
Fachbereich Mathematik und Informatik
Institut für Mathematik

Combinatorial Models of
Compressor Stations in Gas Networks

Bachelorarbeit im Studiengang Mathematik

René Saitenmacher

Berlin, den 09.05.2016

Betreut von
Prof. Dr. Ralf Borndörfer
Dr. Benjamin Hiller

Ich erkläre hiermit, dass ich die vorliegende Bachelorarbeit selbstständig und ohne
Benutzung anderer als der angegebenen Quellen und Hilfsmittel angefertigt habe. Die
Arbeit is frei von Plagiaten. Alle Ausführungen, die wörtlich oder inhaltlich aus an-
deren Schriften entnommen sind, habe ich als solche kenntlich gemacht. Diese Arbeit
wurde in gleicher oder ähnlich Form noch bei keiner anderen Universität als Prü-
fungsleistung eingereicht und ist auch noch nicht veröffentlicht.

Berlin, den 09. Mai 2016

Danksagungen

An dieser Stelle möchte ich mich bei all denen bedanken, die mir diese Bachelorarbeit
ermöglicht und mich dabei unterstützt haben.

Mein besonderer Dank gilt Prof. Dr. Ralf Borndörfer und Dr. Benjamin Hiller, die es
mir ermöglicht haben, mich in ein interessantes Thema einzuarbeiten und meine Bach-
elorarbeit am Zuse Institute Berlin zu verfassen. Ebenso möchte ich mich besonders
bei Tom Walther für die viele Unterstützung bedanken. Desweiteren geht mein Dank
natürlich an alle anderen studentischen Hilfskräfte, die mir oft bei kleinen Problemen
weitergeholfen haben, darunter insbesondere Tobias Buchwald, Gerwin Gamrath und
Fabian Mett.

Das wichtigste und größte Dankeschön geht aber an meine Eltern und meine Großel-
tern, die während des gesamten Studiums eine große Unterstützung für mich waren
und auf die ich mich jederzeit verlassen konnte. Nicht zuletzt möchte ich mich bei
ihnen dafür bedanken, dass sie mir dieses Studium erst ermöglicht haben.

Abschließend möchte ich mich noch bei meiner Freundin France-Audrey bedanken, die
während der ganzen Zeit stets an meiner Seite war und mich sehr unterstützt hat.

Contents

1 Introduction 1
1.1 Flow Networks . 2
1.2 Linear Programming . 3

2 Compressor Stations 5
2.1 Role within Gas Networks . 5
2.2 Modelling of Compressor Stations . 6

3 Analyzing Operation Modes of Compressor Stations 11
3.1 Decisions/Terminology . 12
3.2 Problem Statement and Motivation . 14
3.3 Overview of Approach . 15
3.4 Related Work/NETCAST . 16

4 Bound Propagation 17
4.1 Locally Enforcing Flow Conservation . 18
4.2 Optimization-Based Flow Bound Tightening 22
4.3 Optimization-Based Pressure Bound Tightening 24

5 Network Reduction 27
5.1 General Idea . 27
5.2 Equivalence of Decisions . 29
5.3 Reduction Rules . 31

5.3.1 Rule 1 . 31
5.3.2 Rule 2 . 33
5.3.3 Rule 3 . 35
5.3.4 Reduction Process . 37

5.4 Possible Improvements . 38

6 Computational Experience 41
6.1 Implementational Issues . 41
6.2 Test Instances . 41
6.3 Test Results . 42

VII

List of Algorithms

1 Locally Enforcing Flow Conservation . 20
2 Optimization-Based Flow Bound Tightening 23
3 Optimization-Based Pressure Bound Tightening 25
4 Rule 1 . 32
5 Rule 2 . 34
6 Rule 3 . 36
7 Reduction Process . 37

List of Frameworks

1 Bound Propagation . 17
2 Network Reduction . 27

IX

List of Figures

2.1 Aerial view of the compressor station Rothenstadt-Weiherhammer . . . 6
2.2 Underlying structure of a compressor group 9

3.1 Different operation modes of some compressor station 11

4.1 Application of locally enforcing flow conservation (initial network) . . . 18
4.2 Application of locally enforcing flow conservation (after the first step) . 18
4.3 Application of locally enforcing flow conservation (result with tight

bounds) . 19
4.4 Network for which locally enforcing flow conservation does not produce

tight bounds . 21

5.1 Example of equivalent networks . 28
5.2 Isomorphism testing of networks . 30
5.3 Application of rule 1 . 32
5.4 Application of rule 2 . 35
5.5 Application of rule 3 . 37
5.6 Possible extension of reduction rules . 39
5.7 Example of decision containment . 39

XI

List of Tables

6.1 Computational results using our approach 43
6.2 Computational result with additional constraint for compressor groups . 43
6.3 Effect of network reduction on the size of networks 43

XIII

1 Introduction

Natural gas is one of the most important energy sources in Germany. In 2015, its share
of 21% of Germany’s primary energy consumption was second only to petroleum. Of
particular significance is its use as a heat source. In 2015, 40% of German private
households used natural gas heating systems, making it the most important energy
source on this market. Aside from that, it is a widely used industrial heat and energy
source and is predicted to play an increasingly important role as a component of motor
fuel. In comparison to other natural resources, such as petroleum or coal, natural gas
is valued as a relatively climate friendly and inexpensive energy source with a high
degree of efficiency. It is also worth to be noted that despite natural gas being a
limited, natural resource the importance of gas as an energy source is not expected
to decrease anytime soon. On the one hand, the access to natural gas resources is
expected to increase due to technological advancement. On the other hand, gas in
general synergizes well with renewable energy sources for many reasons. First, it serves
as a backup when there is a shortage due to some other energy source being temporarily
unavailable, e.g. solar power at night. Second, biogas is a renewable energy source.
And last but not least, gas might be used as a form of storage for energy that has
been produced from other, only temporarily available sources, such as solar or wind
power. For all these reasons, there exists an extensive gas network in Germany which
currently spans more than 500.000 km. It is essential for the import of natural gas of
which Germany receives more than 90% from foreign countries through gas pipelines.
Furthermore, it is needed for the transport of gas within and also through Germany
which due to its geographic location in Central Europe serves as an important transit
country for natural gas.1

Overview: Our main interest lies in the analysis and simplification of combinatorial
models of compressor stations. In Chapter 1, we shall give an overview of the mathe-
matical background of our work which includes flow networks, linear programming and
a brief examination of related work. Chapter 2 will be dedicated to a short description
of compressor stations and an explanation of how they are modelled in the language
of mathematics. Following this, we shall introduce the main problem that we will
investigate in Chapter 3 where we will also address our motivation to work on it as
well as a brief overview of our approach to solve it. Then, in Chapter 4 and Chapter 5,
we shall explain and discuss in detail the approach we took and the methods we used.
Chapter 6 will be devoted to the computational implementation of our approach and

1Statistics and information according to [1]

1

1 Introduction

to presenting the results achieved with it.

1.1 Flow Networks

Due to their use in gas network modelling, flow networks are at the very foundation of
this thesis. As definitions may vary throughout literature and since we require some
specific properties to hold for our models, we will start by giving our own definitions
as follows:

Definition 1.1. Directed Multigraph
A directed multigraph G consists of a set of nodes N , a set of arcs A and mappings
t : A → N and h : A → N which assign a tail and head node, respectively, to an arc.
No self-loops are allowed, meaning ∀a ∈ A : t(a) 6= h(a). Often, we shall write that
G = (N,A), omitting the direct reference to t and h if that reference is clear from the
context.

It shall be noted that whenever we use the term graph we shall refer to a directed
multigraph as defined above. Additionally, we shall use the following notation for
directed multigraphs:

∀n ∈ N : set of in-arcs Ain(n) = {a ∈ A : h(a) = n} (1.1)
∀n ∈ N : set of out-arcs Aout(n) = {a ∈ A : t(a) = n} (1.2)
∀n ∈ N : degree δ(n) = |Ain(n)|+ |Aout(n)| (1.3)

Definition 1.2. Flow Network
A flow network Γ = (G, f, f) consists of a directed multigraph G = (N,A) together
with functions f : N ∪A→ R ∪ [−∞,+∞] and f : N ∪A→ R ∪ [−∞,+∞] which we
refer to as lower and upper flow bounds, respectively. Its set of admissible flows F(Γ)
is the set of all functions f : N ∪A→ R such that:

∀e ∈ (N ∪A) : f(e) ≤ f(e) ≤ f(e) (1.4)

∀n ∈ N : f(n) =
∑

a∈Aout(n)

f(a)−
∑

a∈Ain(n)

f(a) (1.5)

Note that we allow arc flow to be negative. For the purpose of our modelling, the
signum of arc flow describes its direction with respect to the orientation of the arc.
This means that for an arc a ∈ A and x ∈ R+, a flow f with f(a) = x effectively
models a flow of x from t(a) to h(a) on a while a flow f ′ with f ′(a) = −x effectively
models a flow of x from h(a) to t(a) on a.

2

1.2 Linear Programming

Similarly, this applies to the nodes. We do not include any notion of sinks or sources
in our definition as nodes may function as either of them, depending on the signum
of their flow. For the purpose of our modelling, for a node n ∈ N and x ∈ R+, a
flow f with f(n) = x effectively models a flow of x at n into the network while a flow
f ′ with f ′(n) = −x effectively models a flow of x at n out of the network. However,
in our models of compressor stations we will distinguish between two types of nodes,
boundary nodes and innodes, where the first admit non-zero flow on themselves while
the latter do not. This will be detailed further in the second chapter.

Definition 1.3. Pressure
Consider a flow network Γ together with functions p : N → R+

0 and p : N → R+
0

which we refer to as lower and upper pressure bound, respectively. Then, its set of
admissible pressures P(Γ) is the set of all functions p : N → R+

0 such that:

∀n ∈ N : p(n) ≤ p(n) ≤ p(n) (1.6)
∀a ∈ A : ca(p(t(a)), p(h(a))) ≤ 0 (1.7)

where ca : R2 → Rk and (1.7) denotes some arc-dependent pressure constraints.

This slightly imprecise seeming definition will become a lot clearer in the next chapter
where we will discuss in detail the exact constraints on pressure which arise in gas
network modelling.

1.2 Linear Programming

In the course of our investigation, we will employ methods of linear optimization and
state linear programs. Therefore, we shall now give a brief introduction to this topic.
For further reading, we recommend [11] and [4].

Definition 1.4. Linear Program
A linear program, or short LP, is an optimization problem consisting of the maximiza-
tion or minimization of a linear function, called objective function, subject to linear
constraints. In its most general form it is often stated as:

maximize cTx

subject to Ax ≤ b
x ≥ 0

(1.8)

where x ∈ Rn is to be determined, and c ∈ Rn, b ∈ Rm and A ∈ Rm×n are given.

Definition 1.5. Feasibility
Following the notation in the previous definition, x ∈ Rn is called a feasible solution of

3

1 Introduction

the linear program if it satisfies the linear program’s constraints. It is called optimal,
if it is a maximal, feasible solution. If a linear program does not have any feasible
solutions, it is called infeasible. If there exist feasible solutions, but no optimal solution,
it is called unbounded.

We note that (1.8) has been historically established as a standard way to denote a
generic, linear program, and all linear programs may be transformed into this repre-
sentation. However, at times it can be preferable to choose a different, more meaningful
or intuitive representation which relates better to the context within which a linear
program arises. This may include, for example, (linear) function notation in place of
matrix notation, explicitely stating multiple constraints, minimization of the objective
function, the use of equality constraints or the lack of non-negativity constraints.

Linear programs have been extensively studied in the field of linear optimization for
decades. Moreover, efficient solution techniques for linear programs have been devel-
oped and refined over the years. Most prominently, this includes the simplex algorithm
(see, e.g., [8] and [7]) which traverses on the edges of the convex polytope defined by
the constraints of a linear program to find extremal vertices.

As a result, there exists a range of computational solvers that can solve various opti-
mization problems including linear programs. Among these are academic, free avail-
able solvers such as SCIP [20] as well as commercial solver such as CPLEX [17] or
Gurobi [12]. For the purpose of our investigation and subsequent implementation of
our approach, we shall make use of them to solve linear programs.

4

2 Compressor Stations

2.1 Role within Gas Networks

Compressor stations are at the heart of every gas network. While a gas network consists
of numerous pipes that transport gas over great lengths, these pipes are mostly static
elements and don’t allow for regulation of the gas flow. Besides that, friction causes the
rate of gas flow through pipes to decrease over distance and thus compressor stations
are needed to keep up the gas flow. This is achieved by compressor machines which
increase the pressure on the gas. As this compression consumes energy, it is in the
interest of network infrastructure providers to optimize the performance of compressor
stations. In addition to that, operable elements within compressor stations allow for
routing of gas flow. Thus, they are essential for managing the gas flow and adjusting
it to a changing demand.

In accordance with their function, a compressor station might lie between only two
pipelines where one of them provides an inflow of gas into the compressor station
and the other one receives an outflow of compressed gas from the compressor station.
However, it might also have more than two boundary points with the surrounding gas
network and operable elements in the compressor station might allow to adjust the
direction of the flow through the compressor station. Therefore, the role of boundary
points might change depending on the routing within the compressor station as well
as on the situation of the surrounding gas network.

In general and from a high level of abstraction, compressor stations in gas networks
can thus be viewed as (operable) points of intersection between pipeline systems. But,
compressor stations themselves represent small gas networks with an often complex
layout. Therefore, they are more accurately described as subnetworks of the large gas
network that they are a part of. However, from now on we will consider compressor
stations as self-contained entities and seperated from the rest of the gas network in
order to analyze the network structure that is found inside of them. We shall start by
giving an detailed overview of the layout modelling of compressor stations.

5

2 Compressor Stations

Figure 2.1: Aerial view of the compressor station Rothenstadt-Weiherhammer
(Wikimedia Commons, 08.05.2016, [19])

2.2 Modelling of Compressor Stations

Definition 2.1. Compressor Station Graph
A compressor station graph is a graph G = (N,A) with

N = Nb tNi (2.1)
A = Asc tAv tAcv tAcg (2.2)

where Nb denotes the set of boundary nodes, Ni denotes the set of innodes, Asc denotes
the set of short cuts, Av denotes the set of valves, Acv denotes the set of control valves
and Acg denotes the set of compressor groups.

The starting point of our mathematical investigation are compressor station graphs
as defined above which model the topology of compressor stations. Note, that these
graphs are models and generally do not resemble the actual topology of compressor
stations. These compressor station graphs have been provided to us by Open Grid
Europe GmbH. In addition, we have been provided with all the necessary, technical
data to define flow/pressure networks on them which align with the different operation
modes of the respective compressor stations. A formal definition of this will be given
in section 3.1. The key point is that the operation mode of a whole compressor
station is given indirectly by a joint specification of operation modes for different
elements that lie within the compressor station. This is the reason why our definition
of a compressor station graph distinguishes between different types of nodes and arcs.
They represent the different elements within an actual compressor station which all
put certain constraints on flow and pressure. Some of these constraints that individual
elements put on, depend on the respective elements’ operation modes. Therefore, we

6

2.2 Modelling of Compressor Stations

shall give a brief overview of the different arc and node types in order to prepare
the mathematical definitions which will follow in section 3.1. For further reading on
the technical and mathematical aspects of gas network modelling and optimization,
we recommend [18]. For the most part, we will follow the terminology that is given
there.

Boundary Node: Boundary nodes are the nodes at which the compressor station
would be connected to the rest of the gas network, thus possibly allowing flow into or
out of the compressor station. However, we view compressor stations as self-contained
and without further knowledge of their surrounding network. Therefore, the flow on
boundary nodes is generally assumed to possibly be unbounded:

∀n ∈ Nb : −∞ = f(n) < f(n) =∞ (2.3)

Innode: Innodes are all nodes which are not boundary nodes. In contrast to boundary
nodes, they do not admit any flow into or out of the compressor station:

∀n ∈ Ni : f(n) = 0 = f(n) (2.4)

Short Cut: Short cuts are the most basic type of arcs. They represent very short pipes
inside of a compressor station. Some of them might not exist in the actual compressor
station, because they have been artifically introduced during the modelling process. As
short cuts represent just plain, short pipes, we do not distinguish different operation
modes for them. They generally admit flow in both directions, and they require the
flow on both their endpoints to be identical:

∀a ∈ Asc : f(a) ≤ 0 ≤ f(a) (2.5)
∀a ∈ Asc : p(t(a)) = p(h(a)) (2.6)

Pipe: Pipes are usually used to transport gas over greater distances and are thus
mostly found outside of compressor stations. Due to physical effects such as friction
playing a bigger role over long distances, modelling of flow and pressure on pipes is
a topic of research on its own (see, e.g., [16]). However, some pipes might also exist
within compressor stations. This can, for example, stem from the fact that some
compressor stations are divided into multiple buildings which are connected by pipes.
Even though, most of these pipes are of negligble length, because compressor stations
are somewhat geographically bounded. For our purposes, all pipes in the models have
been replaced by short cuts.

Valve: Valves are operable network elements, which are used to route gas flow through
compressor stations. There are two different operation modes for them: open and
closed. If a valve is closed, it is physically blocked, preventing gas from passing through
it. This also causes the pressure on both ends of the valve to be decoupled. Therefore,

7

2 Compressor Stations

closed valves may be considered as non-existent in flow network models of compressor
stations. Open valves, in contrast, do admit flow. However, open valves are just plain,
short pipes. As such, they may be replaced by short cuts in flow network models of
compressor stations.

Control Valve and Compressor Group: Control valves and compressor groups
are operable network elements, which are used to both route gas flow through com-
pressor stations and adjust gas pressure. Control valves may decrease pressure, while
compressor groups may increase pressure. For both of them, there exist three different
operation modes: closed, bypass and active. Closed control valves and closed compres-
sor groups, just like closed valves, are physically blocked, preventing gas from passing
through them. This also causes the pressure on both their endpoints to be decoupled.
Therefore, closed control valves as well as closed compressor groups may be considered
as non-existent in flow network models of compressor stations. In contrast, control
valves and compressor groups in bypass mode do admit gas flow, but they do not
affect pressure.as bypass literally means that any gas flow going through them merely
passes by. Therefore, control valves and compressor groups in bypass mode just func-
tion as plain, short pipes. As such, they may be replaced by short cuts in flow network
models of compressor stations. The real difference comes in with active control valves
and compressor groups. They have a fixed working direction, which aligns with their
orientation as arcs in our models, and they create a pressure difference between their
inlet and outlet. All this is described by the following constraint on active control
valves and compressor groups in flow networks models of compressor stations:

∀a ∈ (Acv ∪Acg) : 0 ≤ f(a) ≤ f(a) (2.7)
∀a ∈ (Acv ∪Acg) : p

in
(a) ≤ pin(a) ≤ pin(a) (2.8)

∀a ∈ (Acv ∪Acg) : p
out

(a) ≤ pout(a) ≤ pout(a) (2.9)

∀a ∈ (Acv ∪Acg) : ∆(a) ≤ ∆(a) ≤ ∆(a) (2.10)

where ∆ : (Acv ∪ Acg) → R denotes the pressure difference that they create, and
pin(Acv ∪ Acg) → R and pout(Acv ∪ Acg) → R denote the pressure at their inlet and
outlet, respectively. They are defined as follows:

∀a ∈ (Acv ∪Acg) : pin(a) := p(t(a))− ploss
in (a) (2.11)

∀a ∈ (Acv ∪Acg) : pout(a) := p(h(a)) + ploss
out (a) (2.12)

∀a ∈ (Acv ∪Acg) : ∆(a) := pin(a)− pout(a) (2.13)

where ploss
in : (Acv ∪ Acg) → R and ploss

out : (Acv ∪ Acg) → R denote some pressure loss
that occurs at the inlet and outlet, respectively, of an active control valve or compressor
group. As we can see, the only thing, that really distinguishes active control valves
and active compressor groups in our model, is that the pressure difference is positive
for the former, but negative for the latter. Clearly there exist more differences between
actual control valves and compressor stations, but the given description is sufficient
for our investigation.

8

2.2 Modelling of Compressor Stations

c1

c2

c1 c2

Figure 2.2: Our notion of an arc of type compressor group already contains a signifi-
cant level of abstraction. This graph shows the underlying structure of a
compressor group which corresponds to a single arc in our graph. Here, the
gas flows from left to right and the different paths it can take correspond to
the possibilites of routing gas flow through the compressor group. From top
to bottom, these are bypass, double parallel compression by compressors
c1 and c2 and double serial compression by compressors c1 and c2.

9

3 Analyzing Operation Modes of
Compressor Stations

(a) Quad parallel compression from
north to south

(b) Triple parallel compression
from east to west

(c) Double serial compression from
east to west

(d) Single compression from north
to south and double parallel
compression from north to east

Figure 3.1: The above technical drawings show four different operation modes of some
compressor station. Dark symbols on arcs represent closed elements. Light
symbols correspond to open valves, active control valves or active compres-
sor stations. Arrows annotate the flow direction.

11

3 Analyzing Operation Modes of Compressor Stations

3.1 Decisions/Terminology

In section 2.2, we have introduced the notion of a compressor station graph which
provides a topological model of a compressor station. We have also given a description
of the elements inside of a compressor station, their operation modes and respective
constraints on flow and pressure. This allows us to introduce flow network models that
represent different operation modes of a compressor station. These operation modes
are given as decisions where decisions are joint specifications of operation modes for
elements inside of a compressor station. In the following, we shall define all the relevant
terminology.

Definition 3.1. Decision Group
Let G = (N,A) be a compressor station graph. Then, D ⊆ (A \ Asc) is the decision
group of any compressor station (sub-)graph G′ = (N ′, A′), G′ ⊆ G with

N ′b = {n ∈ N ′|n ∈ Nb or δG(n) > δG′(n)} (3.1)
N ′i = N ′ \N ′b (3.2)

∀S ∈ {Asc, Av, Acv, Acg} : S′ = S ∩A′ (3.3)
D = A′ \A′sc (3.4)

Corollary 3.2. D = A \Asc is the decision group of G.

Corollary 3.3. For any partition D1 t ... t Dk = D, k ∈ N, there exists an edge-
disjoint partition G1 t ... t Gk = G, where Di is the decision group of Gi for all
i ∈ [k].

Note, that A\Asc exactly denotes the set of all operable elements inside of a compressor
station which consists of valves, control valves and compressor groups. We also remark
that a compressor station graph must not necessarily represent an actual compressor
station as a whole. It may as well just model a part of it. The idea behind this is to
partition large compressor stations into smaller parts that are easier to handle. These
smaller parts bear the same characteristics as any compressor station and may as well
be viewed as compressor stations on their own.

Definition 3.4. Decision
For a decision group D = A \ Asc, we say that d : D → {open, closed, bypass, active}
is a decision if

∀a ∈ Av : d(a) ∈ {open, closed} (3.5)
∀a ∈ (Acv ∪Acg) : d(a) ∈ {closed, bypass, active} (3.6)

12

3.1 Decisions/Terminology

Definition 3.5. Decision’s Network
Consider a compressor station graph G with decision group D = A\Asc and a decision
d : D → {open, closed, bypass, active}. Let G′ = (N ′, A′), G′ ⊆ G be as follows:

N ′b = Nb (3.7)
N ′i = Ni (3.8)
A′sc = {a ∈ D : d(a) ∈ {open, bypass}} ∪Asc (3.9)
A′cv = {a ∈ D : d(a) = active} (3.10)
A′cg = {a ∈ D : d(a) = active} (3.11)
A′v = ∅ (3.12)

There exists a mapping, provided by the network infrastructure provider, that maps G′
onto a flow network Γ = (G′, f , f) with pressure bounds p, p and pressure constraints
as detailed in (2.3), (2.4), (2.5), (2.6), (2.7), (2.8), (2.9) and (2.10). Γ is called the
network of d, and we shall use Γ to represent d.

In other words, a decision is a joint specification of operation modes for all operable
elements within a compressor station. Its network is the flow network that is given by
it in accordance with the description of the elements in section 2.2.

Definition 3.6. Validity of a Decision
Let d be a decision with network Γ.

d is valid :⇐⇒ F(Γ) 6= ∅ and P(Γ) 6= ∅ (3.13)

A decision specifies an operation mode of a compressor station by a joint specification
of operation modes for all operable elements in the station which all put individual
constraints on flow and pressure. Clearly, it might happen that some of these con-
straints are conflicting. Therefore, the notion of the validity of a decision captures
whether the decision is physically feasible.

Definition 3.7. Partial Decision
For a decision group D = A \ Asc, we say that d : D → {open, closed, bypass, active}
is a partial decision if

∀a ∈ Av : d(a) ∈ {open, closed} (3.14)
∃a ∈ (Acv ∪Acg) : d(a) = open (3.15)

Let O := {a ∈ (Acv ∪ Acg) : d(a) = open}. Then, d corresponds to the set of all
decisions d′ : D → {open, closed, bypass, active} such that

d′|D\O = d|D\O (3.16)
∀a ∈ O : d′(a) ∈ {bypass, active} (3.17)

13

3 Analyzing Operation Modes of Compressor Stations

A partial decision is, so to say, a decision which is not fully specified, because it does
not distinguish between bypass and active mode for control valves and compressor
groups. The decisions it corresponds to are all possibilities to fully specify it. Note,
that some of the decisions it corresponds to might be valid, while others might not.
Needless to say, partial decisions are generally not desirable.

What is also important to note, is that the number of different decisions for a decision
group is exponential in the size of the decision group. This leads to a very large number
of ways a compressor station can be operated in. It is in the best interest of a network
operator to identify the best possible among these. For this purpose, there exist
predefined decision groups with associated graphs and lists of corresponding decisions.
Depending on the complexity of a compressor station, some compressor stations might
only comprise one decision group while others might consist of several. So far, all the
existing decisions for these decision groups have been generated manually.

3.2 Problem Statement and Motivation

Apart from their use by network operators, decisions are valuable data for mathemati-
cal optimization of gas networks. In specific, the existing decision groups and decisions
for some compressor station describe that station’s operating range, i.e. what flow and
pressure it admits. This knowledge permits the construction of more abstract models
of compressor stations which then in turn allow the optimization of larger parts of
the network. In this context, we shall be concerned with the preprocessing of decision
data for other optimization purposes. This specifically means spotting and eliminating
errors and redundancy in the data. It is of great importance, because redundancy in
the decision data leads to more complex models for subsequent optimization problems
which are then harder to solve. Based on this, we shall see that several problems arise
when working with the existing, manually generated decisions:

• Manual generation is an error-prone process and small errors in complex data
are hard to spot. Thus, some automated check is needed to ensure that the
manually generated decisions are valid.

• There might exist redundancy in the decisions. The complexity of compressor
stations often allows multiple ways to, say, route gas flow north to south through
a compressor station without affecting its pressure. Thus, it is likely that manual
generation of the decision data leads to some redundancy. However, it is in our
interest to clean the decision data and not have multiple decisions with the same
result.

• The current data format only specifies partial decisions which causes ambiguity.
We want to factor them out and only retain valid, fully specified decisions.

14

3.3 Overview of Approach

In order to address these problems, we shall aim to accomplish the following:

• Given a decision, determine whether it is valid.

• Given multiple decisions, determine whether there exists redundancy between
them.

3.3 Overview of Approach

In the problem statement we have already identified the two main challenges that
we face in the preprocessing of the decision data: validity and redundancy. In the
following we shall give an overview of how we will approach them.

In order to determine the validity of a network, we must know what effect the flow
and pressure bounds, known for each element individually, have on other elements and
the network as a whole. By propagating these bounds, we will receive tight bounds
for all elements. Also, we will find contradictions between the bounds, if existent,
and thus be able to determine the decision’s validity. As means of propagation, we
shall investigate algorithmic propagation as well as linear programming. We will treat
bound propagation in detail in chapter 4.

In order to determine redundancy between networks, we shall employ network reduc-
tion through edge contraction and removal. Concretely, we will identify some oper-
ations on the network, which will produce equivalent, but simpler networks. These
simplified networks then permit better comparison, allowing us to detect redundancy
more easily. We will treat network reduction in detail in chapter 5.

It is to note that there exists some overlap between the above methods as the process of
network reduction itself contains some, even though simple propagation. Furthermore,
it is to add that network reduction shall happen before propagation. However, since
the concept of propagation is so essential, we shall deal with it first before coming to
network reduction.

Given multiple decisions, we can now apply the above outlined process of network
reduction and propagation to the decisions’ respective networks. This will leave us
with the simplified and propagated networks of the valid decisions, which can then be
tested for isomorphies between them to identify redundancy. We will briefly cover this
last aspect in section 5.2.

15

3 Analyzing Operation Modes of Compressor Stations

3.4 Related Work/NETCAST

As far as we are aware, the specific problem that we are concerned with has not been
widely considered before within the field of gas network optimization. Our approach
to this problem draws inspiration from a network aggregation method that Borndörfer
et al. [3] developed for the timetabling problem which arises in the field of railway
optimization.

The timetabling problem consists of creating a conflict-free timetable which optimally
utilizes railway infrastructure. A major challenge in this is that railway network models
are designed to allow exact traffic simulation and therefore contain a high level of
detail. This makes them simply too complex for efficient infrastructure planning. In
order to address this problem, Borndörfer et al. developed a bottom-up approach that
has been implemented in the NETCAST software tool [9] and which consists of an
automatic network aggregation with regard to a given, fixed set of train routes and
train types. The result of this transformation from a microscopic to a macroscopic
model is a simplified network which is then suitable for planning and optimization [2].
Most important, during this transformation the relevant properties of the network are
retained in such a way that schedules computed on the macroscopic network can be
re-transformed to the microscopic level and allow a conflict-free simulation.

In general, the success of NETCAST has inspired our approach to employ network
reduction, or in other words aggregation, in order to obtain simplified flow networks
which retain the relevant flow and pressure characteristics. Yet, we carefully remark
that even though the transfer of this approach implies some similarity between the
problems, the timetabling problem and our problem may not be confused to be iden-
tical. This becomes especially evident when considering the actual aggregation steps
that are taken and which cannot simply be transfered one to one as they are based
on considerations specific to the respective subject matter. Also, an important step in
the network aggregation by NETCAST is the discretization of time which influences
the accuracy of the resulting, macrotized network. In contrast, time does not play a
role in our model which permits an exact network aggregation.

16

4 Bound Propagation

In this chapter we shall investigate different ways to propagate flow and pressure
bounds on a decision’s network. Nonetheless, the setting throughout this chapter is as
follows: Given a decision represented by a network, we aim to tighten the bounds on
flow and pressure in order to find a network which is equivalent to the given network
but better suited to represent the decision. Additionally, we aim to determine the
decision’s validity in that process.

Framework 1 Bound Propagation
Input:
A decision’s flow network Γ = (G, f, f), G = (N,A) with pressure bounds p and p.

Output:
Generally, a decision’s flow network Γ′ = (G, f ′, f ′) with pressure bounds p′ and p′
such that

F(Γ′) = F(Γ) (4.1)
P(Γ′) = P(Γ) (4.2)

∀e ∈ (N ∪A) : f(e) ≤ f ′(e) (4.3)

∀e ∈ (N ∪A) : f(e) ≥ f ′(e) (4.4)
∀n ∈ N : p(n) ≤ p′(n) (4.5)
∀n ∈ N : p(n) ≥ p′(n) (4.6)

However, in the case that F(Γ) = ∅ or P(Γ) = ∅, which would mean that the decision
represented by the given network is invalid, we would ideally want our method to
report invalidity instead.
In the case that F(Γ) 6= ∅ and P(Γ) 6= ∅, which would mean that the decision
represented by the given network is valid, we would ideally want the new bounds to
also be tight:

∀e ∈ (N ∪A) : ∃f ∈ F(Γ′) : f(e) = f ′(e) (4.7)

∀e ∈ (N ∪A) : ∃f ∈ F(Γ′) : f(e) = f
′(e) (4.8)

∀n ∈ N : ∃p ∈ P(Γ′) : p(n) = p′(n) (4.9)
∀n ∈ N : ∃p ∈ P(Γ′) : p(n) = p′(n) (4.10)

17

4 Bound Propagation

4.1 Locally Enforcing Flow Conservation

Following definition 1.2, there exist two types of constraint on the flow in our network:
the minimum and maximum bound on the flow for every element, nodes and arcs alike,
and the flow conservation constraint on every node, given by (1.5). Thus, it at first
seems like a viable idea to tighten these constraints locally at every node. This idea
is best explained by the following example below. We use square nodes to represent
boundary nodes, circular nodes to represent innodes and plain arcs to represent short
cuts.

k
−∞|+∞

m

0|0

l
−∞|∞

-1|0 -1|1

Figure 4.1: A decision’s network with flow bounds annotated above arcs and nodes,
where the red flow bounds are not tight.

In the above network, the flow bounds denoted in red are not tight meaning that there
does not exist a valid flow which takes on these values. Formally, this follows from the
flow conservation constraint on the nodes. However, it becomes even more immedi-
ately obvious when considering what is intuitively described by the flow conservation
constraint: The amount of flow that enters a node must equal the amount of flow which
leaves that node. Applying this understanding to node m, we see that the maximum
amount of flow which can leave m towards l is 0, because the maximum amount of
flow which can enter m any other way, namely from k, is 0. This gives the following,
first improvement of the flow bounds:

k
−∞|+∞

m

0|0

l
−∞|∞

-1|0 -1|0

Figure 4.2: Now with an improved upper flow bound on the arc from m to l.

Also, it gives us an intuitive understanding of how the flow conservation constraint on
a node puts constraints on arcs incident to the node: The flow on an arc is constrained
by the maximum amounts of flow that can possibly reach and leave the arc. In other
words, the amount of flow from m to l on the respective arc is limited by the amount
of flow that can maximally be fed into the arc at m.

Applying similar reasoning based on the flow conservation constraint on k and l, re-
spectively, we can tighten the remaining flow bounds in the network:

18

4.1 Locally Enforcing Flow Conservation

k
-1|0

m

0|0

l
0|1

-1|0 -1|0

Figure 4.3: Now, the flow bounds on all elements are tight.

We may now formally denote our newly gained, intuitive understanding, starting with
two alternative, arc-centered ways to rewrite the flow conservation constraint (1.5):

∀n ∈ N : ∀a ∈ Ain(n) : f(a) = −f(n) +
∑

a′∈Aout(n)

f(a′)−
∑

a′∈Ain(n)
a′ 6=a

f(a′) (4.11)

∀n ∈ N : ∀a ∈ Aout(n) : f(a) = f(n)−
∑

a′∈Aout(n)
a′ 6=a

f(a′) +
∑

a′∈Ain(n)

f(a′) (4.12)

This leads us to the following, new bounds on the flow on nodes and arcs, some of
which might be tighter than the initial flow bounds f and f :

∀n ∈ N :

f(n) ≤

∑
a∈Aout(n)

f(a)−
∑

a∈Ain(n)
f(a)

f(n) ≥
∑

a∈Aout(n)
f(a)−

∑
a∈Ain(n)

f(a)
(4.13)

∀n ∈ N : ∀a ∈ Ain(n) :

f(a) ≤ −f(n) +

∑
a′∈Aout(n)

f(a′)−
∑

a′∈Ain(n)
a′ 6=a

f(a′)

f(a) ≥ −f(n) +
∑

a′∈Aout(n)
f(a′)−

∑
a′∈Ain(n)

a′ 6=a

f(a′)
(4.14)

∀n ∈ N : ∀a ∈ Aout(n) :

f(a) ≤ f(n)−

∑
a′∈Aout(n)

a′ 6=a

f(a′) +
∑

a′∈Ain(n)
f(a′)

f(a) ≥ f(n)−
∑

a′∈Aout(n)
a′ 6=a

f(a′) +
∑

a′∈Ain(n)
f(a′)

(4.15)

Algorithm 1 formally denotes the bound tightening procedure that we have employed
in our example. First, we set f ′ equal to f and f ′ equal to f . Then, at every node n
we check whether we get tighter flow bounds on n or any arc incident to it by enforcing
the flow conservation constraint and update the values of f ′ and f

′ accordingly. In
addition, we shall maintain a queue of nodes to enforce the flow conservation constraint
on. Since any arc a has two endpoints, it affects the constraint on two nodes, for t(a)
as an out-edge and for h(a) as an in-edge. Therefore, successfully enforcing the flow
conservation constraint on one of them might allow us reinforcing it on the other and
we shall use the queue to keep track of this.

19

4 Bound Propagation

Algorithm 1 Locally Enforcing Flow Conservation
Input: Γ = (G, f, f)
Output: Γ′ = (G, f ′, f ′) which satisfies (4.1), (4.3), (4.4) as stated in framework 1

1: f
′
, f ′ ← f, f

2: Queue← enqueue all n ∈ N
3: while Queue not empty do
4: n← dequeue from Queue

5: if f ′(n) <
∑

a∈Aout(n)
f ′(a)−

∑
a∈Ain(n)

f
′(a) then . Tighten bounds on node

6: f ′(n)←
∑

a∈Aout(n)
f ′(a)−

∑
a∈Ain(n)

f
′(a)

7: if f ′(n) >
∑

a∈Aout(n)
f
′(a)−

∑
a∈Ain(n)

f ′(a) then

8: f
′(n)←

∑
a∈Aout(n)

f
′(a)−

∑
a∈Ain(n)

f ′(a)

9: for a ∈ Ain(n) do . Tighten bounds on in-arcs
10: if f ′(a) < −f ′(n) +

∑
a′∈Aout(n)

f ′(a′)−
∑

a′∈Ain(n)
a′ 6=a

f
′(a′) then

11: f ′(a)← −f ′(n) +
∑

a′∈Aout(n)
f ′(a′)−

∑
a′∈Ain(n)

a′ 6=a

f
′(a′)

12: Queue← enqueue t(a)
13: if f ′(a) > −f ′(n) +

∑
a′∈Aout(n)

f
′(a′)−

∑
a′∈Ain(n)

a′ 6=a

f ′(a′) then

14: f
′(a)← −f ′(n) +

∑
a′∈Aout(n)

f
′(a′)−

∑
a′∈Ain(n)

a′ 6=a

f ′(a′)

15: Queue← enqueue t(a)
16: for a ∈ Aout(n) do . Tighten bounds on out-arcs
17: if f ′(a) < f ′(n)−

∑
a′∈Aout(n)

a′ 6=a

f
′(a′) +

∑
a′∈Ain(n)

f ′(a′) then

18: f ′(a)← f ′(n)−
∑

a′∈Aout(n)
a′ 6=a

f
′(a′) +

∑
a′∈Ain(n)

f ′(a′)

19: Queue← enqueue h(a)
20: if f ′(a) > f

′(n)−
∑

a′∈Aout(n)
a′ 6=a

f ′(a′) +
∑

a′∈Ain(n)
f
′(a′) then

21: f
′(a)← f

′(n)−
∑

a′∈Aout(n)
a′ 6=a

f ′(a′) +
∑

a′∈Ain(n)
f
′(a′)

22: Queue← enqueue h(a)
23: return Γ′ := (G, f ′, f ′)

20

4.1 Locally Enforcing Flow Conservation

k
0|1

m

0|0

n
0|0

l
-2|0

0|1
a

0|1
c

0|1
b

0|1
d

Figure 4.4: For this network, locally enforcing flow conservation fails to produce a tight
lower flow bound on node l.

There are several observations that we can make about this algorithmic approach.
First, it does not affect the set of admissible flows in any way. It does not render
any flow inadmissible that was admissible before as we do not introduce new bounds,
but merely rewrite bounds more explicitely that were already contained in our model.
Also, it does not render any flow admissible that was inadmissible before as we are
strictly tightening bounds in our algorithm. Second, it does not report invalidity for
invalid decisions’ networks, because it is not designed to report any invalidity at all.
This can be overcome by always assuring that f(e) ≤ f(e) after tightening bounds for
some e ∈ (N ∪ A) since otherwise there cannot exist an admissible flow due to (1.4).
Third, algorithm 1 is unfortunately not guaranteed to produce tight flow bounds as
we can see in figure 4.4.

In the network in figure 4.4, the lower flow bound on l is not tight. When looking at
the network, it is intuitively clear that the amount of flow leaving the network at l
cannot exceed the amount of flow going into the network at k. Correct substitution of
flow conservation constraints yields

f(l) ≥ −f(k) = −1 (4.16)

However, we fail to tighten this bound by locally enforcing the flow conservation con-
straint at l which merely gives us the following:

f(l) ≥ −f(b)− f(d) = −2 (4.17)

As we see, the flow bounds on b and d are tight. There exist admissible flows fb and fd

for which fb(b) = 1 and fd(d) = 1. However, we fail to get a tight bound on the flow
on l based on the tight bounds on b and d, because there does not exist an admissible
flow f for which both f(b) = 1 and f(d) = 1. This means that by locally enforcing flow
constraints at l we fail to see that the maximum amount of flow on b and d together
is limited by the common source k and strictly less than the sum of the individual

21

4 Bound Propagation

maxima. As this cannot possibly be locally recognized at l, this example shows us the
limitations of our attempt to tighten flow bounds locally.

In order to improve our approach, different methods seem possible. One way could be
to propagate further constraints on the edges which are meant to model the depen-
dencies of flow between different edges. Another way could be to recognize structures
in the graph for which we know additional constraints, such as the diamond shape
in figure 4.4 and the resulting constraint that f(l) ≥ −f(k). However, there exists a
much better and easier method for propagation flow bounds which we shall discuss in
the next section.

4.2 Optimization-Based Flow Bound Tightening

In this section, we shall leverage our graph based flow bound propagation problem
onto an algebraic level by modelling it as a linear program. This way, we do not have
to be concerned with developing a propagation algorithm around structures found in
the network. Instead, we will be able to make use of already existing and powerful
methods from the field of linear optimization.

More precisely, we resort to Optimization Based Bound Tightening (OBBT), a tech-
nique which is used in the preprocessing of mixed-integer nonlinear programs (MINLPs),
optimization problems which may include nonlinear or integer constraints. OBBT con-
sists of solving LPs to obtain bounds on variables in a MINLP, and is known to be
efficient, but computationally expensive due to the creation of additional optimization
problems. For further reading on this topic, we recommend [10].

Using this approach, we will minimize and maximize the admissible flow on every
element in the gas network seperately by solving the following, two LPs for every
e ∈ (N ∪A) where δee′ denotes the Kronecker delta:

maximize
∑

e′∈(N∪A)

δee′f(e)

subject to f(e′) ≤ f(e′), ∀e′ ∈ (N ∪A)
f(e′) ≥ f(e′), ∀e′ ∈ (N ∪A)

f(n) =
∑

a∈Aout(n)

f(a)−
∑

a∈Ain(n)

f(a), ∀n ∈ N

(4.18)

22

4.2 Optimization-Based Flow Bound Tightening

minimize
∑

e′∈(N∪A)

δee′f(e)

subject to f(e′) ≤ f(e′), ∀e′ ∈ (N ∪A)
f(e′) ≥ f(e′), ∀e′ ∈ (N ∪A)

f(n) =
∑

a∈Aout(n)

f(a)−
∑

a∈Ain(n)

f(a), ∀n ∈ N

(4.19)

We note that an optimal solution of (4.18) yields a tight, upper bound on f(e), which
we shall denote by fopt(e) and an optimal solution of (4.19) yields a tight, lower bound
on f(e), which we shall denote by f

opt
(e). Moreover, we shall remark that these LPs

cannot be unbounded. For all elements except boundary nodes, there exist finite flow
bounds. For boundary nodes, the admissible flow is constrained to be finite by the
flow conservation constraint (1.5) and the fact that any incident arcs have finite flow
bounds. In addition, infeasibility of the LPs yields F(Γ) = ∅, allowing us to identify
decisions which are invalid due to the nonexistence of admissible flows.

This leads us to the following algorithm:

Algorithm 2 Optimization-Based Flow Bound Tightening
Input: A decision’s flow network Γ = (G, f, f)
Output: If F(Γ) 6= ∅ is valid, a decision’s flow network Γ′ = (G, f ′, f ′) that satisfies

(4.1), (4.3), (4.4), (4.7), (4.8) as specified in framework 1. Otherwise, algorithm
reports invalidity of the decision.

1: for e ∈ (Nb ∪A) do . We skip Ni due to (1.4) and (2.4)
2: if (4.18) is feasible then
3: f

′(e)← fopt(e) . LP gives tight bound
4: else
5: return error . Decision infeasible
6: if (4.19) is feasible then
7: f ′(e)← f

opt
(e) . LP gives tight bound

8: else
9: return error . Decision infeasible

10: return Γ′ := (G, f ′, f ′)

We remark, that algorithm 2 has all the desirable characteristics that we specified in
the bound propagation framework. It does not increase the set of admissible flows
since we tighten existing bounds as specified in the first two constraints of (4.18) and
(4.19), respectively. Also, it does not decrease the set of admissible flows which is
guaranteed by the construction of our LPs that take minimum and maximum values
over all admissible flows. In addition, algorithm 2 produces tight flow bounds on all

23

4 Bound Propagation

network elements, and is able to identify invalid decisions. This of course only for
decisions which are invalid due to their set of admissible flows being empty. A decision
with a non-empty set of admissible flows might still be invalid if it does not admit any
pressure. This case will be dealt with during propagation of pressure bounds.

The tradeoff that we make with algorithm 2 is of course the computational expense
that comes from solving 2∗ (|Nb|+ |A|) linear programs. However, this can be well jus-
tified. First, algorithm 2 solves the flow bound propagation problem for real, existing
compressor stations in reasonable time. Further details about our implementation can
be found in chapter 6. Second, it is safe to assume that this problem does not scale
infinitely due to geographical or operational constraints on the size of compressor sta-
tions. Third, our goal is to solve a one-time, data preprocessing problem. Therefore,
runtime is not our biggest concern.

4.3 Optimization-Based Pressure Bound Tightening

Analogously, we may use the optimization-based approach from the previous section
to tighten pressure bounds on our network which means minimizing and maximizing
the admissible pressure on every node in the gas network seperately. This will be done
subject to the pressure constraints on the various gas network elements as given in
definition 1.3 and detailed in section 2.2. Thus, we shall formulate the following two
LPs for every n ∈ N where δnn′ denotes the Kronecker delta:

maximize
∑

n′∈(N)

δnn′p(n)

subject to p(n′) ≤ p(n′), ∀n′ ∈ N
p(n′) ≥ p(n′), ∀n′ ∈ N

p(t(a)) = p(h(a)), ∀a ∈ Asc

pin(a) ≤ pin(a), ∀a ∈ (Acv ∪Acg)
pin(a) ≥ p

in
(a), ∀a ∈ (Acv ∪Acg)

pout(a) ≤ pin(a), ∀a ∈ (Acv ∪Acg)
pout(a) ≥ p

in
(a), ∀a ∈ (Acv ∪Acg)

∆(a) ≤ ∆(a), ∀a ∈ (Acv ∪Acg)
∆(a) ≥ ∆(a), ∀a ∈ (Acv ∪Acg)

(4.20)

24

4.3 Optimization-Based Pressure Bound Tightening

minimize
∑

n′∈(N)

δnn′p(n)

subject to p(n′) ≤ p(n′), ∀n′ ∈ N
p(n′) ≥ p(n′), ∀n′ ∈ N

p(t(a)) = p(h(a)), ∀a ∈ Asc

pin(a) ≤ pin(a), ∀a ∈ (Acv ∪Acg)
pin(a) ≥ p

in
(a), ∀a ∈ (Acv ∪Acg)

pout(a) ≤ pin(a), ∀a ∈ (Acv ∪Acg)
pout(a) ≥ p

in
(a), ∀a ∈ (Acv ∪Acg)

∆(a) ≤ ∆(a), ∀a ∈ (Acv ∪Acg)
∆(a) ≥ ∆(a), ∀a ∈ (Acv ∪Acg)

(4.21)

We note that an optimal soultion of (4.20) yields a tight, upper bound on p(n), which
we shall denote by popt(n), and an optimal solution of (4.21) yields a tight, lower bound
on p(n), which we shall denote by p

opt
. Again, these LPs cannot be unbounded due

to the existing pressure bounds on every node. Also, infeasibility of the LPs implies
P(Γ) = ∅, allowing us to identify decisions which are invalid due to the nonexistence
of admissible flows.

This leads us to the following algorithm:

Algorithm 3 Optimization-Based Pressure Bound Tightening
Input: A decision’s flow network Γ with pressure bounds p, p
Output: If P(Γ) 6= ∅, a decision’s flow network Γ′ = Γ with pressure bounds p′, p′

that satisfy (4.2), (4.5), (4.6), (4.9), (4.10) as specified in framework 1. Otherwise,
algorithm reports invalidity of the decision.

1: for n ∈ (N) do
2: if (4.20) is feasible then
3: p′(n)← popt(n) . LP gives tight bound
4: else
5: return error . Decision infeasible
6: if (4.21) is feasible then
7: p′(n)← p

opt
(n) . LP gives tight bound

8: else
9: return error . Decision infeasible

10: return p′, p′,Γ′ := Γ

In accordance with our evaluation of algorithm 2 in the previous chapter, we shall

25

4 Bound Propagation

remark that algorithm 3 has all the desirable characteristics that we described in
the bound propagation framework, specifically it produces tight bounds and identifies
invalid decisions. Also, it comes at a tolerable, computational cost.

In addition, it is worthwile mentioning that it might be possible to also produce tight
pressure bounds through local enforcement of pressure constraints. This did not work
for flow bounds, but it might work for pressure bounds due to the different nature of
the constraints. The use of such an approach could decrease the computational cost
of pressure propagation significantly. However, there exists a reason why investigating
this is not of great interest to us. It is that there actually exists a relation between
flow and pressure in physical reality which has not yet been incorporated in the com-
binatorial models of compressor stations that our investigation relies on. Therefore, it
is not worth focussing our efforts on separate pressure propagation.

26

5 Network Reduction

In this chapter we will describe the approach that we take with network reduction.
The setting is as follows: Given a decision represented by its network, we shall remove
and replace elements in the network’s graph in a way that retains certain, important
characteristics of the given network which are formally denoted in framework 2. The
result of this process will be a new and simpler representative network for the decision.
We shall also elaborate on the benefits of such a new and simpler representative.

Framework 2 Network Reduction
Input:
A decision’s flow network Γ = (G, f, f), G = (N,A) with pressure bounds p and p.

Output:
A decision’s flow network Γ′ = (G′, f ′, f ′), G′ = (N ′, A′) with pressure bounds p′,
p′ such that:

N ′ ⊆ N (5.1)
N ′b = Nb (5.2)
|A′| ≤ |A| (5.3)
A′cv = Acv (5.4)
A′cg = Acg (5.5)

∀f ∈ F(Γ) : ∃f ′ ∈ F(Γ′) : f |Nb
= f ′|Nb

(5.6)
∀p ∈ P(Γ) : ∃p′ ∈ P(Γ′) : p|Nb

= p′|Nb
(5.7)

∀f ′ ∈ F(Γ′) : ∃f ∈ F(Γ) : f ′|Nb
= f |Nb

(5.8)
∀p′ ∈ P(Γ′) : ∃p ∈ P(Γ) : p′|Nb

= p|Nb
(5.9)

5.1 General Idea

There are two things that are of great importance to us in a decision’s network: First,
the values at the boundary nodes for each admissible flow and pressure. They provide
a description of how the respective compressor station may be operated with regards

27

5 Network Reduction

to the surrounding network. For example, whether it is possible to route some specified
amount of flow with some specified pressure north to south through the compressor
station under the given decision. Altogether, the knowledge of these values for all
decisions of a decision group means knowledge about all ways gas flow can be routed
through the respective compressor station. Second, the arrangement of active control
valves and active compressor groups in a decision’s network is information that matters
to us. Even though different arrangements, such as two active compressor groups lined
after one another versus two active compressor groups working parallely, might lead
to the same admissible flow and pressure values on the boundary nodes, they cannot
be considered redundant. This may partially be due to reasons we are not concerned
with such as the operation costs of different arrangements.

However, there also exist things within a decision’s network which are of less impor-
tance to us, namely short cuts. They are insofar relevant as they impose flow and
pressure bounds and thus affect the values of admissible flows and pressures at the
boundary nodes. Nonetheless, short cuts themselves are not of interest to us and it is
often the case that they establish unnecessarily complex or redundant structures in a
network. This is probably illustrated best by the following examples:

k

l
(a)

k

l
(b)

k

l
(c)

k

l
(d)

Figure 5.1: All short cuts are assumed to have identical flow bounds. Also, pressure
bounds are the same on all nodes, and the respective flow bounds on the
boundary nodes k and l are identical for all figures. Marked in red are
these short cuts that function as bottlenecks for the flow between k and l.

28

5.2 Equivalence of Decisions

It is strikingly evident that the networks shown in 5.1a, 5.1b and 5.1c, 5.1d all admit
the same flows and pressures when restricted to the boundary nodes k and l. In terms
of flow, the edges marked in red function as bottlenecks that force the same limit on
flow between k and l for each graph. In terms of pressure, the constraint that

p(k) = p(l) (5.10)

for each of the graphs easily follows from constraint (2.6) on each of the short cuts. In
short, they all model the same scenario.

The idea behind network reduction is to formalize the process of reasoning that we used
in the example and specify a set of rules according to which some decision’s network
can be transformed into a simpler representative. In the case of our example, this
would mean reducing all of the networks to the network shown in 5.1a. There are two
benefits from this. First of all, we can then tell easily that they’re redundant. Second,
we favor simpler representations because usually the cost of optimization carried out
on some network scales with the network’s size. Also, from a human perspective it is
often easier to intuitively understand simpler networks.

5.2 Equivalence of Decisions

Before we come to the reduction rules, we ought to make some more notes on comparing
different decisions’ networks. Let us start with a formal definition of the equivalence
of two decisions:

Definition 5.1. Equivalence of Decisions
Two decisions of the same decision group, represented by flow networks Γ1 and Γ2,
respectively, are considered equivalent if

Nb1 = Nb2 (5.11)
Acv1 = Acv2 (5.12)
Acg1 = Acg2 (5.13)

and there exist bijective functions φ : N1 → N2 and ψ : A1 → A2 such that: ‘

φ(t1(a)) = t2(ψ(a)) (5.14)
φ(h1(a)) = h2(ψ(a)) (5.15)

φ|Nb1
= id (5.16)

ψ|Acv1∪Acg1
= id (5.17)

∀n ∈ N1 : (f1(n), f1(n)) = (f2(φ(n)), f2(φ(n))) (5.18)
∀n ∈ N1 : (p1(n), p1(n)) = (p2(φ(n)), p2(φ(n))) (5.19)

∀a ∈ A : (f1(a), f1(a)) = (f2(ψ(a)), f2(ψ(a))) (5.20)

29

5 Network Reduction

In other words, we consider two decisions to be equivalent if there exists an isomor-
phism between their networks which involves flow and pressure bounds and is fixed
at boundary nodes and active elements. On the practical side, we have conducted
all isomorphy testing with NetworkX [13] which implements the VF2 algorithm for
matching graphs (see [6], [5]).

In order to effectively test two decisions for equivalence according to definition 5.1,
we must ensure that they are represented by networks in some standardized form
which allows for good comparison of graph structure as well as flow and pressure
bounds. This has been sketched in figure 5.1 in the previous section. In general,
three steps need to be taken to allow effective isomorphy testing. First, we apply
network reduction to simplify graph structure. Second, we apply bound propagation
to facilitate comparison of flow and pressure bounds. In an additional third step, we
deal with comparibility issues resulting from the combination of oriented arcs with
negative flows in our networks. Note that this only applies to short cuts as control
valves and compressor stations do not admit negative flow by (2.7). To overcome the
problem, we ensure that all short cuts have non-negative flow bounds by changing their
orientation or splitting them into two oppositely oriented short cuts as appropriate.

k

l

-2|1

(a) Before

k

l

-1|2

(b) Before

k

l

0|1

0|2

(c) After

Figure 5.2: (a) and (b) both model the same scenario. However, the variation in the
orientation of their short cuts, made possible by the existence of negative
flow in our models, makes isomorphy testing generally difficult. Thus, we
introduce seperate arcs for the flow from k to l and l to k, respectively.

30

5.3 Reduction Rules

5.3 Reduction Rules

Preceding the actual reduction process, we remove all weakly connected components
in the network which contain neither a boundary node nor any active elements. Such
components of isolated short cuts might exist because they have been disconnected
from the rest of the network by closed, operable elements.

5.3.1 Rule 1

Rule 1 specifies the removal of an innode n ∈ Ni of degree one which is incident to a
short cut a ∈ Asc. It is formally described in algorithm 4.

Proposition 5.2. The output of algorithm 4 indeed satisfies all the output constraints
given in framework 2.

Proof. Let the notation be as in algorithm 4 and w.l.o.g. let t(a) = m, h(a) = n.
By the algorithm, G′ = (N \ {n}, A \ {a}) where a ∈ Asc and n ∈ Ni. Thus, (5.1),
(5.2), (5.3), (5.4), (5.5) are trivially satisfied. Now, let f ∈ F(Γ), f ′ := f |N ′∪A′ . We
only need to check that f ′ is admissible for Γ′ with respect to the flow conservation
constraint at m.

f(a) (1.5)= f(n) (5.21)
(2.4)=⇒ f(a) = 0 (5.22)

=⇒ f(m) =
∑

a′∈Aout(m)
a′ 6=a

f(a′)−
∑

a′∈Ain(m)

f(a′) (5.23)

=⇒ f ′(m) =
∑

a′∈A′out(m)

f ′(a′)−
∑

a′∈A′in(m)

f ′(a′) (5.24)

Thus, f ′ ∈ F(Γ′) and (5.6) is satisfied. Analogously, (5.8) is satisfied: Let f ′ ∈ F(Γ′).
Then, f ∈ F(Γ) for f |N ′∪A′ := f ′, f(a) := 0, f(n) := 0. Now, let p ∈ P(Γ), p′ := p|N ′ .
We only need to check that p′ is admissible at m.

p(m) (2.6)= p(n) (5.25)
=⇒ p(n) ≤ p(m) ≤ p(n) (5.26)
=⇒ max(p(m), p(n)) ≤ p(m) ≤ min(p(m), p(n)) (5.27)
p.d.=⇒ p′(m) ≤ p′(m) ≤ p′(m) (5.28)

Thus, p′ ∈ P(Γ′) and (5.7) is satisfied. Analogously, (5.9) is satisfied: Let p′ ∈ P(Γ′).
Then, p ∈ P(Γ) for p|N ′ := p′, p(n) := p′(m).

31

5 Network Reduction

k

l

m

n

b

c
a

d

(a) Before

k

l

m
b

cd

(b) After

Figure 5.3: Application of rule 1

Algorithm 4 Rule 1
Input: Γ = (G, f, f) with pressure bounds p, p and n ∈ Ni, where n has degree one,

n adjacent to some m ∈ N through some a ∈ Asc

Output: Γ′ = (G′, f ′, f ′) with pressure bounds p′, p′ according to the output con-
straints given in framework 2

1: N ′ ← N \ {n}
2: A′ ← A \ {a}

3: for a′ ∈ A′ do
4: f

′(a′)← f(a′)
5: f ′(a′)← f(a′)
6: t′(a′)← t(a′)
7: h′(a′)← h(a′)

8: for n′ ∈ N ′ \ {m} do
9: f

′(n′)← f(n′)
10: f ′(n′)← f(n′)
11: p′(n′)← p(n′)
12: p′(n′)← p(n′)

13: f
′(m)← f(m)

14: f ′(m)← f(m)
15: p′(m)← min(p(m), p(n))
16: p′(m)← max(p(m), p(n))

17: return p′, p′,Γ′ := ((N ′, A′), f ′, f ′)

32

5.3 Reduction Rules

5.3.2 Rule 2

Rule 2 specifies a rule for arc contraction that is designed to take on the problem of
short cuts which artificially extend paths in our graph. It is formally described in
algorithm 5.
Proposition 5.3. The output of algorithm 5 indeed satisfies all the output constraints
given in framework 2.

Proof. Let the notation be as in algorithm 5 and w.l.o.g. let t(b) = k, h(b) = m,
t(c) = m, h(c) = l. By the algorithm, G′ = (N \ {m}, A \ {c}) where c ∈ Asc and
m ∈ Ni. Thus, (5.1), (5.2), (5.3), (5.4), (5.5) are trivially satisfied. Now, let f ∈ F(Γ),
f ′ := f |N ′∪A′ . We need to check that f ′ is admissible for Γ′ on b as well as with respect
to the flow conservation constraint at l.

f(m) (1.5)= f(c)− f(b) (5.29)
(2.4)=⇒ f(b) = f(c) (5.30)
=⇒ max(f(b), f(c)) ≤ f(b) ≤ min(f(b), f(c)) (5.31)
p.d.=⇒ f ′(b) ≤ f ′(b) ≤ f ′(b) (5.32)

f(l) =
∑

a′∈Aout(l)

f(a′)−
∑

a′∈Ain(l)

f(a′) (5.33)

(5.30)=⇒ f(l) =
∑

a′∈Aout(l)

f(a′)−
∑

a′∈Ain(l)
a′ 6=c

f(a′)− f(b) (5.34)

p.d.=⇒ f ′(l) =
∑

a′∈A′out(l)

f ′(a′)−
∑

a′∈A′in(l)

f ′(a′) (5.35)

Thus, f ′ ∈ F(Γ′) and (5.6) is satisfied. Analogously, (5.8) is satisfied: Let f ′ ∈ F(Γ′).
Then, f ∈ F(Γ) for f |N ′∪A′ := f ′, f(m) := 0, f(c) := f ′(b). Now, let p ∈ P(Γ),
p′ := p|N ′ . We check that p′ is admissible at l.

p(l) (2.6)= p(m) (5.36)
=⇒ p(m) ≤ p(l) ≤ p(m) (5.37)
=⇒ max(p(l), p(m)) ≤ p(l) ≤ min(p(l), p(m)) (5.38)
p.d.=⇒ p′(l) ≤ p′(l) ≤ p′(l) (5.39)

By (5.36), p′ also fulfills the constraint that b puts on the pressure in Γ′. Thus,
p′ ∈ P(Γ′) and (5.7) is satisfied. Analogously, (5.9) is satisfied: Let p′ ∈ P(Γ′). Then,
p ∈ P(Γ) for p|N ′ := p′, p(m) := p′(l).

33

5 Network Reduction

Algorithm 5 Rule 2
Input: Γ = (G, f, f) with pressure bounds p, p and m ∈ Ni, where m has degree two,

m adjacent to some k, l ∈ N through some c ∈ Asc, b ∈ A, respectively
Output: Γ′ = (G′, f ′, f ′) with pressure bounds p′, p′ according to the output con-

straints given in framework 2

1: N ′ ← N \ {m}
2: A′ ← A \ {c}

3: for a′ ∈ A′ \ {b} do
4: f

′(a′)← f(a′)
5: f ′(a′)← f(a′)
6: t′(a′)← t(a′)
7: h′(a′)← h(a′)

8: if t(b) = m then . Case distinction on the orientation of b
9: t′(b)← l

10: h′(b)← h(b)
11: else
12: t′(b)← t(b)
13: h′(b)← l

14: if t(b) = h(c) or t(b) = h(c) then . Case distinction on the orientation of b, c
15: f

′(b)← min(f(b), f(c))
16: f ′(b)← max(f(b), f(c))
17: else
18: f

′(b)← min(f(b),−f(c))
19: f ′(b)← max(f(b),−f(c))

20: for n′ ∈ N ′ \ {l} do
21: f

′(n′)← f(n′)
22: f ′(n′)← f(n′)
23: p′(n′)← p(n′)
24: p′(n′)← p(n′)

25: f
′(l)← f(l)

26: f ′(l)← f(l)
27: p′(l)← min(p(l), p(m))
28: p′(l)← max(p(l), p(m))

29: return p′, p′,Γ′ := ((N ′, A′), f ′, f ′)

34

5.3 Reduction Rules

k

l

m
b

cd

(a) Before

k

l

d

b

(b) After

Figure 5.4: Application of rule 2

5.3.3 Rule 3

Rule 3, as a follow-up of rule 2, specifies the merge of two parallel short cuts which
can result from the application of rule 2. It is formally described in algorithm 6. Note
that our unreduced network models do not feature any parallel arcs.

Proposition 5.4. The output of algorithm 6 indeed satisfies all the output constraints
given in framework 2.

Proof. Let the notation be as in algorithm 6 and w.l.o.g. let t(b) = k, h(b) = l,
t(d) = k, h(d) = l. By the algorithm, G′ = (N,A \ {b}) where b ∈ Asc. Thus, (5.1),
(5.2), (5.3), (5.4), (5.5) are trivially satisfied. Now, let f ∈ F(Γ), f ′ : N ′ ∪ A′ → R
with f ′|N ′∪(A′\{d}) := f |N ′∪(A′\{d}) and f ′(d) := f(d) + f(b). We need to check that
f ′ is admissible for Γ′ on d as well as with respect to the flow conservation constraint
at k and l.

f(d) + f(b) ≤ f(d) + f(b) ≤ f(d) + f(b) (5.40)
p.d.=⇒ f ′(d) ≤ f ′(d) ≤ f ′(d) (5.41)

f(k) = f(b) + f(d) +
∑

a′∈Aout(k)
a′∈{b,d}

f(a′)−
∑

a′∈Ain(k)

f(a′) (5.42)

p.d.=⇒ f ′(k) = f ′(d) +
∑

a′∈A′out(k)
a′ 6=d

f ′(a′)−
∑

a′∈A′in(k)

f ′(a′) (5.43)

=⇒ f ′(k) =
∑

a′∈A′out(k)

f ′(a′)−
∑

a′∈A′in(k)

f ′(a′) (5.44)

35

5 Network Reduction

Similarly to (5.42), (5.43), (5.44) f ′ fulfills the flow conservation constraint at l in Γ′.
Thus, f ′ ∈ F(Γ′) and (5.6) is satisfied. Analogously, (5.8) is satisfied: Let f ′ ∈ F(Γ′).
Then, f ∈ F(Γ) with f |N ′∪(A′\{d}) = f ′|N ′∪(A′\{d}) and f(b) + f(d) = f ′(d). Now,
let p ∈ P(Γ). Then, trivially p ∈ P(Γ′) and (5.7) is satisfied. Analogously, (5.9) is
satisfied: Let p′ ∈ P(Γ). Then also p′ ∈ P(Γ), because d ∈ Asc imposes the constraint
of equal pressure at k and l which p′ already fulfills for b ∈ Asc.

Algorithm 6 Rule 3
Input: Γ = (G, f, f) with pressure bounds p, p and k, l ∈ N where k, l adjacent

through some b, d ∈ Asc

Output: Γ′ = (G′, f ′, f ′) with pressure bounds p′, p′ according to the output con-
straints given in framework 2

1: N ′ ← N
2: A′ ← A \ {b}

3: for a′ ∈ A \ {d} do
4: f

′(a′)← f(a′)
5: f ′(a′)← f(a′)
6: t′(a′)← t(a′)
7: h′(a′)← h(a′)

8: if h(b) = h(d) then . Case distinction on the orientation of b, d
9: f

′(d)← f(d) + f(b)
10: f ′(d)← f(d) + f(b)
11: else
12: f

′(d)← f(d)− f(b)
13: f ′(d)← f(d)− f(b)

14: t′(d)← t(d)
15: h′(d)← h(d)

16: for n′ ∈ N ′ do
17: f

′(n′)← f(n′)
18: f ′(n′)← f(n′)
19: p′(n′)← p(n′)
20: p′(n′)← p(n′)

21: return p′, p′,Γ′ := ((N ′, A′), f ′, f ′)

36

5.3 Reduction Rules

k

l

d

b

(a) Before

k

l

d

(b) After

Figure 5.5: Application of rule 3

5.3.4 Reduction Process

Algorithm 7 Reduction Process
Input: Γ = (G, f, f) with pressure bounds p, p
Output: Γ′ = (G′, f ′, f ′) with pressure bounds p′, p′ according to the output con-

straints given in framework 2

1: Γ′, p′, p′ ← Γ, p, p
2: Queue← enqueue all n ∈ N ′

3: while Queue not empty do
4: n← dequeue from Queue

5: if rule 1 applicable for n then
6: m← neighbor of n
7: Γ′, p′, p′ ← apply rule 1 to Γ′, p′, p′ for n
8: Queue← enqueue m

9: else if rule 2 applicable for n then
10: k, l← neighbors of n
11: Γ′, p′, p′ ← apply rule 2 to Γ′, p′, p′ for n

12: if rule 3 applicable for k, l then
13: Γ′, p′, p′ ← apply rule 3 to Γ′, p′, p′ for k, l
14: Queue← enqueue k, l

15: return p′, p′,Γ′ := ((N ′, A′), f ′, f ′)

37

5 Network Reduction

We may now combine rules 1 to 3 to a single procedure. We do so by going through
all nodes in the graph and check if one of our rules is applicable for that node. Also,
we note that the application of rule 1 or rule 3, respectively, decreases the degree of
nodes in our graph. This might allow the application of a rule for these nodes that
was not possible before. In order to check these nodes again, we maintain a queue of
nodes to go through and check. The complete reduction process is formally described
in algorithm 7.

Corollary 5.5. The output of algorithm 7 indeed satisfies all the output constraints
given in framework 2.

Proof. Immediately follows from propositions 5.2, 5.3 and 5.4 by induction over the
application of rules.

5.4 Possible Improvements

The rules we have specified perform a good amount of reduction for compressor stations
that we have tested our method on. However, on some networks our rules were too
limited and failed to achieve the amount of reduction that we would ideally like to
achieve. An example of this is shown in figure 5.6. We suggest three ways to further
improve the effect of the network reduction.

First, it might help to specify more rules or somehow generalize our existing rules in
order to identify appropriate structures in the network that we wish to contract. A
starting point for this could be the generalization of the type of structure that we fail
to contract in figure 5.6. It remains in question, by what means these structures can
be efficiently identified.

Second, we were able to improve the process of bound propagation by borrowing tools
from linear programming. Perhaps, a similiar improvement can be made for network
reduction. More precisely, it is evident that if we view bound tightening on a network
as an optmization problem, then what network reduction effectively does is that it
performs a preprocessing of the optimization problem through variable and constraint
elimination. Therefore, it might be helpful to explore network reduction from an
algebraic perspective which could be a way around the problem of having to deal
explicitely with different graph structures.

Third, we have so far only considered redundancy in the case that two decisions de-
scribe the exact same scenario. However, redundancy also exists when two decisions
describe two scenarios where one of the scenarios is completely contained in the other.
This is examplarily shown in figure 5.7. Therefore, it might be possible to further

38

5.4 Possible Improvements

improve redundancy detection by extending the network isomorphism testing to a
comparation method which is able to recognize this type of redundancy.

k

l
(a) Before

k

l
(b) After

Figure 5.6: Ideally, we would like to perform this reduction since the complex structure
of short cuts merely is a bloated path from k to l. However, none of our
rules can be applied in this case because all innodes have degree three.

k
0|1

l
-1|0

0|1

(a)

k
0|2

l
-2|0

0|2

(b)

Figure 5.7: The scenario described by the left decision, where the amount of admissible
flow from k to l is between 0 and 1, is completely contained in the scenario
described by the right decision, where the amount of admissible flow from
k to l is between 0 and 2.

39

6 Computational Experience

6.1 Implementational Issues

We used Python 2.7 to implement the bound tightening and network reduction meth-
ods described in chapter 4 and 5, respectively. We also implented the creation of
decisions from partial decision as well as the application of decisions as described in
chapter 3. For general graph representation and isomorphism testing according to
section 5.2, we used NetworkX [13] which implements the VF2 algorithm for matching
graphs (see [6], [5]). In addition, we used CPLEX [17] to solve linear programs that
arise in the bound tightening procedure. We accessed CPLEX through Pyomo [15]
[14] which provides a standardized Python interface for a large number of solvers.

6.2 Test Instances

We tested our methods on models of real compressor stations that have been provided
by Open Grid Europe GmbH. Besides the compressor stations’ graphs, the models
include all the values for flow and pressure bounds as detailed in section 2.2. In
addition, the models contain a partition of the compressor stations into decision groups,
and a list of partial decisions for each decision group as described in section 3.1. We
tested our methods on five compressor stations which can be characterized as follows:

• Station A is a small compressor station of low complexity which consist of only
one decision group.

• Station B and Station C are medium-sized compressor stations of moderate com-
plexity which consist of two decision groups each.

• Station D and Station E are large compressor station of high complexity. Station
E consists of two decision groups. Station D consists of three decision groups.

For all stations (except Station A which only consists of a single decision group), we
refer to the decision groups that we were given by Station B1, Station B2 and so on.

41

6 Computational Experience

Then, Station B refers to the graph and decision group that result from the union of
Station B1 and Station B2, and the partial decisions for Station B are all products of
partial decisions from Station B1 and Station B2. Similarly, this applies for Station
C, Station D and Station E.

6.3 Test Results

All our computations have been conducted on a computer with a 64-bit, 3.70GHz
Intel R© Xeon R© E3-1290 V2 CPU and 16 GB RAM.

Table 6.1 shows the combined effect of determining validity and detecting redundancy
through network reduction, optimization-based bound tightening and isomorphism
testing. As discussed in chapter 4, optimization-based bound tightening results in tight
flow and pressure bounds, and the number of valid decisions is exact for every decision
group. With respect to redundancy detection, table 6.1 shows that the effectiveness
of network reduction varies between stations. It proves to be rather effective, for
example, for Station C and Station D, but shows very limited effect for Station E. Of
course, there are multiple properties of the stations’ graphs, such as their structure
or the number of boundary nodes in them, that influence the effectiveness of network
reduction.

However, our results are partially skewed by a questionable property of the models
that we rely on. That is, some compressor groups can be operated in active mode
such that they exactly compensate the pressure loss occuring at their inlet and outlet.
Clearly, there is no point in this, because it is equivalent to bypass mode, but consumes
energy. Thus, we also tested our methods with the additional constraint that an active
compressor group must increase the pressure in its working direction by some ε > 0:

∀a ∈ Acg : p(h(a)) ≥ p(t(a)) + ε (6.1)

The results of this are shown in 6.2.

In addition, 6.3 shows that the process of network reduction significantly reduces the
size of decisions’ networks. Even though there possibly is room for improvement in
redundancy detection between different decisions, this means that network reduction
allows us to detect a lot of redundancy within a single decision’s network. This alone
can be considered a great step in preprocessing decision data for further optimization
purposes. However, the exact gain in performance for other optimization problems,
that is achieved by our decision data preprocessing, is still to be measured.

42

6.3 Test Results

Decision
Group

Partial
Decisions

All
Decisions

Valid
Decisions

Different
Networks

Total
Runtime

Station A 53 655 204 146 159s
Station B 90 200 185 150 119s
Station C 100 825 726 464 1008s
Station D 450 2088 1710 1338 2918s
Station E 280 2750 2640 2616 4331s

Table 6.1: Results of our process of optimization-based bound tightening, network re-
duction and isomorphism testing where "Different Networks" refers to the
number of valid, non-equivalent decisions.

Decision
Group

Partial
Decisions

All
Decisions

Valid
Decisions

Different
Networks

Total
Runtime

Station A 53 655 83 43 66s
Station B 90 200 170 135 185s
Station C 100 825 627 377 860s
Station D 450 2088 1440 1104 2332s
Station E 280 2750 2640 2616 4120s

Table 6.2: Results of our process of optimization-based bound tightening, network re-
duction and isomorphism testing using the additional constraint (6.1)

Decision
Group

Before Reduction After Reduction
Short Cuts Innodes Short Cuts Innodes

min max avg min max avg min max avg min max avg
Station A 2 22 17 1 17 15 0 12 6 0 7 4
Station B 17 35 31 16 28 26 1 10 5 0 4 2
Station C 26 35 30 16 21 19 11 16 14 1 4 2
Station D 59 70 66 51 56 55 11 21 15 3 8 5
Station E 43 64 57 38 53 49 6 19 13 1 9 5

Table 6.3: Effect of network reduction on the size of the network where minimum,
maximum and average for a decision group are taken over all decisions for
that decision group.

43

Bibliography

[1] BMWi. Erdgasversorgung in Deutschland. 2016. url: http://www.bmwi.de/
DE/Themen/Energie/Konventionelle-Energietraeger/gas.html (visited on
05/04/2016).

[2] Ralf Borndörfer, Berkan Erol, and Thomas Schlechte. “Optimization of macro-
scopic train schedules via TS-OPT”. In: Proceedings of 3rd International Seminar
on Railway Operations Modelling and Analysis - Engineering and Optimisation
Approaches. Ed. by I. A. Hansen et al. 2009.

[3] Ralf Borndörfer et al. “Aggregation Methods for Railway Networks”. In: Proceed-
ings of 4th International Seminar on Railway Operations Modelling and Analysis
(IAROR). Ed. by I. A. Hansen et al. Vol. 4. 2011. url: http://opus4.kobv.
de/opus4-zib/frontdoor/index/index/docId/1188.

[4] William J. Cook et al. Combinatorial Optimization. Wiley Series in Discrete
Mathematics and Optimization. Hoboken, NJ, USA: John Wiley & Sons, Inc.,
2011. isbn: 9781118031391. url: https : / / books . google . de / books ? id =
tarLTNwM3gEC.

[5] Luigi P. Cordella et al. “An improved algorithm for matching large graphs”. In:
3rd IAPR-TC15 Workshop on Graph-based Representations in Pattern Recogni-
tion, Cuen. 2001, pp. 149–159.

[6] Luigi P. Cordella et al. “A (sub)graph isomorphism algorithm for matching large
graphs”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
26 (10 2004), pp. 1367–1372. doi: 10.1109/TPAMI.2004.75.

[7] George B. Dantzig. Linear Programming and Extensions. Princeton, NJ, USA:
Princeton University Press, 1963.

[8] George B. Dantzig. Origins of the Simplex Method. Tech. rep. Stanford Univer-
sity, Systems Optimization Laboratory, 1987. url: http://www.dtic.mil/
dtic/tr/fulltext/u2/a182708.pdf.

[9] Berkan Erol.Models for the train timetabling problem. Diploma thesis, TU Berlin,
2009.

[10] Ambros Gleixner et al. Three Enhancements for Optimization-Based Bound Tight-
ening. ZIB-Report 15-16. Zuse Institute Berlin (ZIB), 2016. url: https : / /
opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/5780.

[11] Martin Grötschel. Diskrete Optimierung (lecture notes). 2015. url: http://www.
zib.de/groetschel/teaching/SS2015/Skriptum_ADM_II-2015-07-20.pdf.

45

http://www.bmwi.de/DE/Themen/Energie/Konventionelle-Energietraeger/gas.html
http://www.bmwi.de/DE/Themen/Energie/Konventionelle-Energietraeger/gas.html
http://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/1188
http://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/1188
https://books.google.de/books?id=tarLTNwM3gEC
https://books.google.de/books?id=tarLTNwM3gEC
http://dx.doi.org/10.1109/TPAMI.2004.75
http://www.dtic.mil/dtic/tr/fulltext/u2/a182708.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a182708.pdf
https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/5780
https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/5780
http://www.zib.de/groetschel/teaching/SS2015/Skriptum_ADM_II-2015-07-20.pdf
http://www.zib.de/groetschel/teaching/SS2015/Skriptum_ADM_II-2015-07-20.pdf

Bibliography

[12] Inc. Gurobi Optimization. Gurobi Optimizer Reference Manual. url: http://
www.gurobi.com.

[13] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. “Exploring network
structure, dynamics, and function using NetworkX”. In: Proceedings of the 7th
Python in Science Conference (SciPy2008). Pasadena, CA USA, Aug. 2008,
pp. 11–15.

[14] William E Hart, Jean-Paul Watson, and David L Woodruff. “Pyomo: modeling
and solving mathematical programs in Python”. In: Mathematical Programming
Computation 3.3 (2011), pp. 219–260.

[15] William E Hart et al. Pyomo–optimization modeling in python. Vol. 67. Springer
Science & Business Media, 2012.

[16] Michael Herty, Jan Mohring, and Veronika Schleper. “A new model for gas flow
in pipe networks”. In: Mathematical Methods in the Applied Sciences 33 (7 2010),
pp. 845–855.

[17] IBM ILOG. CPLEX Optimization Studio. url: http://www- 03.ibm.com/
software/products/en/ibmilogcpleoptistud/.

[18] Thorsten Koch et al., eds. MOS-SIAM Series on Optimization. SIAM, 2015.
[19] Wikimedia Commons (Alois Köppl). Erdgaskompressorstation Rothenstadt-Weiherhammer.

url: https://de.wikipedia.org/wiki/Datei:Rothenstadt_Megal_Verdichterstation_
2012_01.jpg.

[20] Zuse Institute Berlin (ZIB). SCIP: solving constraint integer programs. url:
http://scip.zib.de/.

46

http://www.gurobi.com
http://www.gurobi.com
http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud/
http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud/
https://de.wikipedia.org/wiki/Datei:Rothenstadt_Megal_Verdichterstation_2012_01.jpg
https://de.wikipedia.org/wiki/Datei:Rothenstadt_Megal_Verdichterstation_2012_01.jpg
http://scip.zib.de/

	Introduction
	Flow Networks
	Linear Programming

	Compressor Stations
	Role within Gas Networks
	Modelling of Compressor Stations

	Analyzing Operation Modes of Compressor Stations
	Decisions/Terminology
	Problem Statement and Motivation
	Overview of Approach
	Related Work/NETCAST

	Bound Propagation
	Locally Enforcing Flow Conservation
	Optimization-Based Flow Bound Tightening
	Optimization-Based Pressure Bound Tightening

	Network Reduction
	General Idea
	Equivalence of Decisions
	Reduction Rules
	Rule 1
	Rule 2
	Rule 3
	Reduction Process

	Possible Improvements

	Computational Experience
	Implementational Issues
	Test Instances
	Test Results

