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Abstract

Managing rolling stock with no passengers aboard is a critical com-
ponent of railway operations. In particular, one problem is to park the
rolling stock on a given set of tracks at the end of a day or service. De-
pending on the parking assignment, shunting may be required in order for
a parked train to depart or for an incoming train to park. Given a collec-
tion of tracks M and a collection of trains T with fixed arrival-departure
timetable, the train assignment problem (TAP) is to determine the max-
imum number of trains from T that can be parked on M according to
the timetable and without the use of shunting. Hence, efficiently solving
the TAP allows to quickly compute feasible parking schedules that do
not require further shunting adjustments. Similar assignment questions
where shunting is allowed have been considered in [2, 9, 13, 14]. In this
paper, we present two integer programming models for solving the TAP.
To our knowledge, this is the first integrated approach that considers track
lengths along with the three most common types of parking tracks. We
compare these models on a theoretical level. We also prove that a decision
version of the TAP is NP-complete, justifying the use of integer program-
ming techniques. Using stochastic and robust modelling techniques, both
models produce parking assignments that are optimized and robust ac-
cording to random train delays. We conclude with computational results
for both models, observing that they perform well on real timetables.

1 Introduction

The general problem of vehicle dispatching in a depot has been widely studied in
the literature and comes in many different flavors. In general, a depot consists
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of a fixed number of tracks that are commonly distinguished by three different
track types:

• First-in-first-out (FIFO): track with one arrival and one opposite depart-
ing side (queue);

• Last-in-first-out (LIFO): track with equal arrival and departure side (stack);

• Free (FREE): track that can be entered and departed from both sides.

The global problem is to find a feasible assignment of vehicles to tracks such
that certain arrival and departure criteria are satisfied. The problem was first
mentioned in the context of tram dispatching, see Winter and Zimmermann [16]
and Winter [15]. Later their work was extended by a new mathematical model of
Di Gallo and Miele [10]. In the area of train unit dispatching, or train shunting
respectively, Freling et al. [9] study a related model for LIFO and FREE tracks
where arriving train units are assigned to tracks and possible departures. Due
to the large model size they decompose the problem into two subproblems:

1) the assignment of arriving parts to departure parts which form a train and

2) the assignment of trains to tracks

where both problems are solved consecutively. For the more involving second
problem they propose an exponential integer programming model that is solved
by column generation. Kroon et al. [13] approach the integrated problem by us-
ing a compact formulation. Due to the integration of problem 1) they were not
able to model FREE tracks by the strongest possible formulation, because this
involves too many decision variables. Haahr et al. [12] also solve the integrated
problem for LIFO tracks by a recovering approach that alternates between prob-
lems 1) and 2) where problem 2) is either solved by a compact or an exponential
formulation. Moreover, Borndörfer and Cardonha [2] solve the integrated prob-
lem for FIFO tracks by a strong set partitioning model that can be solved effi-
ciently by specific column generation and pricing methods. Differently, Bohlin
et al. [1] solve the integrated problem in a multistage planning environment
by a novel exponential and compact formulation that compute complete train
sequences for each track. Most of the presented models focus on minimizing
the number of invalid assignments, the number of shunting movements or more
generic cost for practical purposes such as train type distribution and robust-
ness. More generally, Di Stefano and Koci [7] give several complexity results
concerning the assignment of trains to different track types such as FIFO and
FREE tracks.

Apart from that, much research focuses on forming specific outbound train
compositions from a set of individually arriving train units. For a comprehensive
survey on the different variants of train shunting problems we refer to Boysen
et al. [3].

Contribution. In this paper we focus on problem 2) where trains with fixed
arrival and departure times are assigned to tracks. In contrast to previous
approaches that consider only one or two track types at the same time, we
compute track assignments for the three track types FIFO, LIFO and FREE in
an integrated approach. For this, we introduce two integer programming models
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Figure 1: Different parking time interval patterns over one week.

which maximize the number of trains that can be parked without any additional
shunting movement. Compared to Kroon et al. [13], we are able to model FREE
tracks in its stronger version, since problem 1) is not considered. Moreover, we
provide polyhedral results between our two models. Since shunting plans are
very vulnerable to train delays we also present an extension of our models that
further optimizes according to stochastic and robust aspects. The robustness
of shunting plans has been studied mainly to restrict the number of shunting
moves, for example by a recoverable robustness approach of Cicerone et al. [6]
and a recovery strategy of Büsing et al. [5]. However, the impact of train delays
on the planned depot schedule had been investigated rarely. In this context,
we analyze the tradeoff between the possible number of parked trains without
shunting conflicts and the stability of the depot schedule with respect to train
delays.

The considered track assignment problem arises in rolling stock rotation
planning. There fast methods are needed to verify if a given set of trains can
be parked at a depot.

Outline. The article is organized as follows. In Section 2, we formally introduce
the problem of maximizing the number of trains that can be parked without any
shunting movement, which we denote as the train assignment problem (TAP).
We also show the complexity of the TAP. Section 3 introduces and compares two
different integer programming models for solving the TAP. Building upon this,
in Section 4 we introduce methods of robustness and stochastic optimization
against random delays in train arrivals. We provide extensive computational
results of our models in Section 5, and finish with concluding remarks in Sec-
tion 6.

2 The Train Assignment Problem

Let T = {i1, ..., in} be a collection of trains where each train i ∈ T is given a
fixed arrival time ai ≥ 0, a fixed departure time di ≥ 0 and a length li > 0.
We assume that ai < di for all i ∈ T . Moreover, we are given a set of tracks
M = FF ∪LF ∪FR in a depot where FF , LF and FR denote the set of FIFO,
LIFO and FREE tracks, respectively. In addition, every track m ∈ M is given
a length Lm > 0.

For example, Figure 1 depicts two different instances and the considered
parking time intervals of each train. There can be different patterns where
trains arrive and depart continuously or all at once.

A feasible parking assignment is defined as an assignment of trains in T to tracks
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in M such that

(a) each train is assigned to at most one track;

(b) on any track and at any time, the total length of all currently parking
trains does not exceed the track length;

(c) each train assigned to a FREE track has a designated arrival and departure
side;

(d) each train that leaves a track must not be blocked by an other train that
stands between the departing train and its departure side.

The size of a feasible parking assignment is denoted as the number of as-
signed trains.

Definition 1 (The Train Assignment Problem (TAP)). Given a set of
trains T and a set of tracks M, find a feasible parking assignment between T
and M that has maximum size.

A feasible solution to the TAP is represented by a partition T =
⋃
m∈M Tm

where Tm ⊆ T denotes the set of trains that are assigned to track m ∈M.

Example 1. Assume three trains T = {i1, i2, i3} with arrival- and departure
times a1 = 0, a2 = 1, a3 = 2, d1 = 4, d2 = 5, d3 = 3 and lengths li = 1 for
all i ∈ T . Furthermore, assume two tracks M = {T1, T2} where T1 is a LIFO
track (stack) and T2 is a FIFO track (queue) where both tracks have length
L1 = L2 = 2.

• Suppose the train assignment T1 = {i1, i2} and T2 = {i3}. In this case, i2
arrives after i1 but also leaves after i1 on a LIFO track. Thus, i2 blocks
the departure of i1 and therefore the train assignment is infeasible.

• Now suppose the train assignment T1 = {i1} and T2 = {i2, i3}. This
constitutes a feasible train assignment since properties (a)-(d) are satisfied.
It is also a maximum train assignment because all trains can be parked on
the given tracks.

• Finally, suppose an additional FREE track T3 of length L3 = 3 and the
train assignment T3 = {i1, i2, i3} with p1 = 0, p2 = 0, p3 = 0, q1 = 1,
q2 = 1, q3 = 0 where pi ∈ {0, 1} is the arrival side and qi ∈ {0, 1} the
departure side for all i ∈ T (0 = left, 1 = right). This yields a feasible
and maximum train assignment since all properties (a)-(d) are satisfied

In the following we show that the TAP is NP-hard. To the best of our
knowledge, this complexity result does not appear in the literature.

Definition 2 (k-Train Assignment Problem (k-TAP)). Given a set of
trains T , a set of tracks M, and k ∈ N, does there exist a feasible parking
assignment of size k?

The k-TAP corresponds to the decision version of the TAP. Since k ≤ n is
polynomial in the input, solving the k-TAP for all k = 1, . . . n solves the TAP.
We show that answering the k-TAP is NP-complete by using a reduction from
the partition problem, which is well known to be NP-complete [11].
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Definition 3 (Partition Problem (PP)). Let B = {b1, . . . , bn} be a collection
of positive integers. The partition problem is to decide whether or not there exists
a subset B′ ⊂ B such that ∑

bi∈B′

bi =
∑

bi∈B\B′

bi.

Proposition 1. The k-TAP is NP-complete.

Proof. Given a solution to k-TAP, we can verify in polynomial time if this solu-
tion yields a ’yes’ answer, since conditions (a)-(d) can be checked in polynomial
time and k ≤ n is polynomial. Therefore, k-TAP is in NP.

We show that the partition problem is polynomially reducible to k-TAP.
Consider an instance of PP with positive integers B = {b1, ..., bn}. If M =∑n
i=1 bi is odd, then the answer to PP is ‘no’. So we may assume that M is

even. We make the following reduction. For each bi ∈ B, define a train i with
length li = bi, arrival time ai = i and departure time di = n + i. Define the
train collection T = {i ∈ T : bi ∈ B} and let M = {T1, T2} be the set of two
FIFO tracks with lengths L1 = L2 = M

2 . Create an instance (T , M, k) of the
k-TAP with k = n. This construction is polynomial in n and k.

First suppose the answer to PP is ‘yes’ for B′ ⊂ B with
∑
bi∈B′ bi =∑

bi∈B\B′ bi = M
2 . The train collections T1 = {i ∈ T : bi ∈ B′} and

T2 = {i ∈ T : bi ∈ B \B′} yield a feasible parking assignment to tracks T1 and
T2 respectively. Hence the answer to the corresponding k-TAP is also ‘yes’ and
can be retrieved in time that is polynomial in n and k.

Now suppose that the answer to the k-TAP is ‘yes’ and define B′ = {bi ∈
B : i parks on T1}. At time n, all trains park simultaneously on tracks T1 and
T2. Since any feasible parking assignment satisfies the track length restriction,
we have

∑
bi∈B′ bi =

∑
bi∈B\B′ bi = M

2 , otherwise one track length is exceeded.
Hence, the answer to PP is also ‘yes’ and can be retrieved in time that is
polynomial in n and k.

Consequently, the answer to PP is ‘yes’ if and only if the answer to k-TAP
is ‘yes’ and all transformations can be performed in polynomial time. This
completes the proof.

3 Integer Programming Models for the TAP

We provide two integer programming models for solving the TAP. The two
models share the same set of decision variables and agree on certain constraints.
In fact, they differ in the handling of assignment conflicts for different track
types.

3.1 Model preliminaries

FIFO and LIFO tracks have a unique side to enter and leave the track. Thus,
for each tuple (i,m) ∈ T × (FF ∪LF ), define the decision variable xim ∈ {0, 1}
with xim = 1 if train i is assigned to track m. In contrast, FREE tracks can
be entered and exited from two sides. We label one side by ’0’ (left) and the
other side by ’1’ (right). For each 4-tuple (i,m, p, q) ∈ T ×FR×{0, 1}×{0, 1},
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define the decision variable xi,m,p,q ∈ {0, 1} with xi,m,p,q = 1 if train i enters
track m from side p and leaves from side q. This explicit modeling of the FREE
tracks was proposed but not used in Kroon et al. [13], since they consider a
larger problem.

In the TAP, the number of assigned trains is maximized. Hence, the objective
function can be stated as

max
∑
i,m

xi,m +
∑

i,m,p,q

xi,m,p,q. (1)

The basic model considers the following set of constraints∑
m

xi,m +
∑
m,p,q

xi,m,p,q ≤ 1 ∀i ∈ T (2)

∑
j∈T :

aj≤ai<dj

ljxj,m ≤ Lm ∀i ∈ T ,m ∈ FF ∪ LF (3)

∑
j∈T :

aj≤ai<dj

∑
p,q∈{0,1}

ljxj,m,p,q ≤ Lm ∀i ∈ T ,m ∈ FR. (4)

Inequalities (2) say that each train can be assigned to at most one track. Fur-
thermore, inequalities (3) and (4) indicate that for each arriving train on some
track, the length of all currently parking trains must not exceed the track length.

3.2 The departure model

The idea of the departure model is to focus on the departure time of one train
on a given track and to identify possible arrival time relations to other currently
parking trains.

First suppose a train i ∈ T parks on a FIFO track m ∈ FF . Then any train
that arrived before i must not be on the track at time di. Hence any train j ∈ T
that is on track m at time di must have arrived after i. That is, aj < di < dj
and xi,m = xj,m = 1 implies ai ≤ aj , what is modeled by

aixi,m − ai(1− xj,m) ≤ ajxj,m ∀i, j ∈ T : aj < di < dj ,m ∈ FF. (5)

Now consider a LIFO track m ∈ LF and suppose train i ∈ T parks on m. Then
there cannot be any train on track m at time di that arrived after i. Hence
any train j ∈ T on track m at time di must have arrived before i. That is,
aj < di < dj and xi,m = xj,m = 1 implies aj ≤ ai, what is modeled by

ajxj,m − aj(1− xi,m) ≤ aixi,m ∀i, j ∈ T : aj < di < dj ,m ∈ LF. (6)

Finally, consider a free track m ∈ FR and suppose train i ∈ T parks on m. We
consider two different cases based on the arrival and departure times of i. In
the first case, assume that train i is assigned to arrive and depart from side p
of track m. In this case, i uses m as a LIFO track. Thus, similar to the LIFO
case, there must not exist a train j ∈ T on track m at time di that arrived after
i from side p. That is, if aj < di < dj holds and trains i and j park on track m
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where j arrived from side p then aj ≤ ai must hold, what is modeled by

aj
∑
q

xj,m,p,q − aj(1− xi,m,p,p) ≤ aixi,m,p,p (7)

∀i, j ∈ T : aj < di < dj ,m ∈ FR, p ∈ {0, 1}.

In the second case, suppose train i arrives from side p and departs from side
q 6= p of track m. In this situation, i uses m as a FIFO track. Hence, any train
j ∈ T that is parked on m at time di must have entered from side p not earlier
than ai. Therefore, if aj < di < dj holds and trains i and j park on track m
where j arrives from side p then ai ≤ aj must hold, what is modeled by

aixi,m,p,q − ai(1−
∑
p′,q′

xj,m,p′,q′) ≤ aj
∑
q′

xj,m,p,q′ (8)

∀i, j ∈ T : aj < di < dj ,m ∈ FR, p 6= q ∈ {0, 1}.

With these constraints, the departure model becomes

max
∑
i,m

xi,m +
∑

i,m,p,q

xi,m,p,q (1)

subject to

Each train assigned to at most one track (2)

Length constraints (3)-(4)

Departure constraints (5)-(8)

Decision variables are binary

3.3 The conflict model

In the conflict model, we focus on forbidding infeasible assignments of two trains.
Let i, j ∈ T be two trains with ai < aj . In this case, the first set of

inequalities for the conflict model is given by

xi,m + xj,m ≤ 1 ∀i, j ∈ T : ai < aj < di < dj ,m ∈ FF (9)

xi,m + xj,m ≤ 1 ∀i, j ∈ T : ai < aj < dj < di,m ∈ LF (10)∑
p,q

xi,m,p,q + xj,m,0,1 + xj,m,1,0 ≤ 1 ∀i, j ∈ T : ai < aj < dj < di,m ∈ FR (11)

∑
p

xi,m,p,0 +
∑
q

xj,m,0,q ≤ 1 ∀i, j ∈ T : ai < aj < di < dj ,m ∈ FR (12)

∑
p

xi,m,p,1 +
∑
q

xj,m,1,q ≤ 1 ∀i, j ∈ T : ai < aj < di < dj ,m ∈ FR (13)

which can be described as follows. An assignment of i and j to a FIFO track is
infeasible if di < dj , because j blocks the departure of i. Similarly, an assign-
ment to a LIFO track is infeasible if dj < di, because i blocks the departure of j.
Those conflicts are modeled by constraints (9) and (10). For the FREE tracks,
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we distinguish two cases. If dj < di holds then the departure of j is blocked
by i, if j passes the track either from side 0 to 1 or from side 1 to 0. This is
expressed by constraints (11). Otherwise, if di < dj holds then i is blocked by
j, if i departs from the side where j arrives. This is given by the symmetric
inequalities (12) and (13). Since we allow simultaneous departures, no conflict
is imposed for di = dj .

Now, let i, j ∈ T be two trains with ai = aj and di < dj . For LIFO and
FIFO tracks, we suppose that ai or aj can be shifted by a small value such that
exactly no conflict occurs. For the FREE tracks, consider the set of inequalities

xi,m,0,1 +
∑
q

xj,m,1,q ≤ 1 ∀i, j ∈ T : ai = aj < di < dj ,m ∈ FR (14)

xi,m,1,0 +
∑
q

xj,m,0,q ≤ 1 ∀i, j ∈ T : ai = aj < di < dj ,m ∈ FR (15)

that express the following. If di < dj holds, then i is blocked by j, if i and j
arrive from opposite sides and i passes the track either from side 0 to 1 or from
side 1 to 0. This is given by constraints (14) and (15).

Finally, consider the case with ai = aj and di = dj for two trains i, j ∈ T
which implies the inequalities

xi,m,0,1 + xj,m,1,0 ≤ 1 ∀i, j ∈ T : ai = aj < di = dj ,m ∈ FR (16)

xi,m,1,0 + xj,m,0,1 ≤ 1 ∀i, j ∈ T : ai = aj < di = dj ,m ∈ FR (17)

that forbid i and j to arrive at opposite sides, and for each to pass the track
either from side 0 to 1 or from side 1 to 0.

When added to the assignment constraints (2), the length constraints (3)-(4),
the binary constraints, and the conflict constraints (9)-(17) precisely describe
the set of feasible parking assignments. The conflict model is defined as

max
∑
i,m

xi,m +
∑

i,m,p,q

xi,m,p,q (1)

subject to

Each train assigned to at most one track (2)

Length constraints (3)-(4)

Conflict constraints (9)-(17)

Decision variables are binary

3.4 Comparing the departure and conflict models

The departure model and the conflict model share the same set of variables. In
total, there are N = |T | · (|LF | + |FF | + 4|FR|) many variables. The number

8



of constraints in both models is dominated by their individual constraints of
Sections 3.2 and 3.3. There every pair of trains implies at most one constraint
on every track, so the number of constraints is O(|T |2|M|) in both models.

Although both model sizes are of the same magnitude, it is of general interest
to examine the theoretical quality of the two models, for example in terms of
the strength of their LP-relaxations. Hence, define

PD = {x ∈ [0, 1]N | x satisfies (2), (3), (4), (5)− (8)} (18)

PC = {x ∈ [0, 1]N | x satisfies (2), (3), (4), (9)− (17)} (19)

as the induced polytopes of the LP-relaxations of the departure model (PD) and
the conflict model (PC).

Theorem 1. For every instance of the TAP, we have PC ⊂ PD. Thus the
conflict model has the stronger LP-relaxation.

Proof. Consider a TAP instance with a set of trains T and tracksM. We show
that the inequalities (5)-(8) defining PD are dominated by inequalities defining
PC . We consider each inequality separately.

1) Rewrite inequalities (5) as aixi,m + (ai − aj)xj,m ≤ ai. If aj < ai the
inequality is dominated by the conflict inequality aixi,m+aixj,m ≤ ai (9),
otherwise it is trivially satisfied.

2) Rewrite inequalities (6) as ajxj,m + (aj − ai)xj,m ≤ aj . If aj < ai
the inequality is dominated by the conflict inequality ajxj,m + ajxi,m ≤
aj (12),(13), otherwise it is trivially satisfied.

3) Rewrite inequalities (7) as aj
∑
q′ xj,m,p,q′ + (aj −ai)xi,m,p,p ≤ aj . If aj >

ai this inequality is dominated by the conflict inequality aj
∑
q′ xj,m,p,q′ +

aj
∑
p′ xi,m,p′,p ≤ aj (10), otherwise it is trivially satisfied.

4) Rewrite inequalities (8) as aixi,m,p,q+(ai−aj)
∑
p′,q′ xi,m,p′,q′ ≤ ai. If aj <

ai holds the inequality is dominated by the conflict inequality aixi,m,p,q +
aixi,m,q,p + ai

∑
p′,q′ xi,m,p′,q′ ≤ ai (9), otherwise it is trivially satisfied.

Proposition 2. There are instances of the TAP where the conflict model is
strictly tighter than the departure model. That is, there are instances satisfying
PC ( PD.

Proof. Let M = {T1} be the track set where T1 is a FIFO track with length
L1 = 2. Let T = {i1, i2} be the train set, where a1 = 1, a2 = 2, d2 = 3, d1 = 4
and l1 = l2 = 1. Since we have two trains and only one track, the only two

decision variables are x11 and x21 and so PD, PC ⊆ R2. We use the notation that
x11 represents the first coordinate and x21 represents the second. With this, we
have PC = conv{(0, 0), (1, 0), (0, 1)} and PD = conv{(0, 0), (0, 1), (1, 12 ), (1, 0)},
see Figure 2.
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Figure 2: The polytope PC can be strictly contained in the polytope PD.

Proposition 2 shows that the linear relaxation of the conflict model can be
strictly weaker than the linear relaxation of the departure model.

4 Stochastic and Robust Optimization Against
Delays

Solving the TAP using the departure or conflict model results in a feasible
parking assignment. In practice, however, trains are subject to delays and the
computed TAP solution may become infeasible. Therefore, it is necessary to
compute schedules that are robust against individual delays. In this section, we
propose a stochastic and a robust extension of our models.

4.1 Modeling delays

Suppose two trains i, j ∈ T with planned arrival and departure times ai ≤
aj < di < dj are assigned to a FIFO track. This assignment is valid. Now
suppose that train i is delayed and arrives after time aj . Now, this represents a
conflict on a FIFO track and the previous assignment becomes invalid, see (9).
Symmetrically, delays may turn a feasible LIFO assignment to a LIFO conflict,
see (10). Therefore, we penalize for every pair of trains i, j ∈ T with ai ≤ aj
the probability that i arrives later than j by an additional cost term in the
objective function. For this, we suppose that train delays follow an exponential
distribution which is a natural assumption, see [4].

The density function of the exponential distribution with parameter λ > 0
is defined as

fλ(t) =

{
λe−λt t ≥ 0

0 t < 0
(20)

and its cumulative distribution function is defined as

P (D ≤ t) = Fλ(t) =

∫ t

−∞
fλ(θ) dθ =

{
1− e−λt t ≥ 0

0 t < 0
(21)

where D ∼ Exp(λ) is an exponentially distributed random variable with rate
parameter λ > 0. In particular, Fλ(t) denotes the probability that the delay
is not larger than t time units. For each train i ∈ T , define the stochastically
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independent random variable Di ∼ Exp(λi) that models the arrival time delay
of train i with decay rate λi > 0. For large values of λi it is more likely that
train i arrives on time. From the common expression for the difference of two
exponentially distributed random variables, we derive the coefficients

πij = P (ai +Di > aj +Dj) = 1− P (Di −Dj ≤ aj − ai)

=
λj

λi + λj
· e−λi(aj−ai)

for all train pairs i, j ∈ T with ai ≤ aj . The values πij ∈ (0, 1) express the
probability that train i arrives later than train j. The coefficients πij are added
as additional cost coefficients to the objective function to penalize an assignment
of trains i, j ∈ T with ai ≤ aj to the same track.

4.2 Model extensions

Let Ta = {(i, j) ∈ T ×T | ai < aj ∨ (ai = aj ∧ i < j)} be the set of consecutively
arriving train pairs.

4.2.1 Stochastic

For any two trains (i, j) ∈ Ta, define the decision variable yi,j ∈ {0, 1} with
yi,j = 1, if trains i and j are assigned on the same track. This relation is given
by the inequalities

xi,m + xj,m ≤ 1 + yi,j ∀(i, j) ∈ Ta,m ∈ FF ∪ LF (22)∑
p,q

(xi,m,p,q + xj,m,p,q) ≤ 1 + yi,j ∀(i, j) ∈ Ta,m ∈ FR (23)

that are added additionally to either the departure model or the conflict model.
Let γ ∈ [0, 1] be a weight parameter and define the stochastic objective function
as

max γ

∑
i,m

xi,m +
∑

i,m,p,q

xi,m,p,q

− (1− γ)
∑

(i,j)∈Ta

πij · yi,j (24)

which additionally minimizes the average number of assignment conflicts caused
by delays. This leads to a multi-objective optimization problem. Therefore, our
model is evaluated for different values of γ.

4.2.2 Robust

In the robust case, we consider a threshold probability π̃ ∈ (0, 1) up to which
the assignment of two trains to the same track is considered as secure. Hence,
if πij ≤ 1 − π̃ holds for two trains (i, j) ∈ Ta then i and j are allowed to be
assigned to the same track. Otherwise, if πij > 1−π̃ we forbid such assignments.
Therefore, we add the inequalities

xi,m + xj,m ≤ 1 ∀(i, j) ∈ Ta : πij > 1− π̃,m ∈ FF ∪ LF (25)∑
p,q

(xi,m,p,q + xj,m,p,q) ≤ 1 ∀(i, j) ∈ Ta : πij > 1− π̃,m ∈ FR. (26)
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Consequently, to make the train assignment more robust against delays we
have to choose π̃ as large as possible. In turn, this may reduce the number
of assignable trains. Therefore, the computation for different values of π̃ reveals
how much train units, or shunting movements respectively, it costs to enforce a
specific planning reliability.

5 Computational Results

As basis of our computational results, we used real-world train timetable data
of regional passenger traffic in Italy and Sweden. Our test set consists of 12
instances where each represents a standard week for one depot with individual
numbers of trains, track types and properties, see Table 1. The column fre-
quency denotes the general frequency of the arriving trains which ranges from
single, uniform to rush. The column duration represents the general parking
duration of the trains where overnight means that most trains arrive at one day,
park over night and leave the next day. Finally, the column weekend indicates,
if most trains that arrive on Fridays or Saturdays will park during the weekend
(yes/no/both equally). For each train we are given the arrival and departure
times at the depot and its train length. Moreover, for each depot we are given
the number of different track types and their respective lengths. We distin-
guish three test cases: deterministic, stochastic and robust. In the deterministic
case, the departure model and the conflict model are evaluated according to
their computational performance on the test set, no delays are considered. The
stochastic and the robust case include exponentially distributed train delays, as
introduced in Section 4. We used rate parameters λi = 1 for all trains i ∈ T
which gives a mean exponential delay of one hour. In the stochastic case, a
weighted objective between the number of assigned trains and the expected
number of delay conflicts is optimized. In the robust case, the number of as-
signed trains is maximized with respect to fixed upper bounds on the probability
that two trains induce a delay conflict.

The proposed mixed-integer programming models have been solved with
the commercial solver Gurobi 6.5. All our computations were performed on a
desktop computer with 32 GB of RAM and an Intel Xeon CPU E3-1245v3 with
four cores @3.40 GHz.
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Table 1: Information on the instances
Instance |T | |FR| |LF | |FF | frequency duration weekend

instance 1 203 1 1 1 uniform overnight yes
instance 2 61 0 0 1 single < 1 day no
instance 3 328 1 1 2 rush 1-2 days yes
instance 4 171 1 1 0 uniform overnight no
instance 5 152 2 1 0 uniform overnight both
instance 6 198 0 3 0 single 1-2 days both
instance 7 187 0 4 0 rush overnight yes
instance 8 101 2 2 2 rush overnight no
instance 9 84 0 5 0 rush overnight yes
instance 10 237 4 5 3 rush overnight yes
instance 11 90 2 3 0 uniform overnight yes
instance 12 176 14 0 0 rush overnight yes

5.1 Deterministic

In the deterministic case, we run the departure model and the conflict model
on the given test instances, compare Table 2. As stated, both models have the
same number of variables. Practically, the departure model has about twice
as many constraints as the conflict model. Both models were able to solve all
instances to optimality and most of the instances could be solved within a few
seconds. However, there is one hard instance with many trains that took 42
minutes to be solved in the conflict model and 73 minutes in the departure
model. But the main effort was spent on proving optimality, since after a few
seconds we obtained solutions within 5% of optimality. We conclude that the
practical performance of the two models reflects the proven theoretical strength,
that is the conflict model outperforms the departure model. Therefore, we use
the conflict model for the robust and stochastic computations.

From a practical point of view, every test case admits an optimal solution
where almost every train can be assigned in a conflict-free manner. In the
planning process, this helps to identify a set of generally hard assignable trains
that can either be handled individually or treated as good start solution for
further optimization. For example, a two-level approach where the remaining
trains are integrated by a heuristic or a more complex optimization algorithm
to minimize shunting movements seems promising.
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Table 2: Comparing the running times of the conflict and departure model.
DM CM

Instance|T | opt # rows # cols runtime # rows # cols runtime

instance
1

203 203 4974 1218 0.05 2535 1218 0.03

instance
2

61 53 135 61 0.00 135 61 0.00

instance
3

328 326 21315 2296 4355.18 11496 2296 2499.06

instance
4

171 170 7688 855 0.15 2952 855 0.08

instance
5

152 152 13199 1368 0.37 5221 1368 0.17

instance
6

198 176 8526 594 0.78 4467 594 0.67

instance
7

187 181 8811 748 0.21 4375 748 0.14

instance
8

101 101 7377 1212 0.13 3985 1212 0.06

instance
9

84 82 2499 420 0.02 1389 420 0.02

instance
10

237 237 97596 5688 3.39 44516 5688 1.50

instance
11

90 89 7360 990 0.25 3234 990 0.15

instance
12

176 176 118392 9856 3.97 42988 9856 1.50

5.2 Stochastic

In the stochastic model, we compute solutions according to a weighted objec-
tive between the total number of assigned trains and the expected number of
stochastic assignment conflicts. For practical reasons, we only define variables
yi,j with πij ≥ 0.001, otherwise the model includes too many variables that
almost do not affect the objective function.

Each instance is computed for the weights γ ∈ {0.1, 0.2, 0.3, 0.4, 0.9}, where
small values of γ indicate a higher penalty for the expected number of conflicts.
Notably, the stochastic case is significantly harder to solve than the deterministic
case since constraints (22) and (23) represent weak linear inequalities that yield
poor LP-relaxations. The instances become even harder to solve for small values
of γ, that is when the stochastic objective gets a higher weight. However, the
obtained primal solutions seem reasonable even though the dual bounds are very
weak on some instances.

In particular, our solutions reflect the competing behaviour between the two
objectives very well, see Table 3. For each instance and each weighting pa-
rameter γ the table contains the percentage of assigned trains compared to the
maximum number of assignable trains and the expected number of assignment
conflicts that are caused by train delays. As anticipated, small values of γ yield

14



solutions with less expected conflicts but only few assigned trains. Conversely,
high values of γ yield more assigned trains but also more expected conflicts
caused by delays. In addition, we tested the quality of exactly these solutions
by generating random scenarios according to the assumed exponential distri-
bution of delays. Table 4 shows the average number of assignment conflicts
over all scenarios. One can see that the transition between the numbers of de-
lay conflicts is smooth for increasing γ values. However, Table 4 shows a in a
slightly higher number of conflicts than Table 3. This is because in each sce-
nario the delay of one specific train may induce several conflicts to other trains
while in the stochastic optimization approach the expected conflicts are treated
independently of each other. In general, one would like to compute all pareto-
optimal points of this multi-criteria objective, for example by the weighted sum
method [8], which we leave for future research. However, even the computation
of almost pareto-optimal solutions is useful because it provides a broad portfo-
lio of different solutions according to concurrent objectives. In the end, we can
simply choose the best compromise solution in the portfolio that respects both
objectives in the best possible way.

Table 3: Stochastic results for different weighting parameters γ. The table lists
the percentage Σx% of assigned trains compared to the maximum number of
assignable trains and the expected number of assignment conflicts Σπ.

γ

0.1 0.2 0.3 0.4 0.9

Instance Σx% Σπ Σx% Σπ Σx% Σπ Σx% Σπ Σx% Σπ

instance 1 65.0 2.8 79.8 7.9 91.1 15.7 99.0 24.3 100.0 24.9
instance 2 66.0 0.7 77.4 2.2 92.5 4.6 100.0 6.5 100.0 6.3
instance 3 47.2 2.8 56.4 7.9 70.9 23.4 84.0 46.2 99.7 90.1
instance 4 30.6 1.2 33.5 2.3 45.9 9.1 55.3 18.2 100.0 107.2
instance 5 42.1 0.6 55.9 4.5 63.8 8.3 71.7 15.3 100.0 62.1
instance 6 34.7 1.3 39.2 2.8 43.8 5.0 61.9 22.5 100.0 116.2
instance 7 53.6 0.7 69.6 5.8 71.8 6.9 82.9 17.8 100.0 58.4
instance 8 93.1 0.9 99.0 1.8 100.0 2.2 100.0 2.2 100.0 2.1
instance 9 87.8 0.6 96.3 1.8 97.6 2.0 100.0 2.9 100.0 2.8
instance 10 84.0 1.8 92.8 5.1 97.9 8.7 100.0 10.8 100.0 9.6
instance 11 87.6 0.6 96.6 1.9 98.9 2.6 100.0 3.1 100.0 3.0
instance 12 100.0 0.6 100.0 0.6 100.0 0.5 100.0 0.5 100.0 0.4
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Table 4: The average number of assignment conflicts over 10000 scenarios for
the obtained stochastic solutions with different weighting parameter γ.

γ

instance 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

instance
1

1.19 3.06 5.72 9.40 11.08 10.96 10.48 10.93 11.06

instance
2

0.13 0.33 1.04 1.65 1.65 1.65 1.65 1.65 1.65

instance
3

1.69 5.01 14.60 29.34 45.72 50.97 55.80 54.46 53.28

instance
4

0.40 0.43 3.85 7.10 13.45 22.04 24.71 25.47 25.41

instance
5

0.26 1.88 3.17 6.54 13.29 18.04 19.49 17.63 20.28

instance
6

0.70 1.27 2.34 7.61 11.07 16.76 25.51 32.45 39.43

instance
7

0.68 5.32 6.42 10.75 16.54 17.68 26.63 40.64 40.65

instance
8

0.75 1.67 2.00 2.05 2.02 2.01 2.05 1.99 1.98

instance
9

0.29 0.78 1.06 1.63 1.63 1.63 1.63 1.63 1.63

instance
10

1.24 3.39 5.39 6.10 6.50 6.29 7.43 7.02 7.03

instance
11

0.39 1.28 1.42 2.08 2.08 2.13 2.14 2.14 2.14

instance
12

0.23 0.14 0.12 0.20 0.17 0.18 0.27 0.29 0.27

5.3 Robust

The robust model is computed for different values π̃ ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99}
in order to examine how the degree of robustness affects the number of efficiently
assignable trains. High values of π̃ indicate a higher robustness against delays.
For instance, π̃ = 0.99 requires that for every pair of trains the probability
that their planned arrival order changes is not greater than 1%. In this case,
however, the total number of assignable trains decreases.

For each of the test instances we obtained optimal solutions that did not
take a considerably higher amount of computation time than the deterministic
case. A first positive aspect of this method is that we get an idea how much
capacity is needed by a depot to ensure a certain amount of robustness, see
Table 5. In every instance, an optimal assignment is achieved for π̃ = 0.5.
Surprisingly, even small changes to π̃ = 0.6 can lead to drastic decreases in
the number of assignable trains, see instance 4 for example. This is caused by
a comparably huge number of simultaneously arriving trains. In such cases,
the assignment plan is very sensitive to delays and therefore robustness is hard
to achieve in general. Furthermore, we tested the practical behaviour of the
computed train assignments by randomly generated scenarios where the number
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of occurring conflicts is counted, see Table 6. One can observe that a robust
train assignment significantly reduces the expected number of delay conflicts.
However, this is achieved only with a smaller number of assigned trains. Hence,
the robust solutions can be seen as an indicator for the cost of planning certainty.
Moreover, it can be used as robust start solution in a two-level approach, as
suggested in the deterministic case.

Table 5: Percentage of the number of assigned trains compared to the maxi-
mum possible number (opt) of assignable trains for the optimal solution with
robustness value π̃.

π̃

instance opt 0.99 0.95 0.9 0.8 0.7 0.6 0.5

instance 1 203 46.8 64.0 76.8 91.6 95.6 98.0 100.0
instance 2 53 39.6 64.2 66.0 96.2 96.2 100.0 100.0
instance 3 326 34.4 46.6 58.3 75.2 89.3 97.2 100.0
instance 4 170 17.1 25.3 30.6 33.5 45.9 45.9 100.0
instance 5 152 32.2 42.1 44.1 56.6 63.8 66.4 100.0
instance 6 176 25.0 26.1 35.8 43.2 47.7 51.1 100.0
instance 7 181 45.3 50.8 58.0 72.9 72.9 75.1 100.0
instance 8 101 77.2 91.1 98.0 100.0 100.0 100.0 100.0
instance 9 82 76.8 86.6 92.7 98.8 98.8 100.0 100.0
instance 10 237 70.9 80.6 89.0 98.3 99.6 100.0 100.0
instance 11 89 77.5 85.4 91.0 97.8 98.9 100.0 100.0
instance 12 176 92.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 6: The average number of assignment conflicts over 10000 scenarios for
the optimal solution with robustness parameter π̃.

π̃

instance opt 0.99 0.95 0.9 0.8 0.7 0.6 0.5

instance 1 203 0.17 1.43 2.33 7.58 9.72 11.45 20.17
instance 2 53 0.02 0.26 0.19 2.18 2.18 1.67 1.67
instance 3 326 0.23 2.01 5.58 17.87 37.77 58.01 85.16
instance 4 170 0.06 0.35 0.55 0.53 3.09 3.09 41.21
instance 5 152 0.25 0.44 0.55 2.08 3.17 4.53 33.37
instance 6 176 0.05 0.16 0.86 2.66 4.48 6.22 54.93
instance 7 181 0.12 0.52 2.28 8.72 9.19 12.81 47.40
instance 8 101 0.16 0.71 2.21 3.99 6.07 7.05 8.85
instance 9 82 0.06 0.41 0.81 1.82 2.25 3.36 3.54
instance 10 237 0.30 1.21 3.13 8.70 12.88 15.25 21.58
instance 11 89 0.06 0.43 0.85 2.04 2.59 4.75 5.71
instance 12 176 0.10 0.28 0.70 1.00 1.34 2.78 3.22
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6 Conclusion

In this article we introduced the Train Assignment Problem (TAP) and pro-
posed two integer programming models for the TAP to compute conflict-free
assignments of trains to tracks in a depot. Our models include the three most
common track types FIFO, LIFO and FREE within an integrated approach.
Furthermore, our models have been extended to a stochastic and robust op-
timization approach against train delays. The obtained results show that the
proposed models are suited well to compute exact solutions to the TAP. Since
in particular the manual planning of FREE tracks can be very challenging,
our models can notably improve the efficiency of a depot planner. Although it
is already efficient in practice, it seems beneficial to study further polyhedral
properties of the conflict model.

If train delays are considered, our models help to estimate and to optimize
the stability of the train assignment. Our stochastic model computes a list of
compromise solutions between the two competing objectives of finding a maxi-
mal shunting-free schedule and to avoid delay conflicts. Hence, it supports the
planner to balance these two objectives. Moreover, our robust approach is well
suited to compute assignments that are generally stable against delay conflicts.
This gives an estimate for the cost of robustness of an instance.

In fact, our model can still be improved in some aspects. Since the number
of conflict-free trains is maximized, one can develop methods that assign the
remaining trains under individual preferences (e.g. minimize shunting). This
can be done, for example, by fast heuristics or by a more sophisticated two-level
approach that is built on top. Our model may also operate within an alter-
nating recovering approach, similar to [12]. Several directions seem plausible.
Apart from that, the estimation of train delays can be improved. Although the
exponential distribution is quite common in the literature, in certain cases it
does not reflect the reality very well since punctual arrivals and long delays seem
too unlikely. Therefore, more accurate probability distributions, preferably in
combination with historical data, would further improve the applicability of our
models.

The main motivation of our model is to function as a subsolver in a more
comprehensive framework to compute rolling stock rotation plans. In this con-
text, it works as a feasibility check to quickly decide if a given set of trains can
be parked in the depot. This allows to include or exclude train rotations that
occur during the computations. For this particular problem, our model already
serves its purpose.

Moreover, we see the possibility to enhance the proposed model for the
task of designing a depot. To the best of the authors knowledge there are
no scientific studies which tackles this particular task. Infrastructure decisions
like the construction or expansion of a depot or a station layout are basically
political and strategic decisions. Thus, it might be interesting to extend the
mathematical models in order to demonstrate that the capacity provided by a
depot is sufficient for given expected operations.
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