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ONLINE BIN-COLORING

SVEN O. KRUMKE !, WILLEM E. DE PAEPEZ2, JORG RAMBAU !, AND LEEN STOUGIE?

ABSTRACT. We introduce a new problem that was motivated by a (more complicated)
problem arising in a robotized assembly environment. Gihecoloring problenis to pack
unit size colored items into bins, such that the maximum number of different colors per bin
is minimized. Each bin has siz8¢ € N. The packing process is subject to the constraint
that at any moment in time at magte N bins are partially filled. Moreover, bins may only
be closed if they are filled completely. An online algorithm must pack each item must be
packed without knowledge of any future items.

We investigate the existence of competitive online algorithms for the bin coloring prob-
lem. We prove an upper bound @f — 1 and a lower bound diq for the competitive ratio
of a natural greedy-type algorithm, and show that surprisingly a trivial algorithm which
uses only one open bin has a strictly better competitive ratdgef 1. Moreover, we show
that any deterministic algorithm has a competitive r&lig) and that randomization does
not improve this lower bound even when the adversary is oblivious.

1. INTRODUCTION

One of the commissioning departments in the distribution center of Herlitz PBS AG,
Falkensee, one of the main distributors of office supply in Europe, is devoted to greeting
cards. The cards are stored in parallel shelving systems. Order pickers on automated guided
vehicles collect the orders from the storage systems, following a circular course through the
shelves. At the loading zone, which can hgldehicles, each vehicle is logically “loaded”
with B orders which arrive online. The goal is to avoid congestion among the vehicles (see
[AG198] for details). Since the vehicles are unable to pass each other and the “speed” of a
vehicle is correlated to the number of different stops it must make, this motivates to assign
the orders to vehicles in such a way that the vehicles stop as few times as possible.

The above situation motivated the followitngncoloring problem One receives a se-
guence of unit size items = rq,...,r,, Where each item has@lor ; € N, and is
asked to pack them into bins with siZz2 The goal is to pack the items into the bins “most
uniformly”, that is, to minimize the maximum number of different colors assigned to a bin.
The packing process is subject to the constraint that at any moment in time aj ma$t
bins may be partially filled. Bins may only be closed if they are filled completely. (Notice
that without these strict bounded space constraints the problem is trivial since in this case
each item can be packed into a separate bin).

In the online versionof the problem, denoted b@®LBcP, each item must be packed
without knowledge of any future items. An online algorithmcisompetitive if for all
possible request sequences the maximum colors in the bins packed by the algorithm and
the optimal offline solution is bounded hy Trivially, any algorithm forOLBcP is B-
competitive, where3 denotes the size of the bins.
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The OLBcP can be viewed as a variant of the bounded space binpacking problem in
(see [CGJ97, CW9S] for recent surveys on binpacking problems).

Summary of Results. We investigate the existence of competitive online algorithms for
the OLBcCP. Our results reveal a curiosity of competitive analysis: a truly stupid algorithm
achieves essentially a (non-trivial) best possible competitive ratio for the problem whereas a
seemingly reasonable algorithm performs provably worse in terms of competitive analysis.
We first analyze a natural “greedy-type” strategy, and show that this strategy has a com-
petitive ratio no greater thady but no smaller thaRq, whereq is the maximum number
of bins that may be partially filled (open) at the same time. We show that a trivial strategy
that only uses one open bin, has a strictly better competitive ratityy of 1. Then we
show that surprisingly no deterministic algorithm can be substantially better than the trivial
strategy. More specifically, we prove that no deterministic algorithm can, in general, have
a competitive ratio less than Even more surprising, the general lower bound &dr the
competitive ratio continues to hold for randomized algorithms against an oblivious adver-
sary. Finally, not even “resource augmentation”, which means that the online algorithm is
allowed to use a fixed numbef > ¢ of open bins instead af, can help to overcome the
lower bound of2(¢) on the competitive ratio.

Paper Outline. The paper is organized as follows. In Section 2 we formally define the
OLBcPand introduce notation. In Section 3 we describe and analyze the obvious algorithm
GREEDYFIT. In Section 4 we introduce and analyze the trivial algorithNeBIN which
surprisingly obtains a better competitive ratio th@REEDYFIT. Sections 5 and 6 contain
general lower bounds for deterministic and randomized algorithms.

2. PROBLEM DEFINITION

We start by defining the problem under study.

Definition 2.1 (Online Bin Coloring Problem)in theOnline Bin Coloring Problem@LBcPz ,)
with parameter®3, ¢ € N (B, ¢ > 2), one is given a sequenee= ry, ..., r,, Of unit size
items (requests), each with a colgre N, and is asked to pack them into bins with size
that is, each bin can accommodate exagtlyems. The packing is subject to the following
constraints:

(1) The items must be packed according to the order of their appearance, that is, item
must be packed before iteinfor all i < k.

(2) At mostgq partially filled bins may be open to further items at any point in the
packing process.

(3) A bin may only be closed if it is filled completely, i.e., if it has been assigned
exactly B items.

The objective is to minimize the maximum number of different colors assigned to a bin.
An online algorithm fotOLBCPg , must pack each item (irrevocably) without knowl-
edge of requests, with k& > 1.

In the sequel it will be occasionally helpful to use the following view on the bins used by
an arbitrary algorithmaLG to process an input sequengeEach open bin has andexz,
wherel < z < ¢. Each time a bin with index is closed (since it is filled completely) and
a new bin is opened the new bin will also have indexf no confusion can occur, we will
refer to a bin with index: asbin z.

We denote byaLG (o) the objective function value of the solution produced by an algo-
rithm ALG on inputo. We useoPT to denote an optimal offline algorithm. The algorithm
OPT has complete knowledge about the input sequetineadvance. However, the packing
must still obey the constraints 1 to 3 specified in Definition 2.1.

Definition 2.2 (Competitive Algorithm) A deterministic online algorithmaLG for OL-
Bcpg,, is c-competitiveif there exists a constantsuch that for any request sequeice

ALG(0) < c- OPT(0).
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The competitive ratio of an algorithmLG is the smallest number such thataLG is
c-competitive. As noted in the introduction the size of the hthis a trivial upper bound
on the competitive ratio adinyalgorithm forOLBCPg .

A randomized online algorithm is a probability distribution over a set of deterministic
online algorithms. The objective value produced by a randomized algorithm is therefore
a random variable. In this paper we analyze the performance of randomized online algo-
rithms only against anblivious adversary An oblivious adversary does not see the real-
izations of the random choices made by the online algorithm and therefore has to generate
a request sequence in advance. We refer to [BEY98] for details on the various adversary
models.

Definition 2.3 (Competitive Randomized AlgorithmA randomized online algorithiRALG
is c-competitive against an oblivious adversdffor any request sequenee

E [RALG(0)] < ¢- OPT(0).

3. THE ALGORITHM GREEDYFIT

In this section we introduce a natural greedy-type strategy, which wega&EDYFIT,
and show that the competitive ratio of this strategy is at n3gdtut no smaller tharzg
(provided the capacity is sufficiently large).

GREEDYFIT: If upon the arrival of request; the colorr; is already contained in one
of the currently open bins, say bbnthen putr; into binb. Otherwise put itermr;
into a bin that contains the least number of different colors (which means opening
a new bin if currently less thapbins are non-empty).

The analysis of the competitive ratio GREEDYFIT is essentially via a pigeon-hole
principle argumentation. We first show a lower bound on the number of binsathyat
algorithm can use to distribute a the items in a contiguous subsequence and then relate this
number to the number of colors in the input sequence.

Lemma 3.1. Leto = rq,...,7,, be any request sequence anddét= r;,...,r;1, be
any contiguous subsequencesof Then any algorithm packs the itemsddfinto at most
2q + | (¢ — 2¢)/B| different bins.

Proof. LetALG be any algorithm and 1ét, . . ., b; be the set of open bins faiLG just prior

to the arrival of the first item of’. Denote byf(b,) € {1,..., B — 1} the empty space in

bin b, at that moment in time. To close an open bjn ALG needsf (b;) items. Opening

and closing an additional new bin neeflsitems. To achieve the maximum number of
bins (> 2¢), ALG must first close each open bin and put at least one item into each newly
opened bin. From this moment in time, opening a new bin requresw items. Thus, it
follows that the maximum number of bime G can use is bounded from above as claimed
in the lemma. O

Theorem 3.2. AlgorithmGREEDYFIT is c-competitive forOLBCPg , with ¢ = min{2q +
[(¢B —3q+1)/B], B}.

Proof. Leto be any request sequence and SUp@ISEEDYFIT(0) = w. It suffices to con-
sider the case > 2. Let s be the smallest integer such theREEDYFIT(r,...,75_1) =
w — 1 andGREEDYFIT(ry,...,7s) = w. By the construction o6REEDYFIT, after pro-
cessingry, ..., rs_1 each of the currently open bins must contain exaathy 1 different
colors. Moreover, sincer > 2, after processing additionally request GREEDYFIT has
exactly g open bins (where as an exception we count here the bin whasepacked as
open even if by this assignment it is just closed). Denote those bihg by. , b,.

Let binb; be the bin amond,, . . ., b, that has been opened last GREEDYFIT. Letr/,
be the first item that was assignedto Then, the subsequeneé=r, ..., r, consists of
at mostyB — (¢ — 1) items, since between, andr, no bin is closed and at the moment
was processed,— 1 bins already contained at least one item. Moreavecontains items
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with at leastw different colors. By Lemma 3.0PT distributes the items af’ into at most
2¢ + [(¢B — 3¢+ 1)/B| bins. Consequently,
w
2¢+ [(¢B —3¢+1)/B]’
which proves the claim. a

OPT(0) >

Corollary 3.3. AlgorithmGREEDYFIT is c-competitive folOLBCPg , with ¢ = min{3¢q —
1,B}. O
We continue to prove a lower bound on the competitive ratiGREEDYFIT.

Theorem 3.4. GREEDYFIT has a competitive ratio greater or equal2g for theOLBCPg ,
if B>2¢%—¢*>—q+ 1.

Proof. We construct a request sequencthat consists of a finite numbér of phases in
each of whichy B requests are given. The sequence is constructed in such a way that after
each phase the adversary lygampty bins.

Each phase consists of two steps. In the first gfejjems are presented, each with a
new color which has not been used before. In the second;&epq? items are presented,
all with a color that has occurred before. We will show that we can choose the items given
in Step2 of every phase such that the following properties hold for the birgR&EDYFIT:

Property 1: The bins with indiceq, ..., q — 1 are never closed.

Property 2: The bins with indiceg, ..., ¢—1 contain only items of different colors.

Property 3: There is anM € N such that during Phase/ GREEDYFIT assigns for
the first time an item with a new color to a bin that already contains items with
2¢2 — 1 different colors.

Property 4: There is an assignment of the itemssa$uch that no bin contains items
with more thany different colors.

We analyze the behavior @REEDYFIT by distinguishing between the items assigned
to the bin (with index); and the items assigned to bins (with indicéshroughg — 1. Let
Ly, be the set of colors of the items assigned to lins ., ¢ — 1 and letR;, be the set of
colors assigned to bipduring Stepl of Phasek.

We now describe a general construction of the request sequence given i &tep
phase. During Step of Phasek there are items withRy| different colors assigned to
bin ¢q. For the moment, suppose th&t;| > ¢ (see Lemma 3.7 (iv)). We now patrtition the
at mostg? colors in| R | into ¢ disjoint non-empty setss, ..., S,. We givegB — ¢ > 2¢>
items with colors from Ry, | such that the number of items with colors frafhis B — ¢ for
everyj, and the lastRy| items all have a different color.

GREEDYFIT will pack all items given in Step2 into bin ¢ (Lemma 3.7 (iii)). Hence
bins1,...,q — 1 only get assigned items during Stepwhich implies the propertiesand
2.

The adversary assigns the items of Stequch that every bin receivesitems, and the
items with colors in the color sét; go to binj. Clearly, the items in every bin have no more
thangq different colors. The items given in St@pcan by construction of the sequence be
assigned to the bins of the adversary such that all bins are completely filled, and the number
of different colors per bin does not increase (this ensures that propersatisfied).

Lemma 3.5. At the end of Phasé < M, bin ¢ of GREEDYFIT contains exactlyB —
> i<k [Lj| items, and this number is at leagt.

Proof. After Phasek, exactlykqB items have been given. Moreover, aftephases bins
1 throughg — 1 contain exactlyZKk |L;| items because the items of Steare always
packed into biny by GREEDYFIT. Thus, the number of items in binof GREEDYFIT equals

kgB — Y |L;| mod B=B-> |L;j mod B.
J<k i<k
—————
<B
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We show thatB — 3~ |L;| > ¢°. This implies thatB — 3~ |L;| mod B = B —
ngk ‘Lj|-

Sincek < M we know that each of the biristhroughg — 1 contains at mos2¢? — 1
colors. Thusy~ . |L;| < (2¢° — 1)(¢ — 1) = 2¢* — 2¢*> — ¢ + 1. It follows from the
assumption orB thatB — >~ ., [L;| > ¢°. O

Corollary 3.6. For any Phasé: < M, bin q is never closed bg REEDYFIT before the end
of Stepl of Phasek.

Proof. The claim clearly holds for the first phase. Hence for the remainder we consider the
casek > 1.

Since there are exacthy? items presented in Stelpof any phase, the claim is true by
Lemma 3.5 as soon &% -, L;| > ¢? at the beginning of Phase in that case, there
is even enough space in binto accommodate all items given in Stép We show that
|L1| + |La| > ¢* which implies that >~ ., L;| > ¢* for k > 2.

After Phasel, each bin ofsREEDYFIT containsg colors, which yield$L,| = q(¢—1).
It is easy to see that all items presented in Stepthe first phase are packed into Lty
GREEDYFIT: All these items have colors frolR; where|R,| = ¢. Either a color fromR;
is currently already present in binor bin ¢ has less than different colors, while all other
bins containg colors. In either caseREEDYFIT packs the corresponding item into kjn

By Lemma 3.5 at the end of Phagebin ¢ contains at leasy? items. Since the last
|Ri| = ¢ items presented in Steb of the first phase have all different colors (and all
of these are packed into bipas shown above) we can conclude that at the beginning
of Phase2 bin ¢ of GREEDYFIT already containg colors. Thus, in Stef of Phase2
GREEDYFIT again putsy items into each of its bins. At this point, the total number of
distinct colors in the firsg — 1 bins is at leastq — 1)q + (¢ — 1)q = 2¢*> — 2q > ¢ for
q > 1,sothatL;| + |Ls| > ¢%. As noted above, this implies the claim. O

The success of our construction heavily relies on the fact that at the beginning of each
phase, biny of GREEDYFIT contains at least colors. We show that this is indeed true.

Lemma 3.7. For k& > 1 the following statements are true:

(i) At the beginning of Phasg bin ¢ of GREEDYFIT contains exactly the colors
from Ry,_, (WhereR, := ().
(i) After Stepl of Phasek, each of the bing, ..., ¢ — 1 of GREEDYFIT contains at
least| Ry | + |Rk—1| — 1 different colors.
(i) In Step2 of Phasek GREEDYFIT packs all items into bin.
V) [Re| > q.

Proof. The proof is by induction ort. All claims are easily seen to be true for= 1.
Hence, in the inductive step we assume that statements (i)—(iv) are true foksermend
we consider Phase+ 1.

(i) By the induction hypothesis (iii) all items from St@ppresented in Phasewere
packed into biny by GREEDYFIT. Since at the end of Phagebin ¢ contains at
leastq® > |Ry| items (see Lemma 3.5) and the I&t items presented in Phake
had different colors, it follows that at the beginning of Phase 1 bin ¢ contains
at leastall colors fromR;,.. On the other hand, since all tiey — ¢> > B items
from Step2 were packed into bip by GREEDYFIT, this bin was closed during this
process and consequently can only contain colors fRam

(i) By Corollary 3.6 bing is not closed before the end of StepAfter Stepl all colors
from Ry are already in biry by construction. Since by (i) before Stépmlso
all colors fromR;, were contained in bin, it follows that bing contains at least
|Ry|+ |Ri+1] different colors at the end of Stdp By construction ofsREEDYFIT
each of the bing, . .., ¢ — 1 must then contain at leald®y,| + | Rx+1| — 1 different
colors.
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(iii) When Step2 starts then all colors fronk,. ., are already in big by construction.
Therefore GREEDYFIT will initially pack items with colors fromRy_; into bing
as long as this bin is not yet filled up. We have to show that after llias been
closed the number of colors in any other bin is always larger than ig.bifhis
follows from (ii), since by (ii) each of the bins,...,q — 1 has at leastRy| +
|Ri+1] > |Rg+1| + g — 1 > |Riy1| colors after Steg of Phaset + 1.

(iv) At the beginning of Phask + 1 bin ¢ contains exactlyRy| colors by (i). By the
induction hypothesis (ii) and (iii) each of the biis. .., ¢ — 1 contains at least
|Rik| + |Rr—1] — 1 > |Rx| colors. Hence, at the beginning of Phase- 1, the
minimum number of colors in bins, ..., ¢ — 1 is no smaller than the number of
colors in bing. It follows from the definition ofGREEDYFIT that during Step
of Phasek + 1, bin ¢ is assigned at least thg /¢ = ¢ colors. In other words,
|Rypt1] = g

O

To this point we have shown that we can actually construct the sequence as suggested,
and that the optimal offline cost on this sequence is no more¢hisliow we need to prove
that there is a numbey/ € N such that aftefl/ phases there is a bin fro®REEDYFIT
that contains items witBq? different colors. We will do this by establishing the following
lemma:

Lemma 3.8. In every two subsequent Phadeandk + 1, either| Ly U Li11| > 0 or bing
contains items witRq? different colors during one of the two phases.

Proof. Suppose that there is a Phdsé which |L,| = 0. This means that alj? items
given in Stepl are assigned to big (| x| = ¢*). By Lemma 3.7 (i), at the beginning of
Phasé: + 1, bin ¢ still containsg? different colors. If in Stefd of Phase: + 1 again allg?
items are assigned to bin bin ¢ contains items witt2¢? different colors (recall that bin
is never closed before the end of Stielpy Corollary 3.6). If less thap? items are assigned
to bin ¢ then one of the other bins gets at least one item,|apd; | > 0. O

We can conclude from Lemma 3.8 that at least once every two phases the number of
items in the bind throughq — 1 grows. Since these bins are never closed (progérignd
all items have a unique color (proper2y, after a finite numben/ of phases, one of the
bins of GREEDYFIT must contain items witBgq? different colors. This completed the proof
of the Theorem. O

4. THE TRIVIAL ALGORITHM ONEBIN

This section is devoted to arguably the simplest (and most trivial) algorithm for the
OLBcP, which surprisingly has a better competitive ratio tlewEEDYFIT. Moreover, as
we will see later that this algorithm achieves essentially the best competitive ratio for the
problem.

Algorithm ONEBIN: The next itemr; is packed into the (at most one) open bin. A
new bin is opened only if the previous item has closed the previous bin by filling
it up completely.

The proof of the upper bound on the competitive rationEBIN is along the same lines
as that ofGREEDYFIT.

Lemma4.1. Leto = rq,...,r, be any request sequence. Thenifor 0 any algorithm
packs the items;z 1, ...,7(;41)p iNto at mostmin{2q — 1, B} bins.

Proof. It is trivial that the B itemsr;g1,...,74+1)s can be packed into at most dif-

ferent bins. Hence we can assume that- 1 < B, which meang < (B —1)/2 < B.
Consider the subsequenaé = rip1,...,7;+1)p Of 0. Let ALG be any algorithm

and suppose that just prior to the arrival of the first itenagfalgorithmaLc hasi open
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bins. Denote these bins by, ..., b;. Let f(b;) € {1,..., B — 1} be the number of empty
places in birb;, j = 1,...,t. Notice that

t

> f(bj)=0 mod B. (1)

j=1

Suppose thatLG uses at leasiq bins to distribute the items of’. By arguments similar

to those given in Lemma 3.1LG can maximize the number of bins used only by closing
each currently open bin and put at least one item into each of the newly opened bins. To
obtain at leas2q bins at IeasE;:1 f(bj)+(g—1t)+qitems are required. Sined contains

B items and < ¢ it follows that that

t

> ) +9<B. ©)

Jj=1

Since by (1) the sunZé:1 f(b;) is amultiple of B andg > 1, the only possibility that the

left hand side of (2) can be bounded from abovelibis thatZE.:1 f(b;) = 0. However,
this is a contradiction tgf(b;) > 1for j =1, ..., t. O

As a consequence of the previous lemma we obtain the following bound on the compet-
itive ratio of ONEBIN.

Theorem 4.2. AlgorithmONEBIN is c-competitive for th@OLBCPg , With ¢ = min{2q —
1, B}.

Proof. Leto = rq,..., 7, be any request sequence and supposedNaBIN(c) = w.
Leto’ = ripy1,...,7u+1)8 Of o be the subsequence on whioNEBIN getsw different
colors. Clearlys’ contains items with exactly colors. By Lemma 4.DpT distributes
the items ofs’ into at mostmin{2¢ — 1, B} different bins. Hence, one of those bins must
be filled with at Ieas'm colors. O

The competitive ratio proved in the previous theorem is tight as the following example
shows. LetB > 2¢ — 1. First we give(q — 1) B items, after which by definitiooNEBIN
has only empty bins. The items hayelifferent colors, every color but one occuBs— 1
times, one color occurs only— 1 times. The adversary assigns all items of the same color
to the same bin, using one color per bin. After thistems with all the different colors
used before are requested. The adversary can now ¢lesg bins, still using only one
color per bin.oNEBIN ends up withy different colors in its bin. Then — 1 items with new
(previously unused) colors are given. The adversary can assign every item to an empty bin,
thus still having only one different color per bin, whiteuEBIN puts these items in the bin
where already; different colors where present.

5. A GENERAL LOWERBOUND FORDETERMINISTIC ALGORITHMS

In this section we prove a general lower bound on the competitive ratio of any determin-
istic online algorithm for thedDLBcP. We establish a lemma which immediately leads to
the desired lower bound but which is even more powerful. In particular, this lemma will
allow us to derive essentially the same lower bound for randomized algorithms in Section 6.

In the sequel we will have to refer to the “state” of (the bins managed by) an algorithm
ALG after processing a prefix of a request sequenceo this end we introduce the notion
of aC-configuration

Definition 5.1 (C-configuration) Let C a set of colors. AC-configurationis a packing
of items with colors fronC into at mostg bins. More formally, aC-configuration can be
defined as a mapping : {1,...,¢} — S<p, Where

S<p := {5 : Sisamultiset ovet containing at mosB elements frons }
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with the interpretation thak((j) is the multiset of colors contained in bjn We omit the
reference to the sé&tif it is clear from the context.

Lemma 5.2. Let B,q,s € N such thats > 1 and the inequalityB/q > s — 1 holds.
There exists a finite st of colors and a constant € N with the following property.
For any deterministic algorithmaLG and anyC-configurationk there exists an input se-
quencera s, x 0f OLBCPg 4 such that

(i) The sequencen s x uses only colors frorg and|oae x| < L, thatis,oac, i
consists of at modt requests.
(i) If ALG starts with initialC-configurationK thenALG(cac i) > (s — 1)q.
(iii) If opT starts with the empty configuration (i.e., all bins are empty), then(oac k) <
s. Additionally,oPT can process the sequence in such a way that at the end again
the empty configuration is attained.

Moreover, all of the above statements remain true even in the case that the online algo-
rithm is allowed to us@’ > ¢ bins instead of; (while the offline adversary still only uses

g bins). In this case, the constart and K depend only om’ but not on the particular
algorithmaLa.

Proof. Let C = {c1,...,c(s—1)2424} b€ @ set of(s — 1)?¢?¢’ colors andALG be any
deterministic online algorithm which starts with some initfatonfigurationk’.

The construction of the request sequengg; x works inphaseswhere at the begin-
ning of each phase the offline adversary has all bins empty. During the run of the request
sequence, a subset of the currently open bing af will be marked We will denote byP
the subset of marked bins at the beginning of Pliage, = () and during some Phasé,
one bin inPy; will contain at leasts — 1)q colors. In order to assure that this goal can in
principle be achieved, we keep the invariant that eachh linP;, has the property that the
number of different colors ih plus the free space inis at leasts — 1)q. In other words,
each birb € P, could potentially still be forced to contain at ledst- 1)q different colors.
For technical reasong);, is only a subset of the bins with this property.

For binj of ALG we denote by:(j) the number of different colors currently in bjrand
by f(j) the space left in big. Then every biry € P, satisfiesa(j) + f(j) > (s —1). By
min Py, := min;cp, n(j) we denote the minimum number of colors in a bin fréin

We now describe Phagewith 1 < k£ < ¢(s — 1)¢’. The adversary selects a set of
(s —1)g new colorsCy, = {c1, ..., cs—1)q) fromC not used in any phase before and starts
to present one item of each color in the order

C1,€25-+-,C(s—-1)g)C1,C2, - -+, C(5—1)q> C1,C2; - - - (3)
until one of the following cases appears:

Case 1: ALG puts an item into a bip € Pi. In this case we le) := P, \ {j €
Py, : n(j) < n(p) }, thatis, we remove all bins fror, which have less than(p)
colors. Notice thatnin;cq n(j) > min P, since the number of different colors
in bin p increases.

Case 2: ALG puts an item into some bifi¢ P, which satisfies

n(j) + f(j) = (s = 1)g. (4)
In this case we s&b := P, U {j} (we tentatively add bir to the setP;).

Notice that after a finite number of requests one of these two cases must occur: Let
bi,...,b, be the set of currently open bins af G. If ALG never puts an item into a
bin from P, then at some point all bins db,,...,b.} \ Py are filled and a new bin, say
bin 7, must be opened byLG by putting the new item into bir. But at this moment biri
satisfies satisfies(j) = 1, f(j) = B — 1 and hencex(j) + f(j) = B > (s — 1)g which
gives (4).

Since the adversary started the phase with all bins empty and during the current phase
we have given no more thdm — 1)q colors, the adversary can assign the items to bins such
that no bin contains more than— 1 different colors (we will describe below how this is
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done precisely). Notice that due to our stopping criterions from above (case 1 and case 2)
it might be the case that in fact so far we have presented lesg4har)q colors.
In the sequel we imagine that each currently open bin of the adversary has an:jndex
wherel < z < ¢. Let3: Cy — {1,...,q} be any mapping of the colors frofi; to
the offline bin index such thdB—*({z})| < s —1forj = 1,...,q. We imagine colok,.
to “belong” to the bin with index3(c,.) even if no item of this color has been presented
(yet). For those items presented already in Pliasach item with color,. goes into the
currently open bin with inde®(c, ). If there is no open bin with inde®(c,.) when the item
arrives a new bin with indeg(c,.) is opened by the adversary to accommodate the item.
Our goal now is to clear all open offline bins so that we can start a new phase. During
our clearing loop the offline bin with index might be closed and replaced by an empty
bin multiple times. Each time a bin with indexis replaced by an empty bin, the new bin
will also have index:. The bin with index receives a color notii—! ({x}) at most once,
ensuring that the optimum offline cost still remains bounded from above Blge clearing
loop works as follows:

(1) (start of clearing loop iteration) Choose a catore Cj, which is not contained in
any bin from@. If there is no such color, goto the “good end” of the clearing loop
(Step 4).

(2) Let F' < ¢B denote the current total empty space in the open offline bins. Present
items of colorc* until one of the following things happens:

Case (a): At some point in timeALG puts the/th item with colorc* into a
bin j € @ wherel < ¢ < F. Notice that the number of different colors jn
increases. Let

Q' =Q\{beQ:n() <n(j}
in other words, we remove all birisfrom @ which currently have less than(;)
colors. This guarantees that

min n(b) > min n(b) > min Py. (5)
The adversary puts allitems of colorc* into bins with index3(c*). Notice that
during this process the open bin with indég*) might be filled up and replaced
by a new empty bin with the same index.

Set@ := @' and go to the start of the next clearing loop iteration (Step 1).
Notice that the number of colors froftl, which are contained i) decreases by
one, butmin,cg n(b) increases.

Case (b): F' items of colorc* have been presented, butG has not put any of
these items into a bin fro@.

In this case, the offline adversary processes these items differently from Case (a):
The F' items of colorc* are used to fill up the exactly’ empty places in all cur-
rently open offline bins. Since up to this point, each offline bin with inddad
received colors only from the— 1 element seB~!({z}), it follows that no offline
bin has contained more thardifferent colors.

We close the clearing loop by proceeding as specified at the “standard end”
(Step 3).

(3) (Standard end of clearing loop iteration)

In case we have reached this step, we are in the situation that all offline bins
have been cleared (we can originate only from Case (b) above). ViR set= @
and end the clearing loop and the current PHiase

(4) (Good end of clearing loop iteration)

We have reached the point that all colors fréfpnare contained in a bin fro®.
Before the first iteration, exactly one color frofiy, was contained irQ. The
number of colors fronC), which are contained in bins froi§y can only increase
by one (which is in Case (a) aboveifin,c g n(b) increases. Hence, if all colors
from Cj, are contained in bins fron®), minycg n(v) must have increased —
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1)g — 1 times, which impliesninyeg n(b) = (s — 1)g. In other words, one of
ALG's bins inQ contains at leadts — 1)q different colors.

The only thing left to do is append a suitable suffix to our sequence constructed
so far such that all open offline bins are closed. Clearly this can be done without
increasing the offline-cost.

In case the clearing loop finished with a “good end” we have achieved our goal of con-
structing a sufficiently bad sequence farc. What happens if the clearing loop finishes
with a “standard end"?

Claim 5.3. If Phasek completes with a “standard end”, themin P, 1 > min Py or
| Prt1] > [Pl

Before we prove Claim 5.3, let us show how this claim implies the result of the lemma.
Since the casé€P,11| > |P;| can happen at mosgt times, it follows that after at most
¢’ phasesnin P, must increase. On the other hand, sing@ P, never decreases by our
construction and the offline costs remain bounded from above ljter at mosy(s —
1)¢’ phases we must be in the situation thah P, > (s — 1)g, which implies a “good
end”. Since in each phase at mg¢st— 1)q new colors are used, it follows that our initial
setC of (s — 1)2¢?¢’ colors suffices to construct the sequengg; . Clearly, the length
of oaLe,x Can be bounded by a constdhindependent oALG and K.

Proof of Claim 5.3.Suppose that the sequence (3) at the beginning of the phase was ended
because Case 1 occurred, i&.G put one of the new items into a bin froi,. In this
casemin,eg n(b) > min Py. Since during the clearing loapin,eg n(b) can never de-
crease andP;; is initialized with the result ofy at the “standard end” of the clearing
loop, the claim follows.

The remaining case is that the sequence (3) was ended because of a Case 2-situation.
Then|Q| = | P, U {j}| for somej ¢ P, and hencéq)| > |P;|. During the clearing loog)
can only decrease in sizerifin;c n(¢) increases. It follows that eithéPy1| = |Py| +1
or min Py; > min Py which is what we claimed. O

This completes the proof of the lemma. a

As an immediate consequence of Lemma 5.2 we obtain the following lower bound result
for the competitive ratio of any deterministic algorithm:

Theorem 5.4. Let B, ¢, s € N such thats > 1 and the inequality3/q > s — 1 holds. No
deterministic algorithm fo©OLBCPg , can achieve a competitive ratio less than-1) /s -
q. Hence, the competitive ratio of any deterministic algorithm for filkeaind ¢ is at least

(1 — BLH) g. In particular, for the general case with no restrictions on the relation of the

capacityB to the number of bing, there can be no deterministic algorithm fOLBcPg 4
that achieves a competitive ratio less than

All of the above claims remain valid, even if the online algorithm is allowed to use an
arbitrary numberq’ > ¢ of open bins. |

6. A GENERAL LOWERBOUND FORRANDOMIZED ALGORITHMS

In this section we show lower bounds for the competitive ratio of any randomized algo-
rithm against an oblivious adversary foLBcPg ,. The basic method for deriving such
a lower bound is Yao's principle (see also [BEY98, MR95]). Létbe a probability dis-
tribution over input sequencés = {0, : = € X }. We denote thexpected costf the
deterministic algorithmaLG according to the distributioX onX by Ex [ALG (0 )]. Yao's
principle can now be stated as follows.

Theorem 6.1(Yao’s principle) Let{ ALG,, : y € ) } denote the set of deterministic online
algorithms for an online minimization problem.Xf is a probability distribution over input
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sequence$ o, : x € X } such that

ing Ex [ALGy(04)] > ¢Ex [OPT(0y)]- (6)
IS )

for some real numbet > 1, thenc is a lower bound on the competitive ratio of any
randomized algorithm against an oblivious adversary. O

Theorem 6.2. Let B, ¢, s € N such thats > 1 and the inequalityB/q > s — 1 holds.
Then no randomized algorithm f@LBcPg , can achieve a competitive ratio less than
(s —1)/s - g against an oblivious adversary.

In particular for fixed B and ¢, the competitive ratio against an oblivious adversary is

at Ieast(l — BLH q.

All of the above claims remain valid, even if the online algorithm is allowed to use an
arbitrary numberq’ > ¢ of open bins.

Proof. Let A := { ALG, : y € ) } the set of deterministic algorithms for the Uniform Bin
Packing Problem with capacity andg open bins. We will show that there is a probability
distribution X over a certain set of request sequenfes : « € X' } such that for any
ALG, € A
Ex [ALG,(72)] > (s — 1)g,
and, moreover,
Ex [0PT(0,)] < s.

The claim of the theorem then follows by Yao’s principle.

Let us recall the essence of Lemma 5.2. The lemma establishes the existence of a finite
color setC and a constant such that for a fixed configuratioR’ any deterministic algo-
rithm can be “fooled” by one of at mo&t|~ sequences. Since there are no more ¥
configurations, dixed finiteset of at mostV := |C|“+48 sequenceX® = {o1,...,0n}
suffices to “fool”anydeterministic algorithm provided the initial configuration is known.

Let X be a probability distribution over the set of finite request sequences

{0'7;1,O'i2,...,0'ik kEN,lgljgN}

such thatr;; is chosen fron uniformly and independently of all previous subsequences
oiy,---,04;_,. We call subsequenesg, thekth phase
LetALG, € A be arbitrary. Define,, by

er, := Pryx [ALG, has one bin with at leagt — 1)q colors during Phask] . @)

The probability thanLG,, has one bin with at leags — 1)¢ colors on any given phase is at
leastl /N, whencee;, > 1/N for all k. Let

pr = Prx [ALGy (04, ... 04, _,03,) = (s — 1)q] . (8)

Then the probabilitieg;, satisfy the following recursion:
po=0 9)
Pe = Pr—1 + (1 — pr—1)ex (10)

The first term in (10) corresponds to the probability that, has already cost at least
(s — 1)q after Phasé — 1, the second term accounts for the probability that this is not the
case but cost at leagt — 1)q is achieved in Phase By construction ofX, these events
are independent. Sineg > 1/N we get that

Pk > pr—1+ (1 —pr—1)/N. (11)

It is easy to see that any sequence of real numpess [0, 1] satisfying (9) and (11) must
converge tol. Hence, also the expected c@&t [ALG, (0,)] converges tqs — 1)g. On
the other hand, the offline costs remain bounded by the choice of the;; according to
Lemma 5.2. O
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7. CONCLUSIONS

We have studied the online bin coloring probl&@nBcP, which was motivated by ap-
plications in a robotized assembly environment. The investigation of the problem from a
competitive analysis point of view revealed a number of odds. A natural greedy-type strat-
egy (GREEDYFIT) achieves a competitive ratio strictly worse than arguably the most stupid
algorithm ©ONEBIN). Moreover, no algorithm can be substantially better than the trivial
strategy ONEBIN). Even more surprising, neither randomization nor “resource augmenta-
tion” helps to overcome th@(q) lower bound on the competitive ratio (see [PK95;PZ]
for successful applications to scheduling problems) can help to overconiy ¢héower
bound on the competitive ratio. Intuitively, the strateglgeeDYFIT should perform well
“on average” (which we could sort of confirm by preliminary experiments with random
data).

An open problem remains the existence of a deterministic (or randomized) algorithm
which achieves a competitive ratio gf(matching the lower bound of Theorems 5.4 and
6.2). However, the most challenging issue raised by our work seems to be an investigation
of OLBcPfrom an average-case analysis point of view.
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