
Freie Universität Berlin

Master’s Thesis

Shortest Paths on Airway Networks

Author:
Adam Schienle

Referees:
Prof. Dr. Ralf Borndörfer

Prof. Dr. Alexander Bockmayr

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Department of Mathematics

02 August 2016

Abstract

We study the Horizontal Flight Trajectory Optimisation Problem (hftop), where one
has to find a cost-minimal aircraft trajectory between to airports s, t on the Airway
Network, a directed graph. To this end, we distinguish three cases: a static one where
no wind is blowing, and two cases where we regard the wind as a function of time. This
allows us to model hftop as a Shortest Path Problem in the first case and a Time-
Dependent Shortest Path Problem in the latter cases. While both of these problems are
well-studied on road networks, the Airway Network we use was hitherto little considered
in the literature.

In the static case, we compare the runtimes of Dijkstra’s algorithm to those of A* and
Contraction Hierarchies (chs), the latter one being a state-of-the-art routing algorithm
on road networks. We show that A* guided by a great-circle-distance potential yields
speedups competitive to those of chs.

In the time-dependent version, we study two different modelling approaches. Firstly,
we compute the exact costs for the time on the arcs. In a second version, we use piecewise
linear functions as the travel time. For both versions, we establish a criterion by which
to check whether a given instance of hftop satisfies the FIFO property. Furthermore,
we design problem-specific potential functions for the A* algorithm in both the PWL
and the exact case. As the exact costs are non-linear, we introduce the notion of Super-
Optimal Wind to underestimate the travel time on the arcs, and show that the Super-
Optimal Wind yields a good underestimation in theory and an excellent approximation
in practice. Moreover, we compare the runtimes of the time dependent versions of
Dijkstra’s Algorithm, A* and Time-dependent Contraction Hierarchies (tchs) in the
PWL case, showing that A* outperforms Dijkstra’s Algorithm by a factor of 25 and
tchs by a factor of more than 16.

For the exact case, we compare Dijkstra’s Algorithm to A* and show that using
Super-Optimal Wind to guide the search leads to an average speedup of ×20. We also
computationally assess the error of the PWL approximation with respect to the exact
solution.

Eigenständigkeitserklärung
Hiermit erkläre ich, nachfolgende Arbeit eigenständig und ohne Hilfe Dritter angefertigt
zu haben. Alle Übernahmen aus der Literatur sind als solche gekennzeichnet und im
Literaturverzeichnis aufgelistet.

Hereby I confirm that the work contained in this thesis is my own unless otherwise
stated. All adoptions of literature have been referenced as such and are listed in the
References section.

Berlin, 02 August 2016

Adam Schienle

Acknowledgements
This thesis arose from the project “Flight Trajectory Optimization on Airway Networks”
at Zuse-Institute Berlin. I would like to thank the project team, in particular Prof. Dr.
Ralf Borndörfer, Dr. Nam Dũng Hoàng and Marco Blanco for giving me the opportunity
to work in the project and supervising my thesis. Lufthansa Systems supported the
project, and thus, this work, for which I am grateful.

Thanks go to my family and friends for their continued support during writing this
thesis.

i

Contents

1 Introduction and Basics 1
1.1 Introduction . 1
1.2 Reviewing the Flight Trajectory Optimisation Problem 3
1.3 Shortest Path Problem: A Review of Algorithmic Approaches 3
1.4 Our Contributions . 5
1.5 Outline . 6
1.6 The Notational Ground . 6

2 The Horizontal Flight Trajectory Optimisation Problem 9
2.1 An Aeronautics Primer . 9
2.2 The Flight Trajectory Optimisation Problem 9
2.3 The Horizontal Flight Trajectory Optimisation Problem 11

2.3.1 Modelling HFTOP . 12
2.3.2 How To: Obtain a TTF . 13

3 Algorithms for the Shortest Path Problem 17
3.1 Dijkstra’s Algorithm . 17

3.1.1 The Static Case . 17
3.1.2 Bidirectional Dijsktra . 20
3.1.3 The Time-Dependent Case . 20

3.2 A* . 23
3.2.1 A* in the Time-Dependent Case 27

3.3 Contraction Hierarchies . 28
3.3.1 Contraction Hierarchies in the Static Case 28
3.3.2 Contraction Hierarchies in the Time-Dependent Case 33

4 Algorithms for HFTOP 35
4.1 The Static Case . 35
4.2 The Exact Time Dependent Case . 36

4.2.1 The Super-Optimal Wind Potential Function 41
4.2.2 Minimising the Crosswind and Maximising the Trackwind 47
4.2.3 Super-Optimal Wind in Practice 51

4.3 Approximating the Travel Time Function 51

iii

Contents

5 Computational Results 55
5.1 Instances . 55
5.2 Results in the Static Case . 56
5.3 Results in the PWL Case . 57
5.4 Results in the Exact Case . 58

6 Conclusion 62

Bibliography 63

iv

1 Introduction and Basics

1.1 Introduction
With passenger air travel rising from year to year[Int16b], and the high fuel burn linked
with it, reducing fuel consumption is one of the goals in the aviation industry. While
this can in part be achieved through bigger aircraft or revised design, we will in this
thesis focus on another important factor, namely the actual route an aircraft takes.

Planning a route is part of the process of flying: a dispatcher computes and submits
a route to Air Traffic Control (ATC), who then accept or reject it. If accepted, the
pilots must adhere to the planned route, and any deviations need to be approved by
ATC. Commonly, a route is planned a few hours before the flight takes place, and takes
into consideration many factors, the most important one being the fuel consumption en
route. According to the Air Transport Action Group ATAG[Air16], the aviation industry
burns around 1.5 billion barrels of Jet-A fuel per year, corresponding to 238.5 trillion
litres, or roughly 82.4 billion USD[Int16a]. Even saving just 0.5% would add up to 1.2
billion litres (or 411.8 million USD) annually. Not only on a global scale, but also on
an airline scale, savings can have a visible impact: according to Lufthansa[Luf15], their
total fuel consumption in 2014 amounted to almost 8.9 million tons (6.9 billion litres). If
one saves 0.5%, this means 19.2 million USD (35 million litres) per year, which yields not
only a financial benefit for the airline involved, but also reduces the impact of aviation
on the environment. The latter becomes apparent when considering the CO2 emissions
published by Lufthansa[Luf15]: their annual CO2 emissions amount to 27.8 million tons.
Saving 0.5% corresponds to 139 000 tons less CO2 being released into the atmosphere.

One of the main problems in flight planning is the influence of wind. Aircraft typically
fly at altitudes around FL330 (≈ 10km), with strong high altitude winds blowing. These
winds are taken into the extreme in jet streams, high altitude circum-polar winds always
blowing in easterly direction (on the northern hemisphere). Their effect is noticeable to
anybody flying for example from London to New York and back: the return trip may
be up to two hours shorter than the outbound flight. The reason for this is that in the
latter case, the aircraft circumnavigates the strong headwinds, while in the former one,
it can travel at ease on the jet stream[Cri15]. But not only jet streams, even ordinary
low pressure areas can create powerful winds in some altitudes, which aircraft can either
use to their advantage or which they have to circumnavigate to avoid delay or, indeed,
passenger discomfort. Two different minimum time trajectories, one without wind, the
other considering it, can be found in Figure 1.1.

1

1 Introduction and Basics

Figure 1.1: Two trajectories for the route from London to New York City. The static route
is shown in yellow, the wind-dependent route in red (Image data: Google Earth,
Digital Globe).

Intuitively, aircraft fly faster and more efficiently when being pushed along by tail-
winds, while crosswinds hamper an aircraft’s flight. For that reason, one tries to choose
routes which exhibit these favourable conditions, and at the same time avoid routes with
strong headwinds – all the while aiming to find the most efficient route.

For passengers, another aspect is important: if possible, the flight time should be as
short as possible. In the way we model the problem, less fuel consumption also means
shorter flight times, thus incorporating both aspects.

Nevertheless, overcrowding of airspaces may cause ATC to reject any submitted flight,
as may inclement weather on the route. The avoidance of certain hazardous areas only
renders the problem more difficult; but since reliable weather prognoses are only available
a few hours in advance and ATC have to approve of any scheduled flight, there often
is little time for planning. It is therefore paramount that flight planning takes as little
time as possible while taking account of all constraints. Mathematically, we model flight
planning as a shortest path problem (see the following chapter), which then needs to be
solved efficiently – in particular, the actual query for the shortest path should be as fast
as possible. This is the main goal of thesis at hand: we look into search algorithms for the
shortest path problem, which solve it optimally and in as little time as possible. While
these have been extensively studied for road networks, to the best of our knowledge there
is no work available for aircraft routing in this particular setting.

2

1.2 Reviewing the Flight Trajectory Optimisation Problem

1.2 Reviewing the Flight Trajectory Optimisation Problem

The scientific literature on flight planning approaches is scarce. One of the earliest
approaches dates back to 1974’s technical report by de Jong [dJ74], in which he first
describes a 2D solution to the problem through various methods in continuous optimisa-
tion, assuming that free flight between any two points on the earth is possible. He then
goes on to describe a graph which results from restricting traffic in some regions, and
compares both approaches to each other. He continues by considering a 3D graph with
instantaneous climb and descent, however, nodes in this graph are grouped, and edges
only exist between these groups.

In [BOSS13], Bonami et al describe a multiphase mixed-integer approach to the prob-
lem, in which they combine optimal control and mixed-integer non-linear programming.
The actual route, defined by waypoints, is described by integer variables, whereas ex-
ternal conditions such as wind are modelled through continuous variables. The authors
study the case of a route from New York to Rome, using a restricted set of waypoints
and a heuristic to solve it.

Modern aviation uses a very strict regulatory system where aircraft have to adhere
to certain roads similar to the ones described by de Jong, or Bonami et al. This so-
called Airway Network is for instance defined in [KASS12]. Here, the authors Karisch
et al model the Flight Trajectory Optimisation Problem on this network, and propose a
graph-theoretical solution. They consider a full 3D model of the Airway Network, and let
the aircraft’s speed constitute another dimension, thus yielding a 4D graph theoretical
optimisation approach. As the full 4D approach is difficult to solve to optimality, they
further consider a 2D+2D approach, where in a first step the aircraft’s trajectory is
optimised horizontally, and in a second step, the vertical profile and speed are optimised.
We shall follow their idea, and use the real-world Airway Network as provided to us by
Lufthansa Systems.

1.3 Shortest Path Problem: A Review of Algorithmic
Approaches

The Shortest Path Problem (spp) is one of the best-known problems in discrete opti-
misation. Given a graph with weighted arcs and two nodes, one seeks to find a path
between these nodes such that the sum of the arc weights along the path is minimal. Its
widespread applications range from traffic routing to social networks and even computer
games, rendering it a well-studied problem. Consequently, there are many algorithms
available for spp – for a comprehensive survey, see [BDG+15].

The arguably most important algorithm dates back to 1959, when E. Dijkstra devel-
oped his famous algorithm for shortest paths (see [Dij59]). Under mild assumptions,
Dijkstra’s algorithm solves the spp in polynomial time, but in practice, it does not scale

3

1 Introduction and Basics

well with the input size. For that reason, several algorithms have been developed to
tackle various input sizes and graph types, but many of them are based on Dijkstra’s
invention. Some approaches use extra information about the given graph such as a geo-
graphical or physical embedding, whereas other fairly recent ideas aim to delegate parts
of the search for a shortest path into a preprocessing step, where the graph is prepared
for the query to obtain better runtimes.

An approach requiring extra information about the graph was introduced by Hart,
Nilsson and Raphael [HNR68], who developed a goal-directed technique called A* in
1968. This algorithm uses a potential function which underestimates the actual distance
from each node to the target node to guide the search toward the latter. An obvious
example for such a function on road networks is the great circle distance, as it certainly
underestimates the actual travel distance. Unfortunately, in practice this yields a poor
underestimator, as shown in [GH04]. One possible reason for this is that road networks
exhibit a more grid-like topology, and hence subpaths of the shortest route might not
follow the geodesic connecting the path’s endpoints. Furthermore, natural obstacles such
as mountain ranges or rivers may obstruct a path. As these are less of a problem in
flight, A* is still an attractive choice; we will in the course of this thesis introduce A*
and design a problem-specific potential function which yields a speedup over Dijkstra’s
algorithm.

In recent years, many speedup techniques have been developed which take but a
fraction of the time used by Dijkstra’s algorithm, at the expense of space- and time
consuming preprocessing. One of them is based on A*: one chooses a (small) set of
landmarks and precomputes the distances between them and all other nodes within the
graph, by running all-to-one Dijkstra searches. Together with the triangle inequality,
this yields a set of potential functions for the graph, all yielding lower bounds for the
actual distance from any node to the target node. As the authors note in [BDG+15], one
usually picks the maximum of these values if several potential functions are available,
leading to the alt algorithm (for A*, Landmarks and the T riangle inequality). The
main intricacy in this approach is to find a good set of landmarks, which should lie close
to a vast number of shortest paths. One can combine alt with hierarchical approaches
for speedup, see [BDS+08].

Contraction Hierarchies (chs) as introduced in [GSSV12] as well as its time-dependent
sibling, Time-Dependent Contraction Hierarchies (tchs) (see [BDSV09]), is a very mod-
ern approach toward routing. Both variants focus on preprocessing the whole graph and
introducing a number of shortcut edges, thus speeding up the query by a considerable
factor. They are among the fastest algorithms for the shortest path problem, which ren-
ders them a natural choice to be considered. While they have been extensively studied
on road networks, to the best of our knowledge, they have not yet been used in flight
planning. Our experiments show that their speedup drops significantly when they are
applied to this problem.

Hub Labeling is an approach which in a preprocessing step computes distances labels.

4

1.4 Our Contributions

These distance labels are then scanned in the query stage in order to find a shortest path,
thus processing but a fraction of the vertices of a graph. It was expanded to Hierarchical
Hub Labeling by Abraham et al in [ADGW12]. While this approach yields excellent
query times on such diverse graphs as road networks or small world graphs (compare
[DGPW14]), to the best of our knowledge, there exists no time-dependent version of
Hierarchical Hub Labeling, thus rendering the algorithm unsuitable for our problem.

Another approach combines hierarchies and special labels on the arcs, called arc flags,
to lead the query toward the goal, thus giving rise to the sharc algorithm. It can be
extended to a time-dependent version, as is shown in [Del08]. However, in [DW09] the
authors deem other hierarchical algorithms as tchs superior to sharc due to their lower
preprocessing times.

Due to the nature of our problem, excessive preprocessing is prohibitive; in particu-
lar, computing distance tables together with a lookup query is not feasible, as weather
conditions may render routes unattractive and computing times would be long any-
way. For that reason, we will in this thesis concentrate on Dijkstra’s algorithm, A* and
Contraction Hierarchies, and compare their performances.

1.4 Our Contributions

We contribute to solving the Flight Trajectory Optimisation Problem by designing a
new version of the A* algorithm. On road networks with static arc costs, A* does
not lead to good results and is outperformed by other methods such as Contraction
Hierarchies (chs). On the Airway Network, however, our static version of A* yields a
speedup competitive with that of chs, but, as opposed to the latter, does not need any
preprocessing.

A possible reason for these results is that although its design shares many facets of
road networks, the Airway Network is essentially different in some aspects such as size –
instances of the Airway Network have roughly 100 000 nodes and 350 000 arcs – average
degree, or in that shortest paths have much fewer edges than in a road network.

In our setup, also the influence of wind on a route is very important: tailwinds push
aircraft along their routes, headwinds and crosswinds slow them down. As winds change
over time, this renders the problem highly time-dependent. Therefore, we also introduce
two time-dependent solutions to the problem: one using the exact travel time functions
on the arcs, and another one interpolating these through piecewise linear functions. Since
time-dependency requires the FIFO property to be satisfied, we propose a criterion by
which to check whether the resulting travel time functions satisfy this property.

As part of the design of the time-dependent A* algorithm, we introduce a feasible
potential function underestimating the travel time from each node to the target. As
computing the exact minimum travel time is rather costly, we underestimate it through
Super-Optimal Wind, and artificial wind vector which is at least as good as all possible

5

1 Introduction and Basics

wind vectors for an arc. This Super-Optimal Wind computation can be done very
efficiently: we prove that it is very good in the sense that its absolute error with respect
to the actual optimum is bounded linearly in an a-priori error estimate, and in practice,
our computations show that it is in fact an excellent underestimation, with a relative
error of less than 0.5%. Furthermore, the Super-Optimal Wind can be computed fast,
taking just 5.6 seconds for all arcs.

Computationally, we show that in the Airway Network, contrary to road networks,
the time-dependent version of A* dominates Time-dependent Contraction Hierarchies
(tchs) by more than one order of magnitude in terms of query time, while maintaining
much lower preprocessing times. Using the potential function resulting from the Super-
Optimal Wind, our version of the time-dependent A* algorithm solves a shortest path
query in an average runtime of just 4.5 ms.

1.5 Outline
As to how this thesis is structured, we proceed as follows: in the next section, we lay out
the notation for the rest of the thesis. In the subsequent Chapter 2, we shall introduce
the problem in a more rigorous way. We will explain how we model it and which parts of
the problem are of the most interest to us. Chapter 3 sees the theoretical introduction of
Dijkstra’s algorithm, A* and chs. We motivate and describe them before proving their
correctness.

In Chapter 4, we begin by introducing a criterion by which to check whether our choices
of travel time functions satisfy the FIFO property. We then go on to design Super-
Optimal Wind, a problem-specific underestimator to be used as a potential function by
A*. Its quality is asserted both in theory and in practice. Our computational results are
found in Chapter 5, where we assess the quality of A* and chs and their time-dependent
sibling on real world instances. We end this thesis with a few concluding remarks in
Chapter 6.

1.6 The Notational Ground
In this section, we shall develop the notation we are going to use throughout this the-
sis. We assume that the reader is familiar with basic graph theory; a comprehensive
introduction can for instance be found in [Die10]. Assume we are given a directed graph
G = (V,A). A path P will always be an ordered sequence of nodes

P = (u0, u1, . . . , un), ui ∈ V,

or, in the time-dependent case, a sequence of pairs

Q = ((u0, τ0), (u1, τ1), . . . , (un, τn))

6

1.6 The Notational Ground

such that τi is the time at which ui is reached. To find a shortest path, we also have to
equip G with an arc weight function. In the following, a static weight function is a
function

d : A→ [0,∞)

mapping each arc to its non-negative length. Occasionally, we will interpret d as a
function V ×V → [0,∞), such as in the following: the length `(P) of a (static) path
P = (u0, u1, . . . , un) shall be given by

`(P) =
n−1∑
i=0

d(ui, ui+1).

Especially in Chapter 3, we will make use of the distance function

dist : V × V → [0,∞),

which takes two nodes s, t into the length of a shortest s-t-path P = (s, u1, . . . , un−1, t).
This yields

dist(s, t) := `(P) = `((s, u1, . . . , un−1, t)).

Contrary to the above, in the time dependent case, the weight on any arc is given
by a travel time function, or TTF, T : A × [0,∞) → [0,∞) which maps an arc a
and a starting time τ to the time T (a, τ) it takes to travel along that arc. We will
occasionally switch between the version given above and the parametrised family of
travel time functions

Ta : [0,∞)→ [0,∞).

In both cases (static or time-dependent), a pair (G, d) (or (G,T) in the time-dependent
case) of graph and arc weight function is called a cost graph.

Assume now that P = (u0, u1, . . . , un) is a path in G, and we start to travel along P
at time τ0. The total time along P is then defined recursively via

T (P, τ0) :=
n∑
i=1

T ((ui−1, ui), τi−1),

where

τi = τi−1 + T ((ui−1, ui), τi−1) for i = 1, . . . , n.

When looking for a shortest path P between two nodes s, t ∈ V , we are looking for one
which is shortest with respect to T , i.e., where T (P, τ0) is minimised 1.

1this is equivalent to minimising the arrival time.

7

1 Introduction and Basics

Given a cost graph (G, d) with the static cost function d : A → R+
0 and two nodes

s, t ∈ V , the problem of finding a minimum-cost path between s and t is called a
Shortest Path Problem, or spp for short. If we exchange d for its time-dependent
counterpart T : A×R+

0 → R+
0 , the same problem is called a Time-Dependent Shortest

Path Problem, which we will denote by tspp.
Last but not least, a query shall denote the actual run of any search algorithm to

determine a shortest path between two given vertices s, t. Any additional data the
query needs in order to obtain a correct result will in some cases be achieved through
a preprocessing step (compare also Chapter 3). While there exist algorithms such
as chs that do not require any knowledge of s or t for preprocessing, e.g. computing a
potential function for A* in our setting is a preprocessing step where knowledge of the
target node is needed.

8

2 The Horizontal Flight Trajectory
Optimisation Problem

In this chapter, we shall lay the foundation of this thesis by introducing the Horizontal
Flight Trajectory Optimisation Problem (hftop). We begin by explaining the more
general Flight Trajectory Optimisation Problem (ftop), before restricting ourselves to
the case of hftop. We will also discuss modelling the problem as a Shortest Path
Problem.

To clarify the terms we are about to use, we shall begin this chapter with a recollection
of some fundamental aeronautical notions.

2.1 An Aeronautics Primer

In this section, we recall the basic concepts connected with aeronautics as far as they
shall be used here. Several notions will reappear throughout the thesis, which is why we
shall introduce them here; for a much more thorough introduction, see [HSS14].

The length between any two points on the earth is the ground distance, typically
denoted by dG. It is a constant and unaffected by wind. The airspeed vA of an aircraft
is defined as its speed relative to the air mass surrounding it. In general, pilots can
change the airspeed of their aircraft, as reflected in ftop. In hftop, however, we shall
assume that vA is constant. Connected with the airspeed is the air distance dA, which
is the distance an aircraft travels relative to the surrounding air mass. Unlike the ground
distance, it is not constant if we assume changing wind conditions. The same holds for
the ground speed vG, which constitutes an aircraft’s speed with respect to the ground.
It is also highly volatile and dependent on wind conditions (see Section 2.3.2).

2.2 The Flight Trajectory Optimisation Problem

The Flight Trajectory Optimisation Problem (ftop) seeks to find a minimum cost
trajectory between any two airports s, t in the Airway Network. The Airway Network
consists of a set of predefined coordinates called waypoints, some having navigational
aids, some being arbitrarily defined (compare [KASS12]). Waypoints are connected by
segments, straight lines between them. The projection of an aircraft’s trajectory to the
surface of the earth must adhere to segments and waypoints just like a car must adhere

9

2 The Horizontal Flight Trajectory Optimisation Problem

to the roads, and cruising is only allowed on a predefined set of altitudes, so-called flight
levels. These go up to 41 000ft (approximately 12 500m), with most flights flying higher
than 25 000ft (≈ 7 600m) and only very short flights flying lower in some circumstances.
These multiple levels or layers of the Airway Network render it rather difficult to visualise
– however, a good projection is shown on skyvector.com and in Figure 2.1.

Figure 2.1: Airway Network over the North Sea, as taken from skyvector.com

To evaluate the costs of a trajectory, one introduces a cost function consisting of
several parts: the most obvious one is the time an aircraft is airborne. Depending on the
route, an aircraft spends more or less time in the air, and one usually aims to minimise
this estimated time enroute (ETE). The fuel cost constitutes another part of the
cost function: the heavier an aircraft, the more fuel it burns, and depending on whether
an aircraft climbs, descends or is in level flight, its fuel consumption varies. One tries
to load as little fuel as possible, as every kilogramme of superfluous fuel unnecessarily
impacts the environment, and decreases efficiency by rendering the aircraft heavier.

The fuel efficiency of an aircraft is restricted by its performance limits, in particular,
aircraft fly more efficiently at high altitudes. This impacts the vertical profile of a route,
as one often wishes to climb whenever the weight of an aircraft allows it.

10

https://skyvector.com/
https://skyvector.com/

2.3 The Horizontal Flight Trajectory Optimisation Problem

One aspect of ftop which is maybe less obvious, albeit important, is the problem of
overfly costs. The Airway Network is divided into regions called airspaces which are
typically assigned to a country or a group of those. Each time an aircraft flies through
an airspace, it incurs overfly charges, which add to the overall cost. An accurate cost
function should incorporate all three aspects, as a weighted sum. A shortest travel time
path need not yield the minimum overfly costs (and rarely will) in the same way as an
optimal overfly charges path need to be minimal with respect to ETE or fuel costs.

Furthermore, there exist several restrictions when it comes to flight planning. These
range from keeping clear of politically unstable or high-risk areas to avoiding overcrowd-
ing in airspaces, thus reducing workload on Air Traffic Control. These latter restrictions
are for example published by EUROCONTROL in the Route Availability Document
[Eur16], and are frequently updated. The difficulty in tackling them is increased further
as some restrictions only apply to the choice of source and target airports s and t, depend
on an airspace or are only valid for a certain time period.

A flight is made up out of five phases, namely take-off, climb, cruise, descent
and approach. The arguably most important one is the cruise phase, in which the
aircraft flies levelly. When necessary to change altitude, one can initiate either a climb
or a descent phase, which take the aircraft to any higher or lower altitude respectively.
Usually, these phases directly follow (or in the case of descent, precede) the take-
off and approach phases, but can in principle occur anytime in-flight. Since aircraft
fly more efficiently at high altitudes, a vertical profile of a flight may include several
climbs whenever an aircraft becomes light enough to fly higher. On the other hand,
it is sometimes necessary to descend to a lower altitude to avoid inclement weather
or overcrowding of airspaces, thus creating multiple descent phases in a flight. The
Airway Network reflects these five phases by consisting of multiple layers of the same
waypoint set; on each layer, almost the same set of segments connects the waypoints.
There are, however, some segments which are only allowed on certain altitudes1. These
phases add the extra constraints to ftop that a trajectory must begin at the source
airport’s altitude and end at the target airport’s altitude.

2.3 The Horizontal Flight Trajectory Optimisation Problem

As tackling ftop in its full complexity is beyond the scope of this thesis, we consider a
simplified version of ftop. Firstly, we do not heed any constraints leading to possible
path constrictions. Secondly, we disregard additional costs such as overfly costs – for a
treatise on these, we refer the reader to [MdlC16]. We add the assumption to ftop that
we are only allowed to fly on one altitude (or layer), thus disregarding climb or descent
phases. Indeed, we assume that every flight starts at the flight altitude and ends there.

1For example, segments over mountain ranges must have a minimum altitude to clear them.

11

2 The Horizontal Flight Trajectory Optimisation Problem

We further assume that the airspeed is constant, i.e., neither vertical optimisation nor
a speed profile is considered.

For two reasons, this is a good choice. The first one stems from the 2D+2D approach
by Karisch et al discussed above: in order to obtain a valid route, one first optimises
horizontally. Hence, in Karisch’s approach, our simplification is an integral part of the
solution to the full problem.

A second reason for considering only one layer is that especially for long-haul flights,
the cruise phase dominates the others in terms of time. It is therefore the most impor-
tant one and also one where optimising can yield potential savings for the airline.

We consider a path P between s and t optimal when the time an aircraft spends
airborne on P is minimal, i.e., the cost function consists only of the ETE. Although
this may seem to disregard fuel costs, they are in fact part of the optimisation: since
we assume that we fly with constant airspeed and neither climb nor descend, the fuel
consumption is directly equivalent to the travel time.

Since we impose that only horizontal flight is allowed, we call our simplification of
ftop the Horizontal Flight Trajectory Optimisation Problem (hftop).

2.3.1 Modelling HFTOP

When mathematically modelling hftop, we identify the Airway Network with a directed
graph G = (V,A), where we interpret the waypoints as nodes v ∈ V and the segments
as (directed) arcs a ∈ A. In the following, we will interchangeably write both waypoints
for nodes and segments for arcs.

We assume that we are given weather prognoses for some times T = {t0 < . . . < tr},
such that every flight’s duration is contained in [t0, tr]. To model the time dependency in
hftop, we consider three variants. In the first one, we assume that no wind is blowing,
hence the distance function on the arcs will be the ground distance (cf Section 2.3.2).
This static case is exactly a (static) Shortest Path Problem.

In the second and third approach, we model any wind dependency as a function of the
time (see again Section 2.3.2). In this fashion, the length of a segment varies through
time as wind conditions change, which allows us to model hftop as a Time-Dependent
Shortest Path Problem. There are, however, two different ways to model the travel time.
In the first one, which we shall denote the exact case, we compute the travel time on
the arcs exactly.

While this version already turns out to be very fast, we seek to improve the runtime
by approximating the travel time function through a piecewise linear function, or PWL
for short (for a thorough definition, see Section 2.3.2), yielding what we shall call the
PWL case. As will become apparent in Chapter 5, they are indeed faster; however,
as weather forecasts do not allow for a natural way to represent a travel time function
as a PWL, we include an error discussion in the same chapter. Since the travelled time
is directly proportional to the fuel consumption, computational exactness is paramount

12

2.3 The Horizontal Flight Trajectory Optimisation Problem

for safety, ultimately rendering the PWL case less favourable than the exact case. As we
will see in Chapter 5, also the computational speedup of the PWL case over the exact
case does not justify the time to create the piecewise linear functions out of our exact
data in the first place.

2.3.2 How To: Obtain a TTF
Since we are considering several different problems, we have a variety of different travel
times, which we will introduce in this section.

The Static Case

Since we assume that the airspeed is constant and that in the static case, there is no
wind, the travel time along an arc a = (u, v) ∈ A does not depend on when we enter it.
Instead, the airspeed vA is linked to the air distance dA via the formula dA = vA · t, so
minimising the travel time is equivalent to minimising the air distance. The air distance
is in turn exactly the ground distance of a, for we assume that no wind is blowing. This
is why in the static case, the travel time function will be the ground distance.

The Time-Dependent Formula

As becomes apparent from Figure 1.1, an optimal path is very much subject to the
prevailing wind conditions, which we model as a function of the time. To this end, we
fix an arc a ∈ A and a time τ and represent the wind as a vector ~w = ~w(a, τ) with a
crosswind component ~wC(a, τ) and a trackwind component ~wT (a, τ), which are
the components of ~w with angles π/2 and 0 relative to a’s direction, respectively (cf Figure
2.2a). Note that, as is common in aviation, all angles are measured clockwise and with
respect to the heading of the aircraft.

We will for the course of the whole thesis assume that wind vectors are given as polar
vectors, so let ~w have the representation ~w(a, τ) = (ra(τ), θa(τ)), where ra(·) is the wind
force on a and θa(·) is the angle of ~w relative to a’s direction. This means that the
magnitude of the components of ~w can be expressed as

wC(a, τ) := ‖~wC(a, τ)‖ = ra(τ) · sin θa(τ) and
wT (a, τ) := ‖~wT (a, τ)‖ = ra(τ) · cos θa(τ)

Now suppose that as in Figure 2.2b, an aircraft is travelling along the arc a at time τ
with constant airspeed ~vA and is subject to a wind vector ~w(a, τ). To avoid being carried
off to the side, an aircraft alters its angle of attack such that the resulting ground speed
vector

~vG(a, τ) = ~vA(a, τ) + ~w(a, τ)

13

2 The Horizontal Flight Trajectory Optimisation Problem

~w(a, τ)

~wC(a, τ)

~wT (a, τ)

ra(τ)

θa(τ)

(a) A wind vector ~w and its components
~wC and ~wT

~wT

~vG

~w

~wC

~vA ~v
(T)

A

(b) An aircraft flying at speed ~vA, influ-
enced by the wind vector ~w(a, τ)

Figure 2.2: Wind and Ground Speed Terminology

points in the direction of the true track of a. Through this alteration, the above equation
can be written as

~vG(a, τ) = ~vA(a, τ) + ~w(a, τ) = ~v
(T)
A + ~wT (a, τ),

where ~v (T)
A denotes the track component of ~vA, i.e. the component of ~vA with angle 0

relative to a’s direction (see also Figure 2.2b). We then find

vG(a, τ) := ‖~vG(a, τ)‖ = ‖~v (T)
A (a, τ)‖+ ‖~wT (a, τ)‖ =

√
v2
A − w2

C(a, τ) + wT (a, τ).

The travel time T (a, τ) along a is now the solution of the equation

daG =
∫ τ+T (a,τ)

τ
vG(a, σ) dσ.

Since this integral is computationally very expensive to solve, we will instead assume
that the wind conditions on the segment depend only on the time τ at which the aircraft
is entering it. This is equivalent to writing

vG(a, σ) ≡ vG(a, τ) for all σ ∈ [τ, τ + T (a, τ)],

which reduces the formula to

T (a, τ) = daG
vG(a, τ) = daG√

v2
A − w2

C(a, τ) + wT (a, τ)
. (2.1)

14

2.3 The Horizontal Flight Trajectory Optimisation Problem

In practice, we have to make some further ammendments: in our application, we are
only given the weather prognoses for a set T = {t0, t1, . . . , tr} of prognosis times, all
spaced three hours apart. So, we have to compute the values wC(a, τ) and wT (a, τ) for
any τ /∈ T . We do so by polarly interpolating the nearest neighbours of τ in T : say
τ ∈ (ti, ti+1) for some i ∈ {0, . . . , r − 1}. For simplification, we set rai := ra(ti) and
θai := θa(ti), as well as

λ(τ) = ti+1 − τ
ti+1 − ti

.

The cross- and trackwind components are then

wC(a, λ(τ)) = (rai+1 + λ(τ)(rai − rai+1)) · sin(θai+1 + λ(τ)(θai − θai+1)) (2.2)
wT (a, λ(τ)) = (rai+1 + λ(τ)(rai − rai+1)) · cos(θai+1 + λ(τ)(θai − θai+1)). (2.3)

It makes sense to assume that wind always turns via the smaller of the two possible
angles. In particular, in Figure 2.3, we expect that the wind turns via the blue angle
rather than the red one. For our interpolation, we assume the same: suppose we are
given θ1, θ2, and wlog θ2 > θ1, as suggested in the figure (recall that angles are measured
clockwise and from the top axis). If θ2 − θ1 > π, then instead of θ2, we consider
θ̃2 = θ2 − 2π. Thus, we can make sure that |θ2 − θ1| ≤ π always holds.

~w1

~w2

r1

r2

Figure 2.3: Interpolation via the smaller angle (blue)

All of the above simplifications are state-of-the-art in the industry. Inserting (2.2) and
(2.3) into (2.1), one obtains the function as depicted in blue in Figure 2.4, where the
travel time is shown for some arc a ∈ A over an period of 15 hours.

The PWL Approach

Assume we are given a discretisation t0 = τ0 < τ1 < . . . < τN = tr of [t0, tr], and define
Ii = [τi, τi+1]. Then a piecewise linear function (PWL) is a continuous function

f : [t0, tr]→ R

15

2 The Horizontal Flight Trajectory Optimisation Problem

0 3 6 9 12 15
3 380

3 400

3 420

τ in h

T
a
(τ
)
in

s

Figure 2.4: The exact travel time function (blue) and a PWL approximation (purple)

such that the restriction

fi = f |Ii : [τi, τi+1]→ R

is linear. In our setup, we further require that τi − τi−1 = ∆ for all i = 1, . . . , N , and
that r|N . The latter is necessary since we are given the forecast times {t0, t1, . . . , tr},
and want any interval Ii to be fully contained in one [tj , tj+1] for some j ∈ {0, . . . , r−1}.

For each τi, we can now precompute the travel times Ta(τi) for each i on all segments
a, which are then the exact travel times. In case we want to calculate a travel time
τ ∈ (τi, τi+1), we linearly interpolate Ta(τi) and Ta(τi+1) to obtain an approximation of
the travel time. To be more precise, let λ ∈ [0, 1] be such that τ = λτi + (1−λ)τi+1. We
then define

T̃a(τ) := λTa(τi) + (1− λ)Ta(τi+1). (2.4)

This is a piecewise linear function, and promises to be much faster computation-wise.
Note that although in both cases we interpolate linearly, this approach is essentially
different from the exact one. In the exact approach, we only interpolate the wind vectors
– here, we additionally linearise the travel times between the τi. The differences in the
approaches are depicted in Figure 2.4.

16

3 Algorithms for the Shortest Path Problem
In the last chapter, we have seen that hftop can be modelled as a (time dependent)
shortest path problem. For this reason, we shall in this part of the thesis describe
algorithms to solve spp and tspp from a theoretical point of view and justify their
correctness.

3.1 Dijkstra’s Algorithm
Conceived by E. Dijsktra in[Dij59], it is one of the oldest and most well-known shortest
path algorithms. As it is the main ingredient for both of our speedup techniques and
serves as a reference algorithm to compare our results to, we shall introduce it here and
prove its optimality.

3.1.1 The Static Case
Let G = (V,A) be a graph, and s, t ∈ V two distinguished nodes in G. Further, let
d : A → [0,∞) be a weight function on the arcs; notice that by our definition, arc
weights can never be negative. We are looking for a shortest path from s to t with
respect to d. To this end, we introduce the function

ds : V → [0,∞]

which assigns each node a tentative distance from s. At the beginning of the search,
each node v ∈ V \ {s} is assigned the distance ∞, which is decreased in the course of
the algorithm. To ease notation, we define the out-neighbours of u ∈ V as

N+
G (u) = {v ∈ G : ∃(u, v) ∈ A}.

We will call a node u processed if its outgoing arcs have been examined and all v ∈
N+
G (u) are assigned tentative distances. A node v having a tentative distance ds(v) <∞

which is not yet processed will be called reached. Thus, we can keep two disjoint sets:
firstly, the set Q ⊂ V × [0,∞] of reached, but not yet processed nodes together with
their distances, and secondly P as the set of processed nodes. At the beginning, we let
Q = {(s, 0)} and P = ∅. Note that we can always weakly order Q by the distances,
thus obtaining a priority queue of reached nodes. In each step, the node u with the
least distance is removed from Q and inserted into P. Then every neighbour v of u is
examined, where several cases may occur:

17

3 Algorithms for the Shortest Path Problem

(i) v /∈ P,Q. If that is the case, then v has not yet been reached. We insert it into Q
with the distance ds(u) + d(u, v).

(ii) v ∈ Q. Here, we have to check whether ds(v) > ds(u) + d(u, v) holds. If this turns
out to be true, the path reaching v from s via u is shorter than any other path
found so far – we update ds(v) to its new value ds(u) + d(u, v).

(iii) v ∈ P, so v is already processed. In that case, we disregard the arc (u, v) and go
on to the next neighbour.

If u is t, we stop the algorithm; if one keeps additional data such as predecessor nodes,
then one is also able to retrieve a shortest s-t-path. In pseudocode, Dijkstra’s algorithm
can be written down as follows:

Algorithm 1: Dijkstra’s Algorithm
Input : Graph G = (V,A),

Cost function d : A→ R+
0

Output: Shortest path distance ds(t)
Data : Priority queue Q, set P of processed nodes

1 Q = {(s, 0)};
2 ds(v) =∞ for all v ∈ V \ {s};
3 while Q 6= ∅ and t /∈ P do
4 (u, ds(u)) = Q.removeMin();
5 for v ∈ N+

G (u) do
6 if v ∈ P then go to line 5 ;
7 altDist = ds(u) + d(u, v); // alternative distance via u

8 if v ∈ Q and ds(v) > altDist then
9 Q.update(v,altDist);

10 else if v /∈ Q then
11 Q.insert(v,altDist);

12 P.insert(u);

13 return ds(t);

The proof that Dijkstra’s algorithm is correct is standard and can for instance be
found in [KN12]. We present our own version in the following theorem.

Theorem 1. Dijkstra’s Algorithm yields a shortest path between s and t if it exists.

18

3.1 Dijkstra’s Algorithm

Proof. We claim that for any processed node u, ds(u) is the distance of the shortest path
from s to u, i.e., if u ∈ P, then ds(u) = dist(s, u). To prove it, we use induction on the
number of processed nodes: it is clear that ds(s) = 0 is indeed the distance from s to s.
So, assuming the statement holds for |P| = n processed nodes, we have to show that it
holds for n+ 1 processed nodes as well. Note that |P| increases in every step.

Let P denote the set of processed nodes such that |P| = n, and say u is the node
about to be added to P, so define P ′ = P ∪ {u}. Let P be a shortest path from s to u,
and suppose

`(P) = dist(s, u) < ds(u).

Since P starts in s, it starts in the set P. At some point, however, it must leave P, since
u /∈ P. Let (v, w) be the first edge to traverse from P to V \ P, i.e. v ∈ P and w /∈ P.
We let Pv = (s, . . . , v) be the subpath of P which is entirely contained in P; then clearly

`(P) ≥ `(Pv) + d(v, w) = dist(s, v) + d(v, w) ≥ ds(v) + d(v, w),

where the last inequality holds because of the induction hypothesis and since v ∈ P. As
w is incident to the processed node v, it must already have been updated, and ds(w) ≤
ds(v) + d(v, w). Since u is the node about to be added to P, we find ds(u) ≤ ds(w).
Combining these two inequalities with the ones above yields the contradiction

ds(u) > dist(s, u) = `(P) ≥ ds(v) + d(v, w) ≥ ds(w) ≥ ds(u).

Hence, the claim must be true and ds(u) = dist(s, u). This also means that once t is
processed, we can stop the search.

Note that we stipulated d : A → [0,∞). While in our application, this always holds
true, the following very simple example shows what could happen if we allowed negative
arc costs.

v t

s

23

−2

Figure 3.1: Dijkstra’s algorithm fails for negative arc costs

19

3 Algorithms for the Shortest Path Problem

Example 2. Assume we want to find a shortest path from s to t in the graph in Figure
3.1. If we apply Dijkstra’s algorithm, we find the shortest path (s, t) with length 2, as
node t is processed right after node s. But clearly, the route (s, v, t) has length 1 and is
thus shorter.

We will also consider several variations of Dijkstra’s Algorithm: first, by omitting the
condition t /∈ P in line 3 of Algorithm 1, we force it to run until Q is empty. This
happens if and only if every (reachable) node in the path component of s has been
processed. Consequently, we call this version of Dijkstra’s algorithm one-to-all. For
another variant, replace N+

G (u) by N−G (u) in line 5, where

N−G (u) = {v ∈ G : ∃(v, u) ∈ A}

is the set of in-neighbours of u. If one now starts the query with Q = {(t, 0)} and uses
dt(·) instead of ds(·), then one obtains what we call an all-to-one Dijkstra – we simply
reverse the search direction from the source node to the target node. This variant will
be used in A* preprocessing and is therefore of great interest to us.

3.1.2 Bidirectional Dijsktra

When running an s-t-Dijkstra, every node v with 0 ≤ dist(s, v) ≤ dist(s, t) will be
examined. For any query algorithm A, we define the search space SA of A to be the
set SA = P after A terminates. Especially on long routes, SA can be quite extensive,
often encompassing nodes which are not ‘in the right direction’. One way of confining
the search space is by running two (quasi-) simultaneous Dijkstra searches, one from s
and one from t. Whenever their respective scopes meet, we can set up a tentative path,
and once a node is processed in both scopes, we can end the search. The advantage is
that we have to visit only roughly half of the nodes, since instead of one search disc with
radius dist(s, t), we obtain two discs, each with radius dist(s,t)

2 (cf Figure 3.2).
The query of Contraction Hierarchies (Section 3.3) is based on a bidirectional search,

which is why we introduce it here.

3.1.3 The Time-Dependent Case

The time-dependent case was first tackled by Cooke and Halsey in [CH66], in which they
give a dynamic programming approach to the problem: they set up a functional equation
which they then solve iteratively. Dreyfus noted in [Dre69] that the time-dependent
shortest path problem can be solved by a natural extension of Dijktra’s algorithm, and
is thus very similar to the static case.

The generalisation to the time-dependent case works as follows: in Algorithm 1, in-
stead of the tentative distance ds(u) one now keeps track of the tentative time τs,τ0(u)

20

3.1 Dijkstra’s Algorithm

s t

(a) Search space for unidirectional search

s t

v

(b) Search space for bidirectional search

Figure 3.2: Search spaces for two types of Dijkstra’s algorithm

it takes to reach u when departing node s at time τ0. Consequently, the alternative
distance via u in line 7 now becomes an alternative time, namely

altTime = τs,τ0(u) + T ((u, v), τs,τ0(u)),

and the subsequent lines are changed accordingly. The return value is τs,τ0(t), the time
it takes to reach t from s when departing s at time τ0. It was pointed out by Kaufmann
and Smith in [KS93] that Dreyfus’ extension only yields an optimal result if a kind of
consistency assumption is not violated. We introduce this assumption as

The FIFO Property

The first-in-first-out or FIFO property roughly states that, in our case, aircraft cannot
overtake each other on the same segment. Consider an arc a with the travel time function
Ta(·) = T (a, ·) : [0,∞)→ [0,∞). Now suppose aircraft A enters the arc a at the time τA
and spends Ta(τA) on the segment, and aircraft B enters the same segment at a later
time τB > τA and spends Ta(τB) on it, then we say Ta satisfies the FIFO property
if we have

τA + Ta(τA) ≤ τB + Ta(τB) whenever τA < τB. (3.1)

If the FIFO property is violated, one can no longer guarantee path optimality, as is
shown in the next example.

Example 3. [KS93] Consider the graph as shown in Figure 3.3 with the assigned travel
time functions, and say we want to find a shortest path from s to t, starting at time
τ = 0.

21

3 Algorithms for the Shortest Path Problem

s

u

v t

T s
u
(0
) =

3

Tsv(0) = 2

Tuv(3) = 1

Tvt(2) = 4

Tvt(4) = 1

Figure 3.3: Example of a non-FIFO network [KS93]

If one were to use a straightforward generalisation of Dijkstra’s algorithm in this case,
one would obtain the path (s, v, t), and arrive at t at the time τt = 6. But clearly, the
path (s, u, v, t) is shorter, arriving at the time 5 < 6. The key in this example is that
Tvt does not satisfy the FIFO property, as we find

τA + Tvt(τA) = 2 + 4 > 4 + 1 = τB + Tvt(τB).

If the FIFO principle is violated but waiting at nodes is still allowed, the problem
stays polynomially solvable, as shown in [OR90]. However, in our application it is for
obvious reasons not possible to wait at waypoints, so if the Airway Network happened
to be non-FIFO, we could not guarantee optimality of the paths. We propose criterions
in Theorems 16 and 24 which guarantee that our choices of Ta are FIFO. Fortunately,
our calculations show that these are satisfied in practice.

We have seen in Example 3 that although we can generalise Dijkstra’s algorithm, it
might not yield optimal results if the FIFO principle is violated. If, on the other hand,
the FIFO property holds, then we can guarantee that the straightforward generalisation
of Dijkstra’s algorithm yields an optimal path:

Lemma 4. [KS93, Lemma 1] Suppose the FIFO property holds, and let u0, un be two
vertices in (G,T). Then there exists a path P = ((u0, τ0), . . . , (un−1, τn−1), (un, τn)) such
that

(i) the time τn at which un is reached is minimal, and

(ii) the 1-truncation ((u0, τ0), . . . , (un−1, τn−1)) of P is a path such that the time τn−1
at which un−1 is reached is minimal.

Proof. Let P ′ be any shortest path from (u0, σ0 = τ0) to (un, σn) via (un−1, σn−1), i.e.,

P ′ = ((u0, σ0 = τ0), . . . , (un−1, σn−1), (un, σn)).

Suppose Pn−1 a shortest path from (u0, τ0) to (un−1, τn−1) (note that P ′ and Pn−1 need
not share any inner vertices). We claim that the extension of Pn−1 by un is a shortest

22

3.2 A*

path from u0 to un and that τn = τn−1 + T ((un−1, un), τn) = σn. Note that since Pn−1
is assumed to be optimal, τn−1 ≤ σn−1 holds. Using the FIFO property, we find that

τn = τn−1 + T ((un−1, un), τn−1) ≤ σn−1 + T ((un−1, un), σn−1) = σn,

so τn ≤ σn. Since P ′ was assumed to be optimal, σn is minimal, and so τn must be
minimal. This means that the path P obtained by following Pn−1 and extending to un
is the desired path.

By recursively applying Lemma 4, we obtain

Corollary 5. [KS93, Theorem 2] Suppose the FIFO property holds, and let u0 and un
be two vertices in (G,T). Then there exists a path P = ((u0, τ0), . . . , (un, τn)) such that
for every i ∈ {0, . . . , n}, the time τi at which ui is reached is minimal.

Note that we have to stipulate that T actually maps every arc onto a non-negative
travel time, thus disallowing negative cycles and guaranteeing that every path is finite
– within our application, this is always the case.

We have just seen that there exist paths from u0 to un such that every node ui is
reached at a minimum time τi, which is the foundation of Dijkstra’s algorithm. In
[KS93], the authors proceed to show that under the assumption of the FIFO property,
any algorithm which solves the static problem optimally also solves the time-dependent
version optimally. We state their result as

Theorem 6. [KS93, Theorem 4] If the FIFO property holds, the straightforward gen-
eralisation of Dijkstra’s algorithm to the time-dependent case yields an optimal path
between any two nodes s, t on (G,T).

The above theorem is fundamentally important for tspp, as it guarantees that the
problem is (under mild assumptions) polynomially solvable. In particular, it guarantees
that algorithms which are derived from Dijkstra’s algorithm yield optimal solutions in
the time dependent case.

3.2 A*
The algorithm A* was introduced by Hart et al in [HNR68]. It seeks to speed up the
query for a shortest path by altering the keys in the priority queue Q according to a
potential function. To this end, it uses ‘outside’ information about the graph (e.g. a
geographical embedding) or data obtained in a preprocessing step.

As an example, consider a flight from London to New York. We know the cities’
geographical location, and that the shortest path connecting them will more or less
follow the geodesic as close as possible within the Airway Network. Therefore, it makes
little sense to examine waypoints over Greece, Finland or Austria, all of which are regions

23

3 Algorithms for the Shortest Path Problem

contained in the search space of Dijkstra’s algorithm. Instead, we can help the query
algorithm by rendering nodes in the right direction ‘more attractive’. This is usually
done by defining a potential function π : V → R+

0 such that π never overestimates the
actual distance to the target node. This potential is then used to modify the keys in the
priority queue. This section and theoretical results are based on [GH04] and [HNR68].

Definition 7. Let G = (V,A) be a graph and t ∈ V one of its nodes. Assume we are
given a cost function d on G, yielding the cost graph (G, d). A function πt : V → R+

0 on
the nodes is called a potential on (G, d) with respect to t. We further call πt admissible
whenever

πt(v) ≤ dist(v, t) ∀v ∈ V,

i.e., πt never overestimates the actual shortest path length in G. If

πt(v) ≤ πt(w) + d(v, w) ∀(v, w) ∈ A

holds, then we call πt feasible.

The second condition is a form of the triangle inequality, while the first condition
implies that any admissible potential satisfies πt(t) = 0.

Lemma 8. Let G = (V,A) be connected and πt a potential with respect to some node
t on (G, d) for some cost function d. Then if πt is feasible and πt(t) = 0, it is also
admissible.

Proof. Let v ∈ V be any node and (v, u1, . . . , un, t) a shortest path to t. Now clearly
πt(v) ≤ πt(u1) + d(v, u1), and iterating this inequality yields

πt(v) ≤ πt(t) + d(v, u1) +
n∑
i=2

d(ui−1, ui) + d(un, t) = dist(v, t) + πt(t),

which proves the claim since πt(t) = 0.

Now suppose we are given a cost graph (G, d) and two nodes s, t in G. If we want to
find a shortest path from s to t, then for any potential πt, we can design the following
algorithm: let

f : V → R
v 7→ ds(v) + πt(v).

If we now proceed as in Dijkstra’s algorithm but order the nodes in Q with respect to f
as opposed to merely ordering by ds, then we obtain Algorithm 2.

Observe that πt(·) ≡ 0 is also an underestimator for any graph with non-negative
arc lengths, and for this choice of πt, Algorithm 2 is equivalent to Dijkstra’s algorithm.

24

3.2 A*

Algorithm 2: A* search
Input : Graph G = (V,A),

Cost function d : A→ R+
0

Output: Shortest path distance f(t) = ds(t)
Data : Priority queue Q, set P of processed nodes,

Potential function πt : V → R+
0

1 Q = {(s, πt(s))};
2 f(v) =∞ for all v ∈ V \ {s};
3 while Q 6= ∅ and t /∈ P do
4 (u, f(u)) = Q.removeMin();
5 ds(u) = f(u)− πt(u);
6 for v ∈ N+

G (u) do
7 if v ∈ P then go to line 6 ;
8 altKey = ds(u) + d(u, v) + πt(v); // alternative key via u

9 if v ∈ Q and f(v) > altKey then
10 Q.update(v,altKey);
11 else if v /∈ Q then
12 Q.insert(v,altKey);

13 P.insert(u);

14 return f(t);

Another relation to Dijkstra’s algorithm is possible whenever we are given a feasible
potential πt. We can then compute the reduced cost d′(u, v) of an arc (u, v) ∈ A by
setting

d′(u, v) := d(u, v)− πt(u) + πt(v).

Note that since πt is feasible, d′(u, v) ≥ 0 for every (u, v) ∈ A. In this case, Algorithm
2 is equivalent to Dijkstra’s algorithm with the length map d′ instead of d. Hence,
from the point of view of the algorithm, there is no difference between running A* with
the standard costs or Dijkstra with these reduced costs, however there may be a small
computational overhead on the reduced Dijkstra since we have to subtract one more
value. Yet, through the above observations, we obtain the next result for free.

Theorem 9. If πt is feasible, Algorithm 2 yields a shortest path if it exists.

Proof. The proof is a direct consequence from Theorem 1 and the fact that A* is equiv-
alent to Dijkstra’s algorithm for feasible potentials πt.

25

3 Algorithms for the Shortest Path Problem

In [HNR68], the authors show a somewhat stronger theorem, by proving that A* also
yields an optimal solution if the weaker condition of admissibility is satisfied. We state
their theorem as

Theorem 10. [HNR68, Theorem 1] If πt is admissible, then the A* algorithm yields a
shortest path if it exists.

In fact, A* is not only optimal in the sense that it finds the shortest path, but it
also processes fewer nodes than Dijkstra’s algorithm. Intuitively, it is clear that as the
potential πt becomes better, the set of processed nodes becomes smaller. To formalise,
let πt, π′t be two admissible potentials. We say π′t dominates πt if and only if

π′t(v) ≥ πt(v) for all v ∈ V,

Note that in particular, this means π′t(t) = πt(t) = 0. We will denote this domination
by π′t ≥ πt. As one should expect, domination yields a smaller search space, as is shown
in the next theorem.

Theorem 11. [GH04, Theorem 4.1] Let G = (V,A) be a graph and πt, π′t be two admis-
sible potentials such that π′t ≥ πt. Let P,P ′ denote the sets of processed nodes of their
respective A* searches. Then P ′ ⊂ P.

Proof. The proof closely follows [GH04, Theorem 4.1]. We show that if P does not
contain a vertex v, then P ′ won’t contain v either. Let P = (s = u0, u1, . . . , un = v) be
a shortest path from s to v. So, assuming v /∈ P, we have two cases:

(i) dist(s, v) + πt(v) > dist(s, t) + πt(t). Since πt(t) = 0, this implies

dist(s, t) < dist(s, v) + πt(v) ≤ dist(s, v) + π′t(v),

which means that in this case, P ′ cannot contain v either.

(ii) Alternatively, we can encounter dist(s, v) + πt(v) = dist(s, t) + πt(t), where the
resulting tie in the priority queue must be broken by some criterion such that v
comes after t (else v would have been scanned already). Again, we have

dist(s, t) = dist(s, v) + πt(v) ≤ dist(s, v) + π′t(v),

and if we have equality, v is still processed after t, so P ′ cannot contain v.

In both cases, we find that v cannot be contained in P ′, hence P ′ ⊂ P must hold.

Note that since feasible potentials are in particular admissible, the above result also
holds for feasible potentials. Theorem 11 has a very important corollary:

26

3.2 A*

Corollary 12. Algorithm 2 with an admissible potential π′t processes no more vertices
than Algorithm 1.
Proof. We apply Theorem 11 to the potentials π′t and πt(·) ≡ 0. In the latter case, the
A* search is equivalent to Dijkstra’ algorithm, which yields the result.

The different search spaces are indeed visible. As can be seen in Figure 3.4, the route
from Berlin to London exhibits a stark contrast between the search spaces of A* and
Dijkstra.

Figure 3.4: Search spaces for static A* (yellow) and Dijkstra’s algorithm (gray) on the route
TXL to LHR. For visualisation purposes, we show the processed segments rather
than the processed nodes (Image data: Google Earth, Digital Globe).

3.2.1 A* in the Time-Dependent Case
Just like we did for Dijkstra’s algorithm in Section 3.1.3, we can generalise Algorithm 2
to the time dependent case by keeping track of the tentative time τs,τ0(u) instead of the

27

3 Algorithms for the Shortest Path Problem

tentative distance ds(u). Line 8 becomes

altKey = τs,τ0(u) + T ((u, v), τs,τ0(u)) + πt(v),

and the subsequent lines are changed accordingly. Of course, the potential function πt
has to be adapted for the time rather than the distance. Analogous to Theorem 9, we
obtain the following theorem:
Theorem 13. Given a FIFO network (G,T), any two nodes s, t and a feasible potential
πt, the straightforward generalisation of A* yields an optimal path between s, t on (G,T).
Proof. Note that feasibility of πt means that A* is equivalent to Dijkstra’s algorithm on
(G,T ′), where

T ′((u, v), τ) = T ((u, v), τ)− πt(u) + πt(v)

for every arc (u, v) ∈ A. Hence, by Theorem 6, A* yields an optimal path.

The main intricacy in the time-dependent case is thus, as in the static case, to come
up with a potential – but in the exact time-dependent case of hftop, such a function
is not straightforward to find. We will go into more detail in Chapter 4.

3.3 Contraction Hierarchies
On a closer inspection of the Airway Network, one can identify a significant number
of nodes which have degree two (see also Figure 2.1). While they have a geographical
importance, graph-theoretically, these nodes add no information to the network. It
makes sense to bypass these unimportant nodes in favour of more important ones, which
is one of the observations leading to the algorithm Contraction Hierarchies (chs).

chs is a fairly new algorithm, developed by Geisberger et al in [GSSV12]. It was
introduced to quicken queries on road networks, on which it shows considerable speedup
factors over Dijkstra’s algorithm, namely up to ×41 000, as shown in [DSSW09]. Since
our network shares some characteristics with road networks, it makes sense to test chs
on our network. Hence, we will in this section motivate and introduce the algorithm in
both its static (chs) and time-dependent (tchs) version, and justify its correctness.

3.3.1 Contraction Hierarchies in the Static Case
The main idea is to divide the shortest path query into two stages: in the first stage, each
node is assigned a hierarchy level (in our case simply a natural number), where higher
numbers correspond to more important nodes. According to this order, the nodes are
now contracted, which means that bypasses are inserted into the graph. In the second
stage, the actual query takes place in form of a bidirectional Dijkstra search, with the
addition that in each direction, only nodes with higher rank are examined. We are now
going into more detail, starting out with the query side:

28

3.3 Contraction Hierarchies

The Query

The idea for the Contraction Hierarchies approach stems from the following observation:
it makes sense to say that much-travelled roads have ‘more important’ junctions (e.g.
motorway junctions) than small alleys. If we further impose that we can always say
which one of two nodes is more important than the other, this is simply an injection

rank : V → {1, . . . , |V |},

where each node gets assigned its own ‘importance’ in the network. Now assume that
we plan a route on the road network in Germany, say from somewhere in Berlin (s)
to somewhere in Stuttgart (t), then we will most certainly drive a substantial time on
the motorways A9 and A71. If we were to employ Dijkstra’s algorithm, it would, while
finding the shortest path, explore each node with a distance in [0, dist(s, t)] – but there
is no advantage in leaving the motorway and taking a detour on smaller roads. Here, we
make use of the rank of the nodes: during the query, we will only explore arcs leading
to higher-ranked nodes. This works fine as long as t > s, which of course need not be
the case; and even if it were, there need not be a path from s to t which is strictly
increasing in rank. Quite the opposite, in most cases the path will have one highest-
ranked node somewhere in the middle (in the road network setting, this corresponds
to the most important junction, e.g. on a motorway). But since we allow the query
algorithm only to explore higher ranked nodes, we need to run the bidirectional version
of Dijkstra’s algorithm. By forward exploring only arcs leading to higher ranked nodes
and by backward exploring only arcs coming from higher ranked nodes (cf Figure 3.5),
we aim to leave out a substantial number of unimportant nodes in the network – the
arcs which are not considered in the query appear dashed in Figure 3.5.

n
o
d
e
o
rd

e
r

s

t

forward search backward search

Figure 3.5: Contraction Hierarchies with its forward and backward search space

These nodes are bypassed by shortcut arcs which are added in a preprocessing stage

29

3 Algorithms for the Shortest Path Problem

explained below. Define

A+ = {(u, v) ∈ Aprep : rank(u) < rank(v)} and
A− = {(u, v) ∈ Aprep : rank(u) > rank(v)},

where Aprep ⊃ A is the set of all arcs together with those obtained in preprocessing
(see the next subsection). We further call G+ = (V,A+) the upward graph and
G− = (V,A−) the downward graph. By reverting every arc in A−, we obtain

A−rev = {(u, v) ∈ A : (v, u) ∈ A−},

which yields the search graph G∗ = (V,A), where A = A+ ∪ A−rev. Analogously to
Dijkstra’s algorithm, we introduce two priority queues Q+ and Q− for the upward and
downward graph respectively. We let r be a marker denoting the current search direction,
i.e. r ∈ {+,−} for forward or backward search. Further, let

up: A→ {+,−}

be a function denoting the direction of an arc, i.e. up(a) = + if and only if a ∈ A+ and
up(a) = − if and only if a ∈ A−rev. The query algorithm is then stated in Algorithm 3.

As with Dijkstra’s algorithm or A*, one can obtain a (shortcut) shortest path by
keeping track of the predecessor node in each update step. This path can later be
unpacked to contain only arcs from A. To speed-up the query, one can prune the search
space using the stall-on-demand technique. For a thorough discussion, we refer the
reader to [GSSV12].

Preprocessing

To obtain the arcs which ensure that the algorithm neither breaks off unfinished nor
that we forfeit correctness, we have to insert certain arcs into the network. Consider
the following situation (cf Figure 3.6): the node v ∈ V has the neighbours u and w
with rank(u), rank(w) > rank(v). Suppose that (u, v, w) is the shortest path from u
to w. If the query hits the node u, it will at this stage never find w, since we’re not
allowed to look down. But in preprocessing, we can simply add the arc (u,w) with
length d(u,w) = d(u, v) +d(v, w) and the information that it bypasses the node v. Now,
when the query arrives at u, it sees the node w and does not explore v, thus saving a
step. Notice that we cannot physically delete the arcs (u, v) or (v, w): there may be a
query where we arrive at node v, which would then be disconnected from u and w. To
formalise, we define the rank-neighbourhoods

N−rank(v) = {u ∈ V : ∃ (u, v) ∈ A s.t. rank(u) > rank(v)} and
N+

rank(v) = {w ∈ V : ∃ (v, w) ∈ A s.t. rank(w) > rank(v)}.

30

3.3 Contraction Hierarchies

Algorithm 3: Query algorithm for chs
Input : Graph G = (V,A),

Cost function d : A→ R+
0

Output: Shortest path distance d between s, t
Data : Priority queues Q+,Q−

1 Q+ = {(s, 0)};
2 Q− = {(t, 0)};
3 r = −;
4 dr(v) =∞ for all v ∈ V ; d =∞;
5 d+(s) = 0; d−(t) = 0;
6 while (Q+ 6= ∅ or Q− 6= ∅) and (d > min{minQ+,minQ−}) do
7 if Q−r 6= ∅ then r = −r;
8 (u, dr(u)) = Qr.removeMin();
9 d = min{d, d+(u) + d−(u)};

10 for a = (u, v) ∈ A do
11 if up(a) = r and (dr(v) > dr(u) + d(u, v)) then
12 dr(v) = dr(u) + d(u, v);
13 Qr.update(v, dr(v));

14 return d;

We now go through every pair of nodes u ∈ N−rank(v) and w ∈ N+
rank(v) and insert

a bypass (or shortcut) arc whenever the path (u, v, w) is the only shortest path from
u to w. Through this procedure, we obtain a preprocessed graph Gprep = (V,Aprep),
where Aprep ⊃ A consists of all existing arcs and those inserted during preprocessing.
To remember which nodes the newly inserted arcs bypassed, we introduce the function

b : Aprep \A→ V,

which maps each a to the node for which we inserted the shortcut. All in all, this yields
Algorithm 4.

The output of Algorithm 4 is a preprocessed graph Gprep, which we call a contraction
hierarchy. Note that in line 5 it is important that (u, v, w) is the only shortest path,
not merely a shortest path. If there were another path W using only nodes w′ with
rank(w′) > rank(v) such that `((u, v, w)) = `(W), then no shortcut (u,w) is needed,
as we can always travel the same distance by choosing W instead. Such a W is called
a witness path for (u, v, w). There are further refinement techniques as to how to
search for witness paths or how to order the nodes for contraction. We again refer the

31

3 Algorithms for the Shortest Path Problem

n
o
d
e
o
rd
er u

v

w

4
5

u

v

w
9

4
5

Figure 3.6: Preprocessing in chs: An arc (u,w) is inserted, bypassing node v

Algorithm 4: Preprocessing for chs
Input : Graph G = (V,A),

Cost function d : A→ R+
0

Output: Graph Gprep = (V,Aprep)

1 for i = 1, . . . , |V | do
2 Find v such that rank(v) = i;
3 for u ∈ N−rank(v) do
4 for w ∈ N+

rank(v) do
5 if (u, v, w) is the only shortest path u→ w then
6 Arc a = G.addArc(u,w);
7 d(a) = d(u, v) + d(v, w);
8 b(a) = v;

reader to [GSSV12] for a more thorough discussion on these, and on means to keep the
preprocessed graph sparse.

Optimality of Contraction Hierarchies

With all the nodes left out in the query, it is not trivial that the query algorithm for
chs yields a correct result. We dedicate this subsection to show that this is indeed the
case. In our considerations, we follow [GSSV12].

Theorem 14. [GSSV12, Theorem 1] Given a contraction hierarchy, the Algorithm 3
returns the correct shortest path distance.

Proof. The proof relies heavily on the fact that Dijkstra’s algorithm yields shortest paths,
as it is the main ingredient in Algorithm 3. A closer look at the definition of a shortcut
shows that the distance between s and t in G∗ must be the same as in G. The problem
is that Algorithm 3 only finds so-called up-down paths

(s = v0, . . . , vp, . . . , vn = t),

32

3.3 Contraction Hierarchies

where rank vi < rank vi+1 for all i ∈ {0, . . . , p − 1} and rank vi > rank vi+1 for all
i ∈ {p, . . . , n − 1}. We therefore prove that if there is an s-t-path, then there is also a
path of the same length which is an up-down path. Assume now that we are given any
shortest s-t-path

P = (s = u0, . . . , up, . . . , un = t).

We define the set MP of local rank-minima on P as

MP = {ui : i ∈ {1, . . . , n− 1}, rank ui−1, rank ui+1 > rank ui}.

Now if P is not an up-down path, then MP 6= ∅. As the function rank : V → {1, . . . , |V |}
is an injection, argminu∈MP

rank(u) is a singleton and we can misuse notation to write

uj = argminu∈MP
rank(u).

Consider the arcs (uj−1, uj) and (uj , uj+1). Both arcs are in A, and exist before uj is
contracted. We have two cases:

(i) There is a witness path W = (uj−1, w1, . . . , wn, uj), with rankwi > rank uj for all
i ∈ {1, . . . , n}. Then, since P is a shortest path, we find `(W) = d(uj−1, uj) +
d(uj , uj+1), in which case we can replace (uj−1, uj , uj+1) by W .

(ii) There is no such witness path. In that case, during the preprocessing we will have
added a shortcut edge a = (uj−1, uj+1) with the weight d(uj−1, uj) + d(uj , uj+1).

In both cases, we find that we can bridge the valley by either W or a, and obtain a path
P (1) with `(P (1)) = `(P). Further, we can eliminate uj from MP . Iterating the above
yields a path P ∗ = P (|M |) which has the same length as P and satisfies MP ∗ = ∅, which
in turn means that P ∗ is an up-down path.

3.3.2 Contraction Hierarchies in the Time-Dependent Case

In the static case, preprocessing is rather straightforward. There are, however, some
intricacies involved when it comes to the time-dependent case. We shall denote the
time-dependent sibling of chs by Time-dependent Contraction Hierarchies, or tchs for
short. Throughout this whole subsection we will assume that any travel time function
is given as a piecewise linear function.

While in the above case, it suffices to run Dijkstra searches on the static graph (G, d)
in order to find witness paths, one must now propagate an entire function through the
graph, yielding what we call a profile query. This query can be implemented by
generalising Dijkstra’s algorithm to functions[BDSV09]. Assume we are given two arcs
(u, v) and (v, w) – instead of the arc lengths d(u, v) and d(v, w), one now uses the TTFs

33

3 Algorithms for the Shortest Path Problem

Tuv and Tvw. Adding two edge weights corresponds to chaining these TTFs into a new
piecewise linear function

Tuw = Tvw ◦ Tuv

containing the information of both. Taking the minimum of two values is replaced by
taking the minimum of two travel time functions.

Suppose we are again given a situation as in Figure 3.6, only this time, the arc weights
change over time. Whenever there is some time τ such that (u, v, w) is a shortest path,
we have to introduce a bypass (u,w) for the node v. In practice, Batz et al avoid many
of the computational difficulties associated with the profile searches by pre-selecting
cases where shortcuts are definitely or not at all necessary. A full description of their
techniques can be found in [BDSV09].

Another important difference between the static and the time-dependent case deals
with the query rather than preprocessing: we have seen in Algorithm 3 that chs makes
use of a bidirectional Dijkstra to find the shortest path. While in the static case we
only consider distances, in the time-dependent case, we have to know the arrival time in
advance in order to successfully do a bidirectional search. As this is clearly not possible,
in practice one follows a different approach: in the backward search, one explores all
nodes that can reach the target node in G−. This yields a set of explored arcs Aexp, and
one then stages a unidirectional search on A+∪Aexp. This query algorithm of tchs also
yields an optimal result, if the preprocessing is modified to the travel time functions as
above. We quote the result as

Theorem 15. [BGS08, Theorem 1] The query algorithm of tchs yields the shortest
path length.

The proof is, as the authors state, very similar to the proof of 14, which is why we
omit it here.

34

4 Algorithms for HFTOP

In this chapter, we describe our contributions to hftop. We start out with the static
case where no wind is blowing, and consider all of the three algorithms introduced in
Chapter 3, before leading into the time-dependent case. As we prove a criterion to verify
whether the FIFO property holds, we show that hftop can be solved to optimality by
Dijkstra’s algorithm and its derived variants. In Section 3.2, we have shown how A*
uses a potential function to guide its search; we therefore introduce a specific potential
function based on Super-Optimal Wind for the time-dependent A*. As a potential
function must be an underestimator, we prove that Super-Optimal Wind can be used to
underestimate the travel time, which leads to a feasible potential function. Further, we
assess the quality of the estimation. The main results of this chapter will be published
in [BBH+16].

4.1 The Static Case
According to Section 3.1.1, Dijkstra’s Algorithm solves spp optimally whenever we have
non-negative arc costs. For these costs, we use the great circle distance (gcd), which
is always non-negative. Consequently, Dijkstra’s algorithm will yield an optimal path by
Theorem 1, as will A* with an admissible potential (see Theorem 10). Thus, the only
intricacy is to find a good potential function.

To this end, assume we are given a target airport t ∈ V . Then we can use the gcd
from any node v ∈ V to t as underestimator:

πt : V → R+
0

v 7→ gcd(v, t)

That πt is an underestimator follows from the triangle-inequality and the fact that a
segment’s length is defined as the great circle distance and we always fly at least as
much as the gcd. In particular, πt is an admissible potential on the Airway Netwok.
Here, choosing the gcd often leads to a tight underestimation, because routes in the
graph tend to follow the geodesic. On a road network, however, the great circle distance
might be a poor choice due to a more grid-like topology (e.g. the Manhattan street layout
in New York), and the occurence of natural obstacles such as rivers or mountain ranges.

A further advantage of using the gcd as an underestimator is that it can be computed
at runtime, which means that, in the static case, A* needs no preprocessing. The

35

4 Algorithms for HFTOP

evaluation of the great circle distance is rather costly, amounting to up to half of the
runtime of the statistics listed in Chapter 5.

4.2 The Exact Time Dependent Case
All three of the algorithms introduced in Section 3 require that our problem satisfy the
FIFO property. Due to the nature of the travel time formula (2.1), this is not always the
case. Nevertheless, we show that when the maximum wind speed is within reasonable
bounds and a certain criterion is satisfied, we can indeed guarantee the FIFO property
for our network. In the following, let

ra(τ) = ‖~w(a, τ)‖

denote the wind speed, and let

r∗ := max
τ∈[t0,tr],a∈A

ra(τ)

denote the maximum wind speed over all times and arcs. We will in the following
theorem set up a sufficient condition for our network to satisfy the FIFO property.

Theorem 16. Assume that cr∗ ≤ vA for some constant c ≥ 1. Then if for every arc
a ∈ A the variations w′C(τ) and w′T (τ) of crosswind and trackwind satisfy

|w′C(τ)|√
c2 − 1

+ w′T (τ) ≤ v2
A

daG

(
1− 1

c

)2
,

the family of functions

Ta : [0,∞)→ [0,∞)

τ 7→ daG
vG(a, τ)

as defined in (2.1) satisfies the FIFO property.

Proof. Fix an arc a ∈ A, let τ ∈ [t0, tr] be some time, and ∆τ > 0. Recall that the
FIFO principle states that (see (3.1))

τ + Ta(τ) ≤ (τ + ∆τ) + Ta(τ + ∆τ).

We shall in the following write T (τ) := Ta(τ), dG := daG and vG(τ) := vG(a, τ) to ease
notation. The above is then equivalent to

T (τ + ∆τ)− T (τ)
∆τ ≥ −1,

36

4.2 The Exact Time Dependent Case

so, if we can prove that T ′(τ) ≥ −1 for all τ , then we are done. By (2.1), we have

T ′(τ) = −dGv
′
G(τ)

v2
G(τ)

,

which means we have to prove that

v′G(τ) ≤ v2
G(τ)
dG

. (4.1)

We will first concentrate on lower-bounding the right hand side of this inequality. We
claim that

vG(τ) =
√
v2
A − w2

C(τ) + wT (τ) ≥ vA − r∗ (4.2)

holds, i.e. we can always lower-bound the ground speed by vA − r∗. Clearly, the claim
is true if and only if

v2
A − w2

C(τ) ≥ (vA − (r∗ + wT (τ)))2 = v2
A − 2vA(r∗ + wT (τ)) + (r∗ + wT (τ))2 ,

which in turn is equivalent to

2vA(r∗+wT (τ)) ≥ (r∗)2 + 2r∗wT (τ) + (w2
T (τ) +w2

C(τ)) = (r∗)2 + 2r∗wT (τ) + r2(t).

Note that if we substitute (r∗)2 ≥ r2(τ) in the very last summand and the claim still
holds, it will a fortiori be true for all of the above. So, we obtain

vA(r∗ + wT (τ)) ≥ r∗(r∗ + wT (τ)),

which is always the case since wT (τ) + r∗ ≥ 0 and because of the assumption in the
statement. Hence, (4.2) holds. Squaring its right hand side yields

(vA − r∗)2 ≥
(
vA −

vA
c

)2
= v2

A

(
1− 1

c

)2
, (4.3)

and combining (4.2) and (4.3) leads to

v2
A

dG

(
1− 1

c

)2
≤ v2

G(τ)
dG

. (4.4)

Let us now consider the left hand side of the inequality (4.1). The definition of vG yields
that

v′G(τ) = d
dτ

(√
v2
A − w2

C(τ) + wT (τ)
)

= −2w′C(τ)wC(τ)
2
√
v2
A − w2

C(τ)
+ w′T (τ).

37

4 Algorithms for HFTOP

which means that we find (again with cr∗ ≤ vA)

v′G(τ) ≤ |w
′
C(τ)| · |wC(τ)|√
v2
A − w2

C(τ)
+ w′T (τ) ≤ |w

′
C(τ)| · r∗√
v2
A − (r∗)2

+ w′T (τ)

≤ |w′C(τ)| · r∗√
(cr∗)2 − (r∗)2 + w′T (τ) = |w

′
C(τ)|√
c2 − 1

+ w′T (τ). (4.5)

So, together with the assumption from the statement of the theorem, we obtain the
chain of inequalities

v′G(τ) ≤
(4.5)

|w′C(τ)|√
c2 − 1

+ w′T (τ) ≤ v2
A

dG

(
1− 1

c

)
≤

(4.4)

v2
G(τ)
dG

.

Note that this proves (4.1), and thus, the claim.

The above gives us a sufficient condition to decide whether our input satisfies the
FIFO property. Within our application, we can refine this criterion: recall that we are
given weather prognoses which are three hours apart, and that we linearly interpolate
both wind speed and direction in between. So, if we fix an arc a ∈ A and assume a
discretisation t0 < t1 < . . . < tr, let τ ∈ [ti, ti+1] and λ(τ) = τ − ti

ti+1 − ti
, then define

r(λ(τ)) = ri+1 + λ(τ)(ri − ri+1) and θ(λ(τ)) = θi+1 + λ(τ)(θi − θi+1),

where rj := ra(τj) is the wind speed on a at time τj and θj := θa(τj) is its angle. Since
λ : [ti, ti+1]→ [0, 1] is a linear function, its derivative is easy to determine, as are

d
dτ r(λ(τ)) = λ′(τ)(ri+1 − ri) = ri+1 − ri

ti+1 − ti
and

d
dτ θ(λ(τ)) = λ′(τ)(θi+1 − θi) = θi+1 − θi

ti+1 − ti
.

Applied to the formula (2.2), we find

w′C(τ) = ri+1 − ri
ti+1 − ti

· sin θ(λ(τ)) + r(λ(τ)) cos θ(λ(τ)) · θi+1 − θi
ti+1 − ti

.

Clearly, r(λ(τ)) is dominated by the greatest overall wind speed r∗a on a. As discussed in
Section 2.3.2, we always interpolate the wind direction via the smaller of both possible
angles, i.e., |θi+1 − θi| ≤ π always holds. Further, notice that

sin(x) + b cos(x) =
√

1 + b2 ·
(

sin(x) 1√
1 + b2

+ cos(x) b√
1 + b2

)
=
√

1 + b2 ·
(

sin(x) cos(arctan(b)) + cos(x) sin(arctan(b))
)

=
√

1 + b2 · sin(x+ arctan(b)),

38

4.2 The Exact Time Dependent Case

which yields (with b = π)

|w′C(τ)| ≤ |ri+1 − ri| sin θ(λ(τ)) + r∗a|θi+1 − θi| cos θ(λ(τ))
ti+1 − ti

≤ r∗a(sin θ(λ(τ)) + π cos θ(λ(τ)))
ti+1 − ti

≤ r∗a
√

1 + π2 · sin(θ(λ(τ)) + arctan(π))
ti+1 − ti

≤ r∗a
√

1 + π2

ti+1 − ti
.

Similar considerations for (2.3) lead to

w′T (τ) ≤ r∗a
√

1 + π2

ti+1 − ti
,

and we can upper-bound the sum |w′C(τ)|√
c2 − 1

+ w′T (τ) by

|w′C(τ)|√
c2 − 1

+ w′T (τ) ≤
(

1 + 1√
c2 − 1

)
· r
∗
a

√
1 + π2

ti+1 − ti
.

Hence, it is in our application enough to check whether

r∗a ≤
v2
A

daG


(
1− 1

c

)2

1 + 1√
c2−1

 · ti+1 − ti√
1 + π2

holds for every arc a ∈ A. For better readability, we write

C(c) :=
(

1− 1
c

)2
· 1

1 + 1√
c2−1

=
(

1− 1
c

)2
·
√
c2 − 1

1 +
√
c2 − 1

.

and find that we have just proved

Corollary 17. Suppose the wind data is obtained by evaluating only at the points in
T = {t0, . . . , tr} and interpolated linearly in between. Assume further that cr∗ ≤ vA for
some constant c ≥ 1. Then if for every arc a ∈ A we have

r∗a ≤
v2
A

daG
· C(c) · ti+1 − ti√

1 + π2
,

the travel time functions as in (2.1) satisfy the FIFO property.

39

4 Algorithms for HFTOP

The assumptions and criteria in Theorem 16 and in Corollary 17 might seem rather
restrictive, but in practice, we can always assume that the wind speed is less than half
the airspeed of a commercial airliner, hence the assumption cr∗ ≤ vA for some c ≥ 1 is
more than justified – an aircraft’s airspeed is typically 230 m/s, the wind speed would
have to be stronger than that to violate the assumption, which is very unlikely – wind
speeds above 33 m/s are already considered as hurricane force.1 Indeed, our experiments
show that c seems to be around c ≈ 3. In the following, we illustrate that the criterion
as in 17 is satisfied by lower and upper bounds for vA and dG respectively.

Assume an aircraft flies with an airspeed of 230 m/s, and say it enters a rather long
segment a ∈ A, with 1000 km length. As usual for weather prognoses, we assume ti and
ti+1 to be three hours apart. Then, with a conservative c = 2.1, we find that

r∗a ≤
2302

1 000 000 · C(2.1) · 10800√
1 + π2

m
s ≈ 27.5 m

s ,

so the maximum wind speed on a must not be greater than 27.5 m/s. To put this into
perspective: 27.5 m/s correspond to Beaufort scale 10 wind, a storm.

We can also examine the inequality from the other direction: because of r∗a ≤
vA
c

, we
can check for which dG the inequality

vA
c
≤ v2

A

dG
· C(c) · 10800√

1 + π2

holds true. Assuming a conservative c = 1.5, this yields

dG ≤ c · vA · C(c) · 10800√
1 + π2

≈ 66.3 km,

so if the wind was bounded by two thirds of the airspeed, the maximum segment length
such that the criterion from Corollary 17 is still valid, is 66.3 km. However, this is a very
pessimistic estimation and unlikely to occur in practice.

We checked a sample of the instances described in Section 5.1 to see whether they
satisfied the criterion in Theorem 16, and found it to hold for almost all segments, with
less than 0.02% of them violating it. Note that this does not automatically mean that
these instances of hftop do not satisfy the FIFO property, as the criterion set up in
Theorem 16 is merely a sufficient condition. When this condition is violated, one can still
check whether equation (3.1) holds, which we found to be true for those cases. Notice
that even in the case that (3.1) was violated, we could render the network FIFO again,
by simply subdividing the segments where the FIFO property does not hold into smaller
segments and evaluating the travel time for each sub-segment.

1This holds true for winds on the ground. High altitude winds can be stronger, but practically never
match the airspeed of an aircraft.

40

4.2 The Exact Time Dependent Case

Together, Theorem 16 and Corollary 17 guarantee that both Dijkstra’s Algorithm and
A* yield optimal results in the time-dependent case. We are therefore able to obtain
optimal solutions for hftop in polynomial time.

Note that while the travel time functions satisfy the FIFO property in our case, in
the more general ftop setting this may not be true. Even if we assume the airspeed
to be constant in ftop, there are still far too many possible problems: firstly, if we
allow aircraft to climb or to descend, we can no longer guarantee the FIFO property.
This is due to the fact that now the weight of an aircraft becomes important, as lighter
aircraft climb faster than heavier aircraft. Thus, a formerly heavier aircraft can, after
a climb phase, end up lighter than a formerly lighter one, an the FIFO property must
be adapted to respect the weight change. In our case, no such adaptation is necessary,
because travel time and fuel consumption are equivalent in the cruise phase.

Secondly, introducing restrictions such as NOTAMs (Notice to Airmen) further com-
plicate the matter, as these restrictions can be linked to a time interval. In this case,
an earlier aircraft may be prevented from entering the segment altogether and has to
circumnavigate (one can view this segment as having∞ cost in said time interval), while
the later aircraft can overtake the first one through the now valid segment.

4.2.1 The Super-Optimal Wind Potential Function

The challenge for A* in the time dependent case is now to find a good potential. In the
following, we aim to find a function πt : V → R+

0 which always underestimates the actual
travel time. If we imagine a situation where an aircraft follows a jet stream, it becomes
clear why the formerly used gcd no longer underestimates the actual distance: we now
have to consider the wind-dependent air distance, which can be much shorter than the
gcd. We will therefore use that we are given the weather prognoses for the near future,
and aim to guide A* employing this information.

As opposed to road networks, we have another advantage: we know a priori that
there is a very limited number of target airports – only roughly 1 300 are used by major
airlines.2. We can use this fact to our advantage by precomputing a lower bound on
the travel time from every waypoint to each target airport. This approach bears strong
similarities to the alt algorithm[GH04], however we note that for an s-t query, we only
use one potential function, namely πt (as opposed to a set of landmarks in alt).

To precompute the lower bound on the travel time, assume we are given the target
airport t. We wish to compute the minimum travel time from each node v to t, which
involves finding the minimum travel time on each arc. However, obtaining this minimum
is not straightforward, since the travel time function is non-linear (cf Figure 2.4). In
the following, we shall therefore explain how to underestimate the travel time from any
node v to t, rather than compute the minimum directly. Let us for now fix an arc

2Data taken from flightradar24.com

41

https://flightradar24.com/

4 Algorithms for HFTOP

a ∈ A. As becomes apparent from (2.1), underestimating the travel time is equivalent
to overestimating the ground speed vG(a, ·). We shall hence devote the remainder of the
section toward overestimating the ground speed.

Intuitively, the ground speed of an aircraft is greater, the more trackwind it experiences
and the less crosswind there is. We use this intuition for the design of an artificial Super-
Optimal Wind vector which is always at least as good as the prevailing wind conditions.

Formally, let v∗G(a) = maxτ∈[t0,tr] vG(a, τ). Let t0 = τ0 < τ1 < . . . < τN = tr be
a discretisation of [t0, tr] such that τi − τi−1 = ∆ for all i = 1, . . . , n. We choose N
such that r|N , in order to make sure that for all i = 0, . . . , n − 1, we always find some
j = 0, . . . , n− 1 such that [τi, τi+1] ⊂ [tj , tj+1]. We then define for i = 1, . . . , n

w
(i)
C (a) = min

τ∈[τi−1,τi]
|wC(a, τ)| and

w
(i)
T (a) = max

τ∈[τi−1,τi]
wT (a, τ),

that is, the minimum crosswind and maximum trackwind on each discretisation step.
These can then be used to compute the overestimated ground speed on each interval,
denoted by

v
(i)
G (a) =

√
v2
A −

(
w

(i)
C (a)

)2
+ w

(i)
T (a).

The vector w(i)
opt defined by its cross- and track components

w
(i)
opt = (w(i)

C , w
(i)
T)

is then called the Super-Optimal Wind vector on [τi−1, τi]. Furthermore, we define

vG(a) = max
i∈{1,...,n}

v
(i)
G (a).

The intuition from above turns out to be correct, as vG(a) is indeed an overestimator of
vG(a, ·). This is shown in the following

Lemma 18. We have vG(a, τ) ≤ vG(a) for all τ ∈ [t0, tr].

Proof. Choose an interval Ik = [tk−1, tk]. Since w
(k)
C (a) ≤ wC(a, τ) and w

(k)
T (a) ≥

wT (a, τ) for any τ ∈ [tk−1, tk], we find

vG(a, τ)
∣∣∣
Ik

≤ max
τ∈Ik

(√
v2
A − w2

C(a, τ) + wT (a, τ)
)
≤ v(k)

G (a),

As this inequality holds for every Ik, the result follows.

42

4.2 The Exact Time Dependent Case

Since the above lemma guarantees vG(a, τ) ≤ vG(a), we also find v∗G(a) ≤ vG(a), so
vG(a) overestimates the ground speed. Note that vG is an artificial ground speed in the
sense that the Super-Optimal Wind vector defining it need not be an interpolation result.
Rather, crosswind and trackwind will attain their respective optima at different times.
Such a case is depicted in Figure 4.1. Here, it becomes apparent that wopt incorporates
both the least possible crosswind and the maximum possible trackwind.

w2
w1

wC(λ)

wT (λ)

(a) Crosswind (red) and trackwind (blue)
functions for w1, w2 in (b)

w1

w2

wopt

(b) The Super-Optimal Wind vector re-
sulting from w1 and w2

Figure 4.1: Two wind vectors and their artificial Super-Optimal Wind (green)

Figure 4.1b shows the Super-Optimal Wind vector for the two given wind vectors w1
and w2. The dashed arc is the polar interpolation between both, whereas the hatched
rectangle shows all vectors that can result from an arbitrary combination of the crosswind
component of one and the trackwind component of the other. The example shows a
considerable error between wopt and the dashed arc – this is, however, mainly due to
the illustration. In practice, wopt tends to lie rather close to the arc, which leads to the
following theorem in which we assert the quality of the ground speed overestimation. In
it, we will show that its error with respect to the actual optimum is bounded. To this
end, we have to assume that the greatest wind speed r∗a on an arc is less than half the
airspeed vA of the aircraft – as already discussed, in practice, this is always the case.

Theorem 19. Suppose vA ≥ 2r∗a, where r∗a := maxρ∈[t0,tN] ra(ρ) is the greatest overall
wind speed on a ∈ A. Then there exists a constant C such that

0 ≤ vG(a)− v∗G(a) ≤ C∆.

Proof. Fix an arc a ∈ A. The first inequality follows directly from Lemma 18, so the
only interesting inequality is the second one which guarantees that the error is bounded.

43

4 Algorithms for HFTOP

To prove the second inequality, we show that there exists some C > 0 such that

max
τ∈[τi,τi+1]

(
v

(i)
G (a)− vG(a, τ)

)
≤ C∆,

which will prove the claim. Let I = [τi, τi+1], and consider ρ1, ρ2 ∈ I ⊂ [tk, tk+1]. Choose
λ1, λ2 ∈ [0, 1] such that

ρj = λjtk + (1− λj)tk+1 for j = 1, 2.

We will now bound the trackwind error and the crosswind error separately, starting out
with the former: by the mean value theorem, we have

|wT (a, ρ1)− wT (a, ρ2)| ≤ |ρ1 − ρ2|max
ρ∈I
|w′T (a, ρ)|

= |ρ1 − ρ2|max
ρ∈I
|r′a(ρ) cos θa(ρ)− ra(ρ)θ′a(ρ) sin θa(ρ)|

≤ ∆
(

max
ρ∈I
|r′a(ρ)|+ r∗a max

ρ∈I
|θ′a(ρ)|

)
. (4.6)

Recall that we view wind vectors as polar vectors w(j)
a = (r(j)

a , θ
(j)
a). As already discussed,

we interpolate both wind speed and direction linearly in [tk, tk+1]. In particular, for
ρ ∈ [tk, tk+1] this yields the constants

r′a(ρ) = r
(k+1)
a − r(k)

a

tk+1 − tk
as well as θ′a(ρ) = θ

(k+1)
a − θ(k)

a

tk+1 − tk
.

Together with (4.6), we find that

|wT (a, ρ1)− wT (a, ρ2)| ≤ ∆

∣∣∣r(k+1)
a − r(k)

a

∣∣∣+ r∗a

∣∣∣θ(k+1)
a − θ(k)

a

∣∣∣
tk+1 − tk

≤ ∆r∗a(1 + π)
tk+1 − tk

, (4.7)

where the last inequality holds because |r(k+1)
a − r(k)

a | ≤ r∗a, and |θ(k+1)
a − θ(k)

a | ≤ π as
already shown right before Corollary 17. By analogous procedures as for the trackwind,
we can bound the crosswind error by the same value, i.e.

|wC(a, ρ1)− wC(a, ρ2)| ≤ ∆r∗a(1 + π)
tk+1 − tk

. (4.8)

With these preliminaries, we shall now bound the error on the ground speed. To this
end, let ρ maximise the trackwind, ρ minimise the absolute value of the crosswind, and
ρ∗ maximise the ground speed in I. So, to be precise, we have

wC(a, ρ) := w
(i)
C (a) = min

τ∈I
|wC(a, τ)|,

wT (a, ρ) := w
(i)
T (a) = max

τ∈I
wT (a, τ),

44

4.2 The Exact Time Dependent Case

as well as ρ∗ ∈ argmaxτ∈I vG(a, τ). Then we find

v
(i)
G (a)−vG(a, τ) =

=
√
v2
A − wC(a, ρ)2 + wT (a, ρ)−

√
v2
A − wC(a, ρ∗)2 − wT (a, ρ∗)

=
wC(a, ρ∗)2 − wC(a, ρ)2√

v2
A − wC(a, ρ)2 +

√
v2
A − wC(a, ρ∗)2

+ wT (a, ρ)− wT (a, ρ∗). (4.9)

Note that |wC(a, τ)| ≤ ra(τ) ≤ r∗a always holds, and that we can upper-bound the
numerator of the above expression by letting

wC(a, ρ∗)2 − wC(a, ρ)2 ≤ |wC(a, ρ∗) + wC(a, ρ)| · |wC(a, ρ∗)− wC(a, ρ)|
(4.8)
≤ |wC(a, ρ∗) + wC(a, ρ)| ·∆r∗a(1 + π)

tk+1 − tk

≤
(
|wC(a, ρ∗)|+ |wC(a, ρ)|

)
·∆r∗a(1 + π)

tk+1 − tk

≤
(
ra(ρ∗) + ra(ρ)

)
·∆r∗a(1 + π)

tk+1 − tk

≤ 2r∗a ·∆
r∗a(1 + π)
tk+1 − tk

.

Applying this to (4.9) yields

v
(i)
G (a)− vG(a, τ) ≤

2r∗a ·∆
r∗

a(1+π)
tk+1−tk√

v2
A − r(a, ρ)2 +

√
v2
A − r(a, ρ∗)2

+ wT (a, ρ)− wT (a, ρ∗)

≤
2r∗a ·∆

r∗
a(1+π)
tk+1−tk√

v2
A − r2

a(ρ) +
√
v2
A − r2

a(ρ∗)
+ wT (a, ρ)− wT (a, ρ∗)

≤ 2r∗a
2
√
v2
A − (r∗a)2

·∆r∗a(1 + π)
tk+1 − tk

+ wT (a, ρ)− wT (a, ρ∗),

and together with (4.7), we obtain

v
(i)
G (a)− vG(a, τ) ≤ r∗a√

v2
A − (r∗a)2

·∆r∗a(1 + π)
tk+1 − tk

+ |wT (a, ρ)− wT (a, ρ∗)|

(4.7)
≤ ∆r∗a(1 + π)

tk+1 − tk
·

 r∗a√
v2
A − (r∗a)2

+ 1

 .

45

4 Algorithms for HFTOP

Now, since we assumed vA ≥ 2r∗a, we find that

r∗a

 r∗a√
v2
A − (r∗a)2

+ 1

 ≤ r∗a
(

r∗a
r∗a
√

3
+ 1

)
≤ vA

2 (1 + 1) = vA,

and thus we have

C = (1 + π)va
tk+1 − tk

,

which proves the claim.

If we define T ∗a := minτ∈[t0,tr] Ta(τ) and T (a) = dG(a)
vG(a) , we obtain this chapter’s main

result:

Theorem 20. Suppose vA ≥ 2r∗a, where r∗a := maxρ∈[t0,tN] ra(ρ) is as in Theorem 19.
Then there is a constant C ′ such that for any arc a, we have

0 ≤ T ∗a − T (a) ≤ C ′∆.

Proof. The left inequality is again clear as a direct consequence from Lemma 18, while
the right inequality follows directly from Theorem 19.

We can now define the lower bound cost graph (G,T), where G = (V,A), with the
static arc costs

T : A→ [0,∞)
(u, v) 7→ T ((u, v))

Given a target node t, we can run all-to-one Dijkstras on (G,T) to obtain distance values
dist(v, t) for every node v ∈ V . Here, we use the underline to emphasise that the values
are computed in the lower bound graph (G,T). This yields a potential function

πt : V → R+
0

v 7→ dist(v, t) =
n∑
i=1

T (ui−1, ui),

where P = (v = u0, u1, . . . , un−1, un = t) is a shortest path from v to t.

Lemma 21. The potential function πt is feasible in (G,T).

46

4.2 The Exact Time Dependent Case

Proof. We have to show that for any arc (v, w) ∈ A, the inequality πt(v) ≤ πt(w) +
T (v, w) holds. For a contradiction, assume the converse, namely that for some (v, w) ∈ A,
we find πt(v) > πt(w) + T (v, w). But from the definition of πt, we find

dist(v, t) > dist(w, t) + T (v, w).

Let now Pv be a shortest path from v to t, and Pw a shortest path from w to t. Seeing
as dist(v, t) = `(Pv) denotes the length of Pv, this directly contradicts the notion of Pv
being a shortest path, since the path obtained by walking from v to w along (v, w) and
then continuing on Pw is clearly shorter.

The preceding lemma now makes sure that A* yields an optimal solution on (G,T).
In fact, the algorithm also returns an optimal solution in (G,T), as is shown in the
following Theorem.

Theorem 22. The potential πt is feasible in (G,T).

Proof. Just observe that

πt(v) ≤ πt(w) + T (v, w) ≤ πt(w) + T(v,w)(τ)

holds for all times τ ∈ [t0, tr] because of Theorem 20.

The preceding theorem in conjunction with Theorem 13 yields that A* together
with the potential function πt resulting from the Super-Optimal Wind solves the time-
dependent shortest path problem on the Airway Network optimally. In particular, since
πt(t) = 0, the potential function is admissible by Lemma 8. For this reason, Corollary
12 holds, and we visit at most as many vertices as Dijkstra’s algorithm, as can be seen
in Figure 4.2.

4.2.2 Minimising the Crosswind and Maximising the Trackwind

In the previous subsection, we have introduced the Super-Optimal Wind and shown
that it yields an underestimator. As input, we assumed the maximum trackwind and
the minimum crosswind for each arc over a specified time period – all that’s left now is
to computationally determine them.

A natural choice for the discretisation step is r = N , i.e, τi = ti. In our application, we
are given weather prognoses containing wind conditions at three hour intervals for the
near future. Therefore, it makes sense that the discretisation step size ∆ = τj+1 − τj =
ti+1 − ti be three hours. While a choice r > N is of course possible, we shall see in the
next subsection that a step size of three hours already yields very good results.

47

4 Algorithms for HFTOP

Figure 4.2: Search spaces of Dijkstra’s algorithm (gray) and A* (yellow) on a route between
London and New York City. The path is shown in red. Again, we visualise the
search spaces through the arcs rather than through the waypoints (Image data:
Google Earth, Digital Globe).

We will in the following restrict the discussion to the case i = 1, as all other cases are
similar. Let us fix an arc a ∈ A and define λ := t2 − τ

t2 − t1
. Recall the formulae for (2.2)

and (2.3) as defined in Section 2.3.2:

wC(a, λ) = (λr1 + (1− λ)r2) sin(λθ1 + (1− λ)θ2) =: f(λ), and
wT (a, λ) = (λr1 + (1− λ)r2) cos(λθ1 + (1− λ)θ2) =: g(λ).

To ease notation, we introduce constants a := r1 − r2, b := r2 > 0, α := θ1 − θ2 and
β := θ2. With these, (2.2) and (2.3) become

f(λ) = (aλ+ b) · sin(αλ+ β) and
g(λ) = (aλ+ b) · cos(αλ+ β).

48

4.2 The Exact Time Dependent Case

We are first looking to minimise |wC(a, τ)| for the given segment a. We may wlog
assume that wC(a, τ) ≥ 0 for all τ ∈ [t1, t2]. If this is not the case, then either wC(a, τ) <
0 for all τ and we can consider −wC . Or, if wC is both positive and negative, then since it
is continuous, the minimum cross wind is zero. To find the minimum when wC(a, τ) ≥ 0,
we assume wlog θ1 < θ2 and r1 6= r2, as the cases with equal radii or angles are easy.

Although it happens frequently in practice, ~w1, ~w2 need not lie in the same quadrant.
In Figure 4.3b, we have to interpolate the wind vectors through three of the four possible
quadrants. Since [θ1, θ2] is compact, |wC | attains its minimum: therefore it makes sense
to compute the minima in [θ1,

π
2], [π2 , π] and [π, θ2] separately and then pick the overall

minimum, which is then a minimum in [θ1, θ2].

θ2θ1

~w1

~w2r1

r2

(a) θ1, θ2 belong to the
first quadrant

θ2

θ1

~w1

~w2

r1

r2

(b) θ1, θ2 belong to different
quadrants

w1 w2

(a)
(b)

(c) Function f in case 1

Figure 4.3: Cases considered for crosswind minimisation

Fortunately, we can easily compute the first three derivatives of f , which are (using
the constants defined above)

f ′(λ) = a sin(αλ+ β) + α(aλ+ b) cos(αλ+ β)
f ′′(λ) = 2aα cos(αλ+ β)− α2(aλ+ b) sin(αλ+ β).
f ′′′(λ) = −3aα2 sin(αλ+ β)− α2(aλ+ b) cos(αλ+ β).

Notice that since θ1 < θ2, we have α < 0, and we clearly always have b > 0 as it is a
radius.

The necessary condition for the crosswind function f to have a minimum is that its
derivative f ′ has a root. We shall find this minimum by applying Newton’s Method; as
a comprehensive introduction of the method would lead us too far off-topic, we refer the
reader to [DH08] for an overview.

49

4 Algorithms for HFTOP

Since we’re only looking in a very narrow interval (namely, λ ∈ [0, 1]), we can reduce
the computational effort by pre-selecting those cases where f ′ actually has a root in
[0, 1], thus distinguishing them from cases where we know that the minimum of f must
be met at either endpoint of [0, 1]. To this end, we distinguish several cases:

1. [θ1, θ2] ∈ [0, π2]. This especially means that sin(αλ + β), cos(αλ + β) ≥ 0, and we
can open the following two subcases (compare Figures 4.3a and 4.3c)
1.1 a > 0 (⇔ r1 > r2). As aλ + b > 0 for all λ and since α < 0, we know that

f ′′(λ) < 0 for all λ ∈ [0, 1]. Hence, f is concave and must meet its minimum
in one of {0, 1}.

1.2 a < 0. In this case, f ′′ can be both positive and negative. A closer look
at f ′′′ however reveals that f ′′′(λ) > 0 for λ ∈ [0, 1], so f ′′ is monotonously
increasing. Now, if f ′′(1) ≤ 0, then f is concave within [0, 1], and its minimum
is, as above, one of the boundary points. If f ′′(1) > 0, we check whether
f ′′(0) > 0 (i.e., f is convex), or f ′′(0) < 0. In the latter case, we perform
Newton’s method to find the inflection point λp, the root of f ′′. We can then
write [0, 1] = [0, λp]∪ [λp, 1] and know that on [0, λp], f must be concave, and
on [λp, 1], it must be convex. Having done so, we know that the minimum in
the concave part is met at either 0 or λp.
To find the minimum when f ′′ is convex, we again employ Newton’s method
without any further preparation to find a root of f ′. The supposed minimum
can be anywhere in [0, 1] (or [λp, 1] for the case just discussed), but if the
search runs out of bounds (i.e., it converges towards some point λ∗ /∈ [0, 1]),
then we simply take the λ∗ ∈ {0, 1} which is closest to the supposed root.
Comparing the values from the concave and convex parts yields the absolute
minimum.

2. [θ1, θ2] ⊂ [π2 , π]. Again we find sin(αλ + β) ≥ 0, but this time cos(αλ + β) ≤ 0,
which yields the two subcases:
2.1 a > 0 – as in 1.2, f ′′ can be both positive and negative. We refer the reader

to this case.
2.2 Similar considerations as in 1.1 yield that f ′′(λ) < 0, and hence it is concave.

3. [θ1, θ2] ⊂ [π, 3π
2]. In this case, we mirror both w1, w2 with respect to the track axis

and apply 2. This symmetry operation does not distort the results, as we are only
considering the crosswind part of w1, w2 here, which remains invariant under this
mirroring operation.

4. For symmetry reasons, the case [θ1, θ2] ⊂ [3π
2 , 2π] is covered by 1.

By the same considerations as before, we can maximise the trackwind function g(λ).

50

4.3 Approximating the Travel Time Function

4.2.3 Super-Optimal Wind in Practice
We have implemented the Super-Optimal Wind underestimator within the framework of
our application. To assess its quality, we ran it on every arc set of all nine instance sets
which arise out of three different altitude layers and three different weather conditions
described in Section 5.1. To compare, we also implemented an exact (brute force) solver
which assumes a discretisation step of one second and computes vG(a, τ) for every second.
The brute force solver then picks the overall maximum. As our weather prognoses are
spaced three hours apart, we chose a discretisation step of three hours for the Super-
Optimal Wind. Recall that the computation of the Super-Optimal Wind is solely to
obtain a travel-time underestimator – we do not need to obtain the exact result every
time, but merely find a good upper bound. Our results show that the seemingly coarse
discretisation step of three hours already yields very accurate results: the average error
with respect to the brute force solver is 0.434 · 10−3. Using the same computer as
described in Chapter 5, the average time to process an arc is less than one millisecond.
On 20 cores, the average runtime for all segments on one layer is 5.61 seconds, and we
found that in almost one third of all cases, the Super-Optimal Wind yields the same
result as the exact solver.

4.3 Approximating the Travel Time Function
As already discussed in Section 2.3.1, the PWL case promises to yield better query times
than the exact case, as we can outsource much of the expensive weather calculation into
a preprocessing step and evaluate only the resulting PWLs in the query. Although this
possibly leads to errors, the PWL approach is a standard way to model time-dependency
on graphs and hence widely used in many time-dependent shortest path algorithms.
Again, as in the case of the exact TTFs, we have to make sure that Dijkstra’s algorithm
yields the optimal result. We do so in Theorem 24, but have to base the result on a
small lemma.

Assume we are given a PWL f , and suppose that there exist two points τ < τ ′ which
do not satisfy the FIFO property – in other words, f(τ) > τ ′−τ+f(τ ′), as also depicted
in Figure 4.4. It is then intuitively clear that there should be an interval [tk, tk+1] which
also violates the FIFO principle, but the rigorous proof needs some work:

Lemma 23. Let f : [t0, t1] ∪ [t1, t2] ∪ . . . ∪ [tr−1, tr]→ R be a piecewise linear function,
and assume there are τ < τ ′ such that f(τ) > τ ′ − τ + f(τ ′). Then there exists an
interval [tk, tk+1] such that

f(tk) > tk+1 − tk + f(tk+1).

Proof. Say τ ∈ [ti, ti+1] and τ ′ ∈ [tj , tj+1]. We assume that τ 6= ti and τ ′ 6= tj , or else we
can do the proof by skipping the considerations leading to equation (4.12) below. Note

51

4 Algorithms for HFTOP

ti τ ti+1 tk tk+1 τ ′ tj+1

T̃
a
(τ

)

Figure 4.4: A non-FIFO piecewise linear function

that the statement can be rewritten to

f(τ ′)− f(τ)
τ ′ − τ

< −1. (4.10)

We now pick the interval [tk, tk+1] on which fk is the most decreasing. To be precise, we
choose k ∈ {i, . . . , j} such that

f(tk+1)− f(tk)
tk+1 − tk

= min
m∈{i,...,j}

f(tm+1)− f(tm)
tm+1 − tm

.

and claim that this is the desired k. Assume for a contradiction that

f(tk)− f(tk+1)
tk+1 − tk

≥ −1.

Using a telescopic sum, we find

f(τ ′)− f(τ)
τ ′ − τ

= f(τ ′)− f(tj) +
∑j−1
m=i (f(tm+1)− f(tm)) + f(ti)− f(τ)

τ ′ − τ
. (4.11)

We will now treat each summand on its own, starting out with the big sum. Using the

52

4.3 Approximating the Travel Time Function

definition of k and the assumption, we find

j−1∑
m=i

(f(tm+1)− f(tm)) =
j−1∑
m=i

f(tm+1)− f(tm)
tm+1 − tm

· (tm+1 − tm)

≥
j−1∑
m=i

f(tk+1)− f(tk)
tk+1 − tk

· (tm+1 − tm)

≥ (−1) ·
j−1∑
m=i

(tm+1 − tm)

= (ti − tj).

We now look at the last summand, f(ti)− f(τ) = f(ti)− f(τ)
ti − τ

(ti− τ). For τ ∈ [ti, ti+1],
an easy calculation shows that

f(ti)− f(τ)
ti − τ

= f(ti)− f(ti+1)
ti − ti+1

,

in other words, the slope does not change on [ti, ti+1]. But this means

f(ti)− f(τ) = f(ti)− f(τ)
ti − τ

(ti − τ) = f(ti)− f(ti+1)
ti − ti+1

(ti − τ) ≥ (−1) · (ti − τ),

(4.12)

and analogously, we find f(τ ′)−f(tj) ≥ (−1) · (τ ′− tj). Applying these results to (4.11),
we have

f(τ ′)− f(τ)
τ ′ − τ

≥ −(τ ′ − tj) + (ti − tj)− (ti − τ)
τ ′ − τ

= −τ
′ − τ
τ ′ − τ

= −1,

contradicting (4.10) and thus proving the claim.

Having proved the lemma, we can now proceed to

Theorem 24. If the family Ta of travel time functions satisfies the FIFO property, then
the family of piecewise linear functions

T̃a : [0,∞)→ [0,∞)

as defined in (2.4) satisfies the FIFO property.

Proof. Suppose not. Then, there exist two time points τ < τ ′ such that

T̃a(τ) > (τ ′ − τ) + T̃a(τ ′).

53

4 Algorithms for HFTOP

We may by Lemma 23 assume that τ = τk, τ
′ = τk+1 for some k ∈ {0, . . . , n−1}. Notice

that since T̃a(τi) = Ta(τi) for all i, we then have

Ta(τk) > (τk+1 − τk) + Ta(τk+1),

so Ta would have to violate the FIFO property contradicting the assumption.

Theorem 24 states precisely that Dijkstra’s algorithm, A* and CHs will yield an op-
timal path in the approximated time-dependent setting.

In order to put A* to work, we now proceed as in Section 4.2: first, for any arc a ∈ A
we compute a value T̃ a which is a lower bound on all travel times for this particular arc,
i.e. we determine T̃ a such that

T̃ a ≤ T̃a(τ) for all τ ∈ [t0, tr].

Since we are given PWLs as travel time functions, finding the minimum is easy: it can
be achieved in linear time by going through all the break points and picking the minimal
value. Doing so for every arc a ∈ A yields a lower bound cost graph (G, T̃) with the
time-independent arc length function T̃ : A → [0,∞), on which we can now run an all-
to-one Dijkstra for every target node t. For each such t, any node v that was reached
in the all-to-one search will then be assigned the minimum travel time it takes to travel
from v to t on (G, T̃), which is by extension a lower bound on the travel time in (G, T̃).
By analogous means as in Corollary 22, we obtain that the resulting potential function
is again feasible in (G, T̃a).

54

5 Computational Results

To assess the quality of the introduced algorithms, we implemented both Dijkstra’s
algorithm and A* in C++ within the framework of our application, using the poten-
tial functions described in Sections 4.2 and 4.3. For chs and tchs, we used the tools
Contraction Hierarchies and KaTCH released by the Karlsruhe Institute of Technology
KIT[Kar16] (also implemented in C++).

All of our computations were carried out on computers with 132GB of RAM and an
Intel(R) Xeon(R) CPU E5-2660 v3 processor with 2.6GHz and 25.6MB cache.

Every preprocessing step was done in parallel and using 20 threads, with the exception
of the tool Contraction Hierarchies, whose code does not offer the option of parallelisa-
tion. All queries, on the other hand, were done in single-thread mode.

5.1 Instances

Since the Airway Network in our perspective consists of multiple disconnected layers,
we can easily generate new instances by switching layers; for that reason, we chose the
altitudes 29 000ft, 34 000ft, and 39 000ft. Following aviation convention, we will denote
these by FL290, FL340 and FL390 respectively (‘FL’ for flight level). These three flight
levels, while being common cruise altitudes for aircraft, are spaced sufficiently far apart
such as to allow for substantially different wind conditions. Although the layers are
topologically very similar to each other, there are several segments which are only allowed
on some altitudes, thus yielding 329 442, 329 736 and 329 580 arcs, respectively.

We also picked three of the weather prognoses which are available to us, namely
December, February and March (denoted by Dec, Feb, Mar respectively). These weather
prognoses are long enough apart to guarantee independent weather. Each prognosis
consists of a set of time points {t0, . . . , tr} together with wind conditions at each ti for
a three-dimensional grid spanning the Earth’s atmosphere. The ti cover ranges from
30 through 45 hours, and are all spaced three hours apart. The graph and weather
prognoses are based on real world data, provided to us by Lufthansa Systems. As a test
set, we used 18644 origin-destination (OD) pairs, consisting of all flights recorded in
June 2015 by the website flightradar24.com.

Any variant of Dijkstra’s algorithm will in the following tables be denoted by Dijk, and
the A* algorithm can be found labeled as such. Time-dependent Contraction Hierarchies
will be labelled as tchs, and its static counterpart will be referenced to as chs. All of

55

https://www.flightradar24.com

5 Computational Results

them will carry tokens indicating the considered version, e.g. ‘PWL’ in the index will
mean that piecewise linear functions were used for the travel time on the arcs. The index
‘E’ will denote the exact version of the travel time computation. If they bear no token,
they represent the static case.

5.2 Results in the Static Case
Since in the static case we do not consider any wind, but only the great circle distance
as length of a segment, we denote each of the instances by I- followed by the first two
numbers denoting their altitude, i.e. we have the instances I-29, I-34 and I-39. Since the
graph topology does not change much over the layers, one should expect that the query
times do not vary much among the instances.

Dijk chs A*

Instance query
(ms)

prep
(s)

query
(ms)

speedup
×

prep
(s)

query
(ms)

speedup
×

I-29 2.01 1260 0.37 5.45 0 0.34 5.86
I-34 2.00 1233 0.38 5.24 0 0.33 6.12
I-39 1.94 1309 0.39 5.01 0 0.32 6.00

Table 5.1: Comparison of chs and A* for the case of static arc costs.

In Table 5.1, we provide the preprocessing times of chs and A* and average query
times. The latter ones were obtained by averaging the time it took to compute a shortest
path for all 18644 OD pairs. As expected, our computations show that the query times
are stable for all three instances. Moreover, A* performs slightly better than chs;
however, not enough to be of any significance. Note that in this static case, chs yields a
very low speedup compared to instances on road networks. We identify two main reasons
for this behaviour: first, the average degree in the Airway Network is higher than in road
networks. While road networks tend to have average degrees between two and three, the
average degree in our network is around 12.5, impacting chs preprocessing. The second
reason is the number of arcs in a shortest path. While routes in road networks can easily
reach more than one thousand arcs per path for continental-sized networks, routes in
the Airway Network consist of only very few edges, averaging on 20 edges per path. chs’
full strength only shows when there are many nodes to bypass, but since routes in the
Airway Network are rather short, one cannot attain a good speedup here.

Moreover, A* yields very good results when guided by the great circle distance poten-
tial. We attribute this to the fact that the Airway Network was designed so that routes
can closely follow the geodesic between origin and destination, which renders A*’s gcd
potential highly effective.

We also want to point the reader to the stark difference in preprocessing time. chs

56

5.3 Results in the PWL Case

needs more than 20 minutes preprocessing time (on a single core). While this is still
within reasonable bounds, note that A* does not need any preprocessing at all: since it
uses the gcd potential, all values for the potential can be computed on the fly. This, on
the other hand, also contributes significantly to its running time, making up for more
than half of it. This also explains why the static A* is slower than its time dependent
counterpart. One could optimise here by precomputing and storing the values for each
node.

5.3 Results in the PWL Case

We start analysing the time-dependent case by considering piecewise linear travel time
functions. As before, we consider the flight levels 290, 340 and 390, but now we ad-
ditionally use the weather in the months December, February and March. Following
the naming above, we shall again denote our instances by I-FL-Mon-n, where FL again
stands for the first two numbers denoting the considered altitude, Mon stands for the
month in which the weather prognosis is given and the last number is the discretisation
step (so -1 stands for 1 hour resolution and -3 for 3 hour resolution).

To compare A* to Dijkstra’s algorithm and tchs, we chose two discretisations of
the time interval [t0, tr]. As our weather prognoses are spaced three hours apart, a
discretisation step of three hours is a natural choice. In order to obtain greater precision,
we also chose a step of one hour.

Just like in the static case, we list average query times in columns four and seven of
Table 5.2. These were again obtained by measuring the time it takes to compute shortest
paths for all OD pairs and dividing by the number of pairs. As becomes apparent in the
table, A* outperforms tchs, only this time the speedup is significant: while tchs yield
close to no speedup, A* generates an average speedup of ×25 with respect to Dijkstra.
Even with respect to tchs, A*’s speedup is greater than one order of magnitude (around
×16.3).

Contrary to the static case, we have to do some short preprocessing for A*. This
consists of two phases: for each arc a and each PWL T̃a, find the minimum value T̃ a,
and afterwards, run an all-to-one Dijkstra for each target node on the resulting lower-
bound-graph. Still, this can be achieved on 20 cores literally within seconds. In contrast,
we direct the reader’s view to the preprocessing time column in tchs in Table 5.2. Notice
that here the time is given in minutes, not seconds – times run from 11/2 hours to almost
8 hours (I-34-Feb-1), also on 20 cores. As updated weather prognoses are released every
six hours, preprocessing takes far too long to be of any use in our application.

However, one must note that A* preprocessing uses the fact that we know in advance
which of the airports and waypoints are possible targets, and was in fact designed with
that specific knowledge in mind. tchs, on the other hand, has no such information and
acts on much broader terms.

57

5 Computational Results

DijkPWL tchs A∗PWL

Instance query
(ms)

prep
(min)

query
(ms)

speedup
×

prep
(s)

query
(ms)

speedup
×

I-29-Dec-1 4.91 380.48 4.08 1.20 1.82 0.22 21.51
I-34-Dec-1 4.91 451.82 4.27 1.15 1.83 0.24 20.24
I-39-Dec-1 4.93 195.75 3.23 1.53 1.81 0.16 30.15
I-29-Feb-1 4.90 414.78 3.94 1.25 1.87 0.21 22.96
I-34-Feb-1 4.86 466.95 3.96 1.23 1.72 0.21 22.23
I-39-Feb-1 4.92 184.20 3.01 1.63 1.72 0.15 31.50
I-29-Mar-1 4.55 216.57 2.82 1.61 1.50 0.16 27.27
I-34-Mar-1 4.55 189.18 2.92 1.55 1.56 0.18 24.38
I-39-Mar-1 4.58 127.38 2.52 1.81 1.54 0.15 29.45
I-29-Dec-3 4.36 312.40 2.67 1.63 1.54 0.19 22.03
I-34-Dec-3 4.38 351.70 2.80 1.56 1.54 0.21 20.85
I-39-Dec-3 4.38 160.20 2.30 1.90 1.54 0.14 30.87
I-29-Feb-3 4.31 328.47 2.66 1.62 1.51 0.18 23.09
I-34-Feb-3 4.28 372.15 2.92 1.47 1.60 0.19 21.68
I-39-Feb-3 4.33 155.07 2.20 1.97 1.52 0.13 31.94
I-29-Mar-3 4.22 179.45 2.31 1.82 1.34 0.14 28.39
I-34-Mar-3 4.26 146.52 2.33 1.83 1.37 0.16 26.68
I-39-Mar-3 4.26 96.80 2.03 2.10 1.35 0.13 31.02

Table 5.2: Comparison of tchs and A∗
PWL for the PWL case

5.4 Results in the Exact Case

As for the exact case, we only compare the runtimes of Dijkstra’s algorithm against
those of A*, since the implementation of tchs does not allow for the exact formula. In
Table 5.3, we provide the runtimes of the exact versions of both Dijkstra’s algorithm
and A*. Again, A* needs some preprocessing time (≈ 7s), in which we compute the
optimal wind as described in Section 4.2.2 and run the same all-to-one Dijkstras as in
the previous case. The speedup in query times is now around ×20, with absolute A*
query times ranging in single-digit milliseconds.

We also wish to discuss the quality of our PWL approximation. In a setting where
exactness is paramount for safety, it is important that PWLs yield correct results, as
calculated lengths are equivalent to the fuel an aircraft has to carry. Both underestima-
tion and overestimation can lead to disastrous results, as heavier aircraft burn more fuel
than lighter aircraft (thus ending up with less!), while aircraft carrying too little fuel
might not have enough reserves to provide for deviations or holding patterns.

For that reason, Table 5.4 contains an error discussion of the PWL results with respect

58

5.4 Results in the Exact Case

DijkE A∗E
Instance query

(ms)
prep
(s)

query
(ms)

speedup
×

I-29-Dec 100.89 7.51 5.80 17.38
I-34-Dec 102.12 7.38 6.13 16.64
I-39-Dec 104.33 7.56 4.47 23.34
I-29-Feb 100.88 7.66 5.49 18.37
I-34-Feb 101.37 7.35 5.68 17.85
I-39-Feb 104.44 7.45 4.16 25.09
I-29-Mar 100.07 7.14 4.85 20.60
I-34-Mar 35.72 5.77 1.85 19.25
I-39-Mar 36.18 5.68 1.59 22.66

Table 5.3: Comparison of DijkE and A∗
E

to the exact ones. We again used the discretisation steps one hour and three hours, but
also considered a step size of 10 minutes, which is denoted by A∗PWL10

. Thus, we can
discuss the influence of the discretisation step on the approximation error.

The error was measured by outputting a path for each search algorithm and recomput-
ing the exact costs on it, thus yielding an optimal path for A∗E and a possibly suboptimal
result for A∗PWL. While the average error in all approximation cases is very small, there
are routes which yield a considerable error (compare the rows I-29-Dec and I-34-Dec,
especially for one- and three-hour discretisation). As already discussed in the Introduc-
tion (Section 1.1), in aviation, even savings of seemingly low 0.5% can have a noticeable
impact on both the environment as well as the financial situation of an airline. This does
justify longer running times, especially since errors in the single-digit percentage range
can lead to the aforementioned consequences. We therefore also include the number of
these bad paths, which is the number of paths whose costs deviate by more than 0.5%
from the cost of the optimum path.

As one should expect, the number of bad paths decreases when refining the discretisa-
tion step from three hours to one hour, and drops significantly when using a step of 10
minutes. Yet, one should keep in mind that with decreasing step size, both preprocessing
time and space consumption increase, and that in this thesis, we only considered one
layer. If one were to extend the PWL approach to all layers, one would have to scale
the preprocessing times in Table 5.4 by the number of flight levels available as well as
include all arcs connecting the different layers.

The first data column of Table 5.4 contains the preprocessing times needed to ob-
tain the PWLs. This preprocessing is necessary, because within the framework of our
application, it is natural to use the exact version of the TTFs and the piecewise linear
functions are not a priori known. This preprocessing time needs to be considered in

59

5 Computational Results

Instance prep
(s)

av err
(%)

max err
(%)

bad paths
(#)

I-29-Dec 46.69 0.078 8.76 740

A
∗P

W
L

3

I-34-Dec 47.88 0.093 10.92 940
I-39-Dec 47.93 0.021 2.65 94
I-29-Feb 47.03 0.035 5.38 269
I-34-Feb 48.43 0.049 4.63 431
I-39-Feb 48.45 0.019 3.60 75
I-29-Mar 31.26 0.030 5.41 183
I-34-Mar 32.34 0.022 4.60 111
I-39-Mar 33.01 0.017 4.74 93
I-29-Dec 139.41 0.059 8.76 506

A
∗P

W
L

1

I-34-Dec 140.81 0.072 5.30 701
I-39-Dec 140.98 0.018 2.65 79
I-29-Feb 139.74 0.028 5.38 195
I-34-Feb 141.32 0.038 4.64 317
I-39-Feb 140.72 0.015 3.60 51
I-29-Mar 91.38 0.022 5.37 96
I-34-Mar 92.78 0.019 4.60 87
I-39-Mar 95.21 0.016 4.74 89
I-29-Dec 809.02 0.0039 0.23 0

A
∗P

W
L

10

I-34-Dec 809.73 0.0039 0.75 1
I-39-Dec 809.93 0.0037 1.07 1
I-29-Feb 810.78 0.0039 0.23 0
I-34-Feb 811.79 0.0038 0.29 0
I-39-Feb 811.32 0.004 0.29 0
I-29-Mar 540.3 0.0041 1.10 1
I-34-Mar 504.84 0.0043 0.26 0
I-39-Mar 505.67 0.0045 0.29 0

Table 5.4: The error rating of the PWL version of A*, for three discretisation steps

addition to the ‘usual’ preprocessing where we run all-to-one Dijkstras, nevertheless we
did not consider it in the PWL case, since the piecewise linear TTFs are needed for all
of the three algorithms.

When comparing to the exact results, however, another issue comes to light: a closer
look at Table 5.3 yields that the maximum runtime for one A* run in the exact case is
6.13ms. Since we have less than 19 000 OD pairs, this yields a total runtime for all OD
pairs of less than 116 seconds. Note that even in the case of a one-hour-discretisation,
two thirds of the preprocessing times alone are longer than two minutes, not including

60

5.4 Results in the Exact Case

the actual query times. In the case of the less error-prone 10-minute-discretisation,
the preprocessing times exceed the total runtime of A∗E on all OD pairs by a factor of
more than six. This observation together with possible errors for coarser discretisations
renders the PWL approach unsuitable in practice.

61

6 Conclusion

In this thesis, we considered three different versions of the Horizontal Flight Trajectory
Optimisation Problem: one assuming static costs, one assuming piecewise linear travel
time functions, and one considering the exact travel times. The first can be formulated
as a Shortest Path Problem, while the latter two can be modelled as a Time-Dependent
Shortest Path Problem.

These problems have been thoroughly discussed in the literature, particularly in the
context of their application in road networks. However, we showed that the advantages
of some shortest path algorithms over others do not extend to the Airway Network.
Notably, the A* algorithm shows a considerable speedup over both Dijkstra’s algorithm
and Time-dependent Contraction Hierarchies.

In the static case, we showed that A* and (static) Contraction Hierarchies both yield
competitive speedups over Dijkstra’s algorithm. Yet, as opposed to chs, A* needs no
preprocessing, but uses the great circle distance as potential function, which can be
computed on the fly.

Since we modelled hftop as a time-dependent shortest path problem, for both the
PWL and the exact case, we established criteria by which to check whether any given
instance satisfies the FIFO property, thus guaranteeing that all of the algorithms we
considered yield optimal results.

For the PWL case, we also compared Dijkstra’s algorithm to A* and tchs, showing
that A* outperforms tchs by one order of magnitude (a factor of ≈ 16) and yields a
speedup factor of more than 25 over Dijkstra’s algorithm. At the same time, A* main-
tains much lower preprocessing times than tchs: A* turned out to require just seconds
of preprocessing, whereas tchs needed almost 8 hours in extreme cases. This renders
solving hftop through Contraction Hierarchies unsuitable in practice, as weather prog-
noses are updated every 6 hours. Whether tchs can be adapted to the special structure
of the Airway Network to achieve better speedups, remains an open question.

For the exact case, we introduced the notion of Super-Optimal Wind as a means
to underestimate travel times on arcs. We showed that Super-Optimal Wind yields a
feasible potential function for the A* algorithm and assessed its quality through both
theoretical bounds and practical application.

Furthermore, we computationally assessed the error of the PWL approximation to the
exact case. In the ensuing discussion, we listed reasons as to why we discourage their
practical use.

62

Bibliography

[ADGW12] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Wer-
neck. Algorithms – ESA 2012: 20th Annual European Symposium, Ljubl-
jana, Slovenia, September 10-12, 2012. Proceedings, chapter Hierarchical
Hub Labelling for Shortest Paths, pages 24–35. Springer, Berlin, Heidel-
berg, 2012.

[Air16] Air Transport Action Group (ATAG). Facts and Figures. Online, http:
//www.atag.org/facts-and-figures.html, 2016. Accessed: 11 July 2016.

[BBH+16] Marco Blanco, Ralf Borndörfer, Nam Dũng Hoàng, Anton Kaier, Adam
Schienle, Thomas Schlechte, and Swen Schlobach. Solving Time Dependent
Shortest Path Problems on Airway Networks Using Super-Optimal Wind.
Proceedings of ATMOS 2016, to appear, 2016.

[BDG+15] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-
Hannemann, Thomas Pajor, Peter Sanders, Dorothea Wagner, and Re-
nato F. Werneck. Route Planning in Transportation Networks. Technical
report, Microsoft Research, 2015. Updated version of the technical report
MSR-TR-2014-4.

[BDS+08] Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker, Do-
minik Schultes, and Dorothea Wagner. Combining Hierarchical and Goal-
Directed Speed-Up Techniques for Dijkstra’s Algorithm, chapter , pages 303–
318. Springer, Berlin, Heidelberg, 2008.

[BDSV09] Gernot Veit Batz, Daniel Delling, Peter Sanders, and Christian Vetter.
Time-Dependent Contraction Hierarchies. Proceedings of ALENEX 2009,
SIAM, 2009.

[BGS08] G. Veit Batz, Robert Geisberger, and Peter Sanders. Time Dependent Con-
traction Hierarchies – Basic Algorithmic Ideas. Technical report, Karlsruhe
Institute of Technology, 2008.

[BOSS13] Pierre Bonami, Alberto Olivares, Manuel Soler, and Ernesto Staffetti. Mul-
tiphase Mixed-Integer Optimal Control Approach to Aircraft Trajectory Op-
timisation. Journal of Guidance, Control, and Dynamics, pages 36(5):1267–
1277, 2013.

63

http://www.atag.org/facts-and-figures.html
http://www.atag.org/facts-and-figures.html

BIBLIOGRAPHY

[CH66] Kenneth L. Cooke and Eric Halsey. The Shortest Route Through a Network
with Time-Dependent Internodal Transit Times. Journal of Mathematical
Analysis and Applications, pages 493–498, 1966.

[Cri15] Rob Crilly. Jet stream blasts BA plane across At-
lantic in record time. Online, http://www.telegraph.
co.uk/news/worldnews/northamerica/usa/11337617/
Jet-stream-blasts-BA-plane-across-Atlantic-in-record-time.
html, 2015. Accessed: 04 July 2016.

[Del08] Daniel Delling. Proceedings of ESA 2008, chapter Time-Dependent SHARC
Routing, pages 332–343. Springer, Berlin, Heidelberg, 2008.

[DGPW14] Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Wer-
neck. Robust Exact Distance Queries on Massive Networks. Technical re-
port, Microsoft Research, 2014. MSR-TR-2014-12.

[DH08] Peter Deuflhard and Andreas Hohmann. Numerische Mathematik I. Eine
algorithmisch orientierte Einführung. de Gruyter, 2008.

[Die10] Reinhard Diestel. Graph Theory. Springer, Heidelberg, 2010.

[Dij59] Edsger W. Dijkstra. Numerische Mathematik, chapter A Note on Two Prob-
lems in Connexion with Graphs, pages 269–271. Springer, Berlin, Heidel-
berg, 1959.

[dJ74] H. M. de Jong. Optimal Track Selection and 3-Dimensional Flight Planning.
Technical report, Koninklijk Nederlands Meteorologisch Instituut, 1974.

[Dre69] S. E. Dreyfus. An Appraisal of Some Shortest Path Algorithms. Operations
Research, 1969.

[DSSW09] Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner.
Algorithmics of Large and Complex Networks: Design, Analysis, and Sim-
ulation, chapter Engineering Route Planning Algorithms, pages 117–139.
Springer, Berlin, Heidelberg, 2009.

[DW09] Daniel Delling and Dorothea Wagner. Robust and Online Large-Scale Opti-
mization, chapter Time-Dependent Route Planning. Springer, Berlin, Hei-
delberg, 2009.

[Eur16] Eurocontrol. Route Availability Document. Online, https://www.nm.
eurocontrol.int/RAD/, 2016. Accessed: 06 July 2016.

64

http://www.telegraph.co.uk/news/worldnews/northamerica/usa/11337617/Jet-stream-blasts-BA-plane-across-Atlantic-in-record-time.html
http://www.telegraph.co.uk/news/worldnews/northamerica/usa/11337617/Jet-stream-blasts-BA-plane-across-Atlantic-in-record-time.html
http://www.telegraph.co.uk/news/worldnews/northamerica/usa/11337617/Jet-stream-blasts-BA-plane-across-Atlantic-in-record-time.html
http://www.telegraph.co.uk/news/worldnews/northamerica/usa/11337617/Jet-stream-blasts-BA-plane-across-Atlantic-in-record-time.html
https://www.nm.eurocontrol.int/RAD/
https://www.nm.eurocontrol.int/RAD/

BIBLIOGRAPHY

[GH04] A. V. Goldberg and C. Harrelson. Computing the Shortest Path: A* Search
Meets Graph Theory. Technical report, Microsoft Research, Vancouver,
Canada, July 2004.

[GSSV12] Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vet-
ter. Exact Routing in Large Road Networks Using Contraction Hierarchies.
Transportion Science, pages 1–17, 2012.

[HNR68] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A Formal Basis for
the Heuristic Determination of Minimum Cost Paths. IEEE Transactions
on Systems Science and Cybernetics, pages 100–107, 1968.

[HSS14] Peter Hecker, Per Martin Schachtebeck, and Meiko Steen. Handbuch der
Luftfahrzeugtechnik, chapter Flugführung, pages 642–699. Carl Hanser Ver-
lag, 2014.

[Int16a] International Air Transport Association. IATA Price Analysis. Online,
http://www.iata.org/publications/economics/fuel-monitor/Pages/
price-analysis.aspx, 2016. Accessed: 20 July 2016.

[Int16b] International Civil Aviation Organization. Air transport, passengers carried.
Online, http://data.worldbank.org/indicator/IS.AIR.PSGR, 2016. Ac-
cessed, 27 July 2016.

[Kar16] Karlsruhe Institute of Technology. Fast and Exact Route Planning. Online,
http://algo2.iti.kit.edu/routeplanning.php, 2016. Accessed: 11 July
2016.

[KASS12] Stefan E. Karisch, Stephen S. Altus, Goran Stojković, and Mirela Sto-
jković. Quantitative Problem Solving Methods in the Airline Industry, chap-
ter Chapter 6 – Operations, pages 283–383. Springer, Berlin, Heidelberg,
2012.

[KN12] Sven Krumke and Hartmut Noltemeier. Graphentheoretische Konzepte und
Algorithmen. Springer, Berlin, Heidelberg, 2012.

[KS93] David E. Kaufmann and Robert L. Smith. Fastest Paths in Time-Dependent
Networks for Intelligent Vehicle-Highway Systems Application. IVHS Jour-
nal, pages 1–11, 1993.

[Luf15] Lufthansa Group. Balance – Nachhaltigkeitsbericht der Lufthansa Group
2014. Online, https://www.lufthansagroup.com/fileadmin/downloads/
de/verantwortung/balance-2015-epaper/, 2015. Accessed: 11 July 2016.

65

http://www.iata.org/publications/economics/fuel-monitor/Pages/price-analysis.aspx
http://www.iata.org/publications/economics/fuel-monitor/Pages/price-analysis.aspx
http://data.worldbank.org/indicator/IS.AIR.PSGR
http://algo2.iti.kit.edu/routeplanning.php
https://www.lufthansagroup.com/fileadmin/downloads/de/verantwortung/balance-2015-epaper/
https://www.lufthansagroup.com/fileadmin/downloads/de/verantwortung/balance-2015-epaper/

BIBLIOGRAPHY

[MdlC16] Pedro Maristany de las Casas. Cost-Minimal Aircraft Trajectories. Master’s
thesis, Technische Universität Berlin, 2016. To appear.

[OR90] Ariel Orda and Raphael Rom. Shortest-path and minimum-delay algorithms
in networks with time-dependent edge-length. Journal of the ACM, pages
607–625, 1990.

66

	Introduction and Basics
	Introduction
	Reviewing the Flight Trajectory Optimisation Problem
	Shortest Path Problem: A Review of Algorithmic Approaches
	Our Contributions
	Outline
	The Notational Ground

	The Horizontal Flight Trajectory Optimisation Problem
	An Aeronautics Primer
	The Flight Trajectory Optimisation Problem
	The Horizontal Flight Trajectory Optimisation Problem
	Modelling HFTOP
	How To: Obtain a TTF

	Algorithms for the Shortest Path Problem
	Dijkstra's Algorithm
	The Static Case
	Bidirectional Dijsktra
	The Time-Dependent Case

	A*
	A* in the Time-Dependent Case

	Contraction Hierarchies
	Contraction Hierarchies in the Static Case
	Contraction Hierarchies in the Time-Dependent Case

	Algorithms for HFTOP
	The Static Case
	The Exact Time Dependent Case
	The Super-Optimal Wind Potential Function
	Minimising the Crosswind and Maximising the Trackwind
	Super-Optimal Wind in Practice

	Approximating the Travel Time Function

	Computational Results
	Instances
	Results in the Static Case
	Results in the PWL Case
	Results in the Exact Case

	Conclusion
	Bibliography

