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RELIABLE APPROXIMATION OF LONG RELAXATION TIMESCALES IN

MOLECULAR DYNAMICS

WEI ZHANG 1 AND CHRISTOF SCHÜTTE 1,2

Abstract. Many interesting rare events in molecular systems like ligand association, protein folding or con-

formational changes happen on timescales that often are not accessible by direct numerical simulation. Therefore

rare event approximation approaches like interface sampling, Markov state model building or advanced reaction

coordinate based free energy estimation have attracted huge attention recently. In this article we analyze the

reliability of such approaches: How precise is an estimate of long relaxation timescales of molecular systems

resulting from various forms of rare event approximation methods? Our results give a theoretical answer to this

question by relating it with the transfer operator approach to molecular dynamics. By doing so they also allow

for understanding deep connections between the different approaches.

Key words. molecular dynamics, eigenvalue problem, effective dynamics, Galerkin method, variational

approach, Markov state model, reaction coordinate.
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1. Introduction. The problem of accurate estimation of long relaxation timescales associ-

ated with rare events in molecular dynamics like ligand association, protein folding or conforma-

tional changes has attracted a lot of attention recently. Often these timescales are not accessible

by direct numerical simulation. Therefore, different discrete coarse graining approaches for their

approximation like Markov state model (MSM) building [30, 25] or time-lagged independent

component analysis (TiCA) [26, 24] have been introduced and successfully applied to various

molecular systems [22, 2]. These approaches are based on finite-dimensional Galerkin discretiza-

tion [30] or variational approximation [21, 23] of the transfer operator of the molecular dynamics

process [33]. In several theoretical studies the approximation error of these numerical techniques

regarding the longest relaxation timescales has been analyzed resulting in error estimates in

terms of the dominant eigenvalues of the transfer operator [33, 26]. In this article we first show

how to get similar error estimates when replacing the transfer operator by the infinitesimal gen-

erator [32] associated with it. Furthermore, the analysis exhibits that the different approaches

are deeply connected, that is, they finally lead to the identical numerical problem.

In addition to the different discrete coarse graining approaches the literature contains var-

ious alternative reaction coordinate sampling approaches aiming at approximation of very long

relaxation processes: In these sampling approaches, one assumes that the effective dynami-

cal behavior of the systems on long timescales can be described by a relatively low dimen-

sional object given by some reaction coordinates. Various advanced methods such as Umbrella

Sampling [34, 14], Metadynamics [16, 15], Blue-Moon sampling [3], Adaptive Biasing Force

method [5], or Temperature-Accelerated Molecular Dynamics [18], as well as trajectory-based

techniques like Milestoning [7], Transition Interface Sampling [20], or Forward Flux Sampling

[1] may serve as some examples. These methods result in free energy barriers, transition rates

or first mean passage times for the rare events of interest; they are complemented by several

approaches to the effective dynamics on the reaction coordinate space [17, 8, 35] that allow for
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significantly faster simulation of these rare events [11, 13, 12] including details of the underlying

molecular mechanisms. Surprisingly, our analytic tools, originally developed for discrete coarse

graining approaches, can also be utilized for evaluating the approximation quality of reaction

coordinate sampling approaches to the effective dynamics: We derive an explicit error estimate

for the longest timescale resulting from the choice of specific reaction coordinates.

However, estimating the approximation quality is not the only way of utilizing the analytical

insights presented in this article. We also demonstrate how the new techniques for simulation of

the effective dynamics can be used for efficient MSM building or TiCA applications.

Mathematically, the article is based on the analysis of the dominant timescales of reversible

and ergodic diffusion processes in energy landscapes. The leading eigenvalues of the transfer

operator and the corresponding eigenfunctions characterize the dynamical behavior of the process

on long timescales [33]. In several articles the approximation error regarding these leading

eigenvalues under discretization of the transfer operator have been discussed, cf. [6, 21, 23,

26, 28, 29]. Following this work, we characterize the approximation quality for the (low-lying)

eigenvalues of the infinitesimal generator. This permits us to study the connection between

the effective dynamics considered in [35] and Galerkin discretization schemes for the transfer

operator. Secondly, following the work [21, 23], we study the variational approach for the

infinitesimal generator. In fact, we will see that this approach leads to the same generalized

matrix eigenvalue problem as the one resulting from Galerkin discretization. Thirdly, numerical

issues related to the estimation of the coefficient matrices by means of the effective dynamics

are discussed.

The paper is organized as follows. In Section 2, we introduce the various operators as-

sociated to the reversible diffusion processes and discuss the relation between eigenvalues and

relaxation timescales. Next, in Section 3, we study the Galerkin discretization of generators/-

transfer operators for solving the eigenvalue problem and show that previous results can be

extended to reaction coordinate subspaces. In Section 4, the variational approach to the approx-

imation of the eigenvalue problem is considered and its relations to the Galerkin approach are

worked out in detail. Then, in Section 5, we discuss numerical issues related to estimating the

discretization matrices by means of simulating the effective dynamics for given reaction coordi-

nates; the performance of this approach is studied numerically in Section 6. Finally, conclusions

and some further remarks are given in Section 7.

2. Diffusion process and the associated operators. We consider a diffusion process

given by the stochastic differential equation (SDE)

dxs = −∇V (xs)ds+
√

2β−1dws , s ≥ 0 ,

x0 = x ,
(2.1)

where xs ∈ Rn, parameter β > 0 is related to the inverse of system’s temperature, and ws is

an n-dimensional Brownian motion. V : Rn → R is a potential function which is assumed to

be smooth and bounded from below. The results presented in the subsequent can be extended

to more general reversible diffusion processes with a state-dependent noise intensity matrix, cf.

[35]. However, for the sake of simplicity of presentation we restrict our considerations to the

specific case (2.1) typically studied in molecular dynamics.
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The infinitesimal generator of the dynamics (2.1) is given by

L = −∇V · ∇+
1

β
∆ . (2.2)

It is known that, under mild conditions on V , the solution process (xs)s≥0 of (2.1) is ergodic [19],

and its unique invariant measure π is given by π(dx) = ρ(x)dx where

ρ(x) =
1

Z
e−βV (x) , with Z =

∫

Rn
e−βV (x)dx . (2.3)

We introduce the Hilbert space H = L2(Rn, π), which is endowed with the inner product

〈f, g〉π =

∫

Rn
f(x) g(x)ρ(x) dx , ∀f, g ∈ H , (2.4)

and the norm |f |π =
√
〈f, f〉π , ∀f ∈ H. The domain of the operator L will be denoted as

D(L) ⊂ H.

It is also known that the process (xs)s≥0 is a reversible process and that L is a self-adjoint

operator with respect to the inner product (2.4). Whenever the potential V grows to infinity fast

enough at infinity, its spectrum is discrete [33]. Let λi ∈ C and ϕi ∈ D(L) be the eigenvalues and

the corresponding (normalized) eigenfunctions of −L, that is, the solutions of the eigenproblem

−Lf = λf (2.5)

in H, or in weak form,

−〈Lf, g〉π = λ〈f, g〉π , ∀ g ∈ H . (2.6)

Due to the self-adjointness of L and the fact

〈−Lf, f〉π =
1

β

∫

Rn
|∇f(x)|2ρ(x)dx ≥ 0 , ∀f ∈ H , (2.7)

we can assume that λi ∈ R with

0 = λ0 < λ1 ≤ · · · ≤ λk ≤ · · · , (2.8)

with ϕ0 ≡ 1.

Given s ≥ 0, we define the operator Ts : H → H by

(Tsf)(x) = E
(
f(xs) | x0 = x

)
, f ∈ H , (2.9)

where E denotes the expectation taken with respect to the paths of (2.1) under the initial

condition that x0 = x. It is well known that u(s, x) = Tsf(x) is the solution of the Kolmogorov

backward equation

d

ds
u(s, ·) = Lu(s, ·), u(0, ·) = f, (2.10)

that is, the operators Ts, s ≥ 0 form a one-parameter semigroup whose infinitesimal generator is

L, and thus they are self-adjoint in H as well. Because of (2.10), the formal expression Ts = esL

3



is often used in the literature. Similarly to (2.8), we also know that the eigenvalues of Ts are

given by

1 = e−λ0s > e−λ1s ≥ · · · > 0 , (2.11)

with the same eigenfunctions ϕi, i = 0, 1, · · · . Because of (2.11), the relaxation timescales ti of

the dynamics (2.1) are given by [32]

ti = λ−1
i , i = 1, 2, . . . .

In the following we introduce another operator called transfer operator, which has been

extensively considered in the literature to investigate the metastability of molecular systems

and to build Markov state models (MSM) [30, 33, 2]. Fix a lag time τ > 0, let p(x, · ; τ) be

the transition density function of process (2.1) starting from x ∈ Rn, i.e. p(x, y ; τ) describes

the probability density of starting from state x at time 0 and arriving at y ∈ Rn after time τ .

For a bounded and continuous function u ∈ H, the transfer operator Tτ : H → H is defined

by [27, 30, 31]

(Tτu)(y) =
1

ρ(y)

∫

Rn
p(x, y; τ)u(x)ρ(x)dx , y ∈ Rn . (2.12)

From (2.12), it follows immediately that

〈Tτu, f〉π =

∫

Rn

∫

Rn
p(x, y; τ)f(y)dy u(x)ρ(x)dx

=

∫

Rn

[
E
(
f(xτ ) |x0 = x

)]
u(x)ρ(x)dx

=〈u, Tτf〉π = 〈Tτu, f〉π , ∀ f ∈ H .

Therefore, we can conclude that Tτ = Tτ , i.e. the transfer operator Tτ coincides with the operator

Tτ , a member within the semigroup (Ts)s≥0. Denote the eigenvalues of Tτ as µi, i ≥ 0, such that

1 = µ0 > µ1 ≥ · · · > 0 . (2.13)

Then from (2.11) we know that µi = e−λiτ and the corresponding eigenfunctions are the same as

the eigenfunctions ϕi of the infinitesimal generator L. This means that the dominant relaxation

time scales of the dynamics (2.1) can be obtained by computing the dominant eigenvalues of Tτ ,

cf. [32, 27]

3. Galerkin approximation of the eigenvalues of the generator. In this section, we

study the Galerkin method for computing the eigenvalues of the infinitesimal generator L. While

Galerkin discretization of the transfer operator has been studied to some extent [33], results on

the associated generator are rather sparse.

3.1. Some general results. For introducing the Galerkin method, let H0 be a Hilbert

subspace of H containing the constant function, and let P denote the orthogonal projection

operator from H to H0, which satisfies P2 = P and

〈Pf, g〉π = 〈f, g〉π , ∀ f ∈ H, g ∈ H0 . (3.1)
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Then the Galerkin method aims at approximating the solution of (2.6) in the subspace H0.

Specifically, we want to find f ∈ H0, such that

−〈Lf, g〉π = κ〈f, g〉π , ∀ g ∈ H0 , (3.2)

for some constant κ ≥ 0. Using the property (3.1), we know that problem (3.2) is equivalent to

the eigenvalue problem for operator −PL on the subspace H0, i.e.

−PLf = κf . (3.3)

Notice that −PL is a self-adjoint operator on H0. Similarly as in (2.8), let ζi ∈ H0 be the

orthonormal eigenfunctions of operator −PL corresponding to eigenvalues κi, where

0 = κ0 < κ1 ≤ κ2 ≤ · · · , (3.4)

and ζ0 ≡ 1. When H0 is an infinite dimensional subspace, we assume κi → +∞ as i→ +∞.

First we want to study the condition under which the eigenvalues of the projected gener-

ator PL are reliable approximations of the eigenvalues of the full generator L. The following

approximation result was obtained in [35]:

Theorem 3.1. For i ≥ 0, let ϕi and ζi be the normalized eigenfunctions of operators −L
and −PL corresponding to eigenvalues λi and κi, respectively. We have

λi ≤ κi ≤ λi +
1

β

∫

Rn
|∇(ϕi − ζi)(x)|2ρ(x)dx . (3.5)

We include its proof for completeness:

Proof. From (3.2), we have κi = −〈Lζi, ζi〉π. Define the subspace Ei+1 = span{ζ0, . . . , ζi}
for i ≥ 0. It follows from the orthogonality of functions ζi that Ei+1 is an (i + 1)-dimensional

subspace of H. And using (3.4) it is direct to verify that

κi = max
f∈Ei+1,|f |π=1

〈−Lf, f〉π . (3.6)

Applying the Min-Max theorem to the eigenvalues of operator −L, we conclude

κi = max
f∈Ei+1,|f |π=1

〈−Lf, f〉π ≥ min
E′i+1

max
f∈E′i+1,|f |π=1

〈−Lf, f〉π = λi , (3.7)

where E′i+1 goes over all (i + 1)-dimensional subspaces of H. For the upper bound, we can

compute that

〈−L(ϕi − ζi), (ϕi − ζi)〉π
=〈−Lϕi, ϕi〉π + 2〈Lϕi, ζi〉π + 〈−Lζi, ζi〉π
=λi − 2λi〈ϕi, ζi〉π + κi

=κi − λi + 2λi
(
1− 〈ϕi, ζi〉π

)
≥ κi − λi ,

where we have used the fact that 〈ϕi, ζi〉π ≤ |ϕi|π|ζi|π = 1. The conclusion follows from (2.7).

Previous studies on the Galerkin approximation of the dominant eigenvalues of the transfer

operator have shown that the approximation error of eigenvalues can be reliably bounded by

means of the projection errors of the corresponding eigenfunctions [6, 28, 29]. Next we will
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derive a similar result for the generator L. To this end, we introduce the orthogonal projection

P⊥ from H to the complement subspace H⊥0 of H0, that is, P⊥ = I−P. We have

Theorem 3.2. Let ϕ be a normalized eigenfunction of the operator −L corresponding to

the eigenvalue λ. Define constants

δ1 = |LP⊥ϕ|π , δ2 = |P⊥ϕ|π , (3.8)

and suppose that 0 < δ2 < 1. Then there is an eigenvalue κi of the operator −PL, such that

|κi − λ| ≤
δ1

(1− δ2
2)

1
2

. (3.9)

Proof. Since δ2 = |P⊥ϕ|π =
(
1−|Pϕ|2π

) 1
2 < 1, we have |Pϕ| > 0. Let Pϕ =

+∞∑
i=0

ωiζi, where

ωi = 〈ϕ, ζi〉π, and the summation consists of finite terms when H0 is a finite dimensional space.

For all g ∈ H0, we can compute

〈PLP⊥ϕ, g〉π = 〈PL(ϕ−Pϕ), g〉π

=〈PLϕ, g〉π − 〈PL
(+∞∑

i=0

ωiζi

)
, g〉π

=− 〈λPϕ, g〉π + 〈
+∞∑

i=0

ωiκiζi, g〉π = 〈
+∞∑

i=0

ωi(κi − λ)ζi, g〉π .

Therefore we have obtained PLP⊥ϕ =
+∞∑
i=0

ωi(κi − λ)ζi, and

|PLP⊥ϕ|2π =
+∞∑

i=0

ω2
i |κi − λ|2 ≥

(
min
i
|κi − λ|2

)+∞∑

i=0

ω2
i = min

i
|κi − λ|2|Pϕ|2π .

And it follows that

min
i
|κi − λ| ≤

|PLP⊥ϕ|π
|Pϕ|π

≤ |LP⊥ϕ|π
(
1− |P⊥ϕ|2π

) 1
2

=
δ1

(1− δ2
2)

1
2

. (3.10)

Remark 1. Notice that our error bound relies on both constants δ1, δ2, while the error

bound in [29] for the transfer operator only depends on one constant, the projection error δ2.

This difference is due to the fact that the generator L is an unbounded operator while the transfer

operator is bounded.

3.2. Finite dimensional subspaces. In applications, it is often assumed that H0 is

spanned by finitely many basis functions. Especially, this is the situation when constructing

MSMs based on indicator functions of partition sets [29] or based on core sets [32].

LetH0 be the finite dimensional spaceH0 = span{ψ1, ψ2, · · · , ψN} and consider the problem

(3.2). Applying Theorem 3.1 and Theorem 3.2, we have

Corollary 3.3. For Galerkin approximation of the eigenproblem using finite-dimensional

ansatz spaces the following three statements are valid:
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1. Write f =
N∑
i=1

ωiψi ∈ H0 and let X = (ω1, ω2, · · · , ωN )T ∈ RN . Then problem (3.2) is

equivalent to the generalized matrix eigenvalue equation

CX = λSX , (3.11)

where C, S are N ×N matrices whose entries are given by

Cll′ = 〈−Lψl, ψl′〉π, Sll′ = 〈ψl, ψl′〉π , 1 ≤ l, l′ ≤ N , (3.12)

2. Let 0 = κ0 ≤ κ1 ≤ · · · ≤ κk be the first (k + 1) smallest eigenvalues of problem (3.11)

and

Xi = (Xi1, Xi2, · · · , XiN )T , 1 ≤ i ≤ k ,

be the eigenvector corresponding to κi such that XT
i SXi = 1. Define ζi =

N∑
l=1

Xilψl,

then we have

λi ≤ κi ≤ λi +
1

β

∫

Rn
|∇(ϕi − ζi)(x)|2ρ(x) dx , 1 ≤ i ≤ k , (3.13)

where λi, ϕi are the eigenvalue and the eigenfunction of the operator −L, respectively.

3. Let P be the orthogonal projection operator from H to H0, and ϕ be an eigenfunction

of the operator −L corresponding to eigenvalue λ. Define constants

δ1 = |LP⊥ϕ|π , δ2 = |P⊥ϕ|π ,

and suppose that δ2 < 1. Then there is an eigenvalue κi of problem (3.11) such that

|κi − λ| ≤
δ1

(1− δ2
2)

1
2

. (3.14)

3.3. Infinite dimensional subspace: effective dynamics. In this subsection, we dis-

cuss Galerkin approximations based on infinitely-dimensional ansatz spaces; these cases appear

when studying the effective dynamics given by a so-called reaction coordinate, cf. [35]. In order

to explain the relation between Galerkin approximation and effective dynamics let us first re-

call some definitions and results regarding the effective dynamics. For more details, readers are

referred to [17, 9] for related work.

Let ξ : Rn → Rm be a reaction coordinate function, m ≥ 1. For any function f ∈ H and

x ∈ Rn, we define

Pf(x) =
1

Q(z)

∫

Rn
ρ(x′)f(x′)δ

(
ξ(x′)− z

)
dx′ , (3.15)

where z = ξ(x) ∈ Rm, δ(·) denotes the delta function, and Q(z) =
∫
Rn ρ(x′)δ

(
ξ(x′)− z

)
dx′ is a

normalization factor satisfying
∫
Rm Q(z)dz = 1. Define the probability measure ν on Rm given

by ν(dz) = Q(z) dz for z ∈ Rm and consider the Hilbert space H̃ = L2(Rm, ν). H̃ induces a

(infinite dimensional) subspace of H, namely,

H0 =
{
f
∣∣∣ f ∈ H, f = f̃ ◦ ξ, for some f̃ ∈ H̃

}
⊂ H , (3.16)
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and (3.15) clearly implies that Pf ∈ H0.

Let f̃ ∈ H̃ satisfy Pf = f̃ ◦ ξ. Then, using (3.15), we can verify that P2 = P and

〈f, h〉π = 〈Pf, h〉π = 〈f̃ , h̃〉ν , ∀ h = h̃ ◦ ξ ∈ H0 . (3.17)

Therefore the mapping P : H → H0 actually is the orthogonal projection operator from H to

the subspace H0. For f ∈ H, z ∈ Rm, in the following we will also write Pf(z) instead of f̃(z),

where f̃ ∈ H̃ such that Pf = f̃ ◦ ξ. The effective dynamics for the reaction coordinate ξ is

defined on Rm and satisfies the SDE

dzs = b̃(zs) ds+
√

2β−1σ̃(zs) dws , (3.18)

where zs ∈ Rm, ws is a Brownian motion on Rm, and the coefficients b̃ : Rm → Rm, σ̃ : Rm →
Rm×m are given by

b̃l(z) =P(Lξl)(z) = P
(
−∇V · ∇ξl +

1

β
∆ξl

)
(z) ,

ãll′(z) =(σ̃σ̃T )ll′(z) = P
( n∑

i=1

∂ξl
∂xi

∂ξl′

∂xi

)
(z) ,

(3.19)

for ∀z ∈ Rm, 1 ≤ l, l′ ≤ m. The infinitesimal generator of the process governed by (3.18) is given

by

L̃ =
m∑

l=1

b̃l
∂

∂zl
+

1

β

m∑

l,l′=1

ãll′
∂2

∂zl∂zl′
, (3.20)

which is a self-adjoint operator on space H̃ with discrete spectrum under appropriate conditions

on ξ. We consider the eigenvalue problem

−L̃f̃ = λ̃f̃ , f̃ ∈ H̃ , (3.21)

and let ϕ̃i ∈ H̃ be the orthonormal eigenfunctions of the operator −L̃ corresponding to eigen-

values λ̃i, where

0 = λ̃0 < λ̃1 ≤ λ̃2 ≤ · · · . (3.22)

Applying Theorem 3.1 and Theorem 3.2, we have the following result.

Corollary 3.4. For the eigenproblem associated with the effective dynamics the following

three statements are valid:

1. For f = f̃ ◦ ξ ∈ H0 where f̃ ∈ H̃, we have

PLf =
(
L̃f̃
)
◦ ξ . (3.23)

2. Let ϕi and ϕ̃i be the normalized eigenfunctions of operator −L and −L̃ corresponding

to eigenvalues λi and λ̃i, respectively. We have

λi ≤ λ̃i ≤ λi +
1

β

∫

Rn
|∇(ϕi − ϕ̃i ◦ ξ)(x)|2ρ(x) dx . (3.24)
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3. Let ϕ be the normalized eigenfunction of operator −L corresponding to eigenvalue λ.

Define constants

δ1 = |LP⊥ϕ|π , δ2 = |P⊥ϕ|π ,

and suppose δ2 < 1. Then there is an eigenvalue λ̃i of problem (3.21), such that

|λ̃i − λ| ≤
δ1

(1− δ2
2)

1
2

. (3.25)

Proof. The proof of the first assertion can be found in [35]. Using (3.23) and (3.17), we can

derive

−〈PL(ϕ̃i ◦ ξ), f〉π = −〈
(
L̃ϕ̃i

)
◦ ξ, f〉π = −〈L̃ϕ̃i, f̃ 〉ν = λ̃i〈ϕ̃i ◦ ξ, f〉π , ∀ f = f̃ ◦ ξ ∈ H0 ,

(3.26)

i.e. λ̃i and ϕ̃i ◦ ξ are the eigenvalues and eigenfunctions of the projected operator −PL on the

subspace H0, respectively. Furthermore, 〈ϕ̃i ◦ ξ, ϕ̃i ◦ ξ〉π = 〈ϕ̃i, ϕ̃i〉ν = 1, i.e. ϕ̃i is normalized.

Therefore, the second assertion is implied by Theorem 3.1. The third assertion follows from

Theorem 3.2 in the same way.

Remark 2. As an interesting conclusion of the first assertion we see that, on the in-

finitesimal subspace H0 defined in (3.16), the projected operator −PL is essentially described by

another differential operator L̃, which is defined in the Hilbert space H̃ and coincides with the

infinitesimal generator of the effective dynamics on Rm.

4. Variational approach to generator eigenproblem. In this section, we study the

variational approach to approximate the eigenvalues and eigenfunctions of the operator −L. This

approach has been considered in [21, 24, 23] to study the related eigenproblem of the transfer

operator. Its main idea is to approximate the dominant eigenvalues of a self-adjoint transfer

operator via an appropriate form of the Rayleigh variational principle instead via Galerkin

discretization [21]. Herein, we present a similar approach to the low-lying generator eigenvalues.

4.1. Variational principle. The main object of the variational approach is the following

functional F : D(L)⊕(k+1) → R that acts on k + 1 functions from D(L).

Given arbitrary constants ωi > 0, 0 ≤ i ≤ k, the functional is defined by

F(f0, f1, · · · , fk) =
k∑

i=0

ωi〈−Lfi, fi〉π , fi ∈ D(L) , 0 ≤ i ≤ k . (4.1)

Clearly, for the (normalized) leading eigenfunctions ϕi of L, we have

F(ϕ0, ϕ1, · · · , ϕk) =
k∑

i=0

ωiλi,

where λi are the corresponding eigenvalues of −L. The main working horse of the variational

principle is the following lower and upper bound:

Theorem 4.1 (Variational principle). Let ωi, i = 0, 1, . . . , k be a decreasing sequence of

positive real numbers, i.e. ω0 > ω1 > · · · > ωk > 0. For any orthonormal family of functions

fi ∈ D(L), i = 0, 1, . . . , k, we have

F(ϕ0, ϕ1, · · · , ϕk) ≤ F(f0, f1, · · · , fk) ≤ F(ϕ0, ϕ1, · · · , ϕk) + F(f0 − ϕ0, f1 − ϕ1, · · · , fk − ϕk) ,

(4.2)
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or more explicitly,

k∑

i=0

ωiλi ≤
k∑

i=0

ωi〈−Lfi, fi〉π ≤
k∑

i=0

ωiλi +

k∑

i=0

ωi〈−L(fi − ϕi), (fi − ϕi)〉π . (4.3)

In order to prove this variational principle we need the following simple lemma:

Lemma 4.2. Suppose k > 0, and let (αi)i=0,1,...,k and (ωi)i=0,1,...,k be two ordered sequences

of real numbers such that

α0 ≤ α1 ≤ · · · ≤ αk, ω0 ≥ ω1 ≥ · · · ≥ ωk .

Then, for any permutation (ω′i) of the sequence (ωi), we have

k∑

i=0

αiω
′
i ≥

k∑

i=0

αiωi . (4.4)

Proof. The proof of Theorem 4.1 is given in two steps:

1. For the lower bound, we consider the optimization problem

min
fi
F(f0, f1, · · · , fk) = min

fi

k∑

i=0

ωi〈−Lfi, fi〉π ,

subject to 〈fi, fj〉π = δij , 0 ≤ i, j ≤ k .
(4.5)

Next, we introduce the Lagrange multipliers λij for 0 ≤ i ≤ j ≤ k, and consider the

auxiliary functional

k∑

i=0

ωi〈−Lfi, fi〉π −
k∑

i=0

k∑

j=i

λij
(
〈fi, fj〉π − δij

)
. (4.6)

Applying calculus of variation, we conclude that the minimizer of (4.5) satisfies

− 2ωiLfi −
k∑

j=i

λijfj −
i∑

j=0

λjifj = 0 , ∀ 0 ≤ i ≤ k ,

〈fi, fj〉π = δij , 0 ≤ i, j ≤ k .
(4.7)

Multiplying fj for some i < j ≤ k in the first equation of (4.7) and integrating, we obtain

λij = −2ωi〈Lfi, fj〉π. In the same way we could also obtain λij = −2ωj〈Lfj , fi〉π. Using

the fact that L is self-adjoint and ωi > ωj for i < j, we conclude that

λij = 〈Lfi, fj〉π = 0 , ∀ 0 ≤ i < j ≤ k , (4.8)

and (4.7) reduces to an eigenvalue problem

−Lfi =
λii
ωi
fi , 0 ≤ i ≤ k . (4.9)

Therefore the minimizer of (4.5) is given by the orthonormal eigenfunctions. Applying

Lemma 4.2, we can further conclude that the lower bound is obtained when fi = ϕi,

with value

k∑

i=0

ωi〈−Lϕi, ϕi〉π =

k∑

i=0

ωiλi . (4.10)
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2. For the upper bound, similarly to the proof of Theorem 3.1, direct computation gives

k∑

i=0

ωi〈−L(fi − ϕi), (fi − ϕi)〉π

=

k∑

i=0

ωi〈−Lfi, fi〉π −
k∑

i=0

ωiλi + 2

k∑

i=0

ωiλi
(
1− 〈fi, ϕi〉π

)

≥
k∑

i=0

ωi〈−Lfi, fi〉π −
k∑

i=0

ωiλi ,

where we have used the fact that −Lϕi = λiϕi and 〈fi, ϕi〉π ≤ |fi|π|ϕi|π = 1, since both

fi, ϕi are normalized functions.

4.2. Optimization problem. The variational principle of Theorem 4.1 allows to approx-

imate the low-lying eigenvalues of the generator. In order to turn it into an algorithm, we again

introduce N basis functions ψ1, · · · , ψN ∈ D(L). We want to approximate the first k+ 1 eigen-

values λi as well as the eigenfunctions ϕi, 0 ≤ i ≤ k by approximating the eigenfunctions by

linear combinations of the basis functions. That is, we consider functions

fi =
N∑

l=1

xilψl, (4.11)

where xil are real-valued coefficients to be determined, 0 ≤ i ≤ k, 1 ≤ l ≤ N . Inspired by

Theorem 4.1 we wish to determine the coefficients xil by solving the optimization problem

min
{xil}
F(f0, f1, · · · , fk) = min

{xil}

k∑

i=0

ωi〈−Lfi, fi〉π , fi =
N∑

l=1

xilψl ,

subject to 〈fi, fj〉π = δij , 0 ≤ i, j ≤ k .
(4.12)

Recall the matrices C, S defined in (3.12) and define the vectors Xi = (xi0, xi1, · · · , xiN )T ∈ RN ,

0 ≤ i ≤ k. With this, the optimization problem (4.12) can be reformulated as

min
{xil}

k∑

i=0

ωi

( ∑

1≤l,l′≤N
xilxil′Cll′

)
,

subject to
∑

1≤l,l′≤N
xilSll′xjl′ = δij , 0 ≤ i, j ≤ k .

(4.13)

or, equivalently, in matrix form,

min
X0,X1,··· ,Xk

k∑

i=0

ωiX
T
i CXi ,

subject to XT
i SXj = δij , 0 ≤ i, j ≤ k .

(4.14)

Using a similar argument as in the proof of Theorem 4.1, we can obtain

Theorem 4.3. The minimum of the optimization problem (4.12) is achieved by the func-

tions fi as of (4.11) with the coefficients from the first k + 1 eigenvectors Xi of the generalized
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matrix eigenvalue problem

CX = λSX . (4.15)

Suppose the eigenvectors Xi of (4.15) are chosen such that XT
i SXj = δij and the corresponding

eigenvalues are κi for 0 ≤ i ≤ k, where κ0 ≤ κ1 ≤ · · · ≤ κk. Then the minimum of (4.12) is

k∑

i=0

ωiX
T
i CXi =

k∑

i=0

ωiκi . (4.16)

Remark 3. Combining the above result with Subsection 3.2, we see that both the Galerkin

method and the variational approach lead to the same generalized matrix eigenvalue problem with

an identical estimate for the eigenvalue error.

5. Numerical algorithms. In this section, we consider how the matrices C, S defined in

(3.12), that is,

Cll′ = 〈−Lψl, ψl′〉π, Sll′ = 〈ψl, ψl′〉π , 1 ≤ l, l′ ≤ N (5.1)

can be approximated from trajectories of the diffusion process. For the transfer operator this

problem has been studied in [21, 24, 23] using trajectories of the original diffusion process given

by (2.1). In contrast we herein will consider trajectories of the effective dynamics (3.18) instead

of the original diffusion process.

5.1. Computing coefficient matrices using effective dynamics. Similar to the setup

in Subsection 3.3, we assume that a reaction coordinate function ξ : Rn → Rm, as well as N

basis functions ψl, 1 ≤ l ≤ N , are given. Furthermore, we suppose that the basis functions ψl

can be written as ψl = ψ̃l ◦ ξ for some functions ψ̃l ∈ H̃, i.e. ψl ∈ H0. In this case, it follows

from the first assertion of Corollary 3.4 and the relation (3.17) that

Sll′ =〈ψl, ψl′〉π = 〈ψ̃l, ψ̃l′〉ν ,
Cll′ =〈−Lψl, ψl′〉π = 〈−Lψl,Pψl′〉π = 〈−PLψl, ψl′〉π

=〈−(L̃ψ̃l) ◦ ξ, ψl′〉π = 〈−L̃ψ̃l, ψ̃l′〉ν .
(5.2)

These equalities are simple but interesting, because they show that the entries of coefficient

matrices C, S are related to the infinitesimal generator L̃ of the effective dynamics in (3.20).

Since it is known that ν is the unique invariant measure of the effective dynamics [35], we can

apply the ergodic theorem and get

Sll′ = lim
T→+∞

1

T

∫ T

0

ψ̃l(zs)ψ̃l′(zs)ds ≈
1

M −M0

M∑

i=M0+1

ψ̃l(zi∆t)ψ̃l′(zi∆t) , (5.3)

where zs denotes a realization of the effective dynamics (3.18), ∆t > 0 is the step size, M ∈ N
is a large integer, and only the parts of trajectories after time M0∆t are used for estimation.

For the matrix C, by using (5.2), the definition of the infinitesimal generator L̃, as well as
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the ergodic theorem, we can derive

Cll′ =〈−L̃ψ̃l, ψ̃l′〉ν

=−
∫

Rm
lim
s→0

E(ψ̃l(zs)|z0 = z)− ψ̃l(z)
s

ψ̃l′(z) dν(z)

=− lim
s→0

∫

Rm

E(ψ̃l(zs)|z0 = z)− ψ̃l(z)
s

ψ̃l′(z) dν(z)

=− lim
s→0

E
[ ψ̃l(zs)− ψ̃l(z0)

s
ψ̃l′(z0)

∣∣∣ z0 ∼ ν
]

=− lim
s→0

lim
T→+∞

1

T

∫ T

0

ψ̃l(zt+s)− ψ̃l(zt)
s

ψ̃l′(zt) dt

=− lim
s→0

lim
T→+∞

1

T

∫ T

0

ψ̃l′(zt+s)− ψ̃l′(zt)
s

ψ̃l(zt) dt .

(5.4)

In the above, E denotes the mathematical expectation with respect to the effective dynamics zs,

and the last equality follows from the symmetry of matrix C.

To compute Cll′ numerically, we further introduce a parameter τ � 1, and approximate

(5.4) by

Cll′ ≈−
1

2(M −M0)

[ M∑

i=M0+1

ψ̃l(zi∆t+τ )− ψ̃l(zi∆t)
τ

ψ̃l′(zi∆t)

+
M∑

i=M0+1

ψ̃l′(zi∆t+τ )− ψ̃l′(zi∆t)
τ

ψ̃l(zi∆t)
]

=− 1

2(M −M0)

M∑

i=M0+1

ψ̃l(zi∆t+τ )ψ̃l′(zi∆t) + ψ̃l(zi∆t)ψ̃l′(zi∆t+τ )− 2ψ̃l(zi∆t)ψ̃l′(zi∆t)

τ
.

(5.5)

Formulas (5.3) and (5.5) can be used to estimate the coefficient matrices C, S, provided that we

can obtain a long trajectory of the effective dynamics (3.18).

Remark 4. From the discussions in Section 2 we know that the eigenvalues of the transfer

operator Tτ and that of the operator −L satisfy the relation µi = e−λiτ , i ≥ 0. When the lag time

τ is small, the approximation µi ≈ 1−λiτ holds for the leading eigenvalues since λi is small. In

fact, estimating the matrix C using the last expression in (5.5), we will have C = S−C̄
τ , where

the matrix C̄ is given by

C̄ll′ =
1

2(M −M0)

M∑

i=M0+1

[
ψ̃l(zi∆t+τ )ψ̃l′(zi∆t) + ψ̃l(zi∆t)ψ̃l′(zi∆t+τ )

]
. (5.6)

It is easy to observe that the eigenvalue estimates resulting from problem (4.15) are related to

those of the problem C̄X = µSX by µ = 1−λτ . Note that (5.6) is very similar to the estimator

derived in [26] except for the fact that here we use trajectories of the effective dynamics instead

of the original dynamics. To summarize, when the lag time τ is small, the above discussion

implies that after solving the problem (4.15) we can approximate the leading eigenvalues of the

transfer operator by µi = 1− λiτ .
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5.2. Algorithms for simulating the effective dynamics. In order to utilize the above

results we have to be able to efficiently compute (long) realizations of the effective dynamics

(3.18). In this subsection, we discuss two numerical algorithms for realizing this.

First algorithm. The first one is based on the following formula for the coefficients b̃, ã given

in (3.19)

b̃l(z) = lim
s→0+

E
(ξl(xs)− zl

s

∣∣∣ x0 ∼ µz
)
, 1 ≤ l ≤ m,

ãll′(z) =
β

2
lim
s→0+

E
( (ξl(xs)− zl)(ξl′(xs)− zl′)

s

∣∣∣ x0 ∼ µz
)
, 1 ≤ l, l′ ≤ m.

(5.7)

where xs is a realization of the original diffusive dynamics (2.1) and µz is restriction of invariant

measure to the submanifold ξ−1(z) = {x ∈ Rn | ξ(x) = z}. We refer the readers to [35] for more

details.

In order to utilize this for simulation, fix two parameters 0 < ∆s � ∆t and proceed as

follows:

Algorithm 1.

1. At step k ≥ 0, starting from x0 ∼ µz, generate N trajectories x
(i)
∆s of length ∆s of the

(unconstrained) full dynamics xs by discretizing (2.1). Compute the coefficients b̃, ã by

b̃l =
1

N

N∑

i=1

ξl(x
(i)
∆s)− zk∆t,l

∆s
,

ãll′ =
β

2

[ 1

N

N∑

i=1

(ξl(x
(i)
∆s)− zk∆t,l)(ξl′(x

(i)
∆s)− zk∆t,l′)

∆s
− b̃lb̃l′∆s

]
,

(5.8)

where 1 ≤ l, l′ ≤ m.

2. Compute σ̃ from ã = σ̃σ̃T by matrix decomposition. Update z(k+1)∆t by

z(k+1)∆t,l = zk∆t,l + b̃l∆t+

√
2∆t

β

m∑

i=1

σ̃liη
(k)
i , 1 ≤ l ≤ m, (5.9)

where η
(k)
i are independent standard Gaussian variables, 1 ≤ i ≤ m.

In the above, zk∆t,l denotes the lth components of zk∆t ∈ Rm. The initial states x0 are

sampled from the probability measure µz; this can be achieved by using the numerical schemes

proposed in [3, 4], which simulate the original dynamics (2.1) and then project the state onto

the submanifold ξ−1(z).

Second algorithm. The second algorithm is inspired by the TAMD method as of [18]. In

the following we provide a slightly different argument which motivates the method. The main

idea is to consider the extended dynamics

dxs,i =− ∂V

∂xi
(xs)ds− κ

m∑

j=1

(
ξj(xs)− zs,j

)∂ξj
∂xi

(xs) ds+
√

2β−1dws,i , 1 ≤ i ≤ n ,

dzs,l =κ
m∑

k=1

(
ξk(xs)− zs,k

) n∑

j=1

∂ξk
∂xj

(xs)
∂ξl
∂xj

(xs) ds+
√

2β−1

n∑

j=1

∂ξl
∂xj

(xs) dw̄s,j , 1 ≤ l ≤ m,

(5.10)
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where κ is a large constant, ws, w̄s are independent Brownian motions on Rn, and xs,i denotes

the ith component of state xs (similar notations for zs, ws, w̄s). Note that the invariant measure

of dynamics (5.10) has a probability density

ρκ(x, z) ∝ e−β
(
V (x)+κ

2 |ξ(x)−z|2
)
, (x, z) ∈ Rn+m , (5.11)

with respect to the Lebesgue measure on the extended space Rn+m. If we choose (x, z)→ z as

the reaction coordinate function and derive the effective dynamics of (5.10) following [17, 35],

we can obtain

dzs =b̃(κ)(zs)ds+
√

2β−1σ̃(κ)(zs) dws (5.12)

where ws is a Brownian motion on Rm, and

b̃
(κ)
l (z) =κ

∫

Rn

m∑

k=1

(
ξk(x)− zk

) n∑

i=1

∂ξk
∂xi

(x)
∂ξl
∂xi

(x)ρκ(x, z) dx =

∫

Rn
Lξl(x)ρκ(x, z) dx

ã
(κ)
ll′ =

(
σ̃(κ)(σ̃(κ))T

)
ll′

(z) =

∫

Rn

n∑

i=1

∂ξl
∂xi

(x)
∂ξl′

∂xi
(x)ρκ(x, z) dx ,

(5.13)

for z ∈ Rm, 1 ≤ l, l′ ≤ m. Note that in (5.13), L is the generator given in (2.2) and integration

by parts has been used to derive the second equality for b̃(κ). It is not difficult to show that

b̃(κ) → b̃ and ã(κ) → ã, when κ → +∞. Therefore (5.12) is an approximation of the effective

dynamics (3.18) when κ� 1. For numerical simulations, we can express (5.13) as time averages

b̃
(κ)
l (z) = lim

T→∞
κ

T

∫ T

0

m∑

k=1

(ξk(xs)− zk)

n∑

i=1

∂ξl
∂xi

(xs)
∂ξk
∂xi

(xs) ds , 1 ≤ l ≤ m,

ã
(κ)
ll′ (z) = lim

T→∞
1

T

∫ T

0

n∑

i=1

∂ξl
∂xi

(xs)
∂ξl′

∂xi
(xs) ds , 1 ≤ l, l′ ≤ m,

(5.14)

where xs satisfies SDE (5.10) with fixed zs = z, i.e.,

dxs,i =− ∂V

∂xi
(xs) ds− κ

m∑

j=1

(
ξj(xs)− zj

)∂ξj
∂xi

(xs) ds+
√

2β−1dws,i , 1 ≤ i ≤ n , (5.15)

The main steps of the algorithm can be summarized as follows:

Algorithm 2.

1. Denote z = zk∆t at step k ≥ 0. Simulate dynamics (5.15) for M steps with time step

size ∆s. Compute the coefficients

b̃l =
κ

M −M0

M∑

j=M0+1

m∑

l′=1

(ξl′(xj∆s)− zl′)
n∑

i=1

∂ξl
∂xi

(xj∆s)
∂ξl′

∂xi
(xj∆s) , 1 ≤ l ≤ m,

ãll′ =
1

M −M0

M∑

j=M0+1

n∑

i=1

∂ξl
∂xi

(xj∆s)
∂ξl′

∂xi
(xj∆s) , 1 ≤ l, l′ ≤ m.

(5.16)

2. Compute σ̃ from ã = σ̃σ̃T by matrix decomposition. Update state z(k+1)∆t according

to

z(k+1)∆t,l = zk∆t,l + b̃l∆t+

√
2∆t

β

m∑

i=1

σ̃liη
(k)
i , 1 ≤ l ≤ m, (5.17)
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where η
(k)
i are independent standard Gaussian variables, 1 ≤ i ≤ m.

6. Illustrative example. In order to illustrate the analysis and the performance of the

numerical methods presented in the previous sections, we study a simple two dimensional dy-

namics

dxs,1 = −∂V (xs)

∂x1
ds+

√
2β−1dws,1 ,

dxs,2 = −∂V (xs)

∂x2
ds+

√
2β−1dws,2 ,

(6.1)

where β > 0, xs = (xs,1, xs,2) ∈ R2 and ws,1, ws,2 are two independent one-dimensional Brownian

motions.

The potential V in dynamics (6.1) is defined as

V (x) = V1(θ) +
1

ε
V2(r, θ) , (6.2)

where ε > 0,

V1(θ) =





[
1− 9

π2

(
θ − π

3

)2]2
θ > π

3 ,
3
5 − 2

5 cos 3θ −π3 ≤ θ ≤ π
3 ,[

1− 9
π2

(
θ + π

3

)2]2
θ < −π3 ,

and V2(r, θ) =
(
r2 − 1− 1

1 + 4rθ2

)2

,

and (r, θ) is the polar coordinate of state x = (x1, x2) satisfying

x1 = r cos θ , x2 = r sin θ ,

θ ∈ [−π, π] , r ≥ 0 .
(6.3)

Under polar coordinate, it is easy to see that the potential V contains three local minima

at θ = 0,± 2π
3 where the radius is determined by the relation r2 = 1 + 1

1+4rθ2 . Furthermore,

when parameter ε is small, one can expect that the dynamics (6.1) will be mainly confined in

the neighbourhood of the curve defined by the relation r2 = 1 + 1
1+4rθ2 , where the potential is

relatively flat. Profiles of potential V1 and V are displayed in Figure 6.1.

The main purpose of this numerical experiment is to demonstrate that the leading eigen-

values of operator −L corresponding to dynamics (6.1) can be approximated with the help of its

effective dynamics, provided that the reaction coordinate function as well as the basis functions

are chosen appropriately.

We choose parameters β = 4.0 and ε = 0.05 in the following numerical experiment. In

fact, for this two-dimensional problem, it is possible to directly solve the eigenvalue problem

(2.5) by discretizing the operator L. First of all, we note that the generator can be written

as L = eβV

β ∇(e−βV∇). Defining the operator D such that Df = e−
β
2 V f for function f , it

is straightforward to see that the operator −LD = −DLD−1 has the same eigenvalues λi as

−L and the corresponding eigenfunctions are given by ϕDi = Dϕi = e−
β
2 V ϕi, where ϕi are

the eigenfunctions of −L. Furthermore, LD is a self-adjoint operator under the standard L2

inner product. Instead of considering −L, we will work with −LD and solve the eigenvalue

problem −LDf = λf because the discretized matrix will be symmetric and the corresponding

eigenfunctions ϕDi decay rapidly.

Taking into account the profile of potential V in Figure 6.1(b), we truncate the whole space

R2 into a finite domain [−2, 2] × [−2, 2], which is then discretized using a 500 × 500 uniform
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mesh, leading to the cell resolution ∆x1 = ∆x2 = 4
500 = 0.008. For 1 ≤ i, j ≤ 500, let fi,j , Vi,j

denote the values of the functions f , V evaluated at state
(
− 2.0 + (i − 1

2 )∆x1,−2.0 + (j −
1
2 )∆x2

)
, respectively. Other notations such as Vi± 1

2 ,j
are defined in a similar way. Approximating

−LDf = − 1
β e

β
2 V∇(e−βV∇(e

β
2 V f)) by centered finite difference scheme, we obtain

−(LDf)i,j ≈
e
β
2 Vi,j

β

[e−βVi− 1
2
,j

∆x1

e
β
2 Vi,jfi,j − e

β
2 Vi−1,jfi−1,j

∆x1
− e
−βV

i+1
2
,j

∆x1

e
β
2 Vi+1,jfi+1,j − e

β
2 Vi,jfi,j

∆x1

+
e
−βV

i,j− 1
2

∆x2

e
β
2 Vi,jfi,j − e

β
2 Vi,j−1fi,j−1

∆x2
− e
−βV

i,j+1
2

∆x2

e
β
2 Vi,j+1fi,j+1 − e

β
2 Vi,jfi,j

∆x2

]
,

(6.4)

for 1 < i, j < 500. For boundary cells, Neumann condition is applied when the neighboring cells

are lying outside of the truncated domain. From (6.4), it can be observed that the resulting

discretization matrix is both symmetric and sparse. Solving the eigenvalues of this matrix (of

order 250000) using Krylov-Schur method through numerical package SLEPc [10], we obtain the

first 4 eigenvalues

λ0 = 0.000 , λ1 = 0.010 , λ2 = 0.044 , λ3 = 1.458 , (6.5)

with relative residual errors smaller than 1.1× 10−6. The corresponding eigenvectors are shown

in Figure 6.2.

With the above reference result at hand, we continue to study the approximation quality of

the effective dynamics with respect to the leading eigenvalues. For this purpose, we choose the

reaction coordinate function as ξ(x) = θ(x) ∈ [−π, π], i.e., our reaction coordinate is the angle of

the polar coordinate representation. Direct calculation shows that the coefficients b̃, σ̃ in (3.19)

reduces to

b̃(z) = P
(
−∇V · ∇θ

)
(z) , ã(z) = (σ̃σ̃T )(z) = P

( 1

r2

)
(z) , z ∈ [−π, π] . (6.6)

Discretizing the interval [−π, π] into 1000 subintervals and applying the projection scheme pro-

posed in [4] for each fixed z = −π + 2πj
1000 , 0 ≤ j ≤ 1000, we can compute the coefficients of the

effective dynamics; the resulting profiles are shown in Figure 6.3(a) and Figure 6.3(b). After

these preparations, we can generate trajectories of the effective dynamics by simulating the SDE

(3.18) using standard time stepping schemes. As shown in Figure 6.3(c)), the effective dynamics

spends long time around values − 2π
3 , 0 and 2π

3 , which is accordance with the behavior of dynam-

ics (6.1) as well as with the profile of potential V in Figure 6.1(b). Since the effective dynamics

is one-dimensional, we can also discretize its infinitesimal generator L̃ in (3.20) and compute the

eigenvalues of −L̃ which gives

λ̃0 = 0.000 , λ̃1 = 0.012 , λ̃2 = 0.044 , λ̃3 = 2.068 .

Comparing to (6.5), we conclude that the eigenvalues λ0, λ1, λ2 of the original dynamics (6.1)

are quite well approximated by those of the effective dynamics.

As the final step of our experiment, we test the trajectory-based method proposed in Sub-

section 5.1. First of all, we define basis functions ψ̃1(z) ≡ 1.0 and ψ̃i(z) = exp(− (z−ci)2
2γ2
i

),

2 ≤ i ≤ 7, where

ci =
{
− 2π

3
, −2π

3
, 0 , 0 ,

2π

3
,

2π

3

}
, ri =

{
0.4 , 0.7 , 0.4 , 0.7 , 0.4 , 0.7

}
.
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That is, we have located two Gaussian-like basis functions with different radius (0.4 and 0.7) at

each of the three local minima θ = 0,± 2π
3 . The matrices S and C are then estimated according

to (5.3) and (5.5) by generating 4 long trajectories of the effective dynamics with time step

size ∆t = 5 × 10−4, and parameters τ = 20∆t, M0 = 1000, M = 2 × 107 are used for each

trajectories. Solving the generalized matrix eigenvalue problem CX = λSX, we obtain the

leading eigenvalues

λ̃0 = 0.000 , λ̃1 = 0.013 , λ̃2 = 0.045 , λ̃3 = 3.776 .

As before, we conclude that the eigenvalues λ0, λ1, λ2 of the original dynamics are relatively

well approximated.
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Figure 6.1: (a) Function V1 as a function of angle θ. (b) Potential V defined in (6.2) with

parameter ε = 0.05.

−2 −1 0 1 2−2

−1

0

1

2
ϕD0

−2 −1 0 1 2

ϕD1

−2 −1 0 1 2

ϕD2

−2 −1 0 1 2

ϕD3

−0.016 −0.012 −0.008 −0.004 0.000 0.004 0.008 0.012 0.016

Figure 6.2: Eigenfunctions ϕDi of operator −LD corresponding to the first 4 eigenvalues in (6.5).
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Figure 6.3: (a)(b) Coefficients b̃ and σ̃ as given in (6.6). For each z = −π + 2πj
1000 , 0 ≤ j ≤ 1000,

the coefficients b̃(z), σ̃(z) are estimated by generating a trajectory of the constrained version of

dynamics (6.1) using the projection scheme proposed in [4] with the time step size 2 × 10−5,

and 3 × 106 steps are simulated. (c) A typical sample trajectory of the effective dynamics for

dynamics (6.1) with reaction coordinate function ξ(x) = θ(x).

7. Conclusions. In this work we have studied the approximation of eigenvalues and eigen-

functions of the infinitesimal generator associated with the longest relaxation processes of dif-

fusive processes in energy landscapes. Following the previous studies on transfer operators, we

consider the Galerkin discretization method, the variational approach and the effective dynamics

given by a low-dimensional reaction coordinate for solving the eigenvalue problem in application

to the generator. It turns out that (1) there are rather similar results for the approximation

error of the three methods, and that (2) the first two methods lead to the same generalized

matrix eigenvalue problem while the third can be used for efficient estimation of the associated

coefficient matrices.

While we have assumed that the dynamics is diffusive, we emphasize that the analysis in

the current work can be directly applied to more general reversible processes, see [35] for details.

For non-reversible dynamics, as, for example, for Langevin dynamics, it is not immediately clear

how the results in the current work can be applied. However, the approach in [33], Section 5.3,

shows that the extended reversibility of Langevin dynamics may well allow for a generalization of

our results. Furthermore, applications of the algorithms presented to more complicated systems

are not considered in this work; they are topics of ongoing research.
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[32] Ch. Schütte, F. Noé, J. Lu, M. Sarich, and E. Vanden-Eijnden, Markov state models based on mile-

stoning, J. Chem. Phys., 134 (2011).
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