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Abstract. If B is an arrangement of linear complex hyperplanes in C , then the 
following can be constructed from knowledge of its intersection lattice: 
(a) the cohomology groups of the complement [Br], 
(b) the cohomology algebra of the complement [OS], 
(c) the fundamental group of the complement, if d < 2, 
(d) the singularity link up to homeomorphism, if d < 3, 
(e) the singularity link up to homotopy type [ZZ]. 

If B' is, more generally, a 2-arrangement in TR2d (an arrangement of real subspaces of 
codimension 2 with even-dimensional intersections), then the intersection lattice still 
determines (a) the cohomology groups of the complement [GM] and (e) the homotopy 
type of the singularity link [ZZ]. 
We show, however, that for 2-arrangements the data (b), (c) and (d) are not deter
mined by the intersection lattice. They require the knowledge of extra information on 
sign patterns, which can be computed as determinants of linear relations, or (equiva-
lently) as linking coefficients in the sense of knot theory. ' ? • • 



1. Introduction ^ 

Let B = {Hi,...,#„} be an arrangement of complex hyperplanes in Cd = K 2 . We will 
only consider arrangements that axe linear (the hyperplanes axe vector subspaces) and 
essential (the intersection of all the hyperplanes is {0}). 
—-The principal combinatorial structure associated with a complex arrangement is the 

intersection lattice LBr:= {Do€A <̂» : -^ — {*» •'•'• >n)} °f ^ intersections of hyperplänes, 
ordered by reversed-inclusion. This is a geometric lattice (matroid), whose rank function 
is given by complex codimension, r(A) = codimc(p|o € y l Ha)-

Let DB := S2*'1 C\\Jß denote the singularity link and let C e := <Dd\\JB denote the 
complement of the arrangement. A by now classical result of Arnol'd, Brieskorn and Orlik 
& Solomon asserts that a presentation of the cohomology algebra of CB can be constructed 
from the data that are encoded by the intersection lattice LB, as follows. 

Theorem 1.1. [A][Br][OS] Let B = {Hi,...,Hn} be a complex arrangement in €d. 
For every Ha € B choose a linear form Ia € (Cd)* that defines it, such that ker(/a) = Ha 

(1 < a < n). Then the integral cohomology algebra of the complement is generated by the 
c l a s s e s ' "• . -. i . . • • 

1 d/a 
Ua : = 2^17' "' " 

for 1 < a < n. It has a presentation of the form 

0 —> / —+ A*2Zn -ÜU K*(CB;7Z) —• 0, 

defined by 7r(e„) := [u;a], where { e i , . . . , e n } denotes a basis of ZZn. The relation ideal I is 
generated by the elements 

E C - 1 ) ' eo0 A . . . A ea< A . . . Aeak, 
t'=0 

for circuits A = {ao,...,ajk} of L, that is, for the minimal subsets A C { l , . . . , n } with 

r(4)<|4|. ' 
Goresky & MacPherson [GM, p. 257], whose section title we have used for this paper, 

suggest to,study the following (seemingly) mild generalization. A 2-arrangement is a finite 
set B' = {Hi,... ,Hn} of .real vector subspaces of codimension 2 in 1R so that every 
intersection QaeA^a has even codimension in H 2 . Again we assume f]B' = {0}. The 
combinatorial essence of a "complex structure" can be studied by comparing the structure 
of 2-arrangements with that of complex arrangements. 

The intersection lattice of a 2-arrangement is again a geometric lattice, where real 
codimension corresponds to twice the lattice rank: 2-r(A) = codimjR(f,)oeA Ha). 

The cohomology groups of the complements of 2-arrangements were computed by 
Goresky & MacPherson using Stratified Morse Theory. An alternative approach to the 
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computation, via spectral sequences, is provided by Vassiliev [Va] and Jewell, Örlik & 
Shapiro [JOS]. A ^hird proof, with hoinotopy methods, is given by Ziegler & Zivaljevic 
[ZZ]. However, the algebra strufcture is hot supplied by either approach. The combinatorial 
method of Björner & Ziegler [BZ] yields the following information about it: •' " 

Theorem 1.1'. [GM][BZ] Let B< = {Hi,*„ rHn} be a 2-a.rrwgement in R.2*. For.every 
Ha € B' choose two linear forms 7a, I'a 6 (H2rf)* that define it, such that, ker(/a) f~l ker(/a) .=-
Ha (1 < ö 5? n). Then the integral cohomology algebra of the complement, CB is generate^, 
by the 1-dimensional classes { ; o< . .,-.••' • -, u ;. ,..... :.-: . ; - ! 

' ,••'•'••..• . ' - / I .;HV...-L - 1 - f g d / q + Z g d / ^ ,, , . , 
H'a ,« a ; — ^T 7 . 2 . „2 ' "* 

•>' " • " : ' , - . • • ; • ' , - . . > : : . ; • • • . r > " i r \ ; , • . - •• . ; , - ; ; j - " • . - . - - * > 

for 1 < a < n. It i a s a presentation of the form 

• v' ;r 0 —• r ' - i n - A*2Zn -3+" H^Ctf-ZZ) t—* •<),• • <* , \ ;; 
• ' • ' • ' • • • • - • ! • • ' . - : • i i \ - > . - , ; • . , . ; . - . • • • . < , < . . : - : • - . . . . - \ . , - , , . , . , _ . 

defined by ir(ea) := [w(/a, /(,)], wiere {ei„ , . . , en} denotes a basis of7Ln. The relation ideal 
I is generated by elements of the form 

k ., _,. , M , . 0 ; . . r.,.i: i .. .. ,. .. , •• • , v 

E £t • eo0 A . . . A eai A . . . A eak, 
i=o 

. " . ^ 1 ' " oC> ' 

for the circuits A = { a 0 , . . . , a*} of L, with e,- € {+1, —1}. 

In the following, we will show that the inability of Theorem 1.1' to determine the 
precise form of the presentation of H*(Cß»; 7L) from the combinatorial data is not a weak
ness of stratified Morse theory of [GM] and of the combinatorial set-up of [BZ]. In fact, 
the cohomology algebra W{Cßi\ 2Z), and hence the homotopy type of the complement of 
a 2-arrangement, is not determined by the combinatorial data! 

Theorem 1.2. There are two different 2-arrangements B and B' of 2-dhnensional MeatA 

subspaces in R 4 whose intersection lattices coincide (the corresponding matroid is the 
uniform matröid 1/2,4), but whose complements have non-isomorphic cohomology algebras. 

In the following section we will give an extensive analysis of the topology of the 
2-arrangements of 4 transversal 2-subspacesi in H 4 (corresponding to the uniform ma
troid 1/2,4), a n < i show how they can sometimes be distinguished by the cohomology al
gebras of their complements. In Section 3 the implications for the singularity links of 
2-arrangements are derived. In Section 4 we obtain a general method to compute a pre
sentation of H*(Cß'; 7L) once equations for B' are chosen. Section 5 discusses the relation 
to the study of knots and links in S3. 

In the following we will denote 2-arrangements by B', and only drop the'prime in the 
case of a complex arrangement. 
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2. Example 

In this section we consider 2-arrangements in IR4: arrangements of 2-dimensional Unear 
subspaces B' = {Ha : 1 < a < n} in H 4 that are transversal, that is, have pairwise 
intersection {0}. They represent the uniform matroid M = Ü2,n- We will use coordinates 
u,v,x, y on H 4 , which we abbreviate as w = u + iv, z = x + iy when the usual complex 
structure (identification of C2 and H 4 ) is chosen. 

In suitable coordinates we can assume that 

Hi ={(w,z)eEl4:w = 0}, 

H2={(w,z)em.*:z = Q}, 

H3={(w,z)eTEL*:z = w\. 

We note here that the projection TT : H 4 —> IR2, which maps (u,v,x,y) i—• (u,v), 
(w,z) i—• w, makes the complement CB> into a fiber bundle over C*, whose fiber is C 
minus n—1 points.- As a consequence of this we deduce that every 2-arrangement in IR is 
a K(TT, l)-arrangement: the long exact homotopy sequence of the fiber bundle shows that 
the higher homotopy groups of CB' vanish in this case. , , 

The fiber bundle is trivial if B is a complex arrangement [Or, Prop. 5.3]: assume that 
the hyperplanes are H\ = {(w,z) : w = 0} and Ha = {(z,w) : z = Xaw} for 2 < a < n, 
then 

ti: CB - 4 C * x C \ { A 2 , . . . , A n } 

trivializes the bundle. The bundle is usually non-trivial for 2-arrangements in IR4-. Oür 
results of this section will imply that it is not in general homotopy equivalent to a product 
space with a factor C*. 

In the complex case, even more can be said. For this, note that the singularity link 
of a complex arrangement in C2 is a disjoint union of circles, and each circle has a natural 
orientation, given by multiplication with elt. 

Proposition 2.1. Let B\ and B2 be two arrangements ofn hyperplanes (l-dimensional 

complex subspaces) in C2 , with singularity links D\ and D2. Then every orientation-

preserving homeomorphism D\ — • Di can be extended to a homeomorphism (S3,Di) — • 
(S3,A0-
Proof. Assume that B{ is given by /,i(to, z) = z and Uj(w, z) = w — \JZ for 2 < j < n. 
Then any homeomorphism of the Riemann sphere that fixes infinity and maps \\j to 
\2j for all j yields a homeomorphism (S3,Di) —• ( S 3 , ^ ) - The fact that the initial 
homeomorphism D\ —* D2 can be prescribed arbitrarily now follows from surgery along 
a tubular neighborhood of D\ resp. £>2- Ü 

Now we will restrict our attention to the case n = 4. It is not hard to see [VD, 
p. 1038] that there are three isotopy classes of arrangements. One class contains the 
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complex arrangements, which we denote by B. The image of a complex arrangement B 
after,a reflection in R 4 is not isotopic to a complex arrangement, but clearly isomorphic 
as a 2-arra$gement. The third class is represented by the 2-arrangement B' in the second 
case of the following example. 

E x a m p l e 2.2. As the first case we consider the arrangement/? . ' . • 

{
Ht= { ( to , z )€ lR 4 : w = 0}> •' 

H2= {(w,z)eT&: z = 0} ,. •. • i ' • 
# 3 = {(w,z)eJR4: z = w} 
H4 = {(w, z ) 6 E 4 : z = 2 w } . 

This is a complex (in fact: complexified real) arrangement. Its cohomology algebra has by 
Theorem 1.1 the following presentation: 

• • • • . ' • ' • +ei2 - e13
: + e23.^ .*•'•..,.•>' .>-: 

'"' ! H*(CS;ZZ) Sk A*ZSV( + e i 2 - e i 4 ' | e 2 4 ) ' '' " - ' 
where the last relation is a consequence of the first three. ; v . V .-: 

As the second case we consider the arrangement B' ' 

Hx = { (u ; , z )€ lR 4 : u; = 0} 

ß ' : #2 = ((u>,*) .€ JR.* : Z F O } 
H3= { ( w , 2 ) € l R 4 : z = u>} 

. # 4 = {(u>,*') € B 4 : z = 2u;}. 

This arrangement is not linearly isomorphic tch a complex one. However, its cohomology 
algebra has by Theorem 1.1' a very similar presentation. With the method of Theorem 
4.1 below, one can determine the signs in the presentation: 

.+^12 - Cb + <?23 . 

H'(C*;ZB) S A*ZZ4/ ( * e " + e i 4 + C24 V 

. , - „ - - , , . • ; ,_ ; ...... v +e23^~ 624 — C34 . 

where ihe last relation is a consequence of the first three.: 

In both cases the broken circuit complex 

. B C ^ ) « {0,1,2,3,4,12,13,14} 

indexes a basis of the cohomology, module* that is, the (classes of) ei, (22,63)64 induce a 
ZZ-basis of H1 , while e i2 ,e j3 ,e u induce a ZZ-basis of H2, and H3 = H4 = 0, see [BZ, 
Sect. 7]. In particular, the cohomology modules H*(C 'B;ZZ) and H*(Cß';ZZ) are linearly 
isomorphic. Their difference is hidden in the multiphcative structure. For the following 
theorem we do not assume that an isomorphism maps generators to generators, but argue 
with an invariant construction. It was inspired by [Fl], although Falk's invariants do not 
suffice to distinguish the algebras H*(Cß;2Z) and H*(Cß/; ZZ). 
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Theorem 2.3. The cohomology algebras H*(CBJ 2Z) and, H*(Cß»; ZZ) are not isomorphic 
as graded ZZ-aigebras. 

Proof. Let A denote any of the two algebras and let A1 be its 1-dimensional part. Then 
A has a presentation of the form 

0 __* J _-> A* A1 — • A —• 0, 

where I is again a graded ideal. Here I1 = 0 by construction, while J2 has rank 3. We 
consider the map 
;,:: " " ' / ; - v : ; # ' - ^ K: I2 ®i2 —+J

 A 4 A J ' • 

induced by multiplication in A* A1. In the case we are considering A1 3 ZZ4, so A4A1 = ZZ, 
and K defines a symmetric biünear form on I2. 

A direct calculation shows that K vanishes identically for H * ( C B ; ZZ). This can also 
be derived from the Kunneth formula, since Öß is a product space. 

However, for B' the bilinear form K has rank 2: with respect to the basis {ei2, ei3, e^} 
it is represented by the matrix 

0 2 0.,> 
2 0 - 2 
0 - 2 0 

This proves H*(Cs;Q)^H*(G' B / ;Q) . ' " " ' ' : D 

3. Links of 2-arrangements 

The singularity link of any 2-arrangement is homotopy equivalent to a wedge of spheres if 
d > 3 [BZ, Thm. 6.6] [ZZ, Cor. 3.3] and it is a disjoint union of circles if d = 2. 

In fact, there is a certain plausibility to the conjecture that for complex arrangements 
the singularity links axe determined up to homeomorphism by the intersection lattices, 
for all d. This is a very strong conjecture, which would (with the ideas below) imply 
the same for the complements of complex arrangements, which is much stronger than the 
notorious conjecture [Or] for the homotopy type. In this section, we will prove this fact 
for d < 3, and then use the example of Section 2 to disprove a similar statement in the 
case of 2-arrangements. 

Theorem 3.1 . The intersection lattice determines the singularity link of a complex 
arrangement in <D3 up to homeomorphism. 

Proof. Let B be a complex arrangement of n 2-dimensional subspaces in C3 , with intersec
tion lattice L. The singular set of D is a disjoint union of k circles, where k is the number 
of coatoms (elements of rank 2) in L. Thus we construct smg(D) as a set of k disjoint 
oriented circles, where the orientation is supposed to be the natural one corresponding to 
multiplication with e'*. Now we glue n 3-spheres into the given set of oriented circles. The 
attaching maps exist and are unique by Proposition 2.1. u 
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Theoreih 3.2. The intersection lattice does not determine the singularity link öf'ä 
2-a.rramgement in R 6 up to homeomorphism. 

Proof. We consider generic ^-arrangements B' = {Hi, H2, H$, H4, H5} representing the 
matroid C/3,5, that is, arrangements of five 4-dimensional subspaces in ]R6 so that the 
intersection of any three of them is {0}- Their singularity, links are unions of five copies 
Si '.= Hi 0 S 5 of 5 3 , pairwise intersecting in circles. We notice that the non-singular parts 
Sf := Si\ [jj^i Sf are easily identified by local cohomology! Each of these parts Sf is 
homeomorphic to the complement of the restriction B'\Hi, which is a 2-axrangemenV of 
four 2-subspaces in H 4 , as discussed in Section 2. If B' is a complex arrangement, then 
the restrictions73'|.ffi are complex-as well. - !- -

However, for B' given by the equations ' < „- ' 

-,-.;.. ;; . - : - • • : K ^ * 2 = 0 , • . .. r : .. '•.•> ^ " , • • • ' ' . ; • / ' > V : 

H3: z3=0, - v =.;•• . 

#5 : \ZI-T2Z2+ZZS = 0, 

we find that B'\H3 is isomorphic to the arrangement B' cqnsidered in Example 2.2* so, S3 
is homeomorphic to CB> , and hence it is not homeomorphic to a non-singular part of the 
singularity link of a complex arrangement. D 

4. Cohoinoiogy of 2-arrangements f 

In this^seqtion we describe a method to compute, th,e rejations in.the cohomology algebra 
of any 2Tarrangement.; It relies on, the representation,of cohomology classes by the corres
ponding differential forms of real deRham theory, and it exploits the passage to complex 
dejfcham -theory in the case of, subaxr&ngements that have a complex structure, like those 
corresponding to,the,circuits pf, the matroid. It §eems desirable to derive a presentation 
in the ;Cpmbinatorial frameworkand generality of |BZ]; however, this has not; yet been 
achieved. i 

We will need the relation between the real and the complex differential form repre
senting the cohomology class of a complex liyperptjune. For this assume that coordinates 
have been chosen so that the hyperplane H is represented by z = 0, which with z = x-fiy 
corresponds to real equations x — y = 0. Then straightforward computations show that 

which is an exact form,, while 

1 (dz dz\ _ 1 ^-ydx + xdy >-

2iri \ z ~z J 7T x2 + y2 
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which is twice the real differential form that represents the cohomology class of C \H. 

Thus 
1 dz 

2ici z 

1 dz 

2iri z 

1 — ydx + xdy 

2ir x" + y1 

Theorem 4.1. Let a 2-atrangement B' = {Hi,...,Hn} in R2<i be given by 

Ha = {x€ lR2d : 70(x) = l'a(x) = 0}, 

where the Z0, /' : TR2d — • R are linear forms so that 

rank{fa,/'a : a € A} = < 

'even for all A C { 1 , . . . , n } , 
2 for all A = {a}, 
4 for all A = {a,b}, 

12d forA={l,..,,n}. 

To every Ha 6 B' associate the differential form 

1 - / i d / a + /0d/' 
M'«vO := 27T / a

2 + ? 0
2 

wiici is a closed form on JB?d\Ha that is normaMzed to have residue ± 1 . The relations 
between the corresponding cohomology classes can be constructed as follows. Let A — 
{ÜQ, ä i , . . . , a*} be a circuit of Lg», so there are two real linear dependencies of the form 

£ ajla.+ßjl' = 0, 

with a0 = ^0 = —1, ^0 = 7o = 0. These induce the relation 

£)(-l)Jsign 
li 8i 

« { / . l ) l ' , 1 ) A . . . A « ( l . i ) y A . . . A u { / a t , Ü ~ 0 

in the cohomology algebra rl*{Cß<;7L). 

Proof. The conditions on the forms la,l'a assure that they define a 2-arrangement, The 
differential forms u(la, l'a) generate H*(Cß»; ZZ), by Theorem 1.1'. 

To derive the relations we construct coordinates Xj,yj for R 2 so that , 



for 1 '<• j < k— this is possible since A is a circuit, so {la,l'a : c € A\a0} is linearly 

independent. The even rank condition furthermore guarantees 

observe, by computing the residues, that 

«i ßi 
li Si 

•£ 0. Now we 

u(xaj,yaj) ~ sign 
CCj ßj 

7 i &j 
ML,,'*,)-

Introducing complex coordinates Zj :— Xj+ir/j, we get that Hao has the (complex!) equa
tion z\+... +zk = 0, while Haj is given by Zj = 0 for 1 <j < k, and thus 

w. 2iri Zi 
w(*y,yi) ~ sign «i ßi 

li si MLJA,)-

Thus the relation 

X)(—l)"7 wo A .. . Aw,' A .. . Auj = 0 
i=o 

for the complex arrangement {ilL0, Hai,..., Hait} translates into the desired formula. D 

Note that the formula of Theorem 4.1 specializes to the Orlik-Solomon relations in 
the case of a complex arrangement: for a complex arrangement we can write the defining 
forms as Ia + il'a,. and the relation corresponding to a circuit takes the form 

• • A '.. 

Z(<Xj+ißi)(laj+U'aj) = 0. 
3=0 

E Cjlai+ßjlaj = 0 

Z-ßjlaj+Ctjl'a; = 0 
j = 0 

Thus for the formula of Theorem 4.1 we get the special case 7j = —ßj and Sj = Oj, so 

that sign 
Clj ßj 

1i 8i 
= sign(aj + ß]) = +1. 

5. Link invariants 

The classification of 2-arrangements in IR4 is clearly equivalent to the study of 
- arrangements of disjoint great circles in 5 3 , 
- arrangements of skew lines in 1RP3, 
- arrangements of affine skew lines in B,3, 

as is e.g. stressed by Viro [V] and by Viro & Drobotukhina [VD, p. 1046]. The correspond
ing equivalence relation on line arrangements is there called rigid isotopy. 

Considering arrangements of circles in 5 3 as links, one is lead to study to what extent 
link invariants can distinguish equivalence classes of 2-arrangements in H 4 . In particular, 
the (2 x 2)-determinants derived in Section 4, which determine the sign pattern of the 
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relations in cohomology, are just linking numbers,,of the corresponding (oriented) circles. 
In the description as links in the 3-sphere it is well-known [VD. p. 1034] that for every 
triple of circles we get a linking coefficient ± 1 that does not depend on the order qr the 
chosen orientations. These Unking coefficients of triples are sufficient to distinguish the 
arrangements B and B' of Example 2.2. We refer to [V], [VD] and [M] for this approach. 

The key problem here is that links do not in general determine the homotopy type of 
their complements in S3 (see e.g. [R, p. 62]), although this might be true for the special 
type of links that correspond to arrangements. Therefore the results of [V], [VD] and 
[M] do not immediately distinguish complements of 2-arrangements. In fact, the relation 
between the. "new" link invariants and "classical" data like the fundamental group of the 
complement is still obscure [Bi, p . 59]. 

A presntation of the fundamental group of the complement of a 2-arrangement can 
easily be computed — the standard method due to Wirtinger (see [R]) derives it from a 
planar projection; since the links we consider are closed braids, an equivalent (but more 
systematic) way is given by Artin's approach [Ar]. However, even for the simple case of 
the 2-arrangement of four subspaces in 1R the corresponding links have projections with 
12 crossings, so these methods become, unwieldy. From the description as a fiber bundle, 
one sees that the fundamental group ir in the case of a complex arrangement is a product 
of TL with the free group F{ti, i2, £3) on three generators. In the case of the arrangement 
B', we find that ir' is a non-trivial solution of the extension problem 

F{tut2,t3) — • 71-' —• TL—>0. 

However, there seems to be no simple or direct way to describe the homotopy group IT'. 

Corollary 5.1. The fundamental groups ir,n' of the complements of the arrangements 
B and B' of Example 2.2 are not isomorphic. 

Proof. We have seen that CB — K(n, 1) and CB> — K(ir', 1) in Section 2, and that these 
spaces have non-isomorphic cohomology algebras in Theorem 2.3. Hence ir ^ ir'. D 

Example 5.2. [M, Ass. 3] [VD, p. 1043] There are two 2-arrangements B' and B" of 
six two-dimensional transversal subspaces in IR,4 with the following properties: 

— the cohomology algebras H*(CB»;ZZ) and H*(Cß«;ZZ) are isomorphic, because the 
subspaces in the arrangements can be labeled and oriented in such a way that the 
pairwise linking numbers coincide, 

- the pairs (S3,D') and (S3,D") are not homeomorphic, since they represent inequiv-
alent links in S3 that can be distinguished by link polynomials. 

We do not know whether the complements S3\D" ~ CB« and S3\D' ~ Cß> are homotopy 
equivalent or, equivalently (by the argument of Corollary 5.1), whether the fundamental 
groups coincide. 

More generally, we do not know whether the complements of two 2-arrangements must 
be homotopy equivalent once their cohomology algebras are isomorphic. 
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It seems that the analysis' of the cohomolögy Wgebra (as in Theorem 2.3) is simpler 
than any computation'of the fundamental group of a 2-arrangementl However, we are 
not aware of any systematic study of thfe cohömölpgy algebra Of the complement of a link 
(compare e.g. [R, p. 50]^ The linear structure of this algebra is determined by the number 
of components of the link, because of Alexander duality. But', as we have seen in Section 
2, the multiplicative structure encodes non-trivial information. 

However, toe note that the complement of every^-arrangement is fdritoal in the sense of 
rational homötopy theory [GrH, p. 158]. In fact, by Theorem l . i ' the cohomolögy algebra 
H*(Cß'; 2Z*} can be represented by a subalgebfa of the real deRham cortiplex on C& • With 
the argument of [F2, p.* 546] this implies that CB» isa a formal space. In particular, there 
is no "higher order" cohomolögy information (like the Massey' products used in [GrM, 
SecilL IltXlC]) contained iiithe real deRham complex: of' £7ß>. ','''.'"' 

>..' * j 

• v r .: v . ; » v . • • • ] . ' • • 

••"> "v./ " ' S 

' " " •'< : . \ * 
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