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Abstract

The estrous cycle of mono-ovulatory species such as cows or humans, is known to show two
or more waves of follicular growth and decline between two successive ovulations. Within each
wave, there is one dominant follicle escorted by subordinate follicles of varying number. Under
the surge of the luteinizing hormone a growing dominant follicle ovulates. Rarely the number of
ovulating follicles exceeds one. In the biological literature, the change of hormonal concentrations
and individually varying numbers of follicular receptors are made responsible for the selection of
exactly one dominant follicle, yet a clear cause has not been identified. In this paper, we suggest
a synergistic explanation based on competition, formulated by a parsimoniously defined system of
ordinary differential equations (ODEs) that quantifies the time evolution of multiple follicles and
their competitive interaction during one wave. Not discriminating between follicles, growth and
decline are given by fixed rates. Competition is introduced via a growth-suppressing term, equally
supported by all follicles. We prove that the number of dominant follicles is determined exclusively
by the ratio of follicular growth and competition. This number turns out to be independent of the
number of subordinate follicles. The asymptotic behavior of the corresponding dynamical system is
investigated rigorously, where we demonstrate that the ω-limit set only contains fixed points. When
also including follicular decline, our ODEs perfectly resemble ultrasound data of bovine follicles.
Implications for the involved but not explicitly modeled hormones are discussed.

Keywords differential equation models, follicular maturation, follicular waves, cows, humans

1 Introduction

Follicles, periodically growing and declining in the ovaries of female mammals, have a well-known function
in the hormonal cycle. Besides providing the close environment for the oocytes to mature, they synthesize
hormones that establish the feedback loop to the hypothalamus and pituitary in the estrous cycle, most
importantly estradiol and inhibin [1]. Usually, follicles appear and grow in rather large numbers, even if
eventually only one or a few—depending on the considered species—ovulate [2,3]. It has been argued that
due to this fact follicles must interact and exchange information, they cannot grow following a random
distributions alone [4]. The number of follicles growing and declining over one cycle is not fixed over
consecutive cycles, this number can vary substantially [5], especially between individuals [6]. Possible
explanations have been reviewed in [5], yet these facts remain puzzling. They form the biological content
of this paper.

In the bio-mathematical literature that addresses follicular maturation [4,7–11], follicles have usually
been modeled via the secreted amount of estradiol. This is the hormone that stimulates the synthesis
of gonadotropins that keep the cycle running. Those early papers intended to formulate the non-linear
kinetics of the follicles as a dynamical system, effectively covering the hormonal interaction of the whole
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cycle. Modern systems-biological approaches focus on the hormonal dynamics (e.g., [12, 13]), where
follicles are modeled as an abstract functional mass, sometimes representing certain stages of differen-
tiation [14]. The histology of follicles has been modeled as well [15]. In [16], the time evolution of the
hormone producing cells has been studied via reaction-diffusion processes. So far, however, follicles have
not been described mathematically as seen in ultrasound scans of the ovaries, given by a set of diameters
that change in size over time. This is what we intend to do here by defining and solving a system of
ordinary differential equations.

There is evidence that, at least for the period of growth, follicular dimensions and amounts of synthe-
sized hormones correlate [17]. That is, once, when knowing more about the time evolution of follicular
diameters, such correlations could be utilized in order to couple follicular- and hormonal dynamics. For
now, we are only interested in modeling a cohort of follicles and in predicting their individual diameters
over time. Why do we choose such an approach? We suspect that the laws of growth and decline and the
law of follicular interaction—being separated of each other—are both simple, simpler than the effective
laws that have been suggested in the literature so far [4, 10].

For follicular growth and decline we will employ the simplest possible model that only involves
spatial dimensions and is consistent with ultrasound data. Follicular interaction will be introduced as
being proportional to a fraction of the follicular volume, intended to represent a hormone producing
compartment. We will study how many dominant follicles develop under the proposed interaction, that
is, follicles that are large and differentiated enough to be able to undergo ovulation. We determine the
parameters that influence the selection of these follicles. We will investigate whether the number of
dominant follicles is independent of the number of initially growing antral follicles. This will be done
rigorously in a methods section at the end of the paper, once the models are formulated. Of course,
we will present and discuss our mathematical results also verbally. But before, we provide some more
biological background.

2 Background

In many mammals such as cows or humans (at which we look more closely here), females are born with a
huge number of primordial follicles resting in their ovaries. This number decreases over time; in humans,
from ca. 106 down to 5 × 105 at puberty [18]. Each of these follicles contains a premature oocyte that
is surrounded by a few supporting cells. Continuously, starting at puberty, smaller sets of immature,
primordial follicles develop further while undergoing a few stages of differentiation. In humans, this
happens over a period of about one year. Only in their final stage, follicles are responsive to hormones,
which are metabolized in granulosa- and theca cells surrounding the oocyte. By then a fluid-filled cavity
adjacent to the oocyte has been formed, called antrum.

Under the influence of the follicle stimulating hormone (FSH), antral follicles are recruited to grow
further. In humans, the number of recruited follicles is usually around 15, or below, depending on the
age of the woman; their diameters are about 2 mm. Similar parameters apply to bovine follicles [19].
Both species are mono-ovulatory, that is, the number of dominant follicles rarely exceeds one, leading to
only one offspring per pregnancy. Being able to control the number of dominant follicles is an important
modeling goal in the context of reproductive medicine [20].

Over one cycle, several follicles are recruited, grow and decline. In woman, one observes up to three
follicular waves with different dominant follicles [21,22]. In cows, the number of waves can be four or even
five [23–25]. Only dominant follicles are assumed to ovulate [5], and only once per cycle,1 when the level
of the luteinizing hormone (LH) is sufficiently high. Ovulated follicles transform into a corpus luteum.
From wave to wave, the number of antral follicles varies, yet, remarkably, the number of dominant follicles
is almost always one. Of course, this only applies to mono-ovulatory species, such as cows or humans. For
multi-ovulatory species, such as pigs [26] or hamsters [27], the number of dominant/ovulating follicles is
higher, although it is narrowly distributed around a particular value specific to the considered species [28],
which is far smaller than the number of initially growing antral follicles [7].

The first model that has reproduced the outlined behavior, at least approximately, was given by
Lacker [4]; it is defined by a system of ODEs,

ẋi = xi
(
1− (Σx−M1xi)(Σx−M2xi)

)
, i ≤ n , (1)

1The rare exception is known as superfecundation.
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where xi(t) represents the estradiol produced by follicle i at time t and Σx =
∑n
i=1 xi the resulting total

amount. The right hand side (r.h.s.) incorporates the dynamics of n equally interacting follicles by a
polynomial of order three, capturing growth conditions imposed by the hormones, FSH and LH, in terms
of two parameters, M1 und M2. These parameters are the same for all follicles.

Consecutive work has addressed some generalization [8, 9] and specialization [10, 11]. Soboleva et
al. [10], e.g., claim they have specialized Lacker’s model by utilizing a polynomial of order four on the
r.h.s.,

ẋi =
kλ2

E
(E − xi)xi

(
λ2 − Σx (λ− xi)

)
, i ≤ n , (2)

defined by three positive parameters (E, k, λ), where E represents the maximum level of estradiol, k the
scaling of time, and λ a production rate threshold. As long as follicles are small (i.e., total estradiol
levels low, Σx < λ), follicular growth—determined by the r.h.s.—is positive, although individual growth
turns negative when some of the follicles become large. For large follicles (xi > λ) growth is always
positive. These features, which are encoded rather explicitly by the threshold λ, model the selection of
dominant follicles in [10]. As in Lacker’s model, the number of dominant follicles is variable, depending
on the three parameters. That is, different species can be modeled, e.g., cows or sheep. For neither of
the two models, however, the number of dominant follicles is given by an explicit formula. This does
not surprise, as in both models this number depends on the initial conditions and, when mathematically
precise, also on the total number of recruited antral follicles, n.

As indicated above, rising FSH levels prior to a follicular wave cause the recruitment [29] of late
antral follicles and possibly their early growth [30]. However, as soon as follicles start to grow, FSH
levels fall governed by the circular dynamics [31,32]. In the bio-medical literature [32], falling FSH levels
are made responsible for the selection of dominant follicles. Namely, when FSH is kept at high levels,
artificially, follicles do not decline (FSH is anti-apoptotic [32], p. 51), and the selection of dominant
follicles is suppressed by halted follicular growth. In [10], dominant follicles are selected when passing
the threshold λ, and high exogenous FSH levels are modeled via a controlled reduction of Σx in the
polynomial on the r.h.s.

It is not well understood how FSH can control follicular development. Maybe other hormones are
involved as well and directly or indirectly suppress follicular growth. Follicles produce androgens, which
are converted into estradiol, and thus establish a negative feedback in the estrous cycle. In the bio-
medical literature [33], follicular interaction is also interpreted as competition, but truly competitive
dynamics have not been utilized by models so far.

3 Models and results

In this paper, we model one follicular wave of the estrous cycle. Following an approach similar to
Lacker [4] and Soboleva et al. [10], we assume that the follicles of that wave behave identically and are
thus defined by the same set of parameters (a subset of η, γ, κ, ν, ρ, ξ ≥ 0). That is, we do not account
for possible physiological differences. In contrast to that literature though, we study follicular diameters
over time (denoted by xi(t), i ≤ n), as being observable via ultrasound. We do not follow the amounts of
estradiol the follicles produce, nor do we rely on other reproductive hormones involved in the estrous cycle
such as FSH, LH, progesteron, or inhibin. Though we explain how administered FSH—implemented via
the strength of competition—influences the growth of follicles.

Despite being identical in function, follicles usually differ in progression of their individual develop-
ment (on the scale of hours). That is, when follicles start to grow during their final stage before ovulation,
their diameters differ in size, at least slightly. Therefore, we propose that

ξ > x1(0) > · · · > xn(0) > 0 , (3)

where ξ defines the largest possible diameter of a follicle and n the total number of antral follicles. We
refer to those xi(0) ∈ (0, ξ), i ≤ n, restricted by (3) as generic initial conditions (GICs).

Even if our model is applicable to many different mammals, we will compare our theoretical results
to follicular data of cows [25] and adapt the numerical parameters accordingly.
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Figure 1: Ultrasound data of follicles approximated by bell-shaped trajectories over one estrous cycle.
Follicular diameters of two arbitrarily chosen cows from [25] are fitted in (a), (b), (c) by the models
(4), (5), (6), respectively. Parameters are numerically optimized for each follicle individually. The root-
mean-squared deviations (RMSD) are given for each method with respect to all data of one cow. The
best fit is achieved by modeling logistic growth and simple decline (6), which is followed by bell-shaped
Gaussian growth and decline (4). Even for the loosing method, which models logistic growth and decline
(5), the average deviation is less than 1 mm per measurement.
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Figure 2: Distribution of (maximal) follicle diameters. The histogram shows the distribution of the
follicle diameters (gray) and the maximal diameters of dominant follicles (red) of all 31 cows in [25]. The
diameters of all 1943 follicles rarely exceed 18 mm, exactly 26 times. The maximal diameters of 45 of 77
dominant follicles lie within the range of 16–18 mm.

3.1 Follicular kinetics

During their final stage before ovulation antral follicles grow fast. Dominant follicles, for example, extend
their diameter by about one order of magnitude within one week. Similarly fast they decline again.2 The
simplest model that captures such a behavior—for both dominant and subordinate follicles—is given by

ẋi = xi (γ − ρ t) , i ≤ n , (4a)

where γ > 0 and ρ > 0 define rates of growth and decline, respectively. The solutions, which fit bovine
data fairly well (cf. Fig. 1), are given by bell-shaped trajectories,

xi(t) = xi(0) e−
ρ
2 t

2+γ t . (4b)

The maximal diameter of follicles only varies within a small range (highlighted red in Fig. 2). There-
fore, one might improve (4a) by including a term that yields logistic behavior,

ẋi = (ξ − xi) xi (γ − ρ t) , i ≤ n , (5a)

where ξ defines an upper bound for the follicle diameter. The solution of these ODEs reads

xi(t) =
ξ

1 +
(

ξ
xi(0)

− 1
)
e
ρ
2 t

2−γ t
. (5b)

In fact, numerically, the resulting fit (cf. Figs. 1 and 3) does not approximate ultrasound data better
than bell-shaped Gaussian curves (4b). But the fit via (5b) models the more typical set of trajectories
(Fig. 3b): usually, follicles of a particular wave originate from a common trajectory before subordinate
follicles branch off (below the trajectory of a dominant follicle) [25, 32, 34, 35]. All bell-shaped curves
(Fig. 3a), in contrast, clearly start at different points.

When looking at the follicle data more closely (cf. Figs. 1c and 3c) one sees that, for large follicles,
decline takes longer than growth. To account for that observation one could model logistic behavior only
for follicle growth and not for decline,

ẋi = xi ((ξ − xi)γ − ρ t) , i ≤ n . (6a)

This would lead to an analytic solution as well,

xi(t) =
e−

ρ
2 t

2+γ ξ t

1
xi(0)

+
√
πγ√
2ρ
e
γ2ξ2

2ρ erf
(
−γξ√
2ρ
, ρt−γξ√

2ρ

) , (6b)

2This also applies to ovulating follicles, which decline in size when releasing the oocyte, before transforming into a
corpus luteum.
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Figure 3: Bell-shaped versus logistic growth. This figure shows individual follicular waves (data and
least square fit of the first and second wave) of the two cows in Figure 1; the enumeration of the panels
is the same. The only difference is the evaluation of the fits. For individual waves (cow 3674, 2nd wave),
logistic growth and decline (5) can outcompete the other two methods, (4) and (6). In fact, the follicular
peak is usually softer than a Gaussian bell-shaped curve. Furthermore, all growing follicles usually evolve
following the trajectory of the dominant follicle before subordinate follicles branch off. Trajectories with
logistic behavior better account for these two qualities.
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although the solution requires numerical integration and is thus impractical to use; it contains the error

function erf(a, b) = 2√
π

∫ b
a
e−t

2

dt. The fit is the best among the three models.

Our results indicate that follicular growth likely follows logistic behavior; one may note that Soboleva
et al. [10] have also incorporated a logistic term (2). But it is difficult to decide which of our two versions
should be favored. The solutions of (6) yield the better fit (on average; cf. Fig. 3c), but the solutions of
(5) represent a more realistic starting behavior (with trajectories being closer together; cf. Fig. 3b).

The fits in this subsection have been produced with a large set of follicle-dependent parameters. In
order to describe multiple follicles with a small set of follicle-independent parameters one must include
interaction between follicles.

3.2 Competitive growth

Interaction between follicles is considered in the models of Lacker [4] and Soboleva et al. [10]. Their
dynamical equations incorporate the sum, Σx =

∑
i≤n xi, which represents the total amount of estradiol

produced by the follicles. When studying follicular diameters (as we do here), it is more realistic to
consider the sum of certain powers of the individual diameters, Σxν =

∑
i≤n x

ν
i . This sum represents

a multiple of the total follicular volume (of fractal dimension ν ≤ 3), which can easily be related to
the amount of hormones that are produced. We assume that these hormones (e.g., androgens or their
derivatives such as estradiol) directly or indirectly suppress the growth of follicles, though we expect that
individual follicles do not fully suppress their own growth.

Suppressed growth, implemented in (5a) by an additional negative growth rate,

−κ

 n∑
j=1
j 6=i

xνj + ηxνi

 = −κ (Σxν − µxνi ) , (7)

is our model for follicular competition. The dynamical system of competitive growth reads

ẋi = (ξ − xi)xi
(
γ − κ (Σxν − µxνi )

)
, i ≤ n , (8)

where κ defines the strength of competition, and the parameter µ = 1− η incorporates the proportion of
self-harm η ∈ (0, 1). Of course, we must consider at least two follicles, i.e., n ≥ 2. There are no analytic
solutions to this system of ODEs. Rigorously, one can only determine its asymptotic solutions for large
time. We find that these solutions converge towards fixed points.3 This can be proven as a mathematical
statement.

Theorem. Let 0 < η = 1− µ < 1 ≤ ν and n ≥ 2. Then any solution of the ODE-system (8) satisfying
generic initial conditions (3) converges to the stable fixed point(

ξ, . . . , ξ︸ ︷︷ ︸
d

, ξ−, 0, . . . , 0︸ ︷︷ ︸
n−1−d

)T ∈ Rn as t→∞ , (9)

where ξ− = min
{

1,max
{
δ−d
η , 0

}}1/ν
ξ and

d = [δ + µ] with δ =
γ

κ
ξ−ν . (10)

The bracket [·] denotes the integer part.

Proof. This is the content of the methods section. For illustration, see Figure 4a.

The integer d ≥ 0 represents the number of dominant follicles (a lower bound, to be precise). This
number is controlled by the parameter δ, which incorporates the ratio γ/κ of growth and competition
(taken with respect to the largest possible hormone producing volume, i.e., ∝ ξν). Importantly, these
parameters are independent of the total number of antral follicles that define the wave. Among these n
follicles, there might be one (and only one) that is neither growing towards ξ nor vanishing at infinity. Its

3i.e., there are no limit cycles, etc.
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diameter is given by ξ− ∈ [0, ξ); see the yellow trajectory in Figure 4a (l.h.s.). This happens when δ > d.
Whether this follicle is dominant or subordinate remains undecided and may depend on the particular
case (cf. Sect. 3.5 below).

Before the trajectories of the follicular diameters converge towards a stable fixed point (as stated in
the theorem) they are bent by an unstable fixed point,

x∗i =
γ

κ
(n+ µ)−1/ν =: ξ+ , i ≤ n . (11)

For illustration, see Figure 4; initially the trajectories gather around the dotted line at ξ+. For proof,
see the end of the methods section.

3.3 Comparison of models

After formulating our competitive growth model (8) we made a surprising observation. The model (2)
by Soboleva et al. [10] can be written in terms of the parameters used in (8),

ẋi = (ξ − xi)xi
(
γ

interaction term︷ ︸︸ ︷
−Σxν︸︷︷︸ ( κ︸︷︷︸−µxνi )

interchanged positions

)
, i ≤ n , (12)

where ξ = E, γ = kλ4/ξ, κ = γ/λ, µ = κ/λ, and ν = 1. Despite the differing conceptual approaches, the
two models, (12) and (8), look very similar. The only difference are the positions of the parameters Σx
and κ, where the former represents competition and the latter its strength (here) or a growth threshold
(in [10]). The positions of the parameters are simply interchanged, which, however, identifies the models
as markedly different. In Soboleva et al (12), the interaction term does not have a fixed sign: if the
sign is positive, it supports growth, if the sign is negative (i.e., xi < κ/µ), it suppresses growth (and
determines subordinate follicles). In our model (8), the sign is always negative. That is, Soboleva et
al model the selection of dominant follicles via the threshold κ/µ. We model the selection via dynamic
competition, adjustable in strength κ and self-harm η = 1− µ.

3.4 Follicle stimulating hormone

The relationship between follicular growth and FSH involves another important similarity and differ-
ence of the two models. In the model of Soboleva et al (2), FSH—being included to simulate fertility

treatment—is implemented by redefintion of the follicle sum, Σxν → Σxν − f (2)FSH, via a term f
(2)
FSH that

monotonously depends on the amount of FSH exogenously provided to the system [10]. In our model

(8), we would—in complete analogy—redefine the strength of competition, κ→ κ− f (8)FSH, via a similar

term f
(8)
FSH that monotonously depends on the exogenous FSH.

Supplementation of FSH is an essential part of fertility treatment protocols [36], leading to an in-
creased number of dominant follicles. The mechanism behind is not fully understood. In [32], it is
even argued that FSH suppresses the selection of dominant follicles. Our formula (10) and its FSH-
supplemented version,

dFSH =

[
ξ−ν

γ

κ− f (8)FSH

+ µ

]
, (13)

can explain how treatment may work: dFSH > d whenever fFSH > 0. That is, exogeneous FSH increases
the number of dominant follicles.

3.5 Follicular kinetics with competition

By including the competition term (7) into the follicular kinetics equations, (5a) and (6a), which both
involve logistic growth (as argued in Sect. 3.2) but either logistic or simple decline, one obtains two
alternative models for the evolution of follicle diameters over one follicular wave,

ẋi = (ξ − xi)xi (γ − κ (Σxν − µxνi )− ρ t) , i ≤ n , (14)

ẋi = (ξ − xi)xi (γ − κ (Σxν − µxνi ))− ρ t xi , i ≤ n . (15)
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Figure 4: Model trajectories. Numerical solutions to the initial value problem with GICs are illustrated
for the model of competitive growth (8) (Panel a), for the model of logistic growth and logistic decline
(14) (Panel b), and for the model of logistic growth and simple decline (15) (Panel c). The plots show
typical trajectories of follicle diameters for two different numbers of dominant and antral follicles (1 and
15 on the l.h.s., 3 and 25 on the r.h.s.), resulting from two different parameter sets. The gray area shows
the region that is invisible by the ultrasound data we use [25].
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Figure 5: Follicular kinetics with competition versus data. Follicle diameters of two cows (the same as
in Figs. 3b and 3c) during the first (l.h.s.) and second follicular wave (r.h.s.) are approximated by the
two competitive growth models: logistic decline (14) in Panel (a) and simple decline (15) in Panel (b).
The initial time for the second wave has been set to day 8. Six parameters (η, γ, κ, ν, ρ, ξ; cf. Fig. 6) as
well as three (l.h.s.) and four initial values (r.h.s.) have been optimized, numerically, to achieve the best
possible least square fit; RMSD indicates the root-mean-squared deviation.
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Both systems of ODEs can only be solved numerically; see Figure 4b and 4c. After looking at the resulting
trajectories and comparison with some veterinary literature [25,32,34,35], where without supplementation
of hormones declining diameters have not been reported to increase again [37] (or to converge towards a
common trajectory as seen in Figure 4c), one might think of excluding simple decline (15) as modeling
candidate of follicular dynamics.

Reality, however, is not that simple [38]. Both candidates lead to beautiful fitting results; see Figure 5.
In fact, simple decline (15) even outperforms logistic decline (14) in our first-wave example (l.h.s. panels);
in the second-wave example (r.h.s. panels) both models perform equally well. Though we think that for
multiple dominant follicles one will favor logistic decline. This conjecture is based on the trajectories
obtained in Figure 4, where, as discussed in Sect. 3.1, Panel (b) offers the most realistic shapes.

By inspecting the parameters (Fig. 6) that establish the fit of the follicle data (Fig. 5) we find an
example where our follicle formula (10) only provides a lower bound (cf. end of Sect. 3.2). For logistic
decline (15), the first follicular wave (l.h.s. panels of Figs. 5 and 6) is approximated best by a set of
parameters that leads to δ > d = 0. But, despite d = 0, there does exist one real dominant follicle of size
smaller than ξ− > 0. However, the best fit for simple decline (14) leads to a more predictive parameter
set, where δ ≤ d and d = 1 truly represents the number of dominant follicles.

4 Discussion and outlook

We have formulated and analyzed systems of ODEs that model the growth of follicles over a period
of one follicular wave, covering follicular interaction and two versions of decline. In doing so, we have
demonstrated that dominant follicles are selected from a cohort of growing antral follicles in a systematic
and reproducible fashion when follicular interaction is based on competition. Our modeling framework
allows for predicting the number of dominant follicles via a closed formula; see (10) and (13). The
number only depends on the ratio between follicular growth and competition. In particular, it does
not dependent on the number of recruited antral follicles. Numerically, we have adjusted our modeling
parameters to cows, although other mammals such as humans, sheep, pigs, or hamsters, which in that
order develop larger numbers of ovulating follicles, could be modeled as well (cf. Fig. 4). The trajectories
of the follicular diameters fit ultrasound data amazingly well (Fig. 5).

Based on our modeling assumptions we were able to explain the selection of dominant follicles as
a synergistic phenomenon, relying on competitive dynamics that penalizes individual follicles by sup-
pression of growth. This suggests that selection may not rely on a particular threshold mechanism as
proposed in Soboleva et al. [10] and may not be triggered, at least not directly, through an information
processing network of chemicals as argued in the more experimental literature [29, 31]. The microbio-
logical details (i.e., the way competition is mediated) may not be important for the selection itself. The
strongest indicator supporting such an approach is the number of subordinate follicles that hugely varies
between follicular waves. These subordinate follicles provide the reproductive system with a variable
number of receptors, produce different amounts of hormones, etc. But, despite the involved variation,
the selection process always leads to a well-defined number of dominant follicles, at least within a small
range [28].

In nature, competition is likely mediated via androgens and estradiol, where the former are produced
from steroid precursors in the theca cells, and the latter are converted from androgens in the granulosa
cells of the follicles [39]. The corresponding dynamics could be as follows,

ȧi = α

(
dxνi
dt

)
+

− β ai , i ≤ n , (16a)

Ė = βA− ωE , (16b)

where the rate of androgens ai(t) synthesized by follicle i at time t depends on the change of the
productive follicular volume xνi (t), and the amount of estradiol E(t) synthesized at time t depends on
the total amount of androgens A =

∑
i≤n ai present at time t; the parameters α, ω > 0 define growth and

decay rates of androgens and estradiol, respectively, and β > 0 defines the conversion rate. The index ’+’
represents the positive part, ( · )+ = ( ·+|·|)/2. As long as the production of androgens and the conversion
to estradiol balances, and provided decay rates are smaller than conversion (i.e., ȧi ≈ 0, ω/β ≈ 0), one
obtains a linear relationship between the follicular volumes and estradiol, E = αΣxν + const, consistent
with the models of Lacker [4] and Soboleva et al. [10].
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Figure 6: Follicular kinetics with competition. Panels (b) and (c) mirror the fitting trajectories of
Figure 5b and 5c while indicating the involved parameter values. Panel (a) shows trajectories of the
corresponding competitive growth model. For the visibility of the entire fixed point, ξ has been reduced
from ca. 28 mm in (b) to 22 mm; the blue trajectory—representing a dominant follicle—converges towards
ξ−, which is below ξ but clearly above zero.
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The previous statement is consistent with other claims in the literature, where the rise of estradiol [7]
or the decline of FSH [16] is made responsible for the selection of dominant follicles. Consistency can be
checked by comparison with the hormonal dynamics of the estrous cycle [1,22,40]. However, the follicle
model we have developed does not require knowledge about the underlying hormones or the hormonal
network and is thus available as a clean starting point for larger systems-biological models that couple
diameters of individual follicles and reproductive hormones.

5 Methods

In this section, we prove our theorem while looking more closely at trajectories of the follicular diameters
and their limiting behavior. For the mathematical treatment, we transform coordinates, xi → ξ xi, and
time, t → t/κ. This leads to a system of ODEs and GICs, which are equivalent to (8) and (3), but
contain two parameters less:

ẋi = gi(x) , i ≤ n , (17a)

where n ≥ 2 and gi(x) = (1− xi)xi
(
δ − Σi(x)

)
with Σi(x) =

∑n
j=1 x

ν
j − (1− η)xνi , and

1 > x1(0) > · · · > xn(0) > 0 . (17b)

Furthermore, we assume that 0 < η < 1 ≤ ν.

5.1 Trajectories

The trajectories do not cross, nor touch in finite time. Furthermore, they are bounded. In mathematical
terms this reads as follows.

Proposition 1. The solution of the ODE-system with GICs (17) is order preserving and bounded within
[0, 1] (i.e., 1 > x1(t) > · · · > xn(t) > 0, ∀t > 0).

Proof. By contradiction: if two trajectories, xi(t) and xj(t) (i 6= j), were touching at some time t0 > 0
then, by symmetry of the ODE-system, xi(t) = xj(t), ∀t ≥ t0. The backward time equation of (17a),
d
dtx(−t) = −g(x(−t)), is also symmetric. Employing xi(t0) = xj(t0) as initial condition, this would
imply that xi(0) = xj(0). Boundedness (i.e., 0 < xi(t) < 1, ∀i ≤ n) follows from Lipschitz continuity of
gi(xi), because gi(xi)→ 0 as xi → 0 or xi → 1.

The solution either converges to zero (x(t)→ 0 as t→∞) or the trajectory enters the set S = {x ∈
[0, 1]n | g1(x) ≥ 0 ∧ x1 > · · · > xn} at some finite time t0 ≥ 0. The latter case only happens if δ > 0, as
shown further below. Importantly, for the statement we aim to prove, the trajectories do not leave the
set S again (i.e., x(t) ∈ S, ∀t ≥ t0). That is, from a certain time on, the first component x1(t) will only
increase. In mathematical terms this reads as follows.

Corollary 1. The set S is an invariant set of the ODE-system (17a).

Proof. Let x ∈ S. That is, the vector components of x are ordered and g1(x) ≥ 0. Then,

δ ≥
n∑
j=2

xνj + η xν1 ≡ Σ1(x) . (18)

Because of the proposition, one does not need to keep track of the order, one only needs to show that
g1(x′) ≥ 0, where x′ = x+ h g(x) for a sufficiently small h > 0 [41]. That is, one must show that

δ ≥
n∑
j=2

(
xj + h gj(x)

)ν
+ η

(
x1 + h g1(x)

)ν
=: Σ′1(x) . (19)

Two cases are possible. Case g1(x) > 0. Condition (19) holds true, due to continuity of Σ′1(x) with
respect to h. Case g1(x) = 0. Here δ = Σ1(x) and δ < Σj(x), ∀j ≥ 2, as x1 > · · · > xn implies
Σ1(x) < · · · < Σn(x). That is, gj(x) < 0, ∀j ≥ 2, for any h > 0. Therefore, δ > Σ1(x′), i.e.,
g1(x′) > 0.
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Together with boundedness (Proposition 1), one immediately concludes that the first component of
x(t) converges to a number in [0, 1] as t→∞. That is, one obtains the following inclusion for the ω-limit
set,

lim
ω
γx(0) ⊆

{
x ∈ [0, 1]n

∣∣x1 = x∗1
}

=: (x∗1, ∗) . (20)

By recursion this statement extends to all components, xi(t), and determines the ω-limit set to only
consist of fixed points.

Lemma 1. x(t)→ x∗ ∈ [0, 1]n as t→∞.

Proof. Convergence of the solution of the n-dimensional system can be concluded, recursively, from the
convergence of the first component,

x1(t)→ x∗1 ∈

{
{0} δ ≤ 0

(0, 1] δ > 0
, (21)

by successive elimination of this first component. Note that only the lower case in (21) is nontrivial. For
δ > 0, the first component x1(t) cannot converge to zero. If it did, one would be able to identify some
t1 < ∞ for which Σ1(x(t1)) < δ, i.e., g1(x(t1)) > 0. By Corollary 1, x1(t) would then be increasing for
all t ≥ t1, which would prove x∗1 > 0 and thus lead to a contradiction. Convergence in (0, 1] then follows
from monotony on [t1,∞) (Corollary 1) and boundedness (Proposition 1). Iterated formation of ω-limit
sets applied to both sides of (20),

lim
ω
γx(0) =

⋃
x∈limω γx(0)

lim
ω
γx ⊆

⋃
x∈(x∗

1 ,∗)

lim
ω
γx , (22)

and substitution of the growth parameter, δ∗ = δ − (x∗1)ν , enables us to study a system of only n − 1
components,

ẋi = (1− xi)xi

δ∗ −( n∑
j=2

xνj − (1− η)xνi

) , i ∈ {2, . . . , n} , (23)

on the set (x∗1, ∗), alternatively to the n-component system (17a) defined on [0, 1]n. Since (23) has the
same form as (17a), we can repeat the procedure and further reduce the number of components of the
ODE-system until either δ∗ ≤ 0 or no component i ≤ n is remaining.

The asymptotic solution x∗ must be one of the system’s stable fixed points.

5.2 Fixed points

Fixed points x∗ = (x∗i )i≤n of the system (17a) are defined by the requirement that its n right hand sides
vanish: g(x∗i ) = 0, ∀i ≤ n. That is, at least one of the three factors forming g(x∗i ) must be zero. When
applying the bounded monotonic behavior of the n trajectories (Proposition 1), the set of fixed points
X∗ is described as follows.

Lemma 2. Assume that generic initial conditions (17b) apply. Then each fixed point of the ODE-system
(17a) is given by

x∗i = 1 ∀i ∈ {1, . . . , d} (24a)

x∗i =

(
δ − d

η + e− 1

)1/ν

∈
(
0, 1
)

∀i ∈ {d+ 1, . . . , d+ e} (24b)

x∗i = 0 ∀i ∈ {d+ e+ 1, . . . , n} , (24c)

for some natural numbers d, e ≥ 0 satisfying either d < δ and δ + 1− η < d+ e ≤ n or d ≥ δ and e = 0.
(Note that [a, b] = ∅ if a > b.)
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Proof. The fixed points defined by (24b) and e ≥ 1 are the only non-trivial ones. They are derived from
the identity

0 = δ −
n∑
j=1
j 6=i

x∗j
ν − η x∗i

ν , ∀i ∈ {d+ 1, . . . , d+ e} , (25)

which—besides (1− xi) and xi—represents the third vanishing factor of g(xi). Written with the help of
a matrix H, the identity reads

(δ − d)

1
...
1

 = H

x
∗ ν
d+1
...

x∗ νd+e

 , (26)

where Hik = 1 + η δik. As rankH = e, there exists a unique solution for the vector
(
x∗d+i

)
i≤e. Due

to symmetry with respect to the index i, the entries of this vector are all the same: x∗d+i = x∗d+e > 0,
∀i ≤ e. Summation over i yields

(δ − d) e = (η + e− 1)

e∑
i=1

x∗ νd+i

x∗d+i =

(
δ − d

η + e− 1

)1/ν

, ∀i ∈ {1, . . . , e} .

This representation implies that 1 > x∗d+i > 0 is equivalent to 1 > δ−d
η+e−1 (i.e., δ + 1 − η < d + e) and

δ− d > 0. Recall that e ≥ 1, which, because of the positivity of x∗d+e, is leading to δ− d > 0. That is, if
d ≥ δ then e = 0.

Corollary 2. Let e = 1. Then d = [δ] (where the square brackets denote the integer part, i.e., δ − 1 <
d ≤ δ and d ∈ N).

Proof. It remains to show that δ − d < 1. The following sequence of inequalities proves the claimed
relation, δ − d = (η + e− 1)x∗ νd+e < η + e− 1 = η < 1.

We are interested in stable fixed points.

Proposition 2. Let the limit set consist of the fixed points given by Lemma 2, and let x∗ be any of those
fixed points. Then x∗ is stable if and only if one of the following disjoined conditions applies,

(i) δ < d < δ + 1− η ,

(ii) either δ = d or d = δ + 1− η ,

(iii) δ − η < d < δ and η < 1/ν .

For η ≥ 1/ν, either (i) or (ii) applies. For (i) and (ii), e = 0, and for (iii), e = 1.

Proof. Fixed points are characterized by the eigenvalues of the Jacobian J . That is, a fixed point is
stable if the real part of the eigenvalues of J are all negative whereas a fixed point is unstable if at least
one of the real parts of the eigenvalues of J is positive.

For our model (3), the entries of the Jacobian are given by

Jik(x) = ∂xkgi(x) =

−νη (1− xi)xνi + (1− 2xi)

(
δ −

∑n
j=1
j 6=i

xνj − η xνi
)

i = k

−ν (1− xi)xi xν−1k i 6= k .

(27)
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Hence, for the fixed points x = x∗ in (24), only five type of entries are non-zero:

J11 = · · · = Jdd = A := −δ + d− 1 + η + eψ , (28a)

Jd+1,d+1 = · · · = Jd+e,d+e = B := −νη(1− ψ)ψν , (28b)

Jd+e+1,d+e+1 = · · · = Jnn = C := δ − d− eψ , (28c)

Jd+1,1 = · · · = Jd+e,d = D := −ν(1− ψ)ψ , (28d)

Jd+e,d+1 = · · · = Jd+1,d+e = E := −ν(1− ψ)ψν , (28e)

where ψ =
(

δ−d
η+e−1

)1/ν
. Consequently, the Jabcobian is formed by four non-zero blocks,

J =

J (a) 0 0
J (d) J (b) 0

0 0 J (c)

 . (29)

These blocks are

J (a) = AId , (30a)

J (b) = (B − E) Ie + E 1e×e , (30b)

J (c) = C In−d−e , (30c)

J (d) = D 1e×d , (30d)

where Id denotes the identity matrix of dimension d and 1e×d denotes the matrix of dimension e × d
with all entries equal to one, etc.

The determinant of a triangular block matrix can be expressed by the product of the determinants
of its block diagonal, therefore eigenvalues of the Jacobian J are given by the eigenvalues of the blocks
that form the diagonal,

0 = det (J − λ In) = det (J (a) − λ Id) det (J (b) − λ Ie) det (J (c) − λ In−d−e) . (31)

The only non-trivial eigenvalues are those of block J (b), which, for e ≥ 2, are given by{
λ
(b)
1 = B + (n− 1)E

λ
(b)
2 = B − E

with multiplicity

{
1

n− 1 .

Due to B = ηE and E < 0,

λ
(b)
1 = (η + n− 1)E < 0 (if n+ η > 1) , (32)

λ
(b)
2 = (η − 1)E > 0 (if η < 1) . (33)

The second eigenvalue always has a positive sign. That is, for e ≥ 2, all fixed points are unstable. Stable

fixed points can therefore only exist if e ≤ 1. For e = 1, the eigenvalue λ
(b)
1 = B is negative (as η > 0).

From now on, let e ≤ 1. The eigenvalues of the two remaining blocks, λ(a) = A and λ(c) = C, are
negative if

δ − d+ 1− η > eψ > δ − d . (34)

For e = 0, the two inequalities (34) hold true if Condition (i) is met. But also for Condition (ii), which
either represents the eigenvalue λ(a) = 0 or the eigenvalue λ(c) = 0, fixed points are stable. This is due
to the premise that the limit set only contains fixed points. Namely, if the considered fixed point x∗ was
unstable then the solution of the dynamical system would converge to another fixed point,

x+ =
(

1, . . . , 1︸ ︷︷ ︸
p

, 0, . . . , 0︸ ︷︷ ︸
n−p

)T
, for which p 6= d . (35)
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Cases p ≤ d− 1 d+ 1 ≤ p
d = δ δ − p ≥ 1 δ − d+ 1− η ≤ −η
d = δ + 1− η δ − p ≥ η δ − p+ 1− η ≤ −1

Table 1: Relations characterizing the fixed point x+. The relations in (34) are violated beyond equality.

If the corresponding version of Eq. (34), where d is replaced by p, was violated beyond equality (i.e.,
if δ − p ≥ 0 and δ − p + 1 − η ≤ 0) then the Jacobian would have at least one positive eigenvalue.
Straightforward calculation shows that, in fact, this is the case (cf. Table 1). That is, any other fixed
point x+ would be unstable. Therefore, the considered fixed point x∗ must be stable.

Note that λ(a) = 0 implies λ(c) < 0 and λ(c) = 0 implies λ(a) < 0; in both cases, e = 0, as the formal
definition of ψ either leads to ψ = 1/η > 1 or to ψ = 0, respectively, contradicting (24b).

For e = 1, the two inequalities (34) hold true if Condition (iii) is met. In fact, the corresponding
inequalities, 1 > η > δ − d > 0, lead to the inequality on the r.h.s. of (34),

ψ =
(δ − d)1/ν

η1/ν
> (δ − d)1/ν ≥ δ − d > 0 . (36)

Only if η < 1/ν, the l.h.s. of Condition (iii) implies the inequality on the l.h.s. of (34),

η (δ − d− η)︸ ︷︷ ︸
<0

(νη − 1)︸ ︷︷ ︸
<0

> 0 (37)

1− ν(η − δ + d) >
δ − d
η

(38)

1 > δ − d+ 1− η ≥
(
1− ν(η − δ + d)

)1/ν
>

(δ − d)1/ν

η1/ν
= ψ . (39)

Whenever η ≥ 1/ν, the inequality on the l.h.s. of (34) can only be true—which even applies when
including equality—if η ≤ δ − d. That is,

δ − d+ 1− η ≥ ψ if η (δ − d− η)︸ ︷︷ ︸
≥0

(νη − 1)︸ ︷︷ ︸
≥0

≥ 0 . (40)

Then, however, ψ =
(
δ−d
η

)1/ν ≥ 1, which contradicts the assumption (24b) of Lemma 2.

If η ≥ 1/ν, one may represent d ≤ δ− η through redefinition, d→ d− 1, as encoded by Condition (i)
or (ii), and set e = 0.

Corollary 3. Let e = 0. Then d = [δ + 1− η].

Proof. This is an immediate consequence of the conditions (i) and (ii).

The previous statements can be summarized as anticipated in the result section.

Theorem. Let d = [δ+ 1−η] and ψ = min
{

1,max
{
δ−d
η , 0

}}1/ν
. Then the solution of the ODE-system

(17a) satisfying the initial conditions (17b) converges to a fixed point as t → ∞. The only stable fixed
point is

x∗ =
(

1, . . . , 1︸ ︷︷ ︸
d

, ψ, 0, . . . , 0︸ ︷︷ ︸
n−1−d

)T
. (41)

Proof. Recall that the ω-limit set only consists of fixed points. The only stable fixed point for the
parameters δ and η is x∗, given above. It only remains to check if the definitions of d and ψ are correct.
In fact, d is defined by [δ + 1 − η], even if e = 1. Namely, if e = 1 then d > δ − η, and there is only
one natural number (= d) between δ − η and δ + 1 − η. That is, the case e = 1 is characterized by
d = [δ] = [δ + 1− η]. The definition of d (i.e., δ − η < d ≤ δ + 1− η, in particular its l.h.s.) ensures that
ψ < 1. Only if d < δ, one obtains ψ > 0. As long as δ ≤ d the theorem’s premise defines the case e = 0
(by formally setting ψ = 0).
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We conclude this section by noticing another consequence of Proposition 2.

Corollary 4. The ODE-system (17a) always has the following unstable fixed point,

x∗i =

(
δ

n− 1 + η

)1/ν

, i ≤ n . (42)

Proof. Let d = 0 and e = n in Lemma 2. Then the fixed points are given by (24b).
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