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~ On the Difference
Between Real and Complex Arrangements

GUNTER M. ZIEGLER
Institut Mittag-Leffler
Auravigen 17
S-18262 Djursholm, Sweden

3. December 1991

Abstract. If B is an arrangement of linear complex hyperplanes in C?, then the
following can be constructed from knowledge of its intersection lattice:

(a) the cohomology groups of the complement [Br],

(b) the cohomology algebra of the complement [OS],

(¢) the fundamental group of the complement, if d < 2,

(d) the singularity link up to homeomorphism, if d < 3,
"(e) the singularity link up to homotopy type [ZZ].

If B' is, more generally, a 2-arrangement in IR?% (an arrangement of real subspaces of
codimension 2 with even-dimensional intersections), then the intersection lattice still
determines (a) the cohomology groups of the complement [GM] and (e) the homotopy
type of the singularity link [ZZ].

We show, however, that for Z-mangements the data (b), (c) and (d) are not deter-
mined by the intersection lattice. They require the knowledge of extra information on
sign patterns, which can be computed as determinants of linear rela.txons, or (equlva-
lently) as linking coefficients in the sense of knot theory. ° T
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1. Introduction . -
Let B = {Hl, H,.} be an a.rra.ngement of complex hyperpla.nes in Cd - R?%. We will
only consider a.rrangements that are linear (the hyperpla.nes are vector subspaces) and
essential (the intersection of all the hyperplanes is {0}).

- ~The principal combinatorial structure associated with a complex srrangement is the
intersection lattice Lg := {(\,eq Ha : A € {1,...,n}} of all intersections of hyperplanes,
ordered by reversed-inclusion. This is a geometric lattice (matroid), whose rank function
is given by complex codimension, r(A) = codimg((N,c4 Ha)- - -

Let Dg := $?9-1 N|J B denote the singularity link and let Cp := Cd\ U B denote the
complement of the arrangement. A by now classical result of Arnol’d, Brieskorn and Orlik
& Solomon asserts that a presentation of the cohomology algebra of Cg can be constructed
from the data that are encoded by the mtersectxon la.ttlce Lg, as follows.

Theorem 1.1. [A][Br][OS] Let B = {H;,...,Hn} be a complex arrangement in Cd. |
For every H, € B choose a linear form I, € (Cd) that defines it, such that ker(l,) =
(1<a<n). Then the mtegra] cohomology algebra of the compIement is generated by tbe
classes ... | T : : ,

1 dl,

We 1= ———" AT

27 I, 0

for 1 < a < n. It has a presentation of tbe form
0 — I — A*Z" = H*(CB,Z) — 0,

defined by 7(e,) := [wa], where {el, ,e,,} denotes a ba.’-us of Z" Tbe relatxon zdea] I is ‘.
generated by the elements a 1

z;( 1)'% ./\ea..A...A,cg,‘,
t—O .

for circuits A = {ao,.. ,ak} of L, that is, for the minimal subsets A c {1 ,n,} witb
r(4) <Al o |

* Goresky & MacPherson [GM, p. 257], whose section tltle we have used for thls paper,
suggest to,study the following (seemingly) mild generalization. A 2-arrangementis a finite
set B' = {Hl ,Hn} of real vector subspaces of codimension 2 in R?? 50 that évery
intersection ﬂae A H has even codimension in R?%. Again we assume N B' = {0}. The
combinatorial essence of a complex structure” can be studled by comparing the structure
of 2-arrangements with that of complex arrangements.

- The intersection lattice of a 2-arrangement is again a geometric latt1ce, whiere real
codimension corresponds to twice the lattice rank: 2-r(A) = codimpr (), ¢ aHa)

The cohomology groups of the complements of 2-arrangements were computed by
Goresky & MacPherson using Stratified Morse Theory. An alternative approach to the

2



computation, via spectral sequences, is provided by Vassiliev [Va] and Jewell, Orlik &
Shapiro [JOS]. A third proof, with homotopy methods, is given by Ziegler & Zwaljevxc v
(2Z). However, the algebra. structure is not supphed by either approa.ch The combma.tonal‘
method of Bjérner & Ziegler [BZ] y1e1ds the followmg 1nforma,tlon a.bout 1t B

Theorem:1.1'. ..[GM]{BZ): Let B. = {Hl, . ,H,..} be a 2-arrangement in ]R” For.every .
H, € B' choose two.linear . forms1,, I, € (R?*)* that define it, siich that ker(l, )ﬂker(l{,) =,

H, (1 £.a <n). Then the integral- cohomology algebra of thé complement Cp is generated
by the 1- dlmenszonal classes ,

A SRR A 2T PRI R W R A S ! .

[P

T 41d1"”",' TR
‘9(’45"3) = EW R JEET

i

S

‘ AN R T TR TR S
forl <a <n It hasa,presentatzon of the form

N o ; ,ob L .
0 K . 4 W “ . FRLE [ A L S S

0 I Az H“‘(Cg ZZ) — o, L

defined by 7r(e,,) = [w(la, l’ )], wbere {el,, e,,} denotes a basxs of E" Tbe relatxoh zdea,l
I is generated by elements of the form. - :

[ T R e
Ee, €ao A ./\e,,../\.../\eak,
t-O
N H sl
! R

for tbe circuits A = {ao, ,ak} ofL w1tb € € {+1, —1}

In the followmg, we lel show that ‘the mablhty of Theorem L. 1' to' determme the
precise form of the presentation of H*(Cpg/; ZZ) from the combinatorial data is not a weak-
ness of stratified Morse theory of [GM] and of the combinatorial set-up of [BZ}. In fact,
the cohomology algebra H*(Csr; Z), and hénce the homotopy type of the complement of
a 2-arra.ngement is not determined by the combinatorial data!

Theorem 1. 2. There are two different 2-arra.ngements B and B' of 2 dunensmnal linear-
subspaces in R* whose intersection lattices coincide (the corresponding matroid-is the
umform matroid Uy 4 ), but Whose complemen ts have non-isomorphic cohomology algebras.

~In the followmg sectlon we w111 ngé an exterisive’ analysis of the topology of the
2—a.rrangement$ of 4 transversa.l 2 subspa.ces in R* (correspondmg to the uniform- ma-
troxd Uz,4), and show how they can sometimes be d1st1ngmshed ‘by ‘the’ cohomology al-
gebras of their complements In Sectmn 3 the 1mphcat10ns for the smg;ula.nty links of
2-arrangements are derived. In Sect1on 4 we obtain a "general method to compute a pre-
sentation of H*(Cp; 7Z) once equatlons for 3’ are chosen Sectlon 5 dlscusses the relatlon
to the study of knots a.nd links in S3. ' o
Tn the followmg we W1l] denote 2—arrangements by B' a.nd only drop the pnme in the
case of a complex arrangement.



2. Example

In this section we consider'?—’ari'a.ngements in R*: arrangements of 2-dimensional linear
subspaces B' = {H, : 1 < a < n} in R* that are transversal, that is, have pairwise
intersection {0}. They represent the uniform matroid M = U, ,. We will use coordinates
u,v,z,y on R*, which we abbreviate as w = u + iv, z = z + iy when the usual complex
structure (identification of €? and R*) is chosen.

In suitable coordinates we can assume that -

H ={(w,s) € R :w=0},
Hy={(w,5)eRz=0},
H, ={(w,z) eER':z=w}.

We note here that the projection 7 : R* — RR?, which maps (u,v,z,y) — (u v),
(w, z) — w, makes the complement Cg: into a fiber bundle over C*, whose fiber is €
minus n—1 points.- As a consequence of this we deduce that every 2-a.n'angement in R* is
a K(w,1)- -arrangement: the long exact homotopy sequence of the ﬁber bundle shows that
the higher homotopy groups of Cgr vanish in this case. o ,

The fiber bundle is trivial if B is a complex arrangement [Or, Prop. 5 3] assume that
the hyperplanes are H, = {(w z) w= 0} and H, = {(z,w) z=Aw}for2<a<n,
then

,‘ CB — C* X C\{A% }

- (w,2) — (w, -)

trivializes the bundle. The bundle is usually non-trivial for 2-arrangements in R*. Our
results of this section will imply t,ha,t it is not in general homotopy equivalent to a pr@duct
space with a factor C*. ‘ .

In the complex case, even more can be said. For this, note that the singularity hnk
of a complex arrangement in C? is a d1s101nt union of circles, a.nd each circle has a natural
orientation, given by multiplication with e '

Proposition 2.1. Let B, and B; be two arrangements of n hyperplanes (1-dimensional
complex subspaces) in €2, with singularity links D; and D;. - Then every orientation-
preserving homeomorphism Dy — D can be extended to a homeomorphism (5%, D;) —
(S 3aD2)'

Proof. Assume that B; is given by Igl(w, 2) = z and Lij(w,2) =w— Ajjzfor2 < j < n.
Then any homeomorphism of the Riemann sphere that fixes infinity and maps Aj; to
Ag; for all j yields a homeomorphism (5% Dy) — (S%,D;). The fact that the initial

homeomorphism D; — D; can be prescribed arbitrarily now follows from surgery along
a tubular nelghborhood of D1 resp. D».

Now we will restrict our a.ttentlon to the case n = 4. It is not hard to see [VD,
p. 1038] that there are three isotopy classes. of arra.ngements One class contamstho
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complex arrangements, which we denote by B. The image of a complex arra.ngement B
after a reflection in IR* is not isotopic to a complex arrangement, but clearly isomorphic

as a 2-a,rrangement The third class is represented by the 2-arra.ngement B'in the second :
case of the followmg example. ‘

V .
B . B P
I B G

Example 2.2. As the first case we cons1der the arrangement B \

H= {wz2eR: w=0}" SNE

g. ) H2= {(w,2)eRY: 2z2=0}.- .. - <
T Hi= {(w2)eR: z=w)
H4=' {(w, z)elR“: z-2w}

This is a complex (in fact: complexlﬁed rea]) a.rra.ngement Its cohomology algebra has by
Theorem 1.1 the following presentation: = . .
cre T depp-ergobegay o s e LT

i H*(Ca:7Z) & A*7Z* +elz —€ateq \ ' o

S ( B’ ‘ ) s : / i+eps — 8141+ €34, _ o ) o
. ‘ ez —eoateaa. .
where the last rela,tlon isa consequence of the first: three..

As the second case we con51der the arra.ngement B

H1= {(wz)eR: w= 0}
B = {(w7z)€]R4: z = 0}
' H3= {(w,2) eR: z=w}

Hy= {(w,2z) e R*: z=2w}.
This arrangement is not linearly isomorphic ta.a complex one. However, its.cohomology

algebra has by Theorem 1.1' a very similar presentation. With the method of Theorem
4 1 below, one can determine the signs in the presentation: .

~ +eyp —els +e2s

F-ey2 4€14 + €24
H*(Cg:;ZZ /A
( BiZ) = / '—ej3 — €14 + €34
SN s e oy .. tes—eq—eaq

v e Ral

where the la.st relatlon is a consequence of.- the first three

"In both cases the broken circuit cornplex* ,
S B ) ,' BC(U24)—{@123412 13,14}

indexes:a basxs of the cohomology module, that i is, the (classes of) e, €3, €3, e4 mduce a
Z-basis-of H!, while. 12, €13, €14 -induce a Z-basis of H?, and H® = H* = 0, see [BZ,

Sect. 7]. In-particular, the cohomology modules H*(CB, Z) and H"‘(CB: 7Z) are. hnea.rly
isomorphic. Their difference is hidden in the multiplicative structure. For the followmg
theorem we do not assume that an isomorphism maps generators to generators, but argue
thh an mvana.nt construction. It ‘was inspired’ by [F1), a.lthough Falk’s mvana.nts do not
suffice to distinguish the algebtas H*(Cg; Z) and H*(Cp; Z)." s A
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Theorem 2.3. The cohomology algebras H*(Cs; ZZ) and H*(Cp'; Z) are not isomorphic
as graded ZZ-algebras.

Proof. Let A denote any of the two algebras and let A1 be its 1-dimensional part. Then
A has a presentation of the form

0——->I———>A*Al——+A—->0

where I is agam a graded ideal. Here I' = 0 by constructlon, wh11e e has rank 3. We
.con51der the map
| S K 12®12‘-—» AtAY J
induced by multxphcatlon in A*A!. In the case we are cons1denng Al = 774 so A*A! 2 7Z,
and « defines a symmetric bilinear form on I2. - ‘

A direct calculation shows that x vanishes 1dent1ca,lly for H*(CB, Z). Thxs can also
be derived from the Kiinneth formula, since Cg is a product space.

However, for B' the bilinear form & has rank 2: with respect to the basis {e;2, €13,€14}

it is represented by the matrix P
0 2 0.

2 0 -2
0 -2 0-

This proves H*(Cs; Q) £ H*(CesQ). -~ - o 0

3. Links of 2-arrangements

The singularity link of any 2-arrangement is homotopy equivalent to a wedge of spheres if
'd > 3 [BZ, Thm. 6.6] [ZZ, Cor. 3.3] and it is a disjoint union of circles if d = 2.

-In fact, thereis a certain plausibility to tHe conjecture that for complex a.rrangements
the singularity links are determined up to homeomorphisin by the intersection lattices,
for all d. This is a very strong conjecture, which would ‘(with the ideas below) imply
the same for the ‘c'omplements of complex arrangements, which is much stronger than'the
notorious conjecture [Or] for the homotopy type. In this section, we will prove this fact

for d < 3; and then use the example of Section 2 to' disprove a similar statement in the
case of 2-a.rra,ngements

Theorem 3.1, The mtersecfuon Iattzce determmes the smgu]amty lmk of a complex
K arrangement in. € up to bomeomorpbzsm

Proof. Let B be a complex arrangement of n 2-d1mens10nal subspa.ces in €3, with intersec-
tion lattice L. The singular set of D is a disjoint union of k circles, where k is the number
of coatoms (elements of rank 2) in L. Thus we construct sing(D) as a set of k disjoint
oriented circles, where the orientation is supposed to be the natural one corresponding to
multiplication with e*. Now we glue n 3-spheres into the given set of oriented circles. The
attaching maps exist and are unique by Proposition 2.1. d



Theorem 3.2." ' The mtersectmn lattice' does not determine ‘the smgula.nty lmk of 1
2- arrangement in ]R6 up to homeomorplusm

matroid U s, that is, arrangements of five 4-dimensional subspaces in R® so that the
intersection of any three of them is {0}. Their singularity.links are unions of five copies
Si := H;N S® of $%, pairwise intersecting in circles. We notice that the non-singular pa.rts
8¢ = Si\Ujy Sy arée easily identified by local cohémology. Each ‘of these parts S5 i

homeomorphic to the complement of the restriction B' |H;, which is a Z-arrangement of
four 2-subspaces in 1R4 as discussed in Sectlon 2. If B' is a complex arrangement then
the restrictions B’|H are complex-as well.” - - g N

However, for B' glven by the equatlons SR : S L

L 21—0',_.," 5
.H3: Z3=O, S NIRRT Z SR
Hy: = —zz+23{=0
Hy : \z1 2_2 +3Z3 =0,

‘we find that B'|H; is isomorphic to the arrangement B’ considered in Exq.mple 2.2, s0 93
is homeomorphic to Cg/, and hence it is not homeomorphic to a non-singular part ‘of the
singularity link of a complex arrangement.

4. CohOmology of 2-arrangements ERTE R AU LR A
Ry

In this, sect;or; we descnbe a method to compute th,e :elatxons in. the cohomology a.lgebra
of any 2-arrangement.. It relies on, the -representation of cohomology classes by the corres-
'pondmg differential forms of real deRham theory, and it exploits the passage to complex
‘deRham theory in the case of subarrangements that have a. complex.structure, like those
corresponding to-the. .circpits of the matroid. It seems desirable. to derive a presentation
in- the combinatorial -framework. and: generghty of [BZ]; however, this. has not. yet been
achieved. S :

We will need the relation between the real and the complex dxfferentml form repre-
senting the cohomology class of a complex hyperplane For this assume that coordma.tes
have been chosen so that the hyperplane H is represented by z =0, which with z = z+1y
corresponds: to real equatlons z =1y =0. Then stra.lghtforwa.rd computa.tlons show that

R dz dz\’ 2
: 2_7r; (7 ——2:-) = -2—dlog(a: +y ),
T . ! R

,w}mch is an exa.ct for.m, whlle

L g g _ l x;ydx +xdy Vo
r zx2 + yZ '

271 \ 2z z



which is twice the real differential form that represents the cohomology class of C*\H..
Thus . :
1 dz) [ 1dz] _ _1_—yda:+xdy
- T2 24y |

27t 2 27t Z

Theorem 4.1. Let a 2-arrangement B' = {Hy,...,Ha} in IR?? be given by
H,={xeR¥: l.,(x).= I (x) =0},

where the l,, 1! : R2% — R are linear forms so that

even forall AC{1,...,n},

2 for all A = {a},

4 for all A = {a,b},
2d for A={1,...,n}.

rank{l,,1, : a € A} =

To every H, € B' associate the differential form

_r ' '
ot o LTt

| 2r  Lr4n?

P}

which is a closed formon IR?¢\ H, that is normalized to have residue +1. The relations

between the corresponding cohomology classes can be constructed as follows. Let A =

{@o,a1,...,a} be a circuit of Lg/, so there are two real linear dependencies of the form
ok

2 ajl“j + ﬂ.il:zj = 0,

3=0

C ok
E ’lea,- +5jl;j = 0,

‘=0

with oy = 6 = —1, Bo = 70 = 0. These induce the relation

k ,
2. (—1)’sign

‘=0

a; Bj
Vi 6

W(la, L) A Aw(la, ) A Aw(le,, B,) ~ 0

in the cohomology algebra H*(Cpg:; ZZ).

Proof. The conditions on the forms l,,!, assure that they define a 2-arrangement. The
differential forms w(l,, ) generate H*(Cpg/; Z), by Theorem 1.1'. ;
To derive the relations we construct coordinates z;,y; for R? 50 that .
2 = ajle; + Bl

¥i =jla; + &l
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for 1 < j < k — this.is possible since A is a circuit, so {l,,1, : ¢ € A\ao} is iinea.rly

independent. The even rank condition furthermore guarantees laj 'gj # 0. Now we
. : T 9%
observe, by computing the residues, that '

w(zajaya,' ) w(la,‘)l'aj )-

B;
6;

Introducing complex coordinates z; = j+iyj, we get that H,, has the (complex!) eqﬁa—
tion 21+ ...+2zr =0, while H,; is given by z; =0 for 1 < jVS k, and thug

1‘ dzj' '3 ‘
= %? ~ w(z;j,y; 6; 'w(la,',l;,-)-

Thus the relation

" ' o N
S (-1 woA.c. AwiA... Awg = 0
Jj=0 ‘ S

for the complex arrangement {H H a1y -y Ha, } translates into the desired formula. [

Note that the formula of Thegrem 4.1' specializes to the Orlik-Solomon relations in
the case of a complex arrangement: for a complex arrangement we can write the defining
forms as /; 4 sl!,, and the relation corresponding to a circuit takes the form

39 ¥ . . . E - .

-

S k'; It ST AT S Z -ajlaj +ﬂj1;‘- =0
Yo (aj +iBi)la; +ilh,) =0 = =0
Jj=0 : E ﬂ] a; + aJ = 0
J=0
Thus for the formula of Theorem 4.1 we get the specxa.l case v; = —f; and §; = aj, so
that sign :’ ﬂ’ = sign(a? +,32) = +1.
i

5. Link invariants

The classification of 2-arrangements in IR? is clearly equivalent to the study of

- arrangements of disjoint great circles in S3,

— arrangements of skew lines in IRP3,

'~ arrangements of affine skew lines in'R?, :
as is e.g. stressed by Viro [V] and by Viro & Drobotukhina [VD, p. 1046]. The correspond—
ing equivalence relation on line arrangements is there called rigid isotopy.

Considering arrangements of circles in S as links, one is lead to study to what extent

link invariants can distinguish equivalence classes of 2-arrangements in R*. In particular,
the (2 x 2)-determinants derived in Section 4, which determine the sign pattern of the
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relations in cohomology, are just linking numbers of the corresponding (oriented) circles.
In the descnptxon as. links in the 3-sphere it is well-known [VD: p. 1034] that for every
triple of circles we get a linking coefficient +1 that does not depend on the order or the
chosen orientations. These linking coefficients of tnples are sufficient to distinguish the
arrangements B and B' of Example 2.2. We refer to [V], [VD] and [M] for this approach.

The key problem here is that links do not in general determine the homotopy type of
their complements in S* (see e.g. [R, p. 62]), although this mJght be true for the special
type of links that correspond to arrangements. Therefore the results of [V], [VD] and
[M] do not 1mmed1ately d1st1ngulsh complements of 2—a.rra.ngements In fa.ct the rela.txon
between ‘the “new” link invariants and “classical” data like. the fundamenta.l group of the'
oomplement is stlll obscure [Bi, p. 59]. . 4

A presntation of the funda.menta.l group of the complement of a 2-a.rrangement can
easily be computed — the standard method due to Wirtinger (see [R]) derives it from a
planar projection; since the links we consider are closed braids, an equivalent (but more
systematic) way is given by Artin’s approach [Ar]. However, even for the simple case of
the 2-arrangement of four subspaces in R* the corresponding links have projections with
12 crossings, so these methods become unwieldy. From the description as a fiber bundle,
one sees that the fundamental group = in the case of a complex arrangement is a product
of ZZ with the free group F'(t1,t3,%3) on three generators. In the case of the arrangement
B', we find that 7' is a non-trivial solution of the extension problem

F(t),to,t3) — o' — Z — 0.

However, there seems to be no simple or direct way to describe the homotopy group =’'.

Corollary 5.1. ' The fundamental groups =,n' of the complements of the arra,ngemehts
B and B' of Example 2.2 are not isomorphic.

Proof. We have seen that Cg > K(7,1) and Cg =~ K(n',1) in Section 2, and that these
spaces have non-isomorphic cohomology algebras in Theorem 2.3. Hence = ¢ «'. 0

Example 5.2. [M, Ass. 3] [VD, p. 1043] There are two 2-arrangements B’ and B” of
six two-dimensional transversal | subspaces in IR* with the following properties:

— the cohomology algebras H*(C’B',Z) and H*(Cgu,Z) are isomorphic, because the
subspaces in the arrangements can be labeled and oriented in such a way that the
pairwise linking numbers coincide,

— the pairs (S%,D') and (53, D") are not homeomorphic, since they represent inequiv-
alent links in S® that can be distinguished by link polynomials.

We do not know whether the complements $3\ D" ~ Cgr and §3\ D’ ~ Cg' are homotopy
equivalent or, equivalently (by the argument of Corollary 5.1), whether the fundamental
groups coincide.

More generally, we do not know whether the complements of two Z-mangements must
be homotopy equivalent once their cohomology algebras are 1somorph1c
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It seems that the a;na.lys1s of the cohOmologr algebfa (as in Theorem 2.3) is sxmpler'
than any computatlon -of the fundainental group of a 2-a.rra.ngement 'However, we are
not aware of ‘any systematic study of the coh0mology algebra 8f the complemient of a link’
(compa.re e.g. [R, P- 50]) The linear structure of this algebra i is determined by the number
of components of the link, because of Alexa.nder duality. But, as we have seen in Sectxon
2, the multlphcatlve structure ‘encodes non-tmnal information. = S

" However, we note that the complement of every 2—arra.ngement is for‘mal i ‘the sense of
ra.tlona.l homotopy theory [GrH, p. 158]. In fact, by Theorem 1.1’ the cohomoIogy algebra’
H* (C B'; Z) can be represented by a subalgebra. ‘of thé real deRkam compIex on Cgi. 'Wxth_
the argument of [F2, p: 546] this implies that Cp is’ a formal space In partlculat, 'there‘:
is no “higher order” cohomology information (like the Massey products used in [GrM ’
Sect IIIX C]) contamed in the real deRham complex of ’C'Br } ’ o "
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