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TREE-SPARSE CONVEX PROGRAMS

MARC C. STEINBACH

ABSTRACT. Dynamic stochastic programs are prototypical for optimization problems
with an inherent tree structure inducing characteristic sparsity patterns in the KKT sys-
tems of interior methods. We propose an integrated modeling and solution approach for
such tree-sparse programs. Three closely related natural formulations are theoretically an-
alyzed from a control-theoretic perspective and compared to each other. Associated KKT
system solution algorithms with linear complexity are developed and comparisons to other
interior approaches and related problem formulations are discussed.

0. INTRODUCTION

The current paper studies convex programs with an underlying tree topology, such as
discrete-time stochastic control problems. We propose an integrated natural modeling and
solution framework for this class of large, tree-sparse optimization problems.

Dynamic control problems are characterized by an inherent recourse structure. The
proposed modeling is natural in the sense that constraints are categorized according to
their control-theoretic interpretation, namely as dynamic equations (in which the recourse
structure manifests itself), local constraints, and global constraints; the latter two cate-
gories have subcategories covering all kinds of boundary conditions. Furthermore, natural
regularity assumptions are associated with each (sub)category of constraints.

Our principal interest here is in the algebraic structure of the KKT systems arising in
standard interior methods. (Stochastic aspects will be discussed elsewhere in full detail.)
Extending earlier work [28, 30, 31, 32] with promising computational results, we develop
a thorough theoretical understanding of these tree-sparse linear indefinite KKT systems,
with accent on the hierarchical constraint structure of three principal variants differing in
the formulation of dynamics. The theoretical analysis leads to natural solution algorithms
which combine a dynamic recursion with local projections for local constraints and a Schur
complement approach for global constraints, giving linear complexity in the tree size.

Other interior approaches for stochastic programs include [2, 6, 9, 11, 13, 20, 23] (two-
stage LP case) and [5, 12, 19, 27] (linear or convex multistage case). We compare our
framework with these approaches and with the generalized linear-quadratic control formu-
lations developed by Rockafellar [24, 25] and Rockafellar and Wets [26].

The material is organized as follows. After recalling basic facts on convex programs,
trees, and interior methods, we present in Section 2 the tree-sparse problem classes along
with regularity conditions and selected references to examples and applications. A detailed
technical comparison is provided in Section 3, and the KKT solution algorithms are dis-
cussed in Section 4. Sections 5 and 6 investigate the respective relations of our approach to
other interior methods and to generalized linear-quadratic control problems. Final remarks
and indications of future research in Section 7 conclude the paper.
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Key words and phrases. Convex program, tree, discrete-time optimal control, dynamic stochastic program,

recursive factorization, local projection.
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1. PRELIMINARIES

Recalling basic facts on convex programs, trees, and interior methods, sections 1.1–1.3
introduce the general setting and notation adopted in this paper. Further details are given
in earlier work of the author, particularly [32], and in the cited literature. For background
material on convex optimization see, e.g., Stoer and Witzgall [35]; we also make frequent
use of empty matrices and vectors in the sense of [35]:

���������
	
,
������	
���

or � ����� .
1.1. Convex Programs. Consider a smooth convex program (CP) with polyhedral con-
straints specified as equalities and lower and upper bound and range inequalities,

(1) ������ �������
s.t.

�����! #"%$
&(')���+*-,/.0&1,/2435&(���6*-78.0&1792435&

where
�:�<;)=4�>�?	@&A�?�

with B =C�������EDF$EGH�?�:�#	 , and
�I��� . �
	

,
'J���#K@�
	

, L�MON .

Notational convention. As described in [32], the values
7/P. &1,4Q. "SRUT

and
79P2 &8,4Q2 "V��T

are formally allowed to indicate absent limit components. Rigorously, we maintain index
sets W . & W 2�X�Y@Z &�[C[�[8& N]\ and ^ . & ^ 2�X�Y@Z &�[C[�[8&1_ \ that indicate which limits are present.
Associated with a set W are gather and scatter matrices `ba �O��c a cd�
	 and `fea �O�)	��gc a c
such that h R `fea `�a is the projection onto the null space i � `ba � , and `�aj`)ea " h on

��c a c .
Regularity assumptions. Consider the affine subspace k eq l " Y ���:��	 l ���m�6 )"n$ \ and
the polyhedron k lim l " Y ���O*-7 . &17 2 3 l ')���o*-, . &8, 2 3 \ , and denote by k l " k eq p k lim the
feasible set of (1). Throughout the paper we make the following assumptions.

(A0) k has nonempty relative interior with respect to k eq, that is, �q�@r � k lim
� p k eq s"ut .

(A1)
�

has full rank. (Equivalently i �v� e �b" Y $ \ since L]MwN .)
(A2) B =x���y�z�C{ |}Dw~ h�� $ for all

��� k , where
|

is the null space
| l " i ����� p i � ` a����@a
� � p i � `]� ��� � � ')�/&

and B =C��������{ | l |���|
denotes the projected Hessian.

These conditions are tailored toward the barrier problems arising in an interior point
framework; cf. [32]. They do not imply existence or uniqueness of solutions of (1), since
strong convexity (A2) is only required on the lineality space of k , i.e., the largest linear
subspace inside the recession cone �5�/� � k � . The CP itself may have multiple solutions
( ����� ��� � $ ) or a finite infimum that is not attained ( ����� �4� �g��� � ), or it may be unbounded
( ����� ��� � RU� ). By standard results in convex optimization, each solution of the CP is a
global minimum, and the set � of all such solutions is convex. (More generally, every level
set i�� l " Y ��� k l ���y��� Mw��\ is convex.) We are primarily interested in the case where �
is nonempty and bounded (hence compact) which is guaranteed, e.g., under an additional
growth condition,

(A3)
���y���dK��0����T

for every sequence
�
�dK4�b� k with � ���dK4� � ��T

.

This holds, for instance, if k is bounded or if
|

in (A2) is replaced by the linear hull of
the recession cone,

|!� l " i ����� p i � `�a ��� a � � p i � ` � �d� � � 'f�E� ���x� � k � .
1.2. Trees. The problem classes studied in this paper are characterized by the presence
of an underlying tree topology, such as a scenario tree in stochastic optimization. Let �
denote the set of nodes (or vertices) of the tree,  b¡ X � the level set of nodes at depth ¢ ,
and   the set of leaves; further

$£�   � the root, ¤ �  �¡ the “current” node, ¥ � ¤ � its set
of successors, ¦U§©¨ � ¤ � its unique predecessor (if ¢�� $

), and ª � ¤ �#" Y $
&C[�[�[1& ¦ & ¤@\ the
unique path from the root to ¤ . Finally define �#e l " �o« Y $ \ . The subtree rooted in ¤ has
respective vertex set, level sets and leaves � � ¤ � ,  b¡ � ¤ � , and   � ¤ � . Below, the vertex set is
often taken to be � " Y $
& Z &�[C[�[5& i¬\ where nodes are numbered in any ascending order;
cf. Fig. 1.
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FIGURE 1. A small tree.

1.3. Interior Methods. Interior methods are well known and extensively covered in the
literature (see [37, 39] and references therein). The basic concept consists in converting
inequality constraints to barrier terms and solving a sequence of barrier subproblems whose
solutions converge to a solution of the original problem. Barrier subproblems involve the
calculation of a step direction from a reduced KKT system (or augmented system)

(2)

�������� �
	 ��	�� 
������ ���������
����
�����
������� � �! �"

��$#�% &�'� �
	� ( & ���
����)( �*&+' '! (�,
Here

'�.- � �/�0���0��	1�
�
is composed from the current Hessian

�2- �436587:9 �<;
and

nonnegative diagonal matrices
�
=>�

whose entries depend on the type of interior method
and on primal and/or dual slacks of the current iterate. Details for the convex program (1)
are provided in [32, ? 3]. In particular, it is proved that under conditions (A0)–(A2) the
reduced KKT matrix (2) is nonsingular and each barrier subproblem has a unique solution.

The early literature treats the LP case @BADC<EGF  	H�I-J�
� � ! =>�LKNMGO (where
'�QPN�SRTM

)
and solves (2) by a standard Schur complement approach: after eliminating

���
formally,

the dual step
���

is determined by the positive definite system of normal equations

(3)

9 � '� ��� � 	 ;U��� �V9 '! 
W� '� ��� ' ;X=
which is solved by a Cholesky factorization of the Schur complement

� '�Y�)�U�Z	
.

2. PROBLEM CLASSES

We consider three variants of tree-sparse programs differing in the form of dynamic
equations: explicit dynamics with outgoing and incoming control, and implicit dynamics.
Given a tree, there are local decision variables

�8[�\^]�[
in all nodes _ \Y` . In both explicit

formulations,
�a[

consists of a state b [c\Nd:[ and a control e [�\�f�[ ; the implicit variant
lacks such a partitioning. Simplified basic versions of the following problems have been
introduced in [30, 31]; detailed investigations of certain special cases are found in [28, 32].
Here we present the complete formulations in full generality.

2.1. Outgoing Control. The general tree-sparse CP with outgoing control reads@BADCgih j k[Hlim 7 [ 9 b [G= e [H;(4)

s.t. b [ �0n [ bJo �qpr[ eso ��t<[ u _ \Y`v=(5) w g[ b [ �yx g[ � M u _ \Y` 	 =(6) z j[ e [ ��x j[ � M u _ \Y`v=(7) w
{[ b [|� z {[ e [}�qx {[ � M u _ \Y` 	 =(8) w
~[ b [}� z ~[ e [
\�� "X� [G= " j [>� u _ \Y`v=(9) b [�\�� � g� [ =>� gj [ � u _ \Y` 	 =(10) e [�\�� � j� [ =>� jj [ � u _ \Y`v=(11) k[Hlim 9 w [ b [�� z [ e [}�qx�[�; � M ,(12)
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Apart from the node-wise separable objective (4) and dynamic equations (5), the problem
includes state constraints (6), control constraints (7), mixed (or coupled) constraints (8),
range constraints (9), bound constraints (10), (11), and global constraints (12). Except for
global constraints (which potentially couple all nodes of the tree) and dynamic equations,
all those constraints are local in the sense that they involve only variables of a single node.
In the stochastic case, (4) and (12) represent expectations.

Let us collect node variables
� l "J� � � & � � &�[C[�[8& ��� & � � � and local blocks

(13)
� .� l " �� ���� 	 2�� �� 	 ��


�
& ' � l "
������ 	 ���� [

The constraint matrices of (1) can then be written

(14)
�F"������ .�

��
& '�"�� ����� ��' � &C[�[�[1&8' � � § � � ' � . . . ' �

�"!� &
where

� . l "#� ���$� � � .� &�[C[�[8& � .� � , � l " �%� � 	 � [�[C[ � � 	 � � , and the structure of �
reflects the topology of the particular tree. For instance, the example tree in Fig. 1 yields

(15) � "
�      �
R h $�'&)(�& R h $� = ( = R h $��*+(,* R h $��-+(,- R h $�/.0(1. R h $

�"!!!!!!� [
Dynamics. By (5), every non-root state � � depends explicitly on the preceding state and
control, ��2m§V�43 � � � and � 2m§ � 3 � � � . This is the common formulation in the special case
of deterministic control problems (where the tree reduces to a chain). We refer to it as
outgoing control since all siblings

_�� ¥ � ¤ � are influenced by the predecessor’s control � � .
In the stochastic case, the natural interpretation is that decision � ¡ is based on complete in-
formation at time ¢ but becomes effective at time ¢ � Z , possibly due to a delay in observing
the system, in implementing the decision, or in the dynamic system itself.

The explicit nature of dynamics implies that the range of � is the global state space and
the null space of � is isomorphic to the global control space. More precisely,

(16) 5 � � ��" 5 � � { �76
8 Y $ \ �5��"96 l ";:��<>= 6 � & i � � �@?"BA l ";:��<>= A � [
Thus, the (independent) control � represents all degrees of freedom in the system, and the
(dependent) state � is uniquely determined by the control1.

The recursive dynamic structure has an important consequence: If any state components
are fixed by local constraints (6) or (8), this implies restrictions of the form (8) in the
preceding node. For instance, � � "#C� � yields � � � 2 � ( � � 2 �u�7D � REC� � �b"�$ . Ultimately,
all conditions in node ¤ have to be met by appropriate choice of controls � 2 , ¦ � ª � ¤ � . Our
recursive solution algorithm makes use of precisely this backward effect in the handling of
local constraints; details are given in F 4, or in [28] for the deterministic case.
Dimensions. Let N �� & N 2� denote the dimensions of

6 � & A � , respectively, and L �� & L 2� & L �� & L ��
and G the dimensions of constraints (6)–(9) and (12). Each of them is allowed to be zero.
In view of the specific matrix structure (14), the simple global restriction LEM�N is refined

1The root plays a special role since dynamics act as an initial condition here, HJILK�MNI , where formallyH>O$P I%QSRUT O�P I%Q@V1W I . Free components of H$I may be modeled by prepending an artificial node with empty states
and suitable controls. Alternatively one could drop dynamics (5) in the root and include (6), (8), and (10) instead.
In the latter case H$I has the nature of a control variable; therefore we prefer the given formulation.
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hierarchically by imposing suitable local and global restrictions on the above dimensions
of equality constraints,

L �� MFN �� & L
2� MFN 2� & L �� � L 2� � �L �� MwN �� � N 2� &(17) G MON

2 RF� L � � L 2 � L � � l " ��$<>= � N 2� R L �� R L 2� R L �� �x[(18)

Here
�L �� counts mixed constraints plus the minimal number of implied constraints from all

successor nodes in the subtree � � ¤ � ; it is recursively defined as�L �� l " L �� � �
K <�� � � � * L �K � � ��� � L 2K � �L �K R N

2K &8$���35[

In stochastic programs it is typical that backward effects do not occur: otherwise the num-
ber of implied conditions in each node might depend on the number of successors,

{ ¥ � ¤ �C{ ,
and hence a finer discretization of the probability space might render the problem infeasi-
ble due to a lack of local degrees of freedom (unless N 2� increases with

{ ¥ � ¤ ��{ as well). If
implied constraints are to be excluded, we must be able to satisfy all local conditions by
local control variables in the same node; then (17), (18) simplify to the stronger restrictions

(19) L �� "u$
& L
2� � L �� MwN 2� & G MwN

2 Ro� L
2 � L � �x[

Note finally that the effective dimension N � � " $
must be used in (17) since � � § D �

is always fixed. This explains why conditions (6), (8), (10) are absent in the root: (6) and
(10) are meaningless, and (8) is subsumed under (7).
Regularity assumptions. Assumption (A0) from the general CP is kept literally but (A1) is
refined hierarchically and (A2) is slightly strengthened:

(A1.1out)
G ¤ � � :

���� has full rank (= L �� ).
(A1.2out)

G ¤ � � :

	 2� has full rank (= L 2� ).
(A1.3out)

G ¤ � � :
� � �� 	 �� ��{d� i � ���� �,8 i � 	 2� �5� has full rank (= L �� ).

(A1.4out) � { i � � . � has full rank (= N � ).
(A1.5out)

� { � i � � . � p i � � ��� has full rank (= G ).
(A2out)

GH��� k : B =����y�z�C{ | e DF~ h�� $ where| e l " i � ` a@����a
� � p i � `]� �d� � � 'f� p i � � . � p i � � �x[
Lemma 1. The following properties hold.

(a) Conditions (A1.1out)–(A1.3out) are equivalent to full rank of
� .

.
(b) Conditions (A1.1out)–(A1.5out) are equivalent to full rank of

�
.

(c) Condition (A2out) implies (A2).
(d) Conditions (A1.1out)–(A2out) are equivalent with (A0)–(A2) if and only if global con-

straints are absent, that is, if G "F$
.

Proof. Counting the relevant degrees of freedom in (A1.1out)–(A1.5out) shows that full rank
is indeed always equivalent to full row rank (as indicated). Statement (a) is now trivial and
leads readily to statement (b). Statement (c) holds since

|�"O| e p i � � � . Now (d) is an
immediate consequence of (a)–(c). �
Remarks. The conditions above are specified in terms of node quantities where possible;
the combination of local and global conditions reflects the hierarchical problem structure.
The strengthened convexity condition (A2out) ensures that (A2) still holds with global
constraints dropped, which enables our recursive solution algorithm to employ a natural
sparsity-preserving pivot order. That condition can be replaced by a considerably stronger
set of local conditions on the control parts of individual Hessian blocks:

GH��� k :
G ¤ � � :B =2��02�� � � � � � & � � �C{ | 2� DF~ � h�� $ where| 2� l " i � ` a �� � �@a �� � � p i � `]� � � � � � � 	 �� � p i � 	 2� � p i � 	 �� �x[
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Furthermore, (A1.4out)–(A2out) can be expressed by equivalent local conditions which,
however, involve intermediate results of the recursive factorization. Those equivalent con-
ditions are of course checked by the algorithm. Backward effects will not occur if the
necessary condition (19) holds and (A1.3out) is replaced by (A1.3

�
out):

G ¤ � � :

	 �� { i � 	 2� �
has full rank (= L �� ); cf. Theorem 1.

Examples. Outgoing control formulations are rarely used in stochastic optimization. Two
exceptions are the financial model in [12] and the process engineering problem in [18].

2.2. Incoming Control. The general tree-sparse CP with incoming control reads

�����2 � � ���<>= � 2 � � ��2 & � � �g�O� � � � � �(20)

s.t. � � " � � � 2 � ( � � � � D � G ¤ � � &(21) 	 2� � � � � 2� "n$ G ¤ � � &(22) � �� � � � � �� "n$ G ¤ � � &(23) � �2 � ��2 � 	 �� � � � � �� "n$ G ¤ � � &(24) � �2 � � 2 � 	 �� � � �6*-, 2. � &1, 22 � 3 G ¤ � � &(25) � �� � � �+*-, �. � &8, �2 � 3 G ¤ � � &(26) � � �6*-7 2. � &17 22 � 3 G ¤ � � &(27)

� � �6*-7 �. � &17 �2 � 3 G ¤ � � &(28) ���<>= � 	 � � � � � � � � � � � �b"n$
[(29)

Here we rearrange node variables as
� l "J� � � & � � &�[C[�[8& � � & ��� � and local blocks as� .� l " �� 	 2�	 �� � ��

�
& ' � l " � 	 �� � ���� [

Due to the coupling of � � with ��2 in (20), (21), (24), (25), the tree structure appears now
in all constraint matrices:

'
has blocks

' � along the diagonal, but an additional block
� �� K

below
� �� and left of

	 �K for each
_�� ¥ � ¤ � . Likewise,

� .
has blocks

� .� along the diagonal
and additional blocks

� �� K below
���� and left of

	 �K . The representation (14) for
�

remains
valid, where

� l " � 	 � � � [�[�[ 	 � � � � and, for the example tree in Fig. 1,

� "
�      �
( � R h� & ( & R h� = ( = R h��* ( * R h��- (,- R h�/. (1. R h

�"!!!!!!� [
Dynamics. States � � depend explicitly on the parent state � 2 but on the current control � � ,
hence we speak of incoming control. In the stochastic case, the natural interpretation is that
decision � ¡ is based on complete information at time ¢ and takes effect immediately. As
before, the explicit dependence implies 5 � � �E" 5 � � { � Y $ \ 8 6��5�E" 6 and i � � ��?" A .
Note that, since each state has “its own” control now, the root state is not necessarily
fixed, and local state constraints do not necessarily cause backward effects. Mixed local
constraints (24) involve �42 & � � rather than � � & � � since state constraints (23) generate im-
plied constraints of the form (24) in the current node. In turn, coupled constraints (24)
may imply additional state constraints (23) in the preceding node. Details will be given
in F 4. When controls � K , _¬� ¥ � ¤ � are seen as one outgoing control in ¤ , the problem is
effectively converted to outgoing control form. This becomes apparent in the regularity
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conditions; details will be provided in Theorem 3. In the deterministic case, both variants
are identical up to an index shift.
Dimensions. The respective dimensions of variables and constraints are denoted N 2� & N ��
and L 2� & L �� & L �� & L � 2� & L � �� & G . Dimension restrictions now read

L
2� MwN 2� & �L �� MwN �� & L

2� � �L �� MFN 2� � N �� & G MwN
2 RF� L

2 � L � � L � �x&
where �L �� l " L �� � �

K < � � � � � ��� � L 2K � �L �K R N
2K &8$��/& �L �� l " L �� � �L �� [

The simplified case without backward effects (i.e.,
�L �� " L �� ) requires restrictions

(30) L �� MFN �� & L
2� � �L �� MwN 2� & G MwN

2 Ro� L
2 � L � � L � �x[

A further simplification with no implied constraints at all (not even in the same node, i.e.,�L �� " L �� ) requires

L �� "u$
& L
2� � L �� MwN 2� & G MwN

2 Ro� L
2 � L � �x[

Regularity assumptions. For ¤ � � and ¦]§F¨ � ¤ � let ¥ � ¦ � " Y ¤ & &�[�[C[�& ¤ � \ (=
Y $ \ if ¤ "F$ ),

� �2 � � � 2 � l "
�
�
� � �2 ���

...� �2 ���


�
� & 	 �� � 2 � l "

�
�
� 	 ����

. . . 	 ����


�
� & L �� � 2 � l " ���< � � 2 � L �� &

and define

	 2
� � 2 � like

	 �� � 2 � . As in the previous case, assumption (A0) is now kept literally,
(A1) is refined hierarchically, and (A2) is slightly strengthened:

(A1.1in)
G ¤ � � :

	 2� has full rank (= L
2� ).

(A1.2in)
G ¤ � � :

���� has full rank (= L �� ).
(A1.3in)

G ¤ � � :
��� �2 � � � 2 � 	 �� � 2 � � { � i � ���2 � p i � 	 2� � 2 � � � has full rank (= L �� � 2 � ).

(A1.4in) � { i � � . � has full rank (= N � ).
(A1.5in)

� { � i � � . � p i � � �5� has full rank (= G ).
(A2in)

GH�?� k : B =x���y�z�C{ | e DF~ h�� $ where| e l " i � ` a@����a
� � p i � `]� �d� � � 'f� p i � � . � p i � � �x[
Lemma 2. The following properties hold.

(a) Conditions (A1.1in)–(A1.3in) are equivalent to full rank of
� .

.
(b) Condition (A1.3in) implies full row rank of

��� �2 � 	 �� � { � i � ���2 ��8 i � 	 2� �5� G ¤ � � .
The reverse implication does not hold in general.

(c) Conditions (A1.1in)–(A1.5in) are equivalent to full rank of
�

.
(d) Condition (A2in) implies (A2).
(e) Conditions (A1.1in)–(A2in) are equivalent with (A0)–(A2) if and only if global con-

straints are absent, that is, if G "F$
.

Proof. Statements (a), (c), (d), (e) are proved as in Lemma 1, where
� �2 � � � 2 � & 	 �� � 2 � now play

the roles of
� �� & 	 �� . The implication stated in (b) is obvious. A simple counterexample

shows that the reverse implication is generally false: let

	 2� " h , � �2 � " h , and

	 �� "n$ for
all ¤ � ¥ � ¦ � (where

{ ¥ � ¦ ��{ � Z and L 2� " L �� " N �2 ). �
Remarks. Condition (A1.3in) plays precisely the same role as (A1.3out) but is more com-
plicated due to the

� ��2 & � � � -coupling. Again, backward effects will not occur if (30) holds
and (A1.3in) is replaced by (A1.3

�
in):

G ¤ � � :

	 �� { i � 	 2� � has full rank (= L �� ).
Examples. The incoming control form appears to be the most common one in stochastic
programming. Only two problems in the collection of King [22] are not posed in this form.
The widest application area is probably mathematical finance. The current work started
with the dynamic mean-variance approach [16, 17]; a simplified version is discussed in
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[30, 31], for a theoretical investigation see [33]. Another important field concerns logistics;
a particularly difficult recent application is described by Dempster et al. [15].

2.3. Implicit Dynamics. The general implicit tree-sparse CP in variables
� � � � � reads

���q��
��$<>= � � �y� � �(31)

s.t. ` � � � " � � � 2 � D � G ¤ � � &(32) � �� � � � � �� "u$ G ¤ � � &(33) � �� � � �+*-,/. � &8,/2 � 3 G ¤ � � &(34) � � �6*-78. � &8782 � 3 G ¤ � � &(35) ��$<>= � � � � � � � � ��"u$
[(36)

The representation of
��&1'

in (14) remains valid if we define
� l "��y� � &�[�[C[8&8� � � , ' � l " � �� ,� . § ��� l "�� ����� � � �� &C[�[�[5& � �� � , � l " � � � [�[C[ � � � , and (for the example tree)

(37) � "
�      �
R ` �� & R ` &� = R ` =��* R ` *��- R ` -�/. R ` .

�"!!!!!!� [
A detailed investigation of this formulation is provided in [32]. For the sake of com-
pleteness we summarize the most important aspects here and give additional comments
comparing implicit and explicit variants. The most obvious difference is that only one type
of decision variables appears, which may be thought of as combined states and controls.
Correspondingly, the dynamic equations are given in implicit form. Their dimension will
typically be smaller than the number of variables to leave some degrees of freedom for
optimization (“hidden controls”).
Dimensions. The respective dimensions of variables, dynamics, and constraints are N � , L��� ,
and L �� & L �� & G , with restrictions

L �� � L �� MFN �� & G MFN � Rw� L � � L � � § ���<>= � N �� R L �� R L �� �x[
In this setting it does not make sense to consider implied constraints: their treatment would
entail a reformulation of the problem in one of the explicit variants (as is discussed in F 3).
Regularity assumptions. Here we keep only (A0) and refine assumptions (A1) and (A2):

(A1.1impl)
G ¤ � � :

� �� has full rank (= L �� ).
(A1.2impl)

G ¤ � � : ` � { i � � �� � has full rank (= L��� ).
(A1.3impl)

� { � i � � �C� p i � � �5� has full rank (= G ).
(A2impl)

GH��� k :
G ¤ � � : B =x� � �y� � ��{ | � Dw~ � h�� $ where

| � l " i � ` a � � �@a � � � p i � ` � � � � � � � � �� � p i � � �� � p �

K < � � � � i � � K �/[
Lemma 3. The following properties hold.

(a) Condition (A1.1impl) is equivalent to full rank of
���

.
(b) Condition (A1.2impl) implies full rank of � { i � ��� � . The converse is not true in general.
(c) Conditions (A1.1impl)–(A1.3impl) imply full rank of

�
.

(d) Conditions (A1.1impl)–(A2impl) imply B =x���y�z�C{ | e DF~ h�� $ where| e l " i � ` a@���@a
� � p i � `]� ��� � � ')� p i � � � � p i � � �x&
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FIGURE 2. Relations between incoming, outgoing, and implicit control.

but
| e X�� ��<>= | � does not necessarily hold.

Proof. Statement (a) and the implication stated in (b) are obvious. (The latter holds even
if � � "J$mG ¤ � � .) To see that the reverse implication is generally false, let � " Y $
& Z \ ,` � " ` & " � �& "J� Z $��

, and � & " ��$ Z �
. Statement (c) follows immediately. The first part

of statement (d) follows from Lemma 4 in [32]. Letting � " Y $
& Z &�� \ , ` � " � & " � Z $��
,` & " ` = "J� Z �

, and � = "J�y$ Z �
yields

| e " i � � �b"��	� ��� � Y �y$
& Z &1$
& Z � \ �x& :��<>= | � " Y ��$
&8$�� \ 8�� 8�� [
(For ¤ �   we always have

| � " � � .) This completes the proof. �
Remarks. Actually (A1.2impl) imposes a specific structure of local constraints that rules
out the possibility of backward effects (see Theorem 1). This is required by the solution
algorithm, which does not distinguish states and controls and consequently exploits the
tree-sparse structure to a lesser extent than the explicit variants. Assumption (A2impl) is
specified in local quantities, and it is stronger than in the two explicit cases by statemet (d).

Note also that local constraints (33) may always be modeled as dynamics (32), and that
both are interchangeable in the root. The main difference of these conditions lies in the
algorithmic treatment, so it is up to the modeler to choose the appropriate one.

Examples. The standard form for multistage stochastic linear programs (see, e.g., [8, 10,
21]) is actually implicit according to our classification, except that the various categories
of constraints are not distinguished. A nice example is the long-term asset management
model developed in [1]; we discuss it in [32] to illustrate the constraint structure. The early
problem collection of King [22] includes two implicit examples on pages 548 and 560.

3. COMPARISON

Apparently there exist close relations between the three types of tree-sparse problems.
It turns out that the problems are almost algebraically equivalent in the sense that they can
be transformed into each other. In this section we study the precise relations; Fig. 2 gives
a schematic overview. The technical comparison highlights similarities and differences in
the details of the three formulations, in particular regarding the regularity requirements.

3.1. Implicit vs. Outgoing Control. The simplest transformation is the implicit reformu-
lation of outgoing control: one simply combines variables and matrix blocks appropriately.
Conversely, a partitioning of decision variables into states and controls is possible, but this
requires a partial solution of the system since otherwise the control components determined
by local constraints would appear on the wrong side of dynamic equations.
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Theorem 1. In the notation of F 2.1, let
� � l "J� � � & � � � , 78. � l "���7 �. � &87 2. � � , 782 � l "���7 �2 � &17 22 � � .

Then the CP with outgoing control (4)–(12) is equivalent to the implicit tree-sparse CP

���q��
��$<>= � � �y� � �

s.t.
� h $ � � � "
� � � ( � � � 2 � D � G ¤ � � &� .� � � � � .� "u$ G ¤ � � &' � � � � *-,x. � &8,x2 � 3 G ¤ � � &� � �+*-78. � &8782 � 3 G ¤ � � &��$<>= � � � � 	 � � � � � � ��� "u$
[

Assumptions (A1.1impl), (A1.2impl) are satisfied if and only if no state constraints (6) occur
( L �� "u$ ) and (A1.2out), (A1.3

�
out) hold; (A1.4out) then follows, and (A1.3impl) is equivalent

to (A1.5out) in any case. Condition (A2impl) is not necessarily satisfied if (A2out) holds.

Proof. Equivalence of the problems and of condition (A1.3impl) with (A1.5out) are obvious.
Condition (A1.1impl) is equivalent to (A1.1out)–(A1.3out) by statement (a) of Lemma 1.
Since i � ` � � " i � h $ � " Y $ \ 8 A � , (A1.2impl) holds if and only if for every � � � 6 �
there exists � � � A � such that

� .� � � "u$ , which in turn is equivalent to i � �/�� �b" Y $ \ and5 � � �� � X 5 � 	 �� { i � 	 2� �5� . These two conditions are trivial consequences of L �� " $
and

(A1.3
�
out), which also imply (A1.1out) and (A1.3out). This proves that the stated conditions

imply (A1.1impl), (A1.2impl). Conversely, L �� "�$ and (A1.3
�
out) follow from i � ���� �b" Y $ \

and 5 � � �� � X 5 � 	 �� { i � 	 2� ��� whenever (A1.1out) and (A1.3out) hold. Observe finally that
(A1.2impl) implies (A1.3out), and that (A2impl) may require B =/� � ��� � � � $

in the leaves,
which is not guaranteed by (A2out). �
Remark. Conditions L �� "�$

and (A1.3
�
out) are precisely the restrictions that enable the

simpler recursion without backward effects for the implicit CP. The initial projection steps
of the recursive solution procedure for the CP with outgoing control eliminate all local
constraints (6), (7), and (8). Thus, if (A1.1out)–(A1.5out) hold, then (A1.1impl)–(A1.3impl)
will be satisfied after the partial solve.

Theorem 2. Assume that (A1.1impl) and (A1.2impl) hold in the implicit CP of F 2.3, and let

ª � & l " � h $ � ��� .��� �
	 �� & ª � � l "
� h $ � ��� . � � �d	 �� � .��� � &
ª � = l " � $ h � ��� �d	 �� � .��� �0�
	 �� & ª � 2 l "
� $ h � ��� �d	 �� � .��� � . � �0� �d	 �� � .��� � [

Then
� � can be partitioned into state and control variables � � & � � and a constant vector

� � & ,
and non-singular matrices   � &�� � &�� �� exist so that with abbreviations

�� � & l "��	� �� � � & ª e� & � � & & �� � l " �
� �� � � & ª e� = � � &� &
(31)–(36) is equivalent to the CP with outgoing control defined by

�� � � � � & � � � l " � � �y� � �
and the following problem data:

� �� � �( � � l "   � &� � � �� 2 & �D � l "   � &� * D � � � � �� 2 & R ` � �� � & 35&� �� �� �	 �� � l " � � ��
h � �� � & �, e � l " � ,

e �7 e � � R
� � ��
h � �� � & &��U" L & � &

� �� � �	 � � l " � � �� � & �� � l " � � � � � �� � & [
Conditions (A1.1out)–(A1.4out) hold without further requirements, and (A1.5out), (A2out)
hold if (A1.3impl) respectively (A2impl) are satisfied.
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Proof. By full rank of
� �� and of ` � { i � � �� � we have factorizations

� �� "   �� ª � & � �� and
` � = "   � ª � � � � where

� ` � & ` � = � � �� " ` � , that is, ` � P " ` � �	� �� � � & ª e� P . Now partition

� �� � � " l � � � &� � = � & � � � � = " l � � �� � � &
that is,

� � P l " ª � P � �� � � , � " Z & �
, and � � l " ª � � � � � � = , � � l " ª � 2 � � � � = . (Here

� � &
might be regarded as a control variable, but we must fix its actual value

� � & "�R)�   �� � � & � ��
determined by (33), since otherwise the dynamics reformulation would remain implicit.)
Proving the equivalence with the original problem is now straightforward; we exercise this
only for the most involved part, the dynamics. By definition,�� � ��2 � �( � � 2 "J*   � &� � � �	� �2 � � & ª e2 = � � &2 35�	� 2 � 2 = ��"   � &� � � �	� �2 � � & ª e2 = � 2 = [
Thus, since ª�e2 = � 2 = � ª�e2 & � 2 & " � �2 � 2 , � � � 2 � D � " ` � � � , and ` � �� � & " ` � & � � & ,�� � ��2 � �( � � 2 � �D � "   � &� * � � �	� �2 � � & � ª e2 = � 2 = � ª e2 & � 2 & �]� D � R ` � �� � & 3"   � &� * ` � � � R ` � & � � & 3H"   � &� ` � = � � = "   � &�   � ª � � � � � � = " � � [
Observe that the reformulation is the restriction of the CP to

�� � & � i � � . � , and
�� .

is empty.
Thus (A1.1out)–(A1.3out) hold trivially, and (A1.4out) follows from the stronger condition
(A1.2impl) by Lemma 3 (b) since

�� corresponds to � { i � � . � by construction. Likewise,
(A1.3impl) implies (A1.5out) and (A2impl) implies (A2out) by Lemma 3 (c) and (d). �
3.2. Incoming vs. Outgoing Control. In the deterministic case (where the tree reduces to
a chain), the two explicit variants are clearly identical except for the numbering of controls
and obvious differences at the head and tail of the chain.

On a general tree the collection of incoming controls of all siblings can be defined as
outgoing control of their parent node (after prepending a new node before the root). Con-
versely, each outgoing control can be reinterpreted as an incoming control of the current
node if a copy is appended to its associated state (and thus passed on to the successors).

Theorem 3. In the notation of F 2.2, let
�� � l " � � K � &�[�[C[8& � K � � where ¥ � ¤ �E" Y _ & &�[C[�[5&8_ � \ ,

and similarly
�� 2� l "J� � 2K � &�[C[�[8& � 2K � � , �� �� l " � � �K � &C[�[�[1& � �K � � . Define

�� � � � � & �� � � l "n� � � � � � � �
K < � � � � � � K � � � & � K �/& �( � l " �0$u[C[�[ ( ��������

block column
�[�[�[�$ � &

and

�� �� l "
�
�
� � �� K �

...� �� K �


�
� & �� �� l "

�
�
�
�
� � ��� �� K �

...� �� K �


�
�
�
� & �, . � l "

�
�
�
�
� , �. �, 2. K �

..., 2. K �



�
�
�
� & �, 2 � l "

�
�
�
�
� , �2 �, 22 K �

..., 22 K �



�
�
�
� [

Finally let
�	 2� l "9� ����� � 	 2K � &C[�[�[1& 	 2K � �x& �	 �� l " � $� ����� � 	 �K � &�[C[�[8& 	 �K � � � &�	 �� l "9� ����� � 	 �K � &C[�[�[1& 	 �K � �x& �	 � l " � 	 K � &�[C[�[8& 	 K � � [

All remaining quantities—including the states—remain unchanged,
�� � l " � � , �� � l " � � ,�D � l " D � , ����� l " ���� ,

�� �� l " � �� �� � l " � � , and
�� � l " � � . These data then define an

equivalent CP with outgoing control. If assumptions (A1.1in)–(A2in) are satisfied, then
(A1.1out)–(A2out) hold in the transformed CP.

Proof. We have tacitly prepended a new node ¤ "uR Z before the root to carry the outgoing
control

�� � & § � � , an empty state � � & �:��� , and the associated local CP data. The leaves
have empty outgoing controls now,

�� � � � � , ¤ �   . Otherwise the original problem has
just been rearranged and the verification of CP equivalence is straightforward. Each of
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the conditions (A1.1out)–(A2out) follows immediately from the corresponding condition in
(A1.1in)–(A2in), where (A1.1in) corresponds to (A1.2out) and (A1.2in) to (A1.1out). �
Theorem 4 (Embedding). In the notation of F 2.1, let

�� � l "J� � � & � � � and
�7 �. � l "J�y7 �. � &87 2. � � ,� 7 �2 � l "J�y7 �2 � &87 22 � � . Then (4)–(12) is equivalent to the following CP with incoming control:

�����2 � �� ��$<>= � � � �� � �
s.t.

�� � " � � � ( �$ $ � �� 2 � � $
h � � � � � D �$ � G ¤ � � &� .� �� � � � .� "u$ G ¤ � � &' � �� � �6*-,x. � &1,/2 � 3 G ¤ � � &

�� � � � �7 �. � & � 7 �2 � � G ¤ � � &��$<>= � � � � 	 � � �� � � � � � "n$
[
If (A1.1out)–(A2out) are satisfied, then (A1.1in)–(A2in) hold in the transformed CP.

Proof. We have only modified the dynamic equations, where all duplicated control vari-
ables are determined by an identical number of conditions. Otherwise the CP has merely
been rewritten, and equivalence is easily verified. Conditions (A1.1in), (A1.3in) hold triv-
ially since the associated constraints are empty. (A1.1out)–(A1.3out) clearly imply (A1.2in).
If � { i � � . � has full rank, then this is also true for the original (upper) part of the trans-
formed dynamics. The new (lower) part is unaffected by the restriction, so (A1.4in) follows.
A similar argument shows that (A1.5out), (A2out) imply (A1.5in), (A2in), since

�� � = " � �
for all ¤ � � . �
3.3. Implicit vs. Incoming Control. The previous results are now combined to establish
the relation between implicit and incoming control formulations.

Theorem 5. Given a CP with incoming control, the composed transformations of Theo-
rem 3 and Theorem 1 yield an equivalent CP in implicit formulation. Conditions (A1.1impl),
(A1.2impl) are satisfied if and only if no state constraints (23) occur ( L �� "u$ ) and (A1.1in),
(A1.3

�
in) hold; (A1.4in) then follows, and (A1.3impl) is equivalent to (A1.5in) in any case.

Condition (A2impl) is not necessarily satisfied if (A2in) holds.

Proof. This follows directly from Theorem 3 and Theorem 1. �
Theorem 6. Assume that (A1.1impl) and (A1.2impl) hold in F 2.3. Then the combined trans-
formations of Theorem 2 and Theorem 4 yield an equivalent CP with incoming control.
Conditions (A1.1in)–(A1.4in) hold without further requirements, and (A1.5in), (A2in) hold
if (A1.3impl) respectively (A2impl) are satisfied.

Proof. This follows directly from Theorem 2 and Theorem 4. �
3.4. Discussion. The previous results show that the explicit CP forms and associated reg-
ularity conditions are always equivalent, with a slightly finer structure in the incoming
control form. Although straightforward (re)formulations in implicit form always exist, ef-
ficient solution requires stronger regularity conditions than in the explicit variants. If they
are satisfied, the problem can always be recast in one of the explicit forms.

As indicated in [28], a potential substructure of global constraints can be exploited in
the recursions. More precisely, each row can—and should—be eliminated in the root of
the unique smallest subtree with nonzero entries in that particular row of

� � & 	 � . Thus our
framework offers the choice of modeling local constraints as such (handled by projections)
or as global constraints (handled by Schur complement calculations). This is similar to
viewing local constraints as dynamic equations in F 2.3.
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FIGURE 3. Range of possible dynamics formulations

One might also consider mixed forms of dynamics, where each node has an incoming
and an outgoing control, or where some state components are determined by explicit equa-
tions and other components by implicit ones. This entire range of possibilities (which we
do not wish to explore) is covered by suitable “convex” combinations of the three pure
variants; see Fig. 3.

4. KKT SOLUTION

We now address the key task of solving the reduced KKT systems (2) in interior methods
for tree-sparse programs. Range constraints in all variants have the property that

' e � '
and � " B =x� have identical block structures. Thus we may consider the second form,

(38)

� �� � e� � ��� �R ��� � " � �	
� 
� &

which is equivalent to an equality-constrained convex quadratic tree-sparse program,

(39) ���q�� � Z� � � e �� � ��R �	 e � � s.t.
� � �f" � j[

This problem is addressed in the following. To simplify notation, we drop the overbars and
write

�
for the step direction

� �
. (Note also that

	j&8 
now have the opposite sign.)

4.1. Outgoing Control. A complete investigation of the deterministic problem has al-
ready been provided in [28]. Moreover, by our earlier results, the outgoing control case is
rather similar to the (slightly more involved) incoming control case. Therefore we present
only the latter variant here; the reader may easily derive the necessary modifications.

4.2. Incoming Control. Suppose that (A1.1in)–(A2in) hold. By Lemma 2 (e) in this paper
and Lemma 2 in [32], problems (38) and (39) have a unique solution even if G " $

.
Therefore consider the CP (20)–(24) without global constraints, and with objective

������ � 2 ���<>= � Z� � � 2� � � e � $ � e�� ��
�� � � ��2� � � � Z
� � e� � � � � R ��� �	 � � e � � �� � � � [

This problem has a separable Lagrangian

  � � & � &�� &�� 2 &�� � &�� � �b" ���<>=   � � � � & � 2 & � � &�� � &�� 2� &�� �� &�� �� �
with node contributions

  � " � e� � � � 2 � Z
� � e� 
 � � � � Z

�g� e� � � � � R � e� � � R�	 e� � �R�� e� � � � � 2 � ( � � � R � � R D � �]R�� 2 e� � 	 2� � � R � 2� �R�� � e� � � �� � � R � �� �]R�� � e� � � 2 � � 2 � 	 �� � � R � �� �/[
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The KKT system (38) decomposes into local conditions in every node ¤ � � ,
�   2�� � l � � � 2 � 
 � � � � ( e� �AR � � �]� 	 2 e� �0R�� 2� �g� 	 � e� �AR�� �� �b" � � &�   � � � l � � � � RF�0R � � �g� � � e� �0R�� �� �g� �

K <�� � � � * � eK � K � � eK �0R � K �]� � � e� K �AR�� �K ��3 " 	 � &�   � � � l � � � 2 � ( � � � R � � "9D � &�  �� �� � l
	 2� � � " � 2� &�  ����� � l � �� � � " � �� &�   ���� � l � �2 � ��2 � 	 �� � � " � �� [

The recursive solution algorithm starts with a subset of leaves ¥ � ¦ � X   having the same
predecessor ¦ . The following operations are performed for each ¤ � ¥ � ¦ � .

(1) The initial step is a projection onto the null space of local control constraints (22).
By (A1.1in) the full-rank matrix

	 2� admits a rectangular LU factorization yielding	 2� � � "
�   � $ � � � � � "
�   � $ � � � &�� =� � "   � � &� " � 2� [
Thus we have � &� "   � &� � 2� . Substitution into

�   2 � � with appropriate partitioning gives

�   2 �� � l � &� � 2 � 
 & =� � =� � ( &5e� �AR � � �]�   e� �AR � 2� �g� 	 � &5e� �AR�� �� ��" � � &� R 
 & &� � &� �/&�   2	�� � l � =� � 2 � 
 =8=� � =� � ( = e� �AR � � � � 	 � = e� �AR�� �� ��" � � =� R 
 = &� � &� �/[
The upper part determines the multiplier

� 2� associated with (22); the lower part has the
same form as

�   2 � � but without the

	 2� term. Analogous partitionings and substitutions
are performed with all remaining conditions that involve � � , where contributions from � &�
are absorbed into the right hand sides. (Note that in

�   ��
 � , each sibling ¤ � ¥ � ¦ � adds
a term

R � &5e� � &� to
	 2 .) The resulting set of conditions has the same form as if no control

constraints had ever been present in ¥ � ¦ � . We drop component indices of the partitioned
data and proceed with this simplified case in the original notation.

(2) The second step is an analogous projection onto the null space of local state con-
straints (23). By (A1.2in) the full-rank matrix

���� admits a rectangular LU factorization
yielding (with different   � &�� � , of course)� �� � � " �   � $ � � � � � " �   � $ � � � &�� =� � "   � � &� " � �� [
We obtain � &� "   � &� � �� and, since the sum over

_�� ¥ � ¤ �E"Ft in
�   � � � vanishes,

�   � �� � l � & =� � =� Rw�AR � &� �g�   e� �AR�� �� ��"J� 	 &� R � & &� � &� �/&�   � �� � l � =8=� � =� Rw�AR � =� � "J� 	 =� R � = &� � &� �/[
Conditions

�   2 � � and
�   � �� � remain unaffected, and the partitioning of

�   � � � yields

�   � �� � l � &� ��2 � ( &� � � "I�7D &� � � &� �/&�   � �� � l � =� ��2 � ( =� � � R � =� " D =� [
The lower part is of course the dynamic equation for the remaining component � =� , but
the upper part has been converted to an additional (implied) mixed constraint of type (24).
Therefore we combine the relevant matrices and vectors,

; � l " � � &�� �2 � � & � � l " � ( &�	 �� � & � � l " � D &� � � &�� �� � & � � l " � � &�� �� � [
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Using otherwise the original notation, this yields the same set of conditions as if neither
(22) nor (23) had ever been present in ¥ � ¦ � . But now we also have to monitor

�   ��
 � ,
�   ��
 � l � 2 ��2 RF�0R � 2 � � � � e2 �AR � �2 �g� ���< � � 2 � * � e� � � � � e� �AR � � �g�O; e� �AR � � � 3H" 	 2 &�   2 � � l � � ��2 � 
�� � � � ( e� �AR � � �g�!� e� �AR � � �b" � ��   � � � l � � � � RO�0R � � �b" 	 ��   � � � l � � ��2 � ( � � � R � � "�D ��   � �� � l ; � � 2 � � � � � " � � [
(3) The next step is a more complicated projection. We wish to determine as many con-

trol components as possible from condition
�   � �� � to avoid unnecessary backward effects.

But
� � may be rank-deficient, so we perform a (partial) factorization with row pivoting

and rank decision, and partition
; � & � � accordingly,

(40) ` � � � " �   �� �� � � � � � & ` � ; � " � ; 2�; �� � & ` � � � " � � 2�
� �� � [

Here the partitioning is chosen such that   � is well-conditioned and
� � can be neglected.

(In exact arithmetic we have � �4��� �   � ��" � �4��� �v� � � and
� � "u$ .) Dropping

� � gives
�   � � �� � l � &� "   � &� � �

2� R ; 2� ��2 �/&�   � � �� � l �y; �� R¬� ��   � &� ; 2� � � 2 "�� � �� R � ��   � &� �
2� �/[

Thus, the upper part yields a local feedback law for � &� whereas the lower part yields a
local state constraint (23) in the preceding node ¦ " ¨ � ¤ � . (Such a backward effect may
potentially occur in every ¤ � ¥ � ¦ � .) The corresponding partitioning of

�   2 � � gives
�   2 �� � l R � 2� "   � e� * � &� R � &� ��2 R 
 & &� � &� R 
 & =� � =� R ( &Ae� �0R � � �]R6� � e� �AR � �� � 3A&�   2	�� � l � � =� R 
 = &�   � &� ; 2� � � 2 � 
 =8=� � =� � ( = e� �0R � � �b"J� � =� R 
 = &�   � &� �

2� �x[
Here the upper part is a local feedback law for

R � 2� (which is evaluated after � &� , on which it
depends). The lower part has the original form but without any local constraints; similarly
for

�   � � � which is unaffected by the transformation, and
�   � � � which now reads

�   � � � l � � � R ( &�   � &� ; 2� � � 2 � ( =� � =� R � � " �UD � R ( &�   � &� �
2� �x[

Condition
�   ��
 � undergoes the most complicated transformation since we have to substi-

tute expressions for both � &� and
R � 2� , with � &� substituted in turn,

�   ��
 � l � � 2 ��� ��< � � 2 � �y; 2 e�   � e� 
 & &�   � &� ; 2� R�� &5e�   � &� ; 2� R ; 2 e�   � e� � &� � � ��2��� ��< � � 2 � � � =� R 
 = &�   � &� ; 2� � e � =� Rw�AR � 2 ���� ��< � � 2 � � � � R ( &�   � &� ; 2� � e �0R � � � � � � e2 �AR � �2 �� � ��< � � 2 � �y; �� R6� ��   � &� ; 2� � e �0R � �� ��"� 	 2 ��� ��< � � 2 � �y; 2 e�   � e� �� &� R � &5e�   � &� �
2� � � & �� &� l " � &� R 
 & &�   � &� �

2� [
This completes the projection part of the algorithm in nodes ¤ � ¥ � ¦ � . With appropriate
(re)definitions, the remaining optimality conditions now read�   2 � � l � � � 2 � 
�� � � � ( e� �0R � � �b" � � &�   � � � l � � � � RO�0R � � �b" 	 � &�   � � � l � � � 2 � ( � � � R � � " D � [
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Relevant conditions in the preceding node (with
�; �� l "u; �� R6� ��   � &� ; 2� ) are

�   �	
 � l � 2y� 2 Rw�AR � 2 �g� � � e2 �0R�� �� �g� ��$< � � 2 � * � e� � � � � e� �0R � � � � �; � e� �0R � �� ��3 " 	 2 &
�   ��� 
 � l � �2 � 2 " � �2 &G ¤ � ¥ � ¦ � l �; �� � 2 " �� �� [

At this point we augment
�/�2 with all

�; �� , � �2 with all
�� �� , and

� �� with all � �� , obtaining����2 & �� �2 , and
�� �2 . Thusly combining original state constraints with implied ones restores the

original form of
�   ��
 � and

�   ��� 
 � .
Lemma 4. In exact arithmetic, the augmented matrix

�� �2 has full row rank.

Proof. Assume that
����2 does not have full row rank. Then, by (A1.2in), there exists

C��2 �
i � ���2 � p i � �; �� � for some ¤ � ¥ � ¦ � . Letting

C� &� l " R   � &� ; 2� C� 2 , the factorization (40)
with

� � " $
(exact arithmetic) shows that

; � C��2 �O� � C� � " $
for any choice of

C� =� . But
then

� C� 2 & C� � � lies in the null space of at least one row of
� � &� ( &� � or

� � �2 � 	 �� � . Observing
that

C� � � i � 	 2� � by construction, this contradicts either (A1.3in) or (A1.4in). �
Remark. In case of ill-conditioning (that is, � �4��� �   � � � � ����� ��� � � for some ¤ ), ���2 may
of course still have full row rank; it is just not guaranteed.

(4) After the local projections (1)–(3), all local constraints are eliminated and the solu-
tion algorithm proceeds with the basic recursion described in [31]. This basic part includes
the handling of (projected) global constraints and is not repeated here. Its node operations
can be performed immediately after the projection in the same node, or in an independent
traversal of the tree after completing the projections in all nodes. As explained in [31, 32],
the entire algorithm defines a direct sparse factorization of the KKT matrix together with
the associated forward and backward substitutions.

4.3. Implicit Dynamics. A complete description of the general implicit formulation and
associated solution algorithm has already been given in [32]. As in the explicit variants, lo-
cal constraints are first eliminated by local projections, and an independent basic recursion
solves the projected dynamic equations and global constraints.

5. OTHER INTERIOR APPROACHES

5.1. Two-Stage Linear Stochastic Programs. The classical linear two-stage model with
recourse originates in the well-known work of Beale [3] and Dantzig [14]. In our notation,
the standard formulation with i scenarios yields the block-angular linear program

������ 	 e� � � � ����� & 	 e� � �(41)

s.t. ` � � � " D � &(� � DF$
&(42)

` � � � " D � � � � � � & � � DF$
& ¤ " Z &�[C[�[5& i [(43)

This obviously fits the implicit dynamics form as the special case where

(a) the problem has two stages, � " Y $ \��:¥ �y$z� § Y $ \��:  ;
(b) the objective is linear;
(c) all constraints are formulated as dynamics or nonnegativity constraints.

Under the full-rank condition (A1.2impl) on ` � , assumptions (A1.1impl)–(A2impl) will hold.
Several interior methods have been developed for this problem class [2, 6, 9, 11, 13, 20, 23];
most of them turn out to be encompassed within our framework.
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TABLE 1. Corresponding matrix blocks in Birge and Holmes [9, F 3.4]
and Steinbach [32, F 4.2] (index 2 indicates blocks after projection).

given generated

[9]
� � � . �j. 	 � =� �6� e� � �

	 � =. ¥ . � & � =
[32]

R ` �8= R ` . = � . = � �8=8= "�� �8=1= � `)e�8= ` �1= � . =8= "��E. =8= C� . �� � C� �
Theorem 7. The modification [9] of the block-angular factorization of Birge and Qi [11]
for (41)–(43) is equivalent to the tree-sparse factorization applied to the (equivalent) prob-
lem with an additional quadratic penalty term in the root,

������
Z
� ��` � � � R D � � == � 	 e� � � � ��$<�� �q�8� 	 e� � � [

Proof. A comparison of Lemma 4 and Table 1 in Steinbach [32] with Theorem 1 and pro-
cedure finddy in Birge and Holmes [9] (or with the proof of Theorem 3.2 in [11]) reveals
a one-to-one correspondence of the matrices in Table 1. The order of block calculations
is ¥ .�& ¥ � &. , L " Z &�[C[�[ L and then �'& & � � && & � = & � � &= in [9], and

C� .5& C� � &. & �� � & �� � &� & C� � & C� � &�
in [32]. The stabilizing term

� e� � � in [9] corresponds precisely to the penalty term. �
Remark. Although Birge, Qi, and Holmes think in terms of the dense normal equations (3),
their factorization actually recovers the full block-sparse structure of the augmented system
(and adds the implicit stabilization). Only their order of evaluating solution components
differs slightly from our symmetric algorithm.

Other approaches can now be characterized as follows (see Birge [7, F 3.2–3.6] for a
detailed earlier overview).

Lustig, Mulvey, and Carpenter [23] use a standard interior point code (OB1) working
with a Cholesky factorization of the normal equations. To reduce the density of (3), they
reformulate the model in “split-variable” form (with replicated root variables and explicit
nonanticipativity constraints). They also study a partial splitting where certain variables
are not replicated (our controls), thus reducing the size of (3) without destroying sparsity.

Jessup, Yang, and Zenios [20] investigate a parallel implementation of the Birge and Qi
factorization. Yang and Zenios [38] pursue the same direction and introduce the obvious
extension to quadratic objectives in the context of “robust optimization”.

Bahn et al. [2] apply an analytic center cutting plane method to a modified standard
formulation (with dynamics ` � � � M D � , � � � � R ` � � � M D � ), but do not specialize the
Cholesky factorization in calculating the step direction of the dual normal form

� e �E� .
Czyzyk, Fourer and Mehrotra [13] compare the splitting approach of [23] with their own

augmented system approach in a computational study. They employ the same pivoting
order as Birge and Qi (calling it “natural”) but drop the root system stabilization, thus
arriving at the implicit dynamics recursion for the unmodified problem.

Berkelaar et al. [6] use a homogeneous self-dual path-following algorithm. The special
factorization developed for the KKT system is again equivalent to ours. An interesting
aspect in this context is that primal and dual objectives are combined to a global constraint.

5.2. Multi-Stage Convex Stochastic Programs. Berger et al. [5] treat convex multistage
programs in non-Markovian standard form using a full split-variable formulation. They
use Vanderbei’s code LOQO with a special pivoting strategy called tree dissection. Further
details are discussed in [32, F 4.2].

Schweitzer [27] develops a recursive block factorization for
��� � & � e in the standard

LP form. This approach has linear complexity but requires stronger regularity conditions
than ours and is less efficient; see “global Schur complement approach” in [32, F 4.2].
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In [12], Blomvall and Lindberg have recently developed a primal interior method using
the outgoing control formulation. They work under stronger regularity assumptions (modi-
fying

	 �� if necessary) to treat mixed constraints (8) by Lagrangian relaxation. This avoids
local projections, obviates a distinction of state and control constraints (6), (7), and leads
to Schur complement calculations for both (8) and (12) on top of the basic recursion.

Gondzio and Kouwenberg [19] pursue a completely different approach for multistage
stochastic LP (cast in two-stage form by aggregating stages): they employ interior methods
as master problem and subproblem solvers in a Benders decomposition framework [4, 36].

5.3. Discussion. For two-stage problems, all authors develop either a suitable form of
the normal equations or a special factorization. In the latter group, all algorithms are
essentially equivalent to the Birge and Qi approach, thus exploiting the block structure of
the standard form (41)–(43). Our implicit two-stage formulation, although it is not more
general, has the advantage of a finer, natural constraint structure, which would be replaced
by an artificial substructure of ` � & � � if converted to standard form. The preferred explicit
variants offer even higher potential for exploiting natural sparsity.

The few alternative multistage approaches are either high-level adaptations of standard
methodology ([5, 19]) or similar to our approach ([12, 27]). Again, our framework offers
a finer structure allowing more flexible pivoting strategies with local projections.

6. GENERALIZED LINEAR-QUADRATIC CONTROL

In [26], Rockafellar and Wets study a class of deterministic and stochastic discrete-time
control problems based on the concept of generalized linear-quadratic programming as
introduced by Rockafellar [24]. This concept circles around a quadratic convex-concave
function defined on a polyhedral set

A 8 � X �?K�8�� .
,

�b� � &����b" Z
�
� � � � e � ` R 	 eR 	 R�� � � � � � � ��� � � e � � � � &

where ` and
�

are symmetric and positive semidefinite, yielding the primal problem

�	�#� �����2 <�
 	]� � �x& 	]� � � l "��
� �� <�� �b� � &����x&
and the completely symmetric dual problem

�	�?� � ���� <���� �����x& � ���z� l " �����2 <�
 �b� � &����x[
Here it is understood that feasible solutions must satisfy

	]� � � � T
and � ����� � RUT

, re-
spectively; thus the

�
� �
and ����� formulations may hide implicit constraints. The supremum

in
���f�

turns out to be finite if � R 	 � ��� l " * i ���)� p ���x� � � � 3�� , where
�

is the polar
cone of the intersection of the null space of

�
with the recession cone of

�
[24, Prop. 2.4].

The primal problem can thus be written

�����2 <�
 � � ��� 2 <� ! Z� � e ` � � � e � � � ���� <��#" � � R 	 � � e � R Z
�
� e �$�&%(' [

We are interested in the smooth quadratic case obtained with
� l "n$ and

� l "O�
. � 8�� . �)

[24, Example 3.2]. In this case we get
� " � �U" Y $ \ 8�� . �� , and the inner maximum over

the dual variable
�

is always zero, yielding

�����2 <�
 Z� � e ` � � � e � s.t.

	 & � " � & & 	 = � D � = [
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The associated deterministic discrete-time control problem
��� ����� � [26, F 3] reads

�����2 <�
 ��
¡ � �

� Z
� � e¡ `]¡ � ¡ � � e¡ � ¡ R � e¡ ) & �
¡��(44)

s.t. � ¡ "F� ¡ � ¡ � & �o' ¡ � ¡ �o7 ¡ G ¢ "u$
&�[�[C[�& �m&(45) ; &¡ �
¡ � & � 	 &¡ � ¡ " � &¡ G ¢ " Z &�[�[C[8& �+� Z &(46) ; =¡ �
¡ � & � 	 =¡ � ¡ D � =¡ G ¢ " Z &�[�[C[8& �+� Z [(47)

Here primal quantities are defined for ¢ " $
&C[�[�[1& �
(in particular,

A " A � 8
	�	�	 8 A � )
and dual quantities are defined for ¢ " Z &�[�[C[8& � � Z

. Hence the matrices
� � and

	 P� ) &are empty, but not
;�P� ) & & � P� ) & & � � ) & . Given a scenario tree of depth

� � Z
, we just

replace random elements 
 ¡ by their realizations 
 � , ¤ �   ¡ , to obtain the corresponding
stochastic problem

���
sto
�

[26, F 4]2. Introducing empty vectors � � �<��� and � � & � � �<�?� ,¤ �   � ) & (with associated empty matrices) we finally arrive at the formulation

�����2 � � ���<>= � Z� � e� ` � � � � � e� � � R � e� ��2 �(48)

s.t. � � "%� � ��2 �O' � � � �O7 � G ¤ � � &(49) ; &� � 2 � 	 &� � � " � &� G ¤ � � &(50) ; =� � 2 � 	 =� � � D � =� G ¤ � � &(51) � � � A � G ¤ � � [(52)

Theorem 8. The linear-quadratic problem (48)–(52) can be reframed as a tree-sparse
linear-quadratic program with incoming control.

Proof. The objective and dynamics obviously fit into the tree-sparse framework, and con-
straints (50), (51) have the respective forms (24), (25). We conclude the proof by observ-
ing that each polyhedron

A � can be represented by constraints (22), (25) (with
� �2 � "V$

),
and (27). �
Theorem 9. The tree-sparse convex program (20)–(28) with linear or quadratic objective
(and without global constraints) can be reformulated as (48)–(52).

Proof. If � � s"©$
or
� � s"©$

in some node ¤ , replace � � by
�� � l " � � 2 & � � � and use the��2 part of

�� � in quadratic objective terms involving �42 . Accordingly, augment (24) by the
condition h���2 ����$�R h � �� � "J$

and extend other matrices that are multiplied by
�� � . Now

define
A � l " Y � � �+*-7 2. � &87 22 � 3 l 	 2� � � � � 2� "n$ \ and

� ; &� 	 &� � &� � l " � ���2 $ R � �2� �2 � 	 �� R � �� � & � ;f=� 	 =� � =� � l "
�
�
�
�
�
�
�
�

h $ 7 �. 2R h $ RU7 �2 2� �2 $ , �. 2R � �2 $ RU, �2 2� �2 � 	 �� , 2. 2R � �2 � 	 �� RU, 22 2



�
�
�
�
�
�
� [

Here it suffices to specify the first block row of
� ; &� 	 &� � &�J� in just one node ¤ � ¥ � ¦ � , and

similarly for the first four rows of
� ;)=� 	 =� � =��� . In the root, these five rows are all empty

and the remaining three rows are instead specified as further restrictions of
A � . (Recall that

the � � constraints must be empty in the root.) For ¤ �   , all restrictions on � � are specified
as � � constraints in stage

�6� Z
(which contains nothing else, as required). �

2Here we make the common assumption of complete information for simplicity, that is, ���,K���� in the
notation of [26].
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6.1. Global Constraints. If global constraints are present in the incoming control prob-
lem, its reformulation as a generalized linear-quadratic control problem requires additional
state variables to pass partial sums

� � � l " � � 	 � � � � � � � � � � � � up or down the tree.

6.1.1. Chains. In the special case of a chain, ¢ " $
&�[C[�[5& �
, we define additional states� �¡ ����� representing

����� ¡ � � �
	
¡ � ¡ � � ¡ . The dynamic equations (49) are now

�
¡ " � ¡0�
¡ � & �O$ � �¡ � & � ( ¡ � ¡ � D ¡ G ¢ "u$
&�[C[�[5& �m&
� �¡ " � ¡ � & �
¡ � & � � �¡ � & � 	 ¡ � ¡ � � ¡ G ¢ "u$
&�[C[�[5& �m&

and the global constraint turns into a single terminal state constraint (50),� � � � � � �� "F$
[
6.1.2. Trees. On a tree one must effectively accumulate partial sums backward in time. In
every node ¤ � � we add states � �� ����� representing

� � � � � � K <$= � � �	� � K , and for each

child
_�� ¥ � ¤ � an additional control-state pair

� � �� K & � �� K �E���?=
� representing
� . <>= �dK�� � . .

The dynamic equations (49) now read

� � " � � � 2 � ( � � � � D � G ¤ � � &
� �� " � �2 � R 	 � � � R � � G ¤ � � &
� �� K " � �� K G ¤ � � &]GH_�� ¥ � ¤ �x&

with the root equation � � � " R 	 � � � R � � replacing the original global constraint, and in
each node we have a local state constraint (50)

� �� R � � � � R �
K <�� � � � � �� K "n$
[

Although equivalent with our problem, this formulation is clearly much more complicated
and requires lots of extra variables.

6.2. Discussion. We have seen that generalized linear-quadratic control problems share
a central aspect with tree-sparse incoming control problems: the formulation of dynamic
equations. The important subclass of smooth quadratic problems is equivalent to our class.

The generalized control approach has its origin in a deterministic continuous-time set-
ting [24]; accent is placed on convexity and a completely symmetric duality framework,
yielding deep theoretical insight. The full problem class is considerably more general than
ours, including non-smooth saddlepoint problems with the possibility of constraints on
dual variables. (In [25] Rockafellar also studies a scenario tree formulation with outgoing
control but a similar duality framework.)

Our tree-sparse problems also originate in (discretized) nonlinear optimal control [28,
29, 34]. Here accent is placed on numerical exploitation of differentiability and sparsity,
whereas convexity is not required (and rarely present in applications). The approach is
probably more attractive from a practitioner’s viewpoint since it allows the direct and ef-
ficient handling of arbitrary (primal) constraints, including coupled multipoint boundary
conditions in the deterministic case and conditions on expectations in the stochastic case.

7. CONCLUSIONS

We have proposed and analyzed a flexible modeling and solution framework for dy-
namic stochastic programs and similarly structured optimization problems, thus develop-
ing a thorough theoretical understanding of the interaction between the inherent recourse
structure and the hierarchy of constraints into which it is embedded. We have also de-
veloped natural KKT solution algorithms reflecting this hierarchical structure, so that all
operations have direct control-theoretic interpretations in terms of the original formulation.
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Although the presentation was restricted to the convex case for simplicity of exposition,
the algorithmic approach extends directly to non-convex problems through appropriate
interior methods or SQP methods using convex QP subproblems.

The proposed algorithmic concept is particularly efficient when the tree complexity
dominates, that is, on large trees with dense blocks or blocks of moderate size. Moreover,
by specializing the node operations it can be adapted to exploit a problem-specific sub-
structure; an illustrative case study has been given in [32]. Considering general application
problems, the real challenge consists in finding a practical way to handle large and sparse
blocks efficiently. This is not entirely hopeless since the natural block elimination scheme
confines fill-in to the given blocks and provides strong guidelines for the sparsity analysis.
First investigations toward this direction are currently being conducted.
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