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Abstract

In circuit switching networks call streams are characterized by their
mean and peakedness (two-moment method). The GI/M/C/0 system
is used to model a single link, where the GI-stream is determined by
fitting moments appropriately. For the moments of the overflow traffic of
a GI/M/C/0 system there are efficient numerical algorithms available.
However, for the moments of the freed carried traffic, defined as the
moments of a virtual link of infinite capacity to which the process of
calls accepted by the link (carried arrival process) is virtually directed
and where the virtual calls get fresh exponential i.i.d. holding times, only
complex numerical algorithms are available. This is the reason why the
concept of the freed carried traffic is not used rigorously. The main result
of this paper is an efficient algorithm for computing the moments of the
freed carried traffic, in particular an explicit formula for its peakedness.
This result offers a unified handling of both overflow and carried traffics
in networks. Furthermore, some refined characteristics for the overflow
and freed carried streams are derived.
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1 Introduction and main results

In teletraffic engineering a call stream arriving at a link in a circuit switching
network can be described by a stationary point process ® = {T,,}32__ on
the real line R with ... < Ty <0< T < ..., cf. e.g. [FKAS], [BFL]. Some

'This work was supported by a grant from the Siemens AG.



characterization of such streams is given by their mean M and peakedness
Z, i.e. by their first two moments, cf. e.g. [Gira]. More precisely: directing a
stream @ virtually to an infinite trunk group with exponential holding times
(parameter p), i.e. considering a G/M /oo system, the factorial moments
My, k € N := {1,2,...}, of the distribution of the number of occupied
trunks give some characterization of ®. The mean M and peakedness Z
are defined by M := M), Z := 1 — My + M(y)/M(yy (variance-to-mean
ratio). For a given mean M, the peakedness Z varies within the interval
[Zmin (M), 0), where Zpin(M) := (1 —exp(—M~1))~"! — M, cf. [v.Do] p. 3,
[FK]. It is well known that trunk group blocking probabilities of peaky
traffic (Z > 1) such as overflow traffic can be substantially larger than those
seen by a Poisson traffic (Z = 1) with the same intensity. The opposite
situation occurs in case of smooth traffic (Z < 1). Thus there is a need
of working with two-moment characterizations of streams. (For the use of
higher moments in applications cf. [Rene], [KB].) If ® is a renewal process
(GI-stream) with interarrival time distribution A(t) then the M) are given

by, cf. e.g. [Takl], [Tak3] or [GK] p. 81,
My, kH1 JA*(j)
ME'A 1-A*(jp)’

k €N, (1.1)

where A*(s) denotes the LST of A(t) and EA = —A*'(0) is the mean inter-
arrival time.

Consider now a single link of capacity C' as a basic component of a
switching network, where a GI-stream ® with interarrival time distribution
A(t) arrives, cf. Figure 1.1. Each call requires one trunk for an exponential
holding time with parameter p, i.e., the link is modelled as a GI /M /C/0 loss
system, cf. [Gira] pp.90/91. One justification of the GI-stream assumption
is that overflow processes of GI-streams are GI-streams, too, cf. [Gira] p. 91,
and that overflow streams generally can be well approximated by interrupted
Poisson processes (IPP’s) which are special GI-processes. As mentioned
above, the overflow process ®; = {71 ,}22 _ of all arrival times of calls
finding at their arrival the C' trunks busy is a renewal process, too, whose
spacing distribution is well known, cf. [Tak1] p. 185 or [GK] p. 81. The arrival
times of all calls accepted by the link provide the process ®; = {To 5 }52 _
of the carried traffic by the link, cf. Figure 1.1, which can be described by
means of a semi-Markov process and is of a more complex structure, cf.
[HH]. Assume that the GI/M/C/0 system is in steady state.

Overflow traffic ®,. Directing ®; to an overflow link of infinite capacity
and exponential holding times (parameter p1), the factorial moments M (),
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Figure 1.1: Link of capacity C with overflow and freed carried traffic. The
dotted line hints that the accepted calls at the link generate virtual calls with
independent holding times.

k € N, of the number N;(t) of calls in the overflow link, in particular the
mean M; and peakedness 71, give some characterization of ®;. Potter, cf.
[Pott] Eq. (41), proved the formula

c

1 C\ (k+£-1)!
- T, o FEN 1.2
M) % (ﬁ) (E=1)! M4y (1.2)

where the factorial moments M), k € N, of ® are given by (1.1). Formula
(1.2) offers a very efficient way for calculating M; and Z;.

Carried traffic 5. The corresponding characterization of ®4 is obtained
by directing @, virtually to an infinite trunk group with exponential holding
times (parameter p) which are independent of the holding times at the link
considered, cf. Figure 1.1.! The factorial moments My ), k € N, of the
number Ny(t) of calls in the virtual link, in particular the mean M, and
peakedness Zs, give some characterization of ®,. This concept gave raise
to call Z the peakedness of the freed carried traffic, cf. [v.Do], in contrast

!This means, although carried arrivals are accepted simultaneously at the GI/M/C/0
system and the infinite trunk group, the departure times are different.



to the variance-to-mean ratio Z» of the number N(¢) of busy trunks on
the GI/M/C/0 system, a quantity which is discussed and used in [Wilk],
[Katz], [Desc|, [Gira] and which we call non-freed carried traffic. It were
[HH] who observed the incommensurability of Z; and Z, when working
with two-moment characterizations of streams, and that Z, and Z, may
differ considerably even in case of a Poisson arrival stream. In their paper
a complex numerical algorithm for computing Zs is developed. However,
the complexity and numerical instabilities of this algorithm, cf. Remark 3.1,
prevented a rigorous use of the concept of the freed carried traffic, although
this would be necessary as mentioned in [Gira] p.111: ”In practice, calcu-
lating these moments (My and Zy: added by the authors) is quite difficult
both theoretically and numerically, and great care must be taken to ensure
stability. For these reasons, the CAP (freed carried traffic: added by the
authors) is not used in network-analysis algorithms.” Therefore in practice
the concept of the non-freed carried traffic, i.e. My, Zy, is used, cf. [Katz],
[Desc]. The main aim of this paper is to derive new formulae — for our best
knowledge — for the factorial moments My 1), k € N, of the freed carried
traffic of a GI/M/C/0 system, in particular we derive the representation

My, 2) = M <)M(2)
2,(2) = M2 (1
M,
C V4
C 2 mM )
— My (yMy o ( ) (7 +1>7 (1.3)
(7 )ez_; £) My mz_:l M)
where because of the conservation principle My (1) = M1y — My (1), and

1

M (1), My (9) are given by (1.2). The representations (1.2), (1.3) provide
very efficient and numerically stable algorithms. For example, in case of a
Pentium processor with 200 MHz and IPP interarrival times, computing the
means and peakedness factors for the overflow and freed carried traffic takes
approximately 2ms for C = 10000. The complexity of the computation is
O(C). Thus the results of this paper offer a unified handling of both overflow
and carried traffic in networks and are closing — to our best knowledge — this
long existing gap.

The paper is organized as follows. In Section 2 we present a unified
approach to both overflow and freed carried traffic by considering the balance
equations for the densities of the triples of the backward recurrence time R(t)
of &, N(t) and N;(t), i = 1,2, respectively. For the partial factorial moments
of the N;(t), i = 1,2, which are more refined characteristics than the M; (),
i = 1,2, we derive explicit rsp. recursive expressions (Theorem 2.1). These
results seem to be new also in case of overflow streams. As an immediate



consequence, in Section 3 we obtain Eq. (1.2) and recursive expressions for
the My ), k € N. Using the latter we prove Eq. (1.3). In particular,
we obtain the very simple expression (3.9) for the peakedness of the freed
carried traffic in case of a Poisson arrival stream. In Section 4 we present
numerical results illustrating the usefulness of (1.3).

2 A unified approach to overflow and freed carried
traffic characteristics

Assume that the GI/M/C/0 system is in steady state. The stationary
process N(t) has the state space X := {0,1,...,C}, and the stationary
processes N;(t), i € I := {1,2}, have the same state space Z,. For k € N
the kth factorial moments are defined by M) := E(N(t)-...-(N(t)+1-k))
and M; () := E(N;(t)-...-(Ni(t)+1-k)), i € I, respectively. The backwards
recurrence time of @ at ¢, i.e. the time elapsed since the last arrival at the
GI/M/C/0 system before ¢, is given by

R(t) = (t—Tn)I{Tp <t < Tny1}.
neEZ
The stationary processes X;(t) := (R(t), N(t),N;(t)), t € R, i € I, have
the same state space Ry x X x Z and possess the Markov property. For
(z,n,m) e Ry x X X Z let
Pi(z,n,m) := P(R(t) <z, N(t) = n,Ni(t) =m), i€l

be their marginal distributions and
d .
pi(z,m,m) := @Pi(x,n,m), i €1,

their densities. For a smooth mathematical treatment of the balance equa-
tions determining the densities p;(z,n,m) it is convenient to assume that
there exists a continuous hazard rate r(z) = A'(z)/(1 — A(z)). Later we
may drop this assumption. The dynamics of the Markov processes X;(t)
provide the balance equations for the p;(z,n,m). In case of z € (0,00) and
(n,m) € X x Z for i € I it holds

pi(z+h,n,m) = pi(x,n,m)(1—(n+m)uh—r(z)h)
+ pi(z,n+1,m)(n+1)uh
+ pi(z,n,m+1)(m+1)uh+o(h), h >0,



which yields

%pi(l‘, n,m) = (n+1)ppi(z,n+1,m)+(m~+1)up;(z,n,m+1)
—((n+m)pu+r(z))pi(z,n,m), (2.1)

where p;(z,n,m) := 0 for (z,n,m) € Ry Xx X x Z,. In case of z = 0 and
(n,m) € X x Z, we have the differing boundary conditions

pi(0,n,m) = /R+ (pi(y,n—l,m—][{z' = 2})
+ I{n = Clpi(y,n,m—1{i = 1}))r(y)dy, i€l (2.2)

Remark 2.1 Since the balance equations differ only in their boundary con-
ditions (2.2) there is some evidence for a similar mathematical treatment
of the overflow and freed carried traffic. However, ®4 is of a semi-Markov
structure whereas ®1 is a renewal process and hence of a much simpler struc-
ture.

Multiplying (2.1) and (2.2) by m(m —1)-...- (m+1— k) and summing
over m € Z, for the densities

0
qz',k(x,n) = Z me...- (m+1_k)pi(wanam)a ('T,n) € R—I— X Xa
m=0

of the kth partial factorial moments for ¢ € I, k € Z, and n € X we obtain
the equations

d

3 Yk (2:n) = (ntDugi(z, n+1) = ((n+k)p+r(z))gik(z, n),
x>0, (2.3)
qi,k(0,m) = /R+ (qz-,k(y,n—l)ﬂl{n = C}4ik(y,n)
+ (1-1{i = L,n < CHhgiea(y,n—T{i = 2}))r(p)dy.  (24)

Clearly, qi0(z,n) = go0(z,n), (z,n) € Ry x X. The system of equations
(2.3), (2.4) is equivalent to

d

P Qik(r,n) = (n+1)uQ; k(z, n+1)—(n+k)pQ; x(z,n), z >0, (2.5)



Qus0.m) = [ (Qurly:n=D+1{n = C}Qin(y.)

R+
+(1-1{i = L,n < CHQikaly,n—1{i = 2}))dAy),  (26)

where we use the substitution
gik(z,n) = kl(1-A(z))Qik(z,n) (2.7)

and Q; —1(z,n) := 0. Clearly, Q1 o(z,n) = Q20(z,n), (z,n) € Ry x X. The
system of equations (2.5), (2.6) is more convenient than (2.3), (2.4) and
hence used in the following. Obviously, the system of equations (2.5), (2.6)
is well defined for arbitrary A(z). Taking into account that an arbitrary
d.f. A(z) can be considered as the limit in distribution of a sequence of
distributions A,(z), v € Z,, with continuous hazard rates, we may apply
continuity arguments and consider (2.5), (2.6) and the r.h.s. of (2.7) for
arbitrary A(z). Since the succeeding analysis does not use the existence of a
hazard rate we may drop this assumption now. For notational convenience
we use A} := A*(ju), j € Zy, in the following.

Lemma 2.1 The Q;k(z,n), (z,n) e Ry x X, i €I, k € Z,, are given by

c . i—n (k)
O
Qi,k(w,n) = Z (ﬁb) T’]Me (j+k) (28)
j=n j+k

if the coefficients bg,kj), 1€1,5€X, ke Zy, satisfy the system of difference
equations

1-A* C
1= Afek ) e k) (k)
a0 (- (5, ))

=1{i =1} (?) bz(,kc_l) + 1{i = 2} (bz(’/;—l)_ (f) bz(,k(;n_l_][{j > 0}

(bz(f;_ll)_( ¢ )bz(,kgl)>>, 1€ Ia JE Xa ke Z-H (29)

j—1
b =1/(uEA), i€l (2.10)
where bz(-,;l) =0,1€1, 5 €X, by convention.



Proof. Denote by Q; (z,n) the r.h.s. of (2.8) for arbitrary b( )eR In
view of

£ Qs m) — (4 DG, mt 1) + (04 R, )

C (— )] nb(k) B
= — (k) +G—n)+(ntE)) [ ) L 2o R =
S (-G )G

the functions Q; x(z,n) satisfy (2.5). )
In order to satisfy the boundary condition (2.6) we insert @Q; x(z,n) into
(2.6). The boundary condition (2.6) is fulfilled if for i € I, n € X, k € Z

y (i) (_31]7_%(? — T > 0}]2; (nil)(_l)j—nbgz)

7=0 j+k
— k) _ — onptkD)
+1I{n= C}bz',c +I{i =1,n=C}b

C .
~T{i=27n>0}) (nj—l) (—1)7 e, (2.11)
j=0

Multiplying (2.11) by (1 + 2)", summing over n € X and using the binomial
formula, after elementary algebra we obtain the equivalent condition that
foriecl,keZy, z€C

C b(k)
Zb z] 1+2) —bg,kc)vz(l-kz)c
j=0 J+k

—l—][{z—l}b D(142)¢
+][{z—2}<2b(k Vi b(fgl)(1+z)0>(1+z).

Comparing the coefficients of 2/ provides the equivalent linear system of
equations (2.9) for the bgkj).

In view of (2.7), (2.8), the normalizing conditions

/ ZQZO y,n ]-a iEIa

Rt p—o



are equivalent to (2.10).

L]
The following lemma provides the existence and expressions for the bg?,
1 €1,j € X, k € Zy, in particular explicit formulae for the bglf]) and a
recursive with respect to k € Z algorithm for the bgf).
Lemma 2.2 Let G_1 := co and
k
1—4j
G == (uEA) ] o keEZy (2.12)
£=1 ¢
ForjeX, keZy let
c c
Z_ ((;:) Gn—Hc Z+1 (g) Gn—Hc—l
k n=j n=j
B .= . - . (2.13)
> () Gtk > (%) Gtk
n=0 n=0
For 5 € X let
0 0
By .= B{"). (2.14)
For j € X, ke N et
C k—1 k—1 C
(k) ._ plk-1) BV B! C
By =By, 7 — G Z Grtk-1
ney Cntk Crk—1 25\
g e
c_p{k- Békc_l) ¢ 0 > ()Gt
n=
+( e E:( )GWM_O—EL—————.QJQ
n=0 A”+k GC—l—k:—l n=0 n C
Z (n)GY”‘Hc
n=0
Then for
bt = BN /G, i€l jeX ke, (2.16)

the system of difference equations (2.9) and (2.10) is fulfilled.

Proof. Let bg? defined by (2.16). In case of £ = 0 the last fraction in
(2.13) vanishes because of G_; = co. Thus from (2.13) for k =0, j = 0 and
(2.14) for j = 0 it follows
BYW =1, ieI, (2.17)
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hence (2.10) is fulfilled on account of (2.16), (2.12).

In case of i = 1 using (2.16), (2.13), (2.12) and handling the cases k = 0 or
j = 0 separately provides (2.9) after elementary algebra. As in case of kK =0
the systems of difference equations (2.9) do not differ for 7 € I, in view of
(2.14) thus (2.9) is fulfilled for i = 2 and k = 0, too. In case of i = 2 and
k € N using (2.16), (2.12), applying (2.15) to the Lh.s. of (2.9) and handling
the case j = 0 separately, after some elementary algebra we obtain (2.9).

O

Remark 2.2 Because of (2.12), (1.1) it holds
Gy = k!/M(k:—l—l)’ keZ,. (2.18)

On account of 1/Ay = Gi/Gr-1 + 1, k € Z, thus the Bg,’;) and bg? are
given by the My, £=1,2,...,C+k+1.

In view of (2.14) and (2.13) Lemma 2.2 provides explicit representations for
the Bg’?,
Bgcj), j € X, can be derived using the recursion (2.15). The following lemma
provides explicit expressions for £ = 1.

j € X. In principle, for given & € N explicit expressions for the

Lemma 2.3 For j € X it holds

C C C
> 6 (%) © (e
B(l) _ n=j+1 _ n=j =
2,5 c
2 ()G > (2)Gn
Z (anl +1) i ((z;) Gy E (n)Gn+1
+ n=0 . {=n+1 n:] ' (2'19)
> (2)Gn 3 ()G

Proof. From (2.15), (2.14) and (2.13) for j € X it follows

< C & 1 < C < C

> ()6 LAY - ¥ (G,
(1) _ n=j _ n=j " f=n n=j+1
2,j C c

> (96 £ (96

10



nt1 n=0 n=j
+ o .
> ()G > () Gnt
n=0 n=
Using 1/Ay ., = Gpy1/Gpn + 1 we can continue
c C c C
> (enn+ X (B2+1) X (DG- ¥ (D6
B(1) B n=j n=j {=n+1 n=j+1
25 — C c
n=0
c c c c
> ()Gnin+ ¥ (%2+1) X (DG X ()Can
n=0 n=0 f=n+1 n=j
i & C & c ’
= (n)Gn nZZ:O (n)Gn+1

and simplification yields (2.19).

The following theorem summarizes these results.

Theorem 2.1 For the densities g; y(x,n) of the kth partial factorial mo-
ments for (z,n) e Ry x X, i € I, k € Z it holds

c ,. '
gik(z,n) = kY (1-A(z)) Z (i) (—1)i

Jj=n
1 1 (k) (j+k)

n B® =itk 2.20
(Gj+k Gj+k1> i H (2.20)

where G_1 = 00 and Gy, = k!/M(,H_l) for k € Z, the Bgcj) are explicitly
given by (2.13) for k € Z, Bé?} = BS?, the ng) are explicitly given by

(2.19) and the Bgcj) are recursively given by (2.15) for k € N.

3 Factorial moments of the overflow and freed car-
ried traffic

Theorem 2.1 allows to proof the formulae (1.2) and (1.3) as announced in
the Introduction. In view of (2.20) for the factorial moments M; ), i € I,

11



k € N, it follows

C
M; k) :/R > dik(y,n)dy

+ n=0

1 1 (k)/ —k
=kl 5 B, 1-A Hy
k (Gk + Gk—1> 1,0 R+( (y)):u'e dy
1

= (=147 (g +

Gk,l)B’(’?’ (3.1)

and taking into account (2.12) we obtain
Mgy = (k=1)!B /Gy 1, i€, kEN, (3.2)

Formula (1.2) for the factorial overflow moments is now an immediate con-
sequence of Lemma, 2.2.

Corollary 3.1 The M, 4, k €N, are given by (1.2).

Proof. From (3.2) for ¢ =1 and (2.13) we obtain

c

M, gy = (—1)! (Z (2) Gn+k_1> T ken (3.3)

n=0

Thus (1.2) is proved in view of (2.18).

O
Because of (2.15) from (3.2) for ¢ = 2 it follows
BV gl
My gy = (k—1)! [ 222 _ 2 . keN 3.4
2 = (k-1 (o - 2 ) (34

The offered with respect to k recursive algorithm (2.15) for computing the
Bgcj), j € X, allows, in principle, to derive via (3.4) an explicit formula for
My (1, for given k € N. However, for practical purposes, cf. the Introduction,
we are mainly interested in the peakedness Zo =1 — M 1) + MQ,(Q)/MQ,(D,
ie. in MQ,(Q). (Note that MQ:(U = M(l) — Ml,(l)-)

Theorem 3.1 The factorial moment My (5) is given by (1.3).

12



Proof. From (2.19), (2.18) and (3.3) it follows

C
Bélg 1 nZ::I ()G _ 1 (1 Go ) M, (1
G TG & e, el E ~ M~
TR ME T 2 ()6

and applying M, 1) = M(;) — M; (1) provides

1
By i Me)

Moreover, from (2.19) it follows

c

sy 5 (%) 2 06

Ger1 c C

(2 06)(Z(06nn)
5 (§)Ge 3 (s +1)
{=1 m=1

Ma
—~
S Q
N—
Q
3
N——
/N
Ma
—
3
N—
)

3

+

—
N——

/N

3
Il
)

Thus (2.18) and (3.3) yield

( l
B, “. /c 2! Z mM )
= M1,(1)M1,(2)Z<£)m (r( +1) 1>.
m=1 m

Finally, from (3.4) for k = 2, (3.5) and (3.6) we obtain (1.3).

M1,<1>>
Myy )’

(3.5)

(3.6)

O

Remark 3.1 The numerical algorithms in [HH] for computing Zy base on
the fact that the freed carried traffic can be characterized as a semi-Markov
process and that there are relations between the occupancy distribution in
the time stationary and event stationary dynamics. By deriving first ez-
plicit formulae for the semi-Markov process characteristics, a linear system
of C equations for conditional first moments of the freed carried traffic is
obtained, which has to be solved numerically. A straightforward implemen-
tation of the algorithms poses numerical problems for C>10. Thus modifi-
cations are discussed for obtaining more stable algorithms in the IPP case,

13



cf. [HH] pp. 1638-1642. The idea is to compute the stationary distribution
in the primary group at the call arrivals via birth-death equations and to im-
prove the computation of the coefficients of the mentioned linear system of
equations for this special case. These modifications extend the useful range
of C, examples up to C =100 are reported.

For a Poisson process of intensity A Eq. (1.1) reduces to M) = M k.
where M = \/p. After some algebra from (1.2) and (1.3) we obtain

M, = MB(M, C), My =M — My, (3.7)
M
Z1=1-M _ .
1 1+C+1_M27 (38)
My
oy = 1—m(0+1—M2—Z1), (3.9)

where B denotes the Erlang loss function. Note, that (3.7), (3.8) are well
known, cf. e.g. [Gira], [Pott], whereas (3.9) seems to be new.

4 Application and numerical results

Without loss of generality in the following we assume p = 1. IPP’s are
GI-streams with a Hs interarrival time distribution

A(t) =r(l—exp(—aqt)) + (1—7r)(1—exp(—ast)), t € Ry, (4.1)

with parameters r € [0,1], aq > 0, ag > 0. For the special case (4.1) from
(1.1) it follows

B alaz—i—(ral—l—(l—r)ag)j
Mgy =11 rart (ryarty  FEN (4.2)

j=0
Thus for the mean M and peakedness Z of an IPP we obtain
109
M= 4.3
rag+(l1—-r)ay’ (43)
r(1—7) (a1 —ao)?

Z2=1+ (rag+(1—r)ou)(rag+1—r)oar+1)

(4.4)

As overflow streams are often approximated by IPP’s in practice, cf. [Kucz],
[Rene], we choose an IPP as the arriving GI-stream & in case of Z > 1.

14



For a given mean M > 0 and peakedness Z > 1 we determine the IPP
parameters by Rapp’s approximation, cf. [Rapp], [Gira|, [Kucz]:

M pY
A= MZ+3Z(Z—-1), w:= 7(M+3z_1), 7;:w(ﬂ_1>,
1 A—
Q= 5(()\+w+'y) + \/(/\+w+'y)2—4/\w), ri= al_osz . (45)

In case of Z < 1 we choose an GI-stream with interarrival time distri-
bution

A(t) =r(1—exp(—at)) + (1—r)I{t > 1/a}, teRy, (4.6)

with parameters r € [0,1) and « > 0, being a mixture of an exponentially
distributed r.v. and a constant time with balanced means, as the arriving
GI-stream ®. From (1.1) it follows
k—1 . . .
1— —
My =[] j(rat(1-r)(a+tj)exp(-j/e)) . keN (47
(a+7) = (ra+(1-r)(atj) exp(—j/))

=1
Thus for the mean M and peakedness Z we obtain
a+1
M=q«a Z= - a. 4.8
’ r+(1—-r)(a+1)(1—exp(—1/a)) (48)

For a given mean M > 0 and peakedness Z € [Zp,in(M),1) we find a = M
and a uniquely determined r € [0,1) such that (4.8) holds.

Remark 4.1 (1) For a numerically stable calculation of the factorial mo-
ments (4.7) we recommend the following recursion with respect to k € N:

CO = O, M(l) =aqQ, q = eXP(_l/a)a

ra+(1-r)(1—q)(at+k—1)(atk)g" !
(ra+(1-r)(a+k—1)g" 1) (ra+(1—r)(a+k)gk)’

M1y = kM /Cy.

Ck:=Cg1+

Note, that C, =1/A; — 1 for k € Z,.

(2) The peakedness Zmin(M) is achieved by constant interarrival times, cf.
[FK], [v.Do]. Also using hyper-ezponential traffic, cf. [v.Do] p.101, or
gamma-distributed A(t), traffic streams with peakedness Z € (Zmin(M),1)
can be fitted. However, the calculation of the factorial moments My, for
ke {1,...,C+2} is of higher complezity.
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The described algorithms for computing the means and peakedness fac-
tors of the overflow and of the freed carried traffic are of complexity O(C).
They have been implemented in a C++ program. This program allows the
computation of the means and peakedness factors of the overflow and of the
freed carried traffic as well as the computation of the time congestion, cf.
[GK] p.26, for a given mean and peakedness of the arrival stream and a
given capacity of the link.

Table 4.1: Link of capacity C, where a traffic stream with mean M and
peakedness 7 arrives. My, Z1, Zs denote the mean and peakedness of the
overflow traffic and the peakedness of the freed carried traffic in case of
Z = 0.8, respectively; M|, Z|, Z} denote the mean and peakedness of the
overflow traffic and the peakedness of the freed carried traffic in case of
Z = 8.0, respectively.

M C M Zy Zs M, z,  Zb
60 64 3.01 3.83 0.77 1344 1461 3.35
64 64 534 369 079  16.02 1461 3.07
68 64 8.17 344 0.82 1877 1456 2.82
248 256 6.43 7.28 077 2890 2493 355

256 256 11.04 6.93 0.79 33.95 24.68 3.27
264 256 16.64 6.39 0.82 39.32 2435 3.01
1008 1024 13.28 14.19 0.77 60.02 4595 3.63
1024 1024 22.45 13.44 0.79 70.00 45.20 3.34
1040 1024 33.58 1231 0.82 80.60 44.32 3.09
4064 4096 27.00 28.03 0.77 12233  88.13 3.66
4096 4096 45.28 26.47 0.79 142.18 86.39 3.38
4128 4096 67.48 2416 0.82 163.27 84.40 3.12
16320 16384 54.43 55.72 0.77  247.02 172.54 3.67
16384 16384 90.95 52.54 0.79 286.60 168.81 3.39
16448 16384  135.29 47.86 0.82 328.66 164.62 3.14

Table 4.1 has been drawn up using this program. It can be seen that the
mean of the overflow traffic and the peakedness factors of the overflow and
of the freed carried traffic strongly depend on the peakedness of the arrival
stream.
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