
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

MARTIN GRÖTSCHEL, SVEN O. KRUMKE,
JÖRG RAMBAU , THOMAS WINTER, UWE ZIMMERMANN

Combinatorial Online Optimization in
Real Time

ZIB-Report 01-16 (July 2001)

COMBINATORIAL ONLINE OPTIMIZATION IN REAL TIME

MARTIN GRÖTSCHEL, SVEN O. KRUMKE, J̈ORG RAMBAU, THOMAS WINTER, AND UWE
T. ZIMMERMANN

ABSTRACT. Optimization is the task of finding an optimum solution to a given problem.
When the decision variables are discrete we speak of a combinatorial optimization prob-
lem. Such a problem is online when decisions have to be made before all data of the
problem are known. And we speak of a real-time online problem when online decisions
have to be computed within very tight time bounds. This paper surveys the are of com-
binatorial online and real-time optimization, it discusses, in particular, the concepts with
which online and real-time algorithms can be analyzed.

1. INTRODUCTION

Models and methods from Combinatorial Optimization provide powerful tools for solv-
ing highly complex problems from a broad spectrum of industrial and other applications.
The traditional optimization techniques assume, in general, knowledge of all data of a
problem instance. There are many cases in practice, however, where decisions have to be
made before complete information about the data is available. In fact, it may be necessary
to produce a part of the problem solution as soon as a new piece of information becomes
known. We call this anonline situation, and we say that an algorithmruns onlineif it
makes a decision (computes a partial solution) whenever a new piece of data requests an
action.

Practice may be even more demanding. The online algorithm may indeed be required to
deliver the next piece of the solution within a very tight time bound. In this case, we speak
of a real-time problem(or real-time system), i.e., a problem where an online algorithm is
required to react in real-time.

How tight do time bounds have to be in order to turn an online problem into a real-time
problem? There is no general rule. A standard answer is: The required reaction time of
the algorithm must be short compared to the “time frame of the system”, i.e., the definition
depends on problem-specific settings. For example, we all expect telecommunication and
computer systems to react within a few seconds or faster. Thus, real-time algorithms that,
e.g., decide about routing, switching, capacity, or paging must answer within milliseconds.
Real-time algorithms controlling chemical reactions or other production processes may be
given a few seconds for the computation of a solution, while in transportation or traffic a
few minutes lead time could be acceptable. In fact, what could be considered real-time or
not may also depend on the complexity of the mathematical model applied, the importance
of the decision, and other problem-specific items.

Online and real-time problems have been around in continuous optimization (e.g., con-
trol of airplanes, re-entry of a spacecraft) for quite a long time, while combinatorial op-
timizers have neglected this issue to a large extent. With a few exceptions, systematic
investigation of combinatorial online problems started only about 15 years ago. Initially,
research was mainly driven by applications in computing and communication machinery.
The emergence of new paradigms for the analysis of online algorithms particularly fos-
tered this “combinatorial online research”. Interesting and important additional applica-
tions broadened its scope.

Supported by the German Science Foundation, Priority Programme 469.

1

2 M. GRÖTSCHEL, S. O. KRUMKE, J. RAMBAU, T. WINTER, AND U. T. ZIMMERMANN

Why is new theory necessary? Isn’t it possible to transfer online results from continuous
optimization to combinatorial optimization? The (unfortunate) truth is that continuous and
discrete optimization are very different in nature. Combinatorial decision making is, in
general, non-convex and non-continuous. Continuous techniques rarely apply to discrete
models.

In this paper we will discuss many of the models that have been proposed in the recent
years for the analysis of online algorithms. These models usually differ in the way informa-
tion becomes available to the online algorithm. We will describe the by far most common
online paradigms, thesequence modeland thetime-stamp model, in greater detail.

Despite significant research efforts in recent years, combinatorial online optimization
is not in a mature state yet. Compared to this, combinatorial real-time optimization is
even still in its infancy. No commonly accepted tools and concepts for the analysis of
combinatorial real-time algorithms that take both, solution quality and time requirements,
into account have been established yet. We will address this topic in Section 3.

It is, however, important to note that practical applications have become a driving force
in this area. And, thus, we may hope to see new success stories on both, the theoretical and
the practical side, in the near future.

1.1. The Sequence Model.An online problem in thesequence modelcan be described
as follows. An algorithmALG, we call it theonline algorithm, is confronted with a finite
request sequenceσ = r1, r2, The requests must be served in the order of their occur-
rence. More precisely, when serving requestr i , the online algorithmALG does not have
any knowledge of requestsr j with j > i. When requestr i is presented toALG it must be
served byALG according to the specific rules of the problem. The action taken byALG

to server i incurs a cost and the overall goal is to minimize the total service cost.1 The
decision byALG of how to server i is irrevocable. Only afterr i has been served, the next
requestr i+1 becomes known toALG. In some cases the appearance of the last request is
announced, in some not.

We begin with sketching a very basic decision problem that occurs in various forms
frequently in everyday life. We phrase it as a ski rental problem. Despite its simplicity the
ski rental problem will enable us to point out some of the subtleties in the modeling and
analysis of online algorithms.

Example 1.1(Ski Rental Problem). Suppose that a woman goes skiing for the first time in
her life. She is faced with the question of whether to buy skis forBÀ 1 Euro or to rent skis
at the cost of1 Euro per day. Of course, if the woman knew how many times she would
go skiing in the future, her decision would be easy. But unfortunately, she is in an online
situation where the number of skiing days only becomes known at the very last day.¤

The above situation can be modeled as an online problem in the sequence model. In the
Ski Rental Problemeach requestr i is a day the woman goes skiing. Each request can be
“served” in three different ways: (i) rent skis at the cost of1 Euro, (ii) buy skis at the cost
of B Euro, (iii) use the skis that she already owns at the cost of0 Euro (where of course this
option is only available in case she already bought skis when serving some requestr j with
j < i). Requestr i+1 (that is, the next skiing day, if there is any) only becomes known to
the woman afterr i has been served. The overall goal is to minimize the total rental/buying
cost.

Some comments apply to the ski rental problem. We have formulated the problem in
such a way that the skiing woman does neither have any lookahead (that is knowledge
about a certain number of subsequent requests) nor any statistical information about the
future. This is in accordance with the basic sequence model. If we want to incorporate

1It is also possible to define online profit-maximization problems. For those problems, the serving of each
request yields a profit and the goal is to maximize the total profit obtained.

COMBINATORIAL ONLINE OPTIMIZATION IN REAL TIME 3

any of these additional information into the problem then the sequence model must be
augmented.

Example 1.2(Paging Problem). Consider a two-level memory system (e.g., of a computer)
that consists of a small fast memory (the cache) withk pages and a large slow memory
consisting of a total ofN pages. Each request specifies a page in the slow memory, that
is, r i ∈ {1, . . . ,N}. In order to serve the request, the corresponding page must be brought
into the cache. If a requested page is already in the cache, then the cost of serving the
request is zero. Otherwise one page must be evicted from the cache and replaced by the
requested page at a cost of1. A paging algorithm specifies which page to evict. An online
algorithm must base its decisions when servingr i only on the requestsr1, . . . , r i without
any knowledge of future requests. The objective is to minimize the total cost of processing
the sequence of page requests. ¤
1.2. The Time Stamp Model. In the time stamp modelrequests become available over
time at theirarrival or release dates. The release dateti ≥ 0 is a nonnegative real number
and specifies the time at which requestr i is released (becomes known). An online algo-
rithm ALG must determine its behavior at a certain momentt in time as a function of all
the requests released up to timet. Again, we are in the situation that an online algorithm
ALG is confronted with an input sequenceσ = r1, . . . , rn of requests which is given in or-
der of non-decreasing release times and the service of each request incurs a cost forALG.
The difference to the sequence model is that the online algorithm is allowed to wait and to
revoke decisions. Waiting incurs additional costs, typically depending on the elapsed time.
Previously made decisions may, of course, only be revoked as long as they have not been
executed.

Example 1.3(Online Machine Scheduling with Jobs Arriving Over Time). In scheduling
one is concerned with the distribution of jobs (activities) to a number of machines (the
resources). In our example, one is givenm identical machines and is faced with the task of
scheduling independent jobs on these machines. The jobs become available at their release
dates, specifying their processing times. An online algorithm learns the existence of a job
only at its release date. Once a job has been started on a machine the job may not be
preempted and has to run until completion. However, jobs that have been scheduled but
not yet started may be rescheduled. The objective is to minimize the average flow time of
a job, where theflow timeof a job is defined to be the difference between the completion
time of the job and its release date. ¤

The above problem can be modeled as an online problem in the time stamp model.
Requestr i (corresponding to jobi) is a pairr i = (ti , pi), whereti is the release time of jobi
and pi is the processing time. An online algorithm must make its decisions at pointt in
time only based on the jobs released up to timet. The online algorithm may leave some of
its machines idle for some time even if unprocessed jobs that have already been released
exist. (Using a small amount of idle time can actually be beneficial in order to gather
information about potential new jobs).

Example 1.4(Online Traveling Salesman Problem). An instance of theOnline Traveling
Salesman Problemconsists of a metric spaceM = (X,d) with a distinguished origino∈M
and a sequenceσ = r1, . . . , rn of requests. Each request is a pairr i = (ti ,xi), whereti is the
time at which requestr i is released (becomes known), andxi ∈ X is the point in the metric
space requested to be visited. A server is located at the origino at time0 and can move
at unit speed. A feasible online/offline solution is a route for the server which serves all
requested points, where each request is served not earlier than the time it is released, and
which starts and ends in the origino. The cost of such a route is the time when the server
has served the last request and has returned to the origin (if the server does not return to the
origin at all, then the cost of such a route is defined to be infinity). This objective function
is also called themakespanin scheduling.

4 M. GRÖTSCHEL, S. O. KRUMKE, J. RAMBAU, T. WINTER, AND U. T. ZIMMERMANN

It is assumed here that an online algorithm does neither have information about the
time when the last request is released nor about the total number of requests. An online
algorithm must determine the behavior of the server at a certain momentt of time as a
function of all the requests released until timet. ¤

Notice that the Online Traveling Salesman Problem differs from its famous relative, the
Traveling Salesman Problem (see Example 3.4 in Section 3.2), in certain aspects: First,
the cost of a feasible solution is not the length of the tour but the total travel-time needed
by the server. The total travel time is obtained from the tour length plus the time during
which the server remains idle. Second, due to the online nature of the problem it may be
unavoidable that a server reaches a certain point in the metric space more than once.

A delicate issue arises when designing an online algorithm for the Online Traveling
Salesman Problem: Suppose that at some moment in time all known requests have been
served. If the algorithm wants to produce a solution with finite cost, then its server must
return to the origin after a finite amount of waiting time. But how long should this waiting
time be? If the server returns immediately, then a new request might become known and
all the traveling to the origin has been in vain. However, a too large waiting time before
returning to the origin increases the cost of the solution unnecessarily.

2. COMPETITIVE ANALYSIS

Combinatorial online problems and algorithms had been studied in the sixties to eighties
rather sporadically. Broad systematic investigation only started when Sleator and Tarjan
[46] suggested comparing an online algorithm to anoptimal offline algorithm, thus laying
the foundations ofcompetitive analysis. The term “competitive analysis” was coined in the
paper [33].

We call an algorithmdeterministicif its actions are uniquely determined by the input.
A randomizedalgorithm may, in contrast, execute random moves, i.e., one and the same
input given to such an algorithm twice may result in two different outputs. For the analysis
of deterministic and randomized algorithms, of course, different tools are needed.

2.1. Deterministic Algorithms. Let ALG be a deterministic online algorithm. Given a
request sequenceσ denote byALG(σ) the cost incurred byALG when servingσ and denote
by OPT(σ) the optimal offline cost (the optimal offline algorithmOPT knows the entire
request sequence in advance and hence can serve it with minimum cost).

Definition 2.1 (Competitive Algorithm (deterministic case)). Let c≥ 1 be a real number.
A deterministic online-algorithmALG is calledc-competitiveif

(1) ALG(σ)≤ cOPT(σ)

holds for any request sequenceσ. Thecompetitive ratioof ALG is the infimum over allc
such thatALG is c-competitive. ¤

We want to remark here that the definition ofc-competitiveness varies in the literature.
Often, an online algorithm is calledc-competitive if there exists a constantb such that

ALG(σ)≤ cOPT(σ)+b

holds for any request sequence. Some authors even allowb to depend on some problem or
instance specific parameters. Thus, wheneverc-competitiveness is addressed one should
check which definition is applied. We will stick to the definition given above since, in the
examples we consider, requiringb = 0 is the natural choice.

Observe that, in the above definition, there is no restriction on the computational re-
sources of an online algorithm. The only scarce resource in competitive analysis is infor-
mation. In many practical applications, severe restrictions on the computation time of an
online algorithm apply. We address this issue in Section 3.

COMBINATORIAL ONLINE OPTIMIZATION IN REAL TIME 5

Competitive analysis of online-algorithms can be imagined as a game between anon-
line playerand a maliciousoffline adversary. The online player uses an online algorithm to
process an input which is generated by the adversary. If the adversary knows the (determin-
istic) strategy of the online player, he can construct a request sequence which maximizes
the ratio between the player’s cost and the optimal offline cost.

We illustrate competitive analysis of deterministic online algorithms on two examples.

Example 2.2(A Competitive Algorithm for the Ski Rental Problem). Due to the simplicity
of the Ski Rental Problemall possibledeterministic online algorithms can be specified.
A generic online algorithmALGk rents skis until the woman has skiedk− 1 times for
somek≥ 1 and then buys skis on dayk. The valuek = ∞ is allowed and means that the
algorithm never buys. Clearly, each such algorithm is online. Notice that on a specific
request sequenceσ algorithm ALGk might not get to the point that it actually buys skis,
sinceσ might specify less thank skiing days. We claim thatALGk for k= B is c-competitive
with c = 2−1/B.

Let σ be any request sequence specifyingn skiing days. Then our algorithm has cost
ALGB(σ) = n if n≤ B− 1 and costALGB(σ) = B− 1+ B = 2B− 1 if j ≥ B. Since the
optimum offline cost is given byOPT(σ) = min{n,B}, it follows that our algorithm is
(2−1/B)-competitive. ¤

Example 2.3(A Bad Algorithm for the Paging Problem). The algorithmLFU (least fre-
quently used) for the Paging Problem given in Example 1.2 works as follows: For each
pagep from the main memory,LFU maintains a counter on the number of times thatp has
been requested so far. Upon a requestr i which is currently not in the cache,LFU evicts the
page from the fast memory which has been requested least frequently in the past.

The algorithmLFU is not competitive. To see this, suppose thatX = {p1, . . . , pk} is
the initial cache contents andpk+1 is one additional page from the slow memory. Let
` ≥ 1, and consider the sequenceσ = p`

1, p`
2, . . . , p`

k−1,(pk+1, pk)`. Here p`
i means that

pagepi is requested̀ times in a row and(pk+1, pk)` states thatpk+1 andpk are requested
alternatingly` times. Starting with thè(k− 1) + 1st request,LFU has cost1 for every
subsequent request, which givesLFU(σ) = 2`. On the other hand,OPT can process the
sequence at cost1 by evicting pagep1 upon the first request topk+1. Sincè can be chosen
arbitrarily large, it follows thatLFU is not competitive. ¤

Example 2.4(A Negative Result for Machine Scheduling). The online scheduling problem
described in Example 1.3 is notoriously difficult. It can be shown that even in the case of a
single machine any deterministic online algorithm has a competitive ratio that grows with
the number of jobs presented in the input sequence. More precisely, any deterministic
online algorithm has a competitive ratio of at leastn−1, wheren is the number of jobs.
(see [24, Chapter 9]). ¤

Example 2.5(Competitive Algorithms for the Online TSP). Probably the most obvious
algorithm for the Online TSP (see Example 1.4 for the definition) is given by the following
“ REPLAN”-strategy: If a new request becomes known, plan a shortest route starting at the
current position, serving all yet unserved requests and ending in the origin. It can be shown
that this algorithm is5/2-competitive (see [9, 8]). However, there are more complicated
algorithms which achieve a competitive ratio of2 (see [9, 8, 6]) in general metric spaces.
For the special case that the metric space is the real line, a7/4-competitive algorithm is
presented in [9, 8]. ¤

2.2. Randomized Algorithms. So far we have only considered deterministic online algo-
rithms. The definition of competitiveness for randomized algorithms is a bit more subtle.
In the case of a deterministic online algorithm, the adversary has complete knowledge
about his opponent and can exploit this knowledge. For randomized algorithms we have
to be precise in defining what kind of information about the online player is available to

6 M. GRÖTSCHEL, S. O. KRUMKE, J. RAMBAU, T. WINTER, AND U. T. ZIMMERMANN

the adversary. This leads to different adversary models which are explained below. For an
in-depth treatment we refer to [15, 39].

An oblivious adversary(OBL) must choose the entire request sequence in advance. He
does neither have knowledge about the outcome of the random experiments of the online
algorithmALG nor about the specific actions taken byALG as a result of the random deci-
sions. However, the oblivious adversary knows the online algorithmALG itself including
the probability distributions guidingALG’s decisions.

An adaptive adversarycan choose each request in the input sequence based on knowl-
edge of all actions taken by the randomized algorithm so far, and of the outcome of all
random experiments. One distinguishes different adaptive adversaries depending on how
the adversary himself must serve the input sequence.

Theadaptive offline adversary(ADOFF) defers serving the request sequence until he has
generated the last request. He then uses an optimal offline algorithm. Theadaptive online
adversary(ADON) must serve the input sequence (generated by himself) online. Notice
that in case of an adaptive adversaryADV, the adversary’s costADV(σ) for servingσ is a
random variable.

Definition 2.6 (Competitive Algorithm (randomized case)). A randomized algorithmALG

is c-competitive against an adversary of typeADV∈ {OBL,ADON,ADOFF} for somec≥ 1,
if

(2) E[ALG(σ)−cADV(σ)]≤ 0

for all request sequencesσ. Here, the expectation on the left hand side is taken over all
random choices made byALG. ¤

In case of an oblivious adversary, the adversary’s costADV(σ) = OBL(σ) does not de-
pend on any random choices made by the online algorithm. Hence, a randomized online
algorithmALG is c-competitiveagainst an oblivious adversary, if for any request sequence
the inequalityE[ALG(σ)]≤ cOPT(σ) holds.

The power of a randomized algorithm depends on the adversary it competes with. Rela-
tions between the adversaries have been studied in a general model calledrequest-answer
games(see [15]). It turns out that randomization does not help against an adaptive offline
adversary. More precisely, it can be shown that the existence of ac-competitive algorithm
against an adaptive offline adversary implies the existence of a deterministic algorithm
which isc-competitive (see [15]). However, against an oblivious adversary, a randomized
algorithm can “hide” its current configuration from the adversary which might enable him
to achieve a better competitive ratio.

Example 2.7(Ski Rental Problem Revisited). We look again at the Ski Rental Problem
given in Example 1.1. It is easy to see that any deterministic algorithm has a competitive
ratio at least(2−1/B). Any competitive algorithm must buy skis at some point in time.
The adversary simply presents skiing requests until the algorithm buys and then ends the
sequence. A straightforward calculation shows that this forces a ratio of at least2−1/B
between the online and the offline cost.

We now consider the following randomized algorithmRANDSKI against an oblivious
adversary. Letρ := B/(B−1) andα := ρ−1

ρB−1
. At the startRANDSKI chooses a random

numberk∈ {0, . . . ,B−1} according to the distribution Pr[k= x] := αρk. After that,RAND-
SKI works completely deterministic, buying skis after having skiedk times. We analyze
the competitive ratio ofRANDSKI against an oblivious adversary. Note that it suffices to
consider sequencesσ specifying at mostB days of skiing. For a sequenceσ with n≤ B
days of skiing, the optimal cost is clearlyOPT(σ) = n. The expected cost ofRANDSKI can

COMBINATORIAL ONLINE OPTIMIZATION IN REAL TIME 7

be computed as follows

E[RANDSKI(σ)] =
n−1

∑
k=0

αρk(k+B)+
B−1

∑
k=n

αρkn

A lengthy computation shows that

E[RANDSKI(σ)] =
ρB

ρB−1
OPT(σ).

Hence,RANDSKI is cB-competitive withcB = ρB

ρB−1
. SincelimB→∞ cB = e/(e−1)≈ 1.58,

this algorithm achieves a better competitive ratio than any deterministic algorithm when-
ever2B−1 > e/(e−1), that is, whenB > (2e−1)/2(e−1). ¤
Example 2.8(Paging Revisited). It can be shown that no deterministic algorithm for the
Paging Problem (see Example 1.2) can achieve a competitive ratio smaller thank, the size
of the cache. However, there exists a randomized algorithm which is2Hk, competitive,
whereHk = 1+1/2+ · · ·+1/k is thekth harmonic number. Proofs and the algorithm can
be found in [15]. ¤
Example 2.9(Machine Scheduling Revisited). The scheduling problem of Example 1.3
remains difficult even for randomized algorithms. Every randomized algorithm has a com-
petitive ratio ofΩ(

√
n) against an oblivious adversary where againn denotes the number

of jobs given in the request sequence (see [49]). ¤
2.3. Alternatives to Competitive Analysis. Competitive analysis is a type of worst-case
analysis. It has (rightly) been criticized as being overly pessimistic. The competitive ratios
observed in practice are usually much smaller than the pessimistic bounds provable from a
theoretic point of view. Often the offline adversary is simply too powerful and allows only
trivial competitiveness results. This phenomenon is called “hitting the triviality barrier”
(see [24]). To overcome this unsatisfactory situation various extensions and alternatives to
pure competitive analysis have been investigated in the literature.

In comparative analysisthe class of algorithms where the offline algorithm is chosen
from is restricted. This concept has been explored in the context of the Paging Problem
[34] and the Online TSP [14]. Another approach to strengthen the position of an online
algorithm is the concept ofresource augmentation(see e.g. [41, 42, 10, 46]). Here, the
online algorithm is given more resources (more or faster machines in scheduling) to serve
requests than the offline adversary. Thediffuse adversary[34] model deals with the situa-
tion where the input is chosen by an adversary according to some probability distribution.
Although the online algorithm does not know the distribution itself, it is given the informa-
tion that this distribution belongs to a specific class of distributions. Other approaches to go
beyond pure competitive analysis include theaccess graph modelfor paging [16, 17, 32]
and thestatistical adversary[18]. We refer to [24, Chapter 17] for a comprehensive survey.

All of the extensions and alternatives to competitive analysis have been proven to be use-
ful for somespecific problemand powerful enough to obtain meaningful results. However,
none of these approaches has yet succeeded in replacing competitive analysis asthestan-
dard tool in the theoretical analysis of online algorithms. Hence, it is particularly irritating
that competitive analysis can only give substantial decision support for a few “real-world
problems”.

3. REAL-TIME ISSUES

In real-time systems (cf. section 1), an algorithm has to deliver a solution within pre-
scribed time constraints. The behavior of a real-time system depends of course on the
quality of the solution but it depends as well as on the time needed for producing the so-
lution. A solution provided too late may be useless or, in some cases, even dangerous
because it does not fit to the current system parameters which may vary over time.

8 M. GRÖTSCHEL, S. O. KRUMKE, J. RAMBAU, T. WINTER, AND U. T. ZIMMERMANN

For instance, if a decision support system watching the stock market needs a long time
to propose buying or selling a certain share, the price of the share (especially in a volatile
market) may have changed so much that this action is no longer reasonable. If, however,
the decision support system of a pilot takes long to suggest the right action in case of an
emergency the result may be fatal.

In our context, the notiontimeemphasizes the fact that the system significantly depends
on the time in which answers to requests are produced. The notionreal indicates that the
system’s reaction to external events must occur instantaneously. In other contexts,real-
time reaction is just a synonym for fast reaction to external events. We have to be more
precise, the speed ofreal-timereaction must correspond to the specific time requirements
of the systems environment and the problem setting. The time available for computation
may vary, e.g., from milliseconds to minutes. The general objective of real-time optimiza-
tion is to match the problem specific timing requirements of each task and to produce a
best possible solution within the incurred time constraints. Since the solution is based on
the information available at the beginning of the computation, it may be necessary to check
its feasibility for the state of the system at the end of the computation.

3.1. Real-Time Decision Support Systems.Real-time algorithms are often integrated
into computerized decision support systems, see [44] for such examples in local transport.

Decision support can be based on the knowledge of a previously forecasted develop-
ment of the real-time system. In our context, such forecasts may be obtained via offline
computations of optimal solutions of some combinatorial optimization problem for real-
world data describing the standard situation of the real-time system. We will thus call
the presently available forecasted development of the real-time system briefly thecurrent
solution. Real-time decision support systems provide proposals for “quick” reactions to
external unforseen events which change the current solution. Real-time decisions usually
have to be made subject to and despite of severe limitations of resources: hardware, time,
and information. Some fundamental components of such a decision system (according to
[44]) are:

(1) Information management: current update of incoming information.
(2) Situation assessment: evaluation of the situation, decision whether or not a reac-

tion of the system is required (or should be proposed).
(3) Evaluation of alternatives: checking possible actions for the real-time event.
(4) Decision: determining an action (or choosing to do nothing).

Real-time decision support systems for complex real-time systems are (more or less) semi-
autonomous systems that support and assist human operators. Due to efficiency, responsi-
bility, and security issues, human operators are seldom replaced by such systems. On the
other hand, these systems usually require highly qualified personnel.

Decision support systems may propose actions with different degree of influence on
the development of the real-time system. Three different types of decisions with increas-
ing impact [44] arereactive planning, incremental planning, anddeliberative planning.
In reactive planning, the current solution is only locally adapted to some real-time event.
Incremental planning already results in a more global update of the current solution. De-
liberate planning is a complete revision of the current solution. This is advisable when
the observed situation significantly differs from the predicted state so that the current so-
lution becomes ineffective or even infeasible. The choice of reactions on real-time events
depends on the time available for computation and on the observed effects of the real-time
event.

Example 3.1(Dispatching Trams in Local Transport). In municipal tram dispatch, trams
start from a certain depot for serving scheduled round trips. In the depot, trams are stored
in several sidings one behind the other. The dispatcher has to assign the trams to a sequence
of round trips each requiring a certain type of tram [13, 50, 51].

COMBINATORIAL ONLINE OPTIMIZATION IN REAL TIME 9

Due to unforeseen external events, e.g. delays, the pre-calculated current feasible as-
signment of trams to round trips has to be replaced by a new one. The dispatcher needs to
find the new feasible assignment as fast as possible within a few minutes. His objective is
to minimize (or prevent) shunting of trams. Otherwise, new delays may be generated or
more tram drivers may be required for moving trams. ¤

For results on competitive analysis for online versions of tram dispatch problems, un-
fortunately mainly negative observations have been made, we refer to [50, 51].

In the following sections we survey some of the prominent methods for solving offline-
optimization problems and comment on their usability in a real-time context.

3.2. Exact Solution Methods for Combinatorial Optimization Problems. Online and
real-time algorithms try, of course, to make use of the existing machinery of combinatorial
optimization. Core ingredients are, thus, fast solvers for linear, integer and mixed-integer
programs.

Mixed-integer programming (MIP) provides effective tools for solving combinatorial
optimization problems which arise from industrial applications. Constraints from combi-
natorial optimization can often easily be reformulated in terms of linear MIP-constraints
though it may turn out to be difficult to find a computationally effective formulation. Mod-
elling software like AMPL [25] or GAMS [19] is available which support modelling and
problem solving. Powerful state-of-the-art solvers for linear and mixed integer program-
ming problems such as CPLEX [12] have successfully been applied to such formulations
of industrial applications.

Definition 3.2 (Mixed integer programming). In (linear) mixed integer programming the
given (linear) objective function

(3) cT x+dT y

has to be minimized subject to the given (linear) constraints

A1x+A2y = b1(4)

A3x+A4y ≤ b2(5)

for integer valued vectorsx and real valued vectorsy. ¤

Solving MIPs is difficult in theory (NP-hard) and, in general, hard in practice. Never-
theless, MIP formulations and solution techniques may help under real-time constraints.
Here are two examples of the MIP approach.

Example 3.3(Load Balancing on Identical Machines). Consider the followingLoad Bal-
ancing Problem(also called makespan minimization) arising in machine scheduling. One
is given a sequenceI = (1, . . . ,n) of jobs where jobi has processing timepi . The task is
to distribute the jobs onm identical machines such that the maximum load of a machine is
minimized. Here, the load of a machine is defined to be the sum of job processing times
assigned to the machine.

The above problem can be formulated as the following Integer Linear Program:

minimizeM

subject to
n

∑
i=1

pixi j ≤M for j = 1, . . . ,m(6)

n

∑
j=1

xi j = 1 for j = 1, . . . ,n(7)

xi j ∈ {0,1} for all i, j(8)

10 M. GRÖTSCHEL, S. O. KRUMKE, J. RAMBAU, T. WINTER, AND U. T. ZIMMERMANN

The binary (decision) variablexi j has the following meaning:xi j = 1 if and only if job i
is assigned to machinej. Constraints (7) ensure that each job is assigned to exactly one
machine, constraints (6) ensure thatM is greater or equal to the load of any of them
machines. SinceM is minimized it follows that in an optimal solutionM will be exactly
the maximum load of a machine. ¤
Example 3.4(Offline Traveling Salesman Problem). In the symmetricTraveling Salesman
Problemone is given a complete undirected graphG = (V,E) onn verticesV = {1, . . . ,n}
with (symmetric) edge weightsdi j for each edgei j ∈ E. The problem consists of finding a
shortest tour starting and ending at the same vertex and visiting each other vertex exactly
once. The cost of a solution is the total length of all edges in the tour. ¤

We formulate the Traveling Salesman Problem as an Integer Linear Program. To this
end define, for a subsetS⊆ V, the setδ(S) := { i j ∈ E : i ∈ S, j /∈ S} of edges incident
with S. Then using the decision variablesxi j , with xi j = 1 if and only if edgei j is contained
in the tour, we can write the TSP as the following Integer Linear Program

minimize
n

∑
i, j=1

di j xi j

subject to

∑
i j∈δ({i})

xi j = 2 for i = 1, . . . ,n(9)

∑
i j∈δ(S)

xi j ≥ 2 for all S⊆V, 2≤ |S| ≤ |V|/2(10)

xi j ∈ {0,1} for all i, j(11)

A proof that the feasible solutions to the above Integer Linear Program are in fact exactly
(incidence vectors of) tours, can be found, e.g., in [36, 22].

As already noted, there are important differences between the objectives in the Offline
TSP and the Online TSP specified in Example 1.4. However, an algorithm for the Online
TSP can make use of an (exact or approximate) algorithm for the Offline TSP to solve the
following sub-problem: For a set of known but yet unserved requestsRfind a shortest route
which serves all requests inRand returns to the origin.

Integer programming formulations are quite flexible and general. While adding or can-
celling of constraints and/or variables in a MIP may severely change the complexity of the
model, it still remains a MIP and thus basic methods for solving MIP’s still apply. Com-
binatorial algorithms specially designed and tuned for some combinatorial optimization
problem usually break down when such changes become necessary.

For example, integer programming methods have successfully been applied to real-time
problems in transport and logistics. If solving a complete real-time model turns out to be
too time-consuming, it may be decomposed into smaller parts which can be solved fast
enough. Trading computing time versus solution quality helps to adapt the problem setting
to the changing requirements in real-time applications.

Example 3.5(Dispatching Trams in Local Transport Revisited). The task of finding shunt-
ing free assignments for the tram dispatching problem of Example 3.1 can be modelled as
a 0-1-quadratic assignment problem [50, 51].2 Shunting-free assignments correspond to
assignments which obey certain additional side constraints [13]. After exact linearization
and some model tuning, the resulting integer programming model can be solved within
reasonable time [50, 51]. ¤

A similar approach has proved to be useful in the context of container logistics [47].

2See [20] for a definition of the quadratic assigment problem and a comprehensive survey of solution
approaches.

COMBINATORIAL ONLINE OPTIMIZATION IN REAL TIME 11

Exact solution methods, here based on mixed integer programming formulations of
the combinatorial optimization model, are essential for pre-calculation of good or optimal
solutions to real-time optimization problems. While computation times are reasonable,
matching tight real-time requirements in real-time applications may enforce tradeoffs be-
tween solution quality and computation time. However, even then, exact methods provide
indispensable information on the quality of other approaches.

3.3. Approximation Algorithms. If exact methods fail to produce answers in real-time
the next step is to look for suboptimal solutions which have a guaranteed quality.Approx-
imation algorithmsfor offline minimization problems are closely related to competitive
online algorithms.

Definition 3.6 (Approximation algorithm). A (deterministic) algorithmALG is calledα-
approximativeif

(12) ALG(I)≤ α OPT(I)

holds for any problem instanceI . The quantityα−1 provides a worst case bound on the
relative error of the approximation. The infimum of all values ofα for which ALG is α-
approximative is calledperformance ratioof ALG. (The remarks made on variants of the
definition ofc-competitiveness also apply here.) ¤

By the above definition, ac-competitive online algorithm isc-approximative. Con-
versely, if ac-approximate algorithm is additionally online, it is alsoc-competitive. In
view of applications, in the design of approximation algorithms speed is of first priority
since here computation time is the scarce resource. Thus, one usually restricts approxima-
tion algorithms to the class of polynomial time algorithms.3 In contrast, time complexity
is not an issue in competitive analysis: there is (at least in theory) no bound on the compu-
tation time for an answer generated by an online algorithm.

Many approximation algorithms have a simple structure and are in fact online. For NP-
hard problems, polynomial time approximation algorithms offer a way to trade solution
quality for computation time. Polynomial time approximation algorithms have intensively
been considered within the last years. Comprehensive surveys on approximation algo-
rithms can be found in [38, 31, 7, 48].

Example 3.7(Load Balancing on Identical Machines revisited). Consider the load balanc-
ing problem described in Exampe 3.3. Graham [27, 28] proposed the following greedy-
type heuristicLIST: Consider the jobs in order of their occurence in the input sequenceI .
Always assign the next job to the machine currently with the least load (breaking ties ar-
bitrarily). Clearly,LIST can be implemented to run in polynomial time. Moreover,LIST is
also an online algorithm for the online version of the problem where jobs are revealed to
an online algorithm according to the sequence model.

We are now going to analyze the performance ofLIST. Obviously, the optimum load
is at least as large as any job processing requirement resp. at least as large the average
processing time for each machine, i.e.:

(13) OPT(I)≥ pi for i = 1, . . . ,n and OPT(I)≥ 1
m∑ pi .

Consider the machinej whereLIST generates the maximum load when processingI . Let pi

be the load of the last job assigned to machinej and letL be the load ofj before jobi was
assigned. With these notations we haveLIST(I) = L+ pi .

By definition ofLIST, at the moment jobi was assigned to machinej all other machines
had load at leastL. Hence, the total sum of job sizes is at leastmL+ pi . Hence from the

3In the literature often the notion of an approximation algorithm includes the property of the algorithm being
polynomial time.

12 M. GRÖTSCHEL, S. O. KRUMKE, J. RAMBAU, T. WINTER, AND U. T. ZIMMERMANN

second inequality in (13) we getOPT(I)≥ 1/m(mL+ pi) = L+ pi/m. This results in

LIST(I) = L+ pi ≤ OPT(I)+
(

1− 1
m

)
pi ≤

(
2− 1

m

)
OPT(I),

where for the last inequality we have used the first inequality in (13).
This proves thatLIST is (2− 1/m)-approximative. Since we have already remarked

that LIST is in fact an online algorithm,LIST is also(2−1/m)-competitive for the online
variant of the problem in the sequence model. ¤

Form≥2, Albers [1] describes an online scheduling algorithm which is1.923-competitive.
Her algorithm tries to prevent schedules which distribute the load uniformly on all ma-
chines by keeping some machines with a “low” load whereas the other machines have a
“high” load. Form≥ 80, Albers [1] derives a lower bound of1.852 on the competitive
ratio of deterministic online algorithms for the machine scheduling problem.

In the offline case,LIST can easily be improved by taking advantage of the information
aboutI . In worst-case examples forLIST, the last job has a very long processing time. By
sorting the jobs in non-increasing order according to their processing times, i.e., processing
jobs with the longest processing times first, a better approximation ratio of4

3− 1
3m can be

achieved [28]. Since sorting is quite fast, this algorithm may still be applied to real-time
versions of machine scheduling problems where several jobs arrive simultaneously.

Example 3.8(Offline Traveling Salesman Problem Revisited). It is easy to see that for
the Traveling Salesman Problem (see Example 3.4), polynomial-time approximation al-
gorithms with constant performance ratio can only exist if the edge weights satisfy the
triangle inequality [26]. In this case, a2-approximative algorithm can be constructed using
a minimum spanning tree in the graph [40]. Christofides’ algorithm [21] also starts with
a minimum spanning tree. For the nodes with odd degree in this tree a shortest perfect
matching is computed. Then, a tour following a Eulerian walk in the multi-graph formed
by the spanning tree and the perfect matching is constructed. The solution found this way
is 3

2-approximative.
For the special case that the vertices in the input graph corresponds to points in the

Euclidean plane and the edge lengths are given by the Euclidean distances, Arora [2] and
independently Mitchell [37] have devised polynomial time approximation schemes.4 How-
ever, no practical implementation of these fairly complicated algorithms has been reported
yet. ¤

Real-time applications require that answers are computed onlineand within tight time
windows. The length of this time window is closely connected to the arrival times of
the requests. In view of the discussion of polynomial approximation algorithms, one may
define a real-time algorithm as an online algorithm that generates answers in constant or, at
least, in “suitably” low polynomial time. A concept for the evaluation of the performance
of real-time algorithms, that combines approximation aspects and time requirements in
a convincing manner, would be of great value for real-time applications. Up to now, no
convincing concept has been proposed.

3.4. Offline Heuristics (without provable worst-case performance guarantees).In some
applications, optimal or approximate solutions even for small problem instances cannot be
computed within the tight required real-time bounds. The typical approach in this case is to
look for algorithms that quickly produce a feasible solution and iteratively keep on improv-
ing the solution. There are general principles, such aslocal search(or more fashionable:
meta heuristics), that can be adapted to special applications and have indeed successfully
been applied to many real-world applications. For a comprehensive introduction to local
search we refer to [43, 23].

4An approximation scheme consists of a collection{ALGε : ε > 0} of algorithms whereALGε ε-approximate
and has polynomial running time.

COMBINATORIAL ONLINE OPTIMIZATION IN REAL TIME 13

Local search for a combinatorial optimization problem proceeds in the following way.
Let F be the set of all feasible solutions (also calledsolution space). For each feasible
solutionx∈F , one defines aneighborhoodNx⊆F containing all feasible solutions which
are “close“ tox and which can be reached fromx by applying certain modifications tox.
The solution spaceF is covered by the collection of neighborhoods{Nx : x∈ F }.

Starting from an initial feasible solution, local search moves from one feasible solution
to another, while storing the best solution found so far. Local search can thus be stopped at
any time and will always provide a feasible solution. In our context, local search algorithms
may thus be calledany-time algorithms. The initial solution for a local search algorithm
is usually generated using a starting heuristic. The local search algorithm terminates either
after a certain number of steps (in the context of real-time computation this may also be
after a user-defined time threshold) or according to some other stopping criterion with
respect to the objective function value.

The basic local search paradigm leaves open how a successorx′ ∈ Nx to the current
solutionx is selected. Different rules to select a successor lead to different incarnations of
local search. For instance, aGreedy-type local searchwould always choose the solution
with the best objective function value among all solutions inNx. However, since such an
algorithm can get stuck at local optima, various other approaches have been suggested in
the literature. InSimulated Annealingone accepts also successors with worse objective
function value but only with a certain probality which decreases over time.Tabu Search
is another implementation of local search which attempts to avoid a breakdown at local
optima. Other approaches include so calledimprovement heuristicslike k-opt. We refer
to [43, 23] for comprehensive survey.

Example 3.9(Dispatching Trams in Local Transport by Local Search). An example for
a powerful local search algorithm is the reactive tabu search (RTS) heuristic developed
by Battiti and Tecchiolli [11]. In RTS, the next solution in the neighborhood is chosen at
random while recording whether and how often this solution has been visited before. If a
re-visiting counter exceeds a threshold, some random steps are executed in order to leave
the previously visited neighborhood in which RTS threatens to stall. RTS is known to be
very effective for instances for quadratic assignment problems.

The real-time tram dispatch problem introduced in Example 3.1, requires to compute
tram assignments within two minutes. Reactive tabu search provided optimal solutions
for more than 80 percent of the considered real-world instances as well as for randomly
generated instances within these tight time bounds [50, 51]. ¤

4. GENERAL-PURPOSEONLINE-HEURISTICS

There are general principles which can be used to design an online algorithm.

4.1. FIFO. The FIFO-strategy does only make sense in the time stamp model. This ap-
proach to control the order in which requests are served completely works without regard
of efficiency issues:FIFO strictly serves requests in the order of appearance.

Although it is clear form the definition that this strategy is almost never cost-efficient it
is incredibly popular in production-planning and control. One reason for this might be that
FIFO has a desired side-effect: items in a production environment are delivered according
in the order of production, so that no newer items are sold (or used) before the old items
are cleared. One other reason is that aFIFO-heuristic is sometimes hidden in a control
system based on priority rules. These systems usually employFIFO as a tie-breaker inside
the priority classes. Whenever there are many requests in one priority class the efficiency
problem will take effect. Thus, a major problem for such controls is catching up after
system break-downs.

14 M. GRÖTSCHEL, S. O. KRUMKE, J. RAMBAU, T. WINTER, AND U. T. ZIMMERMANN

In principle it is possible to use any of the following strategies as a tie-breaker in a
priority-based control system. Therefore,FIFO—if not explicitely required—is usually an
inferior strategy whenever there is a substantial number of requests available for planning.

4.2. Greedy. Thegreedy algorithm is a well defined algorithm in the context of matroids
or independence systems in combinatorial optimization. In terms of online optimization
the notion of an algorithm being “greedy” is used for all kinds of algorithms which have in
common the following strategy: Make a “locally most promising” decision how to process
the next request.

In the sequence model theGREEDY principle amounts to serving the next request that
is revealed to the online algorithm by such an action that has least service cost. In the time
stamp model at any timeGREEDY serves that request (among the yet unserved requests)
next that can be served with the least cost with respect to the current system state. This is
one extremal case of local optimization:GREEDY only decides upon the next request to
be served, i.e., it does not plan into the future or does not consider the system state after
the service. That means, even when no other request arrives,GREEDY is very likely to be
sub-optimal. Moreover,GREEDY does not take into account possible future requests.

Although the aboveGREEDY-strategy is very shortsighted and the solutions produced
maybe sub-optimal it is very popular because it is

• easy to implement,
• usually real-time compliant, and
• it produces a stable, predictable behavior since no decision is revised.

However, if cost-efficiency is the main-goal one usually needs a more sophisticated ap-
proach.

4.3. Replan. The REPLAN-strategy for an online problem in the time stamp model as-
sumes that we have a method that computes an optimal (or almost optimal) solution to the
static optimization problem (the correspondingoffline-problem) at a specific point in time.
Note that, in a realistic environment, this imposes the restriction of real-time compliance
on the algorithms used to compute the optimum of the offline-problem (see Section 3).

While theGREEDY-approach 4.2 acted as locally as one could think, forREPLAN we
find the other extreme case: at any timeREPLAN tries to be “as globally optimal as possi-
ble”, given the information it has at that point.

More specific:REPLAN maintains a “plan” containing the information on how to serve
the already known requests. This plan is followed as long as no relevant event happens.
Whenever a relevant event happens (a new request arrives, a change of the system state
gives rise to a new cost of the current solution, etc.),REPLAN computes a cheapest solution
of all known request in the current system state. Due to its nature,REPLAN is also called
REOPT in the literature.

At any point in time we compute an optimal solution that is globally optimal at that
particular moment. However, with respect to the complete instance the current solution
is yet only locally optimal. Whenever a new request arrives the plan maybe revised, and
the global efficiency of the old plan is never really exploited since only the first couple of
requests have been served according to that plan.

A more serious problem, however, is the fact thatREPLAN can completely revise all
decisions for which this is still possible. This often leads to an unpredictable behavior over
time. One can even produce “oscillating” solutions. This means the following: assume,
e.g., at some point in time, we find an optimal solution serving some requestr of typeA
before another requestr ′ of typeB. Before we can server, a new request of typeB arrives.
Now the optimal plan may suggest to server ′ prior to r. But then there might arrive a new
request of typeA changing the plan back, and so on.

COMBINATORIAL ONLINE OPTIMIZATION IN REAL TIME 15

4.4. Ignore. The IGNORE-strategy also assumes that we are working in the time stamp
model and that we have a way of computing (sub-) optimal solutions to the static (offline)
version of the problem. The main idea of this method is to make sure that the efficiency
of an optimal offline-solution computed at a certain point in time be exploited completely.
More important even: once we computed an optimal plan it is absolutely predictable how
the system will work in the near future.

The way it works is the following:IGNORE again maintains a plan. In contrast to
REPLAN, the strategyIGNORE will stubbornly serve requests according to this plan until
the plan is finished. Upcoming requests are temporarily ignored and collected in a buffer.
When the current plan is finishedIGNORE computes a new plan optimizing the service of
all not yet served requests.

Although IGNORE might give away optimization potential by temporarily ignoring re-
quests it still exploits optimization. Moreover, the upcoming requests that fit “very well”
into the old plan (i.e., with no cost) can be incorporated with no harm.

We illustrate the general purpose strategiesFIFO, GREEDY, IGNORE andREPLAN for
the Online Traveling Salesman Problem:

Example 4.1(Online TSP Revisited). Applying FIFO to the Online Traveling Salesman
Problem leads to a tour that visits all cities in the order of appearance. If not required by
other constraints this is certainly not the best choice.

The GREEDY-heuristic for the Online Traveling Salesman Problem means the follow-
ing: At any point in time visit the closest city next. It is known that this can lead to a
very inefficient solution. In some practical applications of the Online Traveling Salesman
Problem, however, the experience shows that even this simple heuristics is acceptable.

Whenever a new city becomes known theREPLAN-heuristic computes an optimal tour
(according to the objective function used to model the cost) visiting all cities known so far.
This tour is followed until the next city pops up.

The observed performance depends heavily on the application. In practical instances
it maybe necessary to cope with the problem ofsystem break-downs: the salesman has to
interrupt his work at some point. During the break the number of unserved requests in-
creases, and so does the gain of offline-optimization of all unserved requests. For instance,
an automatic storage system where transportation tasks are served by a stacker crane can
be modeled as an asymmetric Online Traveling Salesman Problem (see [4, 5]). In this
specific application unexpected system break-downs of the automatic storage system may
occur. During the forced idle period of the server a lot of requests pile up. All these re-
quests can be taken into account byREPLAN when the server resumes. Thus, it is plausible
thatREPLAN yields a goodrecovery method.

The effort to get the necessary offline-solutions is usually large and not always real-
time compliant. This, however, could be achieved in cases where good approximation
algorithms (see Section 3.3) exist, like in the metric case (see Example 3.8).

The methodIGNORE waits for the first city to be “released”. Then it moves its salesman
to that city. Once arrived, it computes an optimal tour through all the cities that have been
released during the time the salesman was underway. Then this tour is completely traveled.
At the end of the tour, the cities that have become known in the meantime are planned.

Again, the success of this method in realistic systems modeled by variants of this prob-
lem is application dependent. Simulation experiments show that in single server systems
there usually is a substantial gain in stability and predictability of the system behavior over
REPLAN. ¤

4.5. Chasing the Offline Optimum and Balancing Costs.Suppose that there aren (system-
) statess1, . . . ,sn in which an algorithm can be and that the service cost for a request de-
pends (only) on the current state. Moreover, there is a cost for changing states. (This
situation can be stated more formally as aMetrical Task System, see [15]).

16 M. GRÖTSCHEL, S. O. KRUMKE, J. RAMBAU, T. WINTER, AND U. T. ZIMMERMANN

Upon arrival of a new requestr i , the strategy ofchasing the offline optimumchanges to
that statesj in which the offline optimum for the sequencer1, . . . , r i would processr i . A
balancing coststype algorithm would change from the current states to that states′ which
minimizes some function of the following two values: (i) the charge for changing froms
to s′, and (ii) the cost of servingr i in s′. The most famous representative of the latter class is
thework function algorithmwhich has been successfully applied to the theoretical analysis
of the Paging Problem and thek-Server Problem [15, 35].

5. SIMULATION

One can view simulation as a method of checking industrial system layouts and associ-
ated algorithms by an organized sequence of computer based experiments and evaluations.
This takes place, of course, on the border line of mathematics and engineering. Therefore,
we cannot hope for exact mathematical definitions of all relevant objects in the realm of
simulation.

In this section we informally describe the method ofdiscrete event basedsimulation
and address issues that may come up during the process of modeling and computing. More
elementary information can be found in [45].

5.1. Why Simulation? The theoretical background surveyed in Section 2 leads to math-
ematical problems of substantial difficulty, even for seemingly easy online optimization
problems. On the other hand, the performance guarantees achieved by these methods are
often very poor. This renders competitive analysis problematic for most industrial pur-
poses. In this case, evaluation and comparison of the practical performance of online
algorithms are necessary.

There are new theoretical developments—one of them in this volume—that provide
some improvements in this area; the final decision about which algorithm to choose in
practice, however, is usually done on the basis of simulation experiments.

5.2. Discrete Event Based Simulation.Simulating an aspect of the real world on a com-
puter requires a quantitative definition of the relevant part of the real world. This is referred
to as thesystem. The system may consist of severalcomponents. In order to investigate
waiting time distributions in a supermarket consider, e.g., the check-out area in that super-
market as the system. This system consists of several cashiers, waiting queues, etc.

The part of the real world outside the system is usually calledenvironment. Sometimes
there is a feed-back between system and environment, and it is at times a difficult modeling
issue to find a suitable separation. The system interacts with the environment by producing
an output of the system for an input of the environment.

In the area of online optimization we are usually concerned withdynamic systems, i.e.,
the system parameters change over time. For example, the lengths of the lines at the
cashiers in the supermarket are not constant. Moreover, in the realm of combinatorial
online optimization it is usually possible to find discrete points in time where the system
changes its state. Such systems are calledtime-discrete. In the sequel we restrict ourselves
to time-discrete systems.

A simulation modelis a translation of the relevant parameters of the system into math-
ematical language so that the behavior of the system over time can be investigated by a
computer calculation. In this step it is necessary to specify the components and theirat-
tributes that one would like to keep track of. Very important attributes arestrategiesor
algorithmsthat hold information about how components react on system events. Some at-
tributes are time-dependent, some are not. In the supermarket example we could specify a
component “cashier” and a component “customer”. The attributes for a cashier, e.g., could
beopen/closed, operator speed, length of line.

The changes of a time-discrete system over time is described byEvents. First, an event
specifies a system transition function that assigns to every possible system state a new

COMBINATORIAL ONLINE OPTIMIZATION IN REAL TIME 17

system state. Second, it defines a successor function that assigns to every system state a
set of succeeding events together with their time of occurrence.

In the supermarket example the event “customer arrives in line at cashieri” can be
formalized as follows: for all current system states the new system state incorporates the
following changes: the queue at cashieri contains a new customer, and the set of succeed-
ing events is empty.

The event “customer is being served at cashieri” can be defined as follows: the cus-
tomer is no longer in the corresponding queue, and there is one successor event, namely
“customer leaves the system” in five seconds times number of items in shopping cart from
now.

Simulationmeans computing the output of the system (over time) for a given input (over
time) of the environment. InDiscrete Event Based Simulationthis is done by dynamically
processing events, i.e., computing the system states and the successor events until no events
are left or a specified time is over. To start the simulation one uses environment input events
modeling the input of the environment to the system.

An example of a discrete event based simulation system is the library AMSEL [3]. It
was used in the investigations in [29].

5.3. Issues for the Practitioner. The quality of an evaluation of algorithms by means of
simulation experiments heavily depends on the input data used. The following ways of
generating input data are common:

• Generate data according to a probability distribution (random data).
Advantages:It is possible to generate an arbitrarily large set of test data.
Draw-backs:A realistic probability distribution maybe hard to come by.

• Compile data in the system under consideration.
Advantages:One can adjust parameters of the simulation model by comparing

the outcome of the simulation experiments with the outcome in the real world
operation.

Draw-backs:Compiling the data is extremely time-consuming, often it is not
clear whether the compilation contains typical or unusual data.

Although we are advertising here the use of simulation for the performance evaluation of
online algorithms we are aware of the fact that simulation experiments may be misguiding.
It is a nontrivial matter to come up with meaningful and representative simulation tests.

6. CONCLUSION

More and more industrial decision makers appear to understand the issues coming up in
online and real-time systems. Solution techniques are requested in a range of applications
which will certainly improve research and development in online and real-time algorithms.

We have introduced the concept of competitive analysis as a mathematical method for
the evaluation of combinatorial online-algorithms resulting in provable performance guar-
antees. A shortcoming of this approach is that it does not take into account the real-time
requirements that are present in many real-world systems. Moreover, for complex systems
and complicated algorithms a rigorous competitive analysis is in most cases impossible.

Thus, using this method on elementary problems that are similar to the given complex
problems seems to be the right utilization: it is possible to get an idea about what kind of
strategies are promising for real-world systems and why.

There are new developments in the area of theoretical evaluation of online-algorithms [30];
this field is, however, still in its childhood.

Most online-strategies caring about cost efficiency employ offline-algorithms. Here the
need for real-time compliant methods is apparent. Theoretical concepts to get a hand on
the issue that a solution is computed under circumstances that might have changed when

18 M. GRÖTSCHEL, S. O. KRUMKE, J. RAMBAU, T. WINTER, AND U. T. ZIMMERMANN

the computation finishes are not yet available. Some achievements are presented in this
volume.

After all, up to now there is no way to replace the experience in simulation experi-
ments completely by a purely theoretical concept for evaluation of combinatorial online-
algorithms.

REFERENCES

[1] S. Albers,Better bounds for online scheduling, Proceedings of the 24th Annual ACM Symposium on the
Theory of Computing, 1997, pp. 130–139.

[2] S. Arora,Polynomial-time approximation schemes for euclidean TSP and other geometric problems, Pro-
ceedings of the 38th Annual IEEE Symposium on the Foundations of Computer Science, 1997, pp. 2–11.

[3] N. Ascheuer, Amsel—a modelling and simulation environment library, Online-Documentation at
http://www.zib.de/ascheuer/AMSEL.html .

[4] , Hamiltonian path problems in the on-line optimization of flexible manufacturing systems, Ph.D.
thesis, Technische Universität Berlin, 1995.

[5] N. Ascheuer, M. Gr̈otschel, N. Kamin, and J. Rambau,Combinatorial online optimization in practice,
Optima – Mathematical Programming Society Newsletter (1998), no. 57, 1–6.

[6] N. Ascheuer, S. O. Krumke, and J. Rambau,Online dial-a-ride problems: Minimizing the completion time,
Proceedings of the 17th International Symposium on Theoretical Aspects of Computer Science, Lecture
Notes in Computer Science, vol. 1770, Springer, 2000, pp. 639–650.

[7] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi,Complexity and
approximation. combinatorial optimization problems and their approximability properties, Springer, 1999.

[8] G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo,Competitive algorithms for the traveling
salesman, Proceedings of the 4th Workshop on Algorithms and Data Structures, Lecture Notes in Computer
Science, vol. 955, August 1995, pp. 206–217.

[9] , Algorithms for the on-line traveling salesman, Algorithmica (2001), To appear.
[10] B. Awerbuch, Y. Bartal, and A. Fiat,Distributed paging for general networks, Proceedings of the 7th Annual

ACM-SIAM Symposium on Discrete Algorithms, 1996, pp. 574–583.
[11] R. Battiti and G. Tecchiolli,The reactive tabu search, ORSA journal on computing6 (1994), no. 2, 126–140.
[12] R. E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling,MIP: Theory and practice closing the gap,

ILOG Technical Report, Presented at 19th IFIP TC7 Conference on System Modelling and Optimization,
Cambridge, England, July 1999.

[13] U. Blasum, M. R. Bussieck, W. Hochstättler, H. H. Scheel, and T. Winter,Scheduling trams in the morning,
Mathematical Methods of Operations Research49 (1999), no. 1, 137–148.

[14] M. Blom, S. O. Krumke, W. E. de Paepe, and L. Stougie,The online-TSP against fair adversaries, Proceed-
ings of the 4th Italian Conference on Algorithms and Complexity, Lecture Notes in Computer Science, vol.
1767, Springer, 2000, pp. 137–149.

[15] A. Borodin and R. El-Yaniv,Online computation and competitive analysis, Cambridge University Press,
1998.

[16] A. Borodin, S. Irani, P. Raghavan, and B. Schieber,Competitive paging with locality of reference, Proceed-
ings of the 23th Annual ACM Symposium on the Theory of Computing, 1991, pp. 249–259.

[17] , Competitive paging with locality of reference, Journal of Computer and System Sciences50(1995),
244–258.

[18] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. P. Williamson,Adversarial queueing theory,
Proceedings of the 23rd Annual ACM Symposium on the Theory of Computing, 1996, pp. 376–385.

[19] A. Brooke, D. Kendrick, A. Meeraus, and R. Raman,GAMS - a user’s guide, GAMS Development Corpo-
ratio, 1998.

[20] E. Çela,The quadratic assignment problem. theory and algorithms, Kluwer Academic Publishers, Dor-
drecht, 1998.

[21] N. Christofides,Worst-case analysis of a new heuristic for the traveling salesman problem, Tech. report,
Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, PA, 1976.

[22] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver,Combinatorial optimization, Wiley
Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, 1998.

[23] J. K. Lenstra E. H. L. Aarts,Local search in combinatorial optimizatio, Wiley, 1997.
[24] A. Fiat and G. J. Woeginger (eds.),Online algorithms: The state of the art, Lecture Notes in Computer

Science, vol. 1442, Springer, 1998.
[25] R. Fourer, D. M. Gay, and B. W. Kernighan,AMPL: A modeling language for mathematical programming,

Duxbury Press, Brooks/Cole Publishing Company, 1993.
[26] M. R. Garey and D. S. Johnson,Computers and intractability (a guide to the theory ofNP-completeness),

W.H. Freeman and Company, New York, 1979.

COMBINATORIAL ONLINE OPTIMIZATION IN REAL TIME 19

[27] R. L. Graham,Bounds for certain multiprocessing anomalies, Bell System Technical Journal45 (1966),
1563–1581.

[28] Ronald L. Graham,Bounds on multiprocessing timing anomalies, SIAM Journal on Applied Mathematics
17 (1969), 263–269.

[29] M. Grötschel, S. O. Krumke, and J. Rambau,Forschungsartikel, ch. This book, Springer, 2001.
[30] D. Hauptmeier, S. O. Krumke, and J. Rambau,The online dial-a-ride problem under reasonable load, Pro-

ceedings of the 4th Italian Conference on Algorithms and Complexity, Lecture Notes in Computer Science,
vol. 1767, Springer, 2000, pp. 125–136.

[31] D. S. Hochbaum (ed.),Approximation algorithms forNP-hard problems, PWS Publishing Company, 20
Park Plaza, Boston, MA 02116–4324, 1997.

[32] S. Irani, A. Karlin, and S. Phillips,Strongly competitive algorithms for paging with locality of reference,
Proceedings of the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms, 1992, pp. 228–236.

[33] A. Karlin, M. Manasse, L. Rudolph, and D. D. Sleator,Competitive snoopy caching, Algorithmica3 (1988),
79–119.

[34] E. Koutsoupias and C. Papadimitriou,Beyond competitive analysis, Proceedings of the 35th Annual IEEE
Symposium on the Foundations of Computer Science, 1994, pp. 394–400.

[35] , On thek-server conjecture, Journal of the ACM42 (1995), no. 5, 971–983.
[36] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys (eds.),The traveling salesman

problem, Wiley-Interscience series in discrete mathematics, John Wiley & Sons, 1985.
[37] J. S. B. Mitchell,Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time

approximation scheme for geometric tsp,k-mst, and related problems, SIAM Journal on Computing28
(1999), no. 4, 1298–1309.

[38] R. Motwani,Lecture notes on approximation algorithms: Volume I, Tech. Report CS-TR-92-1435, Depart-
ment of Computer Science, Stanford University, Stanford, CA 94305-2140, 1992.

[39] R. Motwani and P. Raghavan,Randomized algorithms, Cambridge University Press, 1995.
[40] C. H. Papadimitriou and K. Steiglitz,Combinatorial optimization, Prentice-Hall, Inc., 1982.
[41] C. Phillips, C. Stein, E. Torng, and J. Wein,Optimal time-critical scheduling via resource augmentation,

Proceedings of the 29th Annual ACM Symposium on the Theory of Computing, 1997, pp. 140–149.
[42] K. Pruhs and B. Kalyanasundaram,Speed is as powerful as clairvoyance, Proceedings of the 36th Annual

IEEE Symposium on the Foundations of Computer Science, 1995, pp. 214–221.
[43] C. R. Reeves,Modern heuristic techniques for combinatorial problems, McGraw-Hill, 1995.
[44] S. Śeguin, J.-Y. Potvin, M. Gendreau, T. G. Crainic, and P. Marcotte,Real-time decision problems: An

operational research perspective, Journal of the Operational Research Society48 (1997), 162–174.
[45] H.-J. Siegert,Simulation zeitdiskreter systeme, Oldenbourg, M̈unchen, Wien, 1991.
[46] D. D. Sleator and R. E. Tarjan,Amortized efficiency of list update and paging rules, Communications of the

ACM 28 (1985), no. 2, 202–208.
[47] D. Steenken, T. Winter, and U. T. Zimmermann,Stowage and transport optimization in ship planning,

(2001).
[48] V. Vazirani,Approximation algorithms, Springer, 2001.
[49] A. P. A. Vestjens,On-line machine scheduling, Ph.D. thesis, Eindhoven University of Technology, Eind-

hoven, The Netherlands, 1994.
[50] T. Winter, Online and real-time dispatching problems, Ph.D. thesis, Technical University Braunschweig,

1999.
[51] T. Winter and U. T. Zimmerman,Real-time dispatch of trams in storage yards, Annals of Operations Re-

search96 (2000), 287–315.

MARTIN GRÖTSCHEL, KONRAD-ZUSE-ZENTRUM FÜR INFORMATIONSTECHNIK BERLIN

SVEN O. KRUMKE, KONRAD-ZUSE-ZENTRUM FÜR INFORMATIONSTECHNIK BERLIN

JÖRG RAMBAU , KONRAD-ZUSE-ZENTRUM FÜR INFORMATIONSTECHNIK BERLIN

THOMAS WINTER, SIEMENS AG (INFORMATION AND COMMUNICATION MOBILE NETWORKS) BERLIN

UWE T. ZIMMERMANN , INSTITUT FÜR MATHEMATIK DER UNIVERSITÄT BRAUNSCHWEIG

