection of events that
are statistically impossible. From now on, we shall write = Po X! for the
reference distribution with respect to which our desired statistical quantities are
defined, and v = Po Y ! for the auxiliary (importance sampling) distribution.

If 4 < v, then there exists a nonnegative function du/dv defined on E such
that for for any p-integrable function f on F,

.l = Bl (0] =B [/ S n)| =B, 1] ©)

The function dp/dv is called the Radon-Nikodym derivative of p with respect
to v. We emphasize that in general, the Radon-Nikodym derivative is not the
ratio of two functions.

The idea of importance sampling is to find, given a random variable X and
the desired quantity of interest E[f(X)], another random variable Y such that
the Radon-Nikodym derivative can be evaluated. One often demands Y be such
that the empirical mean of f(Y)z—’;(Y) using N i.i.d. draws from the law of YV
satisfies some user-defined constraints, such as smaller variance.

Note that the approach above proceeded by assuming the existence of a
random variable Y such that the law of X was absolutely continuous with respect
to the law of Y, and arrived at the existence of the associated Radon-Nikodym
derivative. One can proceed in the reverse direction: given the E-valued random
variable X, its associated law ¢ = Po X!, and a strictly positive function h
on E such that [}, h(z)du(z) is finite, it holds that the normalized function

h(z)
[ (&) du(2")

is the Radon-Nikodym derivative dv/du of some probability measure v on (E, £),
and hence that v is absolutely continuous with respect to p. Since every random
variable is uniquely determined by its law, and since every law is a probability
measure, it follows that there exists a unique random variable whose law is
absolutely continuous with respect to the law p.

3.3 Translating IS into MD language

In order to understand the application of importance sampling in the MD con-
text, we now establish some correspondences between the terminology of im-
portance sampling and that of MD.

In MD, one is often interested in sampling trajectories of a N-atom molecule
in its configuration space R3". This implies that the random variable of interest
is a stochastic process; in this case, it is natural to define the event space 2 to
be the set of continuous trajectories in the configuration space (we omit the dis-
cussion of the o-algebra F, since it is not important here). For example, if one
adopts a random model of the molecular dynamics as in Section 2, then the fun-
damental random variable of interest is the stochastic process Xo.r = (X¢)o<i<r



defined by (2), where 7 > 0 is some predefined duration of the trajectory. To
simplify notation, we shall omit the duration subscript and write X instead of
Xo.r for the remainder of this article. The stochastic process is determined by
the potential function U (whose gradient corresponds to the force field used in
the MD simulation), and by the reference measure P that defines the Brownian
motion process B = (By)o<i<r. In particular, if either the potential U or the
reference measure P are changed, then the random variable X will also change.

Suppose we perform multiple molecular dynamics simulations of duration
7 > 0, each starting from a common initial state xg, and each using the force
field associated to the potential U as given in (2). The law of X on (Q,F)
then has some intuitive properties. For an arbitrary 0 < ¢ < 7, consider the
evaluation map f(X) := X(¢). Then the function f defines a vector-valued
path functional, since it assigns to every path X the vector in R3N that de-
scribes the configuration of the molecule at time ¢. If the forces acting on the
molecule do not change over time, and if the molecule is in equilibrium, then
the law of the random variable f(X) will be given by the Boltzmann distribu-
tion exp(—BU(z))/Z (). We can consider another example in the same setting.
Suppose one is interested in computing the first mean passage time for a con-
formational change from A to B, where necessarily the initial state xg belongs
to the conformation A. In this case, we may define the function f to be the first
time that the molecule enters the conformation B (provided that the molecule
enters the conformation B within the time interval 0 < ¢ < 7), and estimate the
mean first passage time from zy € A to B using the empirical mean estimator
given in (4). Note that the first passage time depends on the dynamics of the
molecule over the entire trajectory. Such quantities are sometimes called dynam-
ical quantities, to distinguish them from quantities that only depend on a finite
number of time points along the trajectory. In [Hartmann and Schiitte, 2012],
it was shown that to any dynamical quantity of the form

W = [

we may associate a Free Energy Surface (FES) conditioned on the initial con-
dition Xy = z, by

F(z) = —BlogElexp W X)/8 X, = 1]. (7)

For example, if one sets f in the definition of W above to be the indicator
function of a set S, then the resulting quantity F'(x) is related to the cumulant
generating function of the occupation time of S.

It is known that, if the molecule is metastable, then transitions between con-
formations are rare. When these transitions are the phenomena of interest, one
often wishes to collect better statistics, i.e. to sample transition events more
easily. One way to achieve this would be to add a biasing potential Uy;as to the
energy function U. Recall that a random variable X is uniquely determined by
its law 4 = Po X ', and recall that u is defined by the fact that the distribution
of the vector-valued random variable X (t) € R3*" follows the Boltzmann distri-
bution for every 0 < ¢t < 7. If we add a biasing potential Upi,s to the energy
function U that defines the Boltzmann distribution, then we change the measure
from p to some other measure v. Therefore, we no longer work with the ran-
dom variable X, but some other random variable Y = Yj... As in importance



sampling, the hope is then that the modified random variable is more favorable
with respect to certain user-defined criteria, e.g. transitions from A to B occur
more frequently. If 4 and v are equivalent, i.e. mutually absolutely continu-
ous, then the modified ‘molecule’ whose random trajectories are described by
Y cannot exhibit behavior which is impossible for the original molecule whose
trajectories are described by X. The associated Radon-Nikodym derivative can
be interpreted in this case as a reweighting factor with which we can use the
statistics of Y in order to obtain unbiased estimators of statistics of X, using
(6). In [Vanden-Eijden and Weare, 2012], it is shown that one can also apply
importance sampling techniques to quantities of a similar form to (7) in order
to estimate rare event probabilities.

3.4 Different Estimators

In this paragraph we shall show how different Monte Carlo estimators can be
constructed. Recall that the random variables X = Xg., and Y = Y., refer to
trajectories of duration 7.

The simplest Monte Carlo estimator of the quantity p = E[f(X)] is given by
the empirical mean defined in (4).

As discussed in the preceding section, in some circumstances it may be de-
sirable to sample trajectories from an auxiliary (importance sampling) distri-
bution, e.g. when an event of interest occurs with very small probability with
respect to the reference distribution, and then re-weight to obtain the statistics
according to the reference distribution. Using the notation introduced earlier of
the reference distribution 4 = P o X ~! and auxiliary distribution v = Po Y !,
we can define the associated importance sampling estimator by

where V() = YO(:ZT) is the i-th sample trajectory drawn from v, and v is defined by
a Boltzmann Gibbs distribution that differs from that of u. Recall from Section
3 that the Radon-Nikodym derivative is defined, provided that u is absolutely
continuous with respect to v. The unbiasedness of the importance sampling

estimator was shown in (6).

4 Enhanced Sampling and Importance Sampling

4.1 Comparing the Valsson-Parrinello and Hartmann-Schiitte
methods

In this section, we explain that enhanced sampling and importance sampling
are connected by the idea of change of measure, using two recently published
methods [Valsson and Parrinello, 2014, Hartmann and Schiitte, 2012] as exam-
ples.

The Valsson-Parrinello method described in [Valsson and Parrinello, 2014]
involves a variational approach to enhanced sampling for complex systems in
collective variables (CVs) or reaction coordinates. Suppose that the CV space is
a FEuclidean space equipped with Lebesgue measure dx, and that the reference



measure 4 (in this case, p is not a path measure) is associated to some reference
potential U. Suppose that one wishes to sample from some prescribed auxiliary
distribution v that has a density h with respect to the Lebesgue measure, i.e.
dv(z) = h(xz)dx; an example given in [Valsson and Parrinello, 2014] concerns
the uniform distribution on a bounded subset of CV space. Then, by defining
the following functional of the biased potential

1 i e—BUB)+V () g
o(V) = 3 log TeP0GIds —i—/h(s)V(s)ds, (8)
one can show that the following biasing potential
1
V(s) =—=U(s) - 7 los h(s) (9)

extremises the functional ¢. In particular, one can define an optimization prob-
lem, the solution of which is given by V. The authors use the fact that the func-
tional F' is midpoint convex in order to find the optimal bias, by parametrizing
the bias potential and using an optimization scheme to find the optimal parame-
ters. The parametrization is done by an expansion of V' into a linear set of basis
functions, and the optimization is done by stochastic gradient descent. From
the two equations above, it follows that if the target distribution h is strictly
positive everywhere, and if e=#V is integrable (which implies that U is finite
almost everywhere), then p and v are mutually equivalent, with

—B2U(x
dﬁ(x) — Zy e 0@ (10)
dv Z, h(x)
where Z,, = f e PU) dz is the normalization constant and Z, is the normaliza-
tion constant for the Boltzmann Gibbs measure with respect to the biased poten-
tial V. The Hartmann-Schiitte method described in [Hartmann and Schiitte, 2012]
involves a method of performing importance sampling for systems described by
overdamped Langevin dynamics for trajectories for 0 <t < 7:

dX, = —VU(X,)dt + /28 1dB,, Xo=u (11)
dY, = —=V(V + U)(Y,)dt + \/25-1dB;, Yo = (12)

The first SDE is the original dynamics corresponding to the Boltzmann mea-
sure e PV and the second SDE is the perturbed dynamics corresponding to the
Boltzmann measure e ?(U+tV): see Section 3.3 for more details. For a given
choice of W in (7), they derive the optimal change of drift —VV (which corre-
sponds to an additional biasing potential V') for the second SDE that leads to a
zero-variance estimator for the quantity F'(z) in (7). The optimal change of drift
is related to the solution of a nonlinear partial differential equation called the
‘Hamilton-Jacobi-Bellman’ (HJB) equation. Since the HJB equation is difficult
to solve - especially in high dimensions - the authors project the bias potential
into a space spanned by a finite number of ansatz functions. They suggest using
a linear set of basis functions, as is done in [Valsson and Parrinello, 2014]. The
problem can be reformulated as a constrained optimization problem which can
be solved by a stochastic gradient descent method or by a cross entropy method
[Zhang et al., 2014].



In contrast to the method described in [Valsson and Parrinello, 2014], the
method in [Hartmann and Schiitte, 2012] explicitly interprets the change of the
potential as a change of measure. This fact is used to derive the objective
function of the optimization problem (namely, the right-hand side of (21) below).
Furthermore, if one considers estimators of the form (7), then the Kullback-
Leibler divergence arises naturally in the derivation of the optimization problem.
See Section 4.3 below for more details on the Kullback-Leibler divergence.

The main difference between the variational method of Valsson and Par-
rinello [Valsson and Parrinello, 2014] and the method of Hartmann and Schiitte
[Hartmann and Schiitte, 2012] is that the first method works directly on the
potential itself, while the second method works on the force field of the sys-
tem. However, since the force field is the gradient the potential, and since
the gradient of a function is uniquely determined up to additive constants,
it follows that both methods approach the problem essentially the same way,
i.e. by systematically finding the optimal importance sampling change of mea-
sure (bias). We note here that the task of designing an importance sampling
bias is not straightforward and highly depends on the considered problem c.f.
[Spiliopoulos, 2015, Dupuis et al., 2015]. We also note that there exist exam-
ples in which importance sampling can also lead to a speed-up in the enhanced
dynamics [Hartmann et al., 2016].

The key idea of the method in [Hartmann and Schiitte, 2012] is that there
exists a representation formula for the Radon Nikodym derivative. The formula
is given by Girsanov’s theorem from stochastic analysis, which one can interpret
as follows: if one changes the drift term of the SDE (13) by adding u; to obtain
(14), then under the conditions (15) and (16), the laws of the solutions to these
SDEs (viewed as probability measures on path space) are mutually equivalent,
and Girsanov’s formula (18) describes the associated Radon-Nikodym deriva-
tive.

Theorem 1 (Girsanov’s theorem) Let (2, F,P) be a probability space, and
let (Bt)i>o0 be the standard R™-valued Brownian motion with respect to P. Let
X eR" and Y € R™ be It6 diffusions of the form

dX, = b(X})dt + /28~ 1dB,, Xo==x (13)
dY: = (us + b(Yz))dt + /287 1dBy, Yo=vy (14)

considered over the time interval 0 < t < 7 for some finite 7, where b : R — R™
satisfies Lipschitz and growth conditions that suffice for uniqueness and existence
of the solutions. If the process us satisfies

P</OT |ut|2dt<oo) =1, (15)
E [exp <\/§/OT w;dBy — f/oT |ut|2dt>] =1 (16)

then the path measures p =PoY ! and v =Po X! are equivalent, where the
Radon-Nikodym derivative

i _

7y = M = (Mioze<r (17)

10



is a stochastic process defined by

t t
M, = exp <\/§/ usdB, — g/ g ds> , (18)
0 0

Proof See [Robert Liptser and Shiryaev, 2001, Theorem 7.2].

Note that Girsanov’s theorem is often stated with (15) replaced by the stronger

Novikov condition -
E [eXp <ﬁ/ |ut|2dt)} < o0,
4 Jo

see e.g. [@ksendal, 2003].

In [Hartmann and Schiitte, 2012], the drift term b in (13) is given by the
force field —VU associated to the energy function U of a molecule. Thus
the metastability of the molecule is determined by U. The Hartmann-Schiitte
method suggests adding suitably scaled Gaussians to ‘fill’ the basins in the en-
ergy landscape that are associated to metastable conformations. The resulting
change in the potential is given by taking the sum of all the added Gaussians.
This is idea is essentially identical to the approach taken in Metadynamics
[Laio and Parrinello, 2002] where the potential is changed by Gaussian and the
force field is changed by the derivative of the Gaussians.

Several different aspects of the Hartmann-Schiitte approach have been stud-
ied. The question of whether Gaussians are a good choice of ansatz func-
tion has been considered in [Zhang et al., 2014]. A method for placing such
ansatz functions automatically is presented in [Quer et al., 2017]. The con-
vergence of the stochastic gradient descent approach has been analyzed in
[Lie et al., 2015, Lie, 2016].

4.2 Application to Brownian Dynamics

We now consider Girsanov’s theorem in the context of the Brownian dynamics
model from MD. Let U : R® — R be a metastable potential satisfying the
criteria mentioned earlier. Setting b = —VU in (13) yields the original SDE
(2) that defines the molecular dynamics in equilibrium. Now recall that in MD,
one often seeks to reduce the metastability of the system, in order to sample
rare events better. For example, in the ideal case in which one could optimise
the algorithm parameters at every step in the MD simulation, the optimally
biased potential that results from Metadynamics is flat. This ideal case can be
represented in (14) by choosing u; = VU (Y;) for every ¢, which causes the drift
term in (14) to be identically zero. In particular, this implies that the resulting
stochastic process Y in is Brownian motion scaled by 1/28~1, and thus exhibits
no metastability at all. From the mathematical point of view, this situation is
ideal, because the Brownian motion process is well understood. By (17), sample
statistics derived from trajectories of Y can be reweighted using the associated
values of the Radon-Nikodym derivative given by (18) (with us = VU(Y})) in
order to obtain unbiased estimators of statistical quantities involving X.

We close this section with an observation regarding Girsanov’s theorem.
In stochastic analysis, Girsanov’s theorem is sometimes formulated as follows:
there exists an alternative probability measure P’ that differs from the original
probability measure P of the probability space (€2, F,P), such that the law of the

11



process Y with respect to P/, P’ oY ~! and the law of the process X with respect
toP, n =Po X! agree. Equivalently, the alternative probability measure P’
is such that

R t
B, = \/B/ usds + By (19)
0

is a Brownian motion with respect to the measure I/, so that

dY; = —VU(Y;)dt + /26-1dB, (20)

is structurally identical to (13). Thus, we can calculate the quantity of interest
according to

EIP[f(X():T)} = E]P” [f(YE)T)]
= IEIP[f(YO:T)Mt]'

4.3 Optimization and Kullback-Leibler

Both the Valsson-Parrinello and Hartmann-Schiitte methods use an optimiza-
tion problem to minimize the difference between a reference distribution and the
auxiliary distribution. One way of quantifying the difference of two measures is
the Kullback-Leibler divergence (KL) or relative entropy. Given two probability
distributions p and v, the KL divergence of the former with respect to the latter
is given by ;
v

Hl) = [ 1og Z-dv
The KL divergence is an information-theoretical tool that quantifies the dif-
ference between two probability measures. However, the KL divergence does
not define a metric on the space of probability measures; it is not in general
symmetric, and does not satisfy the triangle inequality.

If (17) holds, then

1 T
H(v||) = —E, [log M,] = Ep [2 / |ut|2dt} ,

where we used that the stochastic integral fOT usdBs has zero mean with respect
to P because B is a Brownian motion process with respect to P. Therefore, for
the quantity F(z) defined in (7), Girsanov’s formula (17) and Jensen’s inequality
yield

F(z) = —flogE,[exp(=W/B)]
= —BlogE, [exp (—W/B) exp (log M )]
<E, W]+ BH(v|u), (21)

In [Valsson et al., 2016, Section 9], it is described how the optimization prob-
lem in the Valsson-Parrinello method for finding the optimal biasing potential
involves minimizing a Kullback-Leibler divergence.

For the Hartmann-Schiitte method, the optimization problem seeks the op-
timal bias that leads to a zero-variance estimator of the quantity (7). In
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[Hartmann and Schiitte, 2012] the authors prove that such an optimal bias ex-
ists in the space of admissible control processes; note that in practice, the ap-
proximations required for numerical computations imply that the computed es-
timator will not yield a zero-variance estimator. The Hartmann-Schiitte method
involves the problem of optimizing the right-hand side of (21) over a suitable
class of auxiliary distributions. In [Hartmann and Schiitte, 2012] it is shown
that such an auxiliary distribution exists, and that moreover the optimal v
yields an equality in (21); equality implies that the resulting estimator of F(x)
has zero variance. In [Zhang et al., 2014], it is shown how this optimization
problem can be reformulated as the problem of minimizing a KL divergence.
Thus one can apply algorithms for minimizing the Kullback-Leibler divergence,
such as the cross entropy method [Rubinstein and Kroese, 2004]. The approach
described in [Hartmann and Schiitte, 2012] involves searching for the best pos-
sible auxiliary distribution Q in a class of auxiliary distributions parametrized
by finite-dimensional vectors, where the vectors contain the expansion parame-
ters of a feedback control function for a given finite collection of basis functions.
Stochastic gradient descent is used to find the optimal distribution from this
class.

4.4 Reweighting

To get the right statistics for the variational approach to enhanced sampling the
authors suggest a reweighting scheme proposed by [Tiwary and Parrinello, 2013]
which was proposed in [Valsson et al., 2016]. The authors derive a correction
formula for the transition time between two basins sampled by a Metadynamics
approach. They first assume that there exits collective variables A(R) such that
A < A* for the starting basin and A > A* and A* is the transition region. Then
they define the mean transition time

 Zo Uien e VIR
T= WKZE  wk Sy € PURAR’

(22)

the mean transition time 757 (t) for a Metadynamics simulation is defined by

ar(t) = 1Zp(t)

C wkmZi (1) (23)

where k7, Zy and Zj; are analogous to s, Zg and Zj except that the potential
includes a time dependent Metadynamics potential. If the transition region
is not biased meaning that x ~ k) and Z}; ~ Zj then one can define the

acceleration factor o = ==
T (t)

Z
at) = Z—JS[ = /eﬁV(S(R)’t)dR (24)

where dR is the measure corresponding to the time-dependent Metadynamics
potential. In order to use this correction formula, one must avoid biasing the
potential in the transition region.

For the Hartmann-Schiitte method in [Hartmann and Schiitte, 2012], the
Radon-Nikodym derivative (17) given by Girsanov’s formula provides the cor-
rect reweighting with which we can use statistics based on the auxiliary distri-
bution v in order to estimate statistics based on the reference distribution pu.

13



We note that one can perform reweighting with the Radon-Nikodym derivative
regardless of whether the importance sampling bias is optimal, see for exam-
ple [Leliévre and Stoltz, 2016]. In particular, there exist auxiliary distributions
v which are not optimal but for which the variance of the estimator of F(x)
with respect to v is smaller than the variance of the corresponding estimator
with respect to pu. In contrast to the reweighting method for Metadynamics
presented in [Tiwary and Parrinello, 2013], the reweighting in the Hartmann-
Schiitte method does not involve any heuristic argument; it is fully justified by
Girsanov’s theorem. Furthermore, the importance sampling estimator is always
an unbiased estimator, as was shown in (21). Another advantage of the im-
portance sampling approach is that, in contrast with the reweighting scheme
of [Tiwary and Parrinello, 2013] described above, there is no a priori reason to
avoid biasing the dynamics in the transition region.

4.5 Other methods

In this paragraph we comment briefly on some other enhanced sampling methods
that can be viewed from the perspective of importance sampling.

ABF and Metadynamics. Adaptive biasing force techniques (ABF) e.g.
[Darve and Porohille, 2001] involve changing the force field that determines the
molecular dynamics, and hence implicitly involve changing the potential. We
observed in Section 4 that changing the potential corresponds to a change of the
measure. Thus ABF-based methods can be interpreted as an importance sam-
pling method. The same is true for Metadynamics [Laio and Parrinello, 2002]
and all other biasing techniques which change the potential or the force field,
e.g. [Huber et al., 1994].

Simulated Annealing. In simulated annealing [Kirkpatrick et al., 1983], the
temperature of the simulated system is changed. When the dynamics are given
by the overdamped Langevin equation (2), changing the temperature corre-
sponds to changing the value of the inverse temperature parameter 5. This
again leads to a change of measure because the temperature is also included in
the Boltzmann Gibbs measure. Thus, one can relate the two different measures
by a Radon Nikodym derivative. From a theoretical point of view, one could
built an importance sampling scheme with different temperatures involved.

It may be possible to construct a Multilevel Monte Carlo (MLMC) scheme
from simulated annealing- or parallel tempering-based methods, by setting the
levels of the estimator to be the different temperatures. Other methods, such as
those presented in [Roe et al., 2014] or [Quer and Weber, | that work by chang-
ing the potential of the system, could also be used to build an MLMC estimator.
For further information on MLMC methods see e.g. [Giles, 2015] and the refer-
ences therein.

Replica Exchange. In the case of Replica Exchange methods

e.g. [Swendsen and Wang, 1986] the situations is more complex. If for example
a temperature replica exchange is applied, then this can be interpreted as a mul-
tistage simulated annealing, and in principle one could compute the reweighting
factors for each trajectory segments. However, one has to track the interchange
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of the trajectories very precisely in order to correctly reweight the trajectory
segments. To the best of our knowledge, no studies have determined whether
this strategy is feasible.

5 Connections to other topics

We briefly mention some interesting connections between importance sampling
and other active research topics. The references cited in this section are not
intended to be exhaustive.

Optimal control

In Section 4.2, we described how finding the optimal change of measure in
terms of variance reduction is related to the question of finding the optimal
change of drift u; in (14). The change of drift can be interpreted as a control
force acting on the SDE, and so the problem can be interpreted as an opti-
mal control problem. It is possible to derive a HJB equation for this problem
[Fleming and Soner, 2006, Chapter 3, p. 119]. In [Hartmann and Schiitte, 2012]
it is shown that the solution of the HJB equation can be used to obtain the opti-
mal change of drift (and hence the optimal auxiliary distribution). The connec-
tion between the HJB equation and importance sampling or variance reduction
has been extensively studied; see [Dupuis and Wang, 2004, Dupuis et al., 2007,
Dupuis et al., 2015, Vanden-Eijden and Weare, 2012, Hartmann and Schiitte, 2012]
and the references therein.

The HJB equation is a nonlinear partial differential equation, and hence
is not easy to solve. Some methods have been proposed for solving the HJB
equation, based on dynamical principles [Bertsekas, 2017] or viscosity solutions
[Fleming and Soner, 2006]. Other approaches construct sub-optimal but effec-
tive importance sampling schemes and study how the variance is reduced; see
[Spiliopoulos, 2015]. The connection between suboptimal importance sampling
schemes and subsolutions of the HJB equation is explored in [Dupuis et al., 2012].
The connection between importance sampling and the HJB equation can also
be studied from the perspective of large deviations. For more details on large
deviations, see [Freidlin and Wentzell, 2012].

Machine Learning and Bayesian Inference

We note that Bayesian inference and machine learning techniques have been ap-
plied to solve Markov decision problems, see e.g. [Bierkens and Kappen, 2014,
Thijssen and Kappen, 2015, Bertsekas, 2017]. These problems are similar to
stochastic optimal control problems in the sense that they admit a HJIB equa-
tion. An excellent exposition of the connection between Bayesian inference, ma-
chine learning, and Markov decision processes is given in [Kappen, 2013]. Ker-
nel estimation methods have also been applied in this context [Batz et al., 2016,
Opper, 2017].
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6 Summary

In this article, we set molecular dynamics and enhanced sampling in the frame-
work of mathematical probability theory. We described the basic idea of im-
portance sampling and showed that enhanced sampling can be viewed as im-
portance sampling on path space. We demonstrated this observation using the
recently developed Valsson-Parrinello variational enhanced sampling method
[Valsson and Parrinello, 2014]. We compared the Valsson-Parrinello method
with the Hartmann-Schiitte method for efficient simulation of rare events
[Hartmann and Schiitte, 2012], and described how both methods involve 1) a
parametrization of the bias potential in order to set up an optimization prob-
lem involving the Kullback-Leibler divergence, and 2) a formula for reweighting
statistics obtained from a biased auxiliary distribution, in order to obtain statis-
tics from a desired reference distribution. We mentioned how other enhanced
sampling methods, such as the adaptive biasing force method, can be viewed
as a method for importance sampling. The fundamental criteria that justifies
viewing an enhanced sampling method as an importance sampling method is 1)
that a change of measure is realised, e.g. by a change in the potential energy
function (or equivalently, of the force field) that describes the molecular dy-
namics, and 2) that the empirical biased statistics can be reweighted to obtain
unbiased estimators of the true statistics.
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