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ONLINE BIN-COLORING

SVEN O. KRUMKE 1, WILLEM E. DE PAEPE2, JÖRG RAMBAU 1, AND LEEN STOUGIE3

ABSTRACT. We introduce a new problem that was motivated by a (more complicated)
problem arising in a robotized assembly environment. Thebin coloring problemis to pack
unit size colored items into bins, such that the maximum number of different colors per bin
is minimized. Each bin has sizeB ∈ N. The packing process is subject to the constraint
that at any moment in time at mostq ∈ N bins are partially filled. Moreover, bins may only
be closed if they are filled completely. An online algorithm must pack each item must be
packed without knowledge of any future items.

We investigate the existence of competitive online algorithms for the bin coloring prob-
lem. We prove an upper bound of3q− 1 and a lower bound of2q for the competitive ratio
of a natural greedy-type algorithm, and show that surprisingly a trivial algorithm which
uses only one open bin has a strictly better competitive ratio of2q−1. Moreover, we show
that any deterministic algorithm has a competitive ratioΩ(q) and that randomization does
not improve this lower bound even when the adversary is oblivious.

1. INTRODUCTION

One of the commissioning departments in the distribution center of Herlitz PBS AG,
Falkensee, one of the main distributors of office supply in Europe, is devoted to greeting
cards. The cards are stored in parallel shelving systems. Order pickers on automated guided
vehicles collect the orders from the storage systems, following a circular course through the
shelves. At the loading zone, which can holdq vehicles, each vehicle is logically “loaded”
with B orders which arrive online. The goal is to avoid congestion among the vehicles (see
[AG+98] for details). Since the vehicles are unable to pass each other and the “speed” of a
vehicle is correlated to the number of different stops it must make, this motivates to assign
the orders to vehicles in such a way that the vehicles stop as few times as possible.

The above situation motivated the followingbincoloring problem: One receives a se-
quence of unit size itemsσ = r1, . . . , rm where each item has acolor ri ∈ N, and is
asked to pack them into bins with sizeB. The goal is to pack the items into the bins “most
uniformly”, that is, to minimize the maximum number of different colors assigned to a bin.
The packing process is subject to the constraint that at any moment in time at mostq ∈ N
bins may be partially filled. Bins may only be closed if they are filled completely. (Notice
that without these strict bounded space constraints the problem is trivial since in this case
each item can be packed into a separate bin).

In the online versionof the problem, denoted byOLBCP, each item must be packed
without knowledge of any future items. An online algorithm isc-competitive, if for all
possible request sequences the maximum colors in the bins packed by the algorithm and
the optimal offline solution is bounded byc. Trivially, any algorithm forOLBCP is B-
competitive, whereB denotes the size of the bins.
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The OLBCP can be viewed as a variant of the bounded space binpacking problem in
(see [CGJ97, CW98] for recent surveys on binpacking problems).

Summary of Results. We investigate the existence of competitive online algorithms for
theOLBCP. Our results reveal a curiosity of competitive analysis: a truly stupid algorithm
achieves essentially a (non-trivial) best possible competitive ratio for the problem whereas a
seemingly reasonable algorithm performs provably worse in terms of competitive analysis.

We first analyze a natural “greedy-type” strategy, and show that this strategy has a com-
petitive ratio no greater than3q but no smaller than2q, whereq is the maximum number
of bins that may be partially filled (open) at the same time. We show that a trivial strategy
that only uses one open bin, has a strictly better competitive ratio of2q − 1. Then we
show that surprisingly no deterministic algorithm can be substantially better than the trivial
strategy. More specifically, we prove that no deterministic algorithm can, in general, have
a competitive ratio less thanq. Even more surprising, the general lower bound ofq for the
competitive ratio continues to hold for randomized algorithms against an oblivious adver-
sary. Finally, not even “resource augmentation”, which means that the online algorithm is
allowed to use a fixed numberq′ ≥ q of open bins instead ofq, can help to overcome the
lower bound ofΩ(q) on the competitive ratio.

Paper Outline. The paper is organized as follows. In Section 2 we formally define the
OLBCPand introduce notation. In Section 3 we describe and analyze the obvious algorithm
GREEDYFIT. In Section 4 we introduce and analyze the trivial algorithmONEBIN which
surprisingly obtains a better competitive ratio thanGREEDYFIT. Sections 5 and 6 contain
general lower bounds for deterministic and randomized algorithms.

2. PROBLEM DEFINITION

We start by defining the problem under study.

Definition 2.1 (Online Bin Coloring Problem). In theOnline Bin Coloring Problem (OLBCPB,q)
with parametersB, q ∈ N (B, q ≥ 2), one is given a sequenceσ = r1, . . . , rm of unit size
items (requests), each with a colorri ∈ N, and is asked to pack them into bins with sizeB,
that is, each bin can accommodate exactlyB items. The packing is subject to the following
constraints:

(1) The items must be packed according to the order of their appearance, that is, itemi
must be packed before itemk for all i < k.

(2) At most q partially filled bins may be open to further items at any point in the
packing process.

(3) A bin may only be closed if it is filled completely, i.e., if it has been assigned
exactlyB items.

The objective is to minimize the maximum number of different colors assigned to a bin.
An online algorithm forOLBCPB,q must pack each itemri (irrevocably) without knowl-

edge of requestsrk with k > i.
In the sequel it will be occasionally helpful to use the following view on the bins used by

an arbitrary algorithmALG to process an input sequenceσ. Each open bin has anindexx,
where1 ≤ x ≤ q. Each time a bin with indexx is closed (since it is filled completely) and
a new bin is opened the new bin will also have indexx. If no confusion can occur, we will
refer to a bin with indexx asbin x.

We denote byALG(σ) the objective function value of the solution produced by an algo-
rithm ALG on inputσ. We useOPT to denote an optimal offline algorithm. The algorithm
OPT has complete knowledge about the input sequenceσ in advance. However, the packing
must still obey the constraints 1 to 3 specified in Definition 2.1.

Definition 2.2 (Competitive Algorithm). A deterministic online algorithmALG for OL-
BCPB,q is c-competitive, if there exists a constantc such that for any request sequenceσ

ALG(σ) ≤ c · OPT(σ).
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The competitive ratio of an algorithmALG is the smallest numberc such thatALG is
c-competitive. As noted in the introduction the size of the binsB is a trivial upper bound
on the competitive ratio ofanyalgorithm forOLBCPB,q.

A randomized online algorithm is a probability distribution over a set of deterministic
online algorithms. The objective value produced by a randomized algorithm is therefore
a random variable. In this paper we analyze the performance of randomized online algo-
rithms only against anoblivious adversary. An oblivious adversary does not see the real-
izations of the random choices made by the online algorithm and therefore has to generate
a request sequence in advance. We refer to [BEY98] for details on the various adversary
models.

Definition 2.3 (Competitive Randomized Algorithm). A randomized online algorithmRALG

is c-competitive against an oblivious adversaryif for any request sequenceσ

E [RALG(σ)] ≤ c · OPT(σ).

3. THE ALGORITHM GREEDYFIT

In this section we introduce a natural greedy-type strategy, which we callGREEDYFIT,
and show that the competitive ratio of this strategy is at most3q but no smaller than2q
(provided the capacityB is sufficiently large).

GREEDYFIT: If upon the arrival of requestri the colorri is already contained in one
of the currently open bins, say binb, then putri into bin b. Otherwise put itemri

into a bin that contains the least number of different colors (which means opening
a new bin if currently less thanq bins are non-empty).

The analysis of the competitive ratio ofGREEDYFIT is essentially via a pigeon-hole
principle argumentation. We first show a lower bound on the number of bins thatany
algorithm can use to distribute a the items in a contiguous subsequence and then relate this
number to the number of colors in the input sequence.

Lemma 3.1. Let σ = r1, . . . , rm be any request sequence and letσ′ = ri, . . . , ri+` be
any contiguous subsequence ofσ. Then any algorithm packs the items ofσ′ into at most
2q + b(`− 2q)/Bc different bins.

Proof. Let ALG be any algorithm and letb1, . . . , bt be the set of open bins forALG just prior
to the arrival of the first item ofσ′. Denote byf(bj) ∈ {1, . . . , B − 1} the empty space in
bin bj at that moment in time. To close an open binbj , ALG needsf(bj) items. Opening
and closing an additional new bin needsB items. To achieve the maximum number of
bins(≥ 2q), ALG must first close each open bin and put at least one item into each newly
opened bin. From this moment in time, opening a new bin requiresB new items. Thus, it
follows that the maximum number of binsALG can use is bounded from above as claimed
in the lemma. �

Theorem 3.2. AlgorithmGREEDYFIT is c-competitive forOLBCPB,q with c = min{2q +
b(qB − 3q + 1)/Bc, B}.

Proof. Let σ be any request sequence and supposeGREEDYFIT(σ) = w. It suffices to con-
sider the casew ≥ 2. Let s be the smallest integer such thatGREEDYFIT(r1, . . . , rs−1) =
w − 1 andGREEDYFIT(r1, . . . , rs) = w. By the construction ofGREEDYFIT, after pro-
cessingr1, . . . , rs−1 each of the currently open bins must contain exactlyw − 1 different
colors. Moreover, sincew ≥ 2, after processing additionally requestrs, GREEDYFIT has
exactlyq open bins (where as an exception we count here the bin wherers is packed as
open even if by this assignment it is just closed). Denote those bins byb1, . . . , bq.

Let bin bj be the bin amongb1, . . . , bq that has been opened last byGREEDYFIT. Let r′s
be the first item that was assigned tobj . Then, the subsequenceσ′ = rs′ , . . . , rs consists of
at mostqB− (q−1) items, since betweenrs′ andrs no bin is closed and at the momentrs′

was processed,q− 1 bins already contained at least one item. Moreover,σ′ contains items
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with at leastw different colors. By Lemma 3.1OPT distributes the items ofσ′ into at most
2q + b(qB − 3q + 1)/Bc bins. Consequently,

OPT(σ) ≥ w
2q + b(qB − 3q + 1)/Bc

,

which proves the claim. �

Corollary 3.3. AlgorithmGREEDYFIT is c-competitive forOLBCPB,q with c = min{3q−
1, B}. �

We continue to prove a lower bound on the competitive ratio ofGREEDYFIT.

Theorem 3.4. GREEDYFIT has a competitive ratio greater or equal to2q for theOLBCPB,q

if B ≥ 2q3 − q2 − q + 1.

Proof. We construct a request sequenceσ that consists of a finite numberM of phases in
each of whichqB requests are given. The sequence is constructed in such a way that after
each phase the adversary hasq empty bins.

Each phase consists of two steps. In the first stepq2 items are presented, each with a
new color which has not been used before. In the second stepqB− q2 items are presented,
all with a color that has occurred before. We will show that we can choose the items given
in Step2 of every phase such that the following properties hold for the bins ofGREEDYFIT:

Property 1: The bins with indices1, . . . , q − 1 are never closed.
Property 2: The bins with indices1, . . . , q−1 contain only items of different colors.
Property 3: There is anM ∈ N such that during PhaseM GREEDYFIT assigns for

the first time an item with a new color to a bin that already contains items with
2q2 − 1 different colors.

Property 4: There is an assignment of the items ofσ such that no bin contains items
with more thanq different colors.

We analyze the behavior ofGREEDYFIT by distinguishing between the items assigned
to the bin (with index)q and the items assigned to bins (with indices)1 throughq − 1. Let
Lk be the set of colors of the items assigned to bins1, . . . , q − 1 and letRk be the set of
colors assigned to binq during Step1 of Phasek.

We now describe a general construction of the request sequence given in Step2 of a
phase. During Step1 of Phasek there are items with|Rk| different colors assigned to
bin q. For the moment, suppose that|Rk| ≥ q (see Lemma 3.7 (iv)). We now partition the
at mostq2 colors in|Rk| into q disjoint non-empty setsS1, . . . , Sq. We giveqB−q2 ≥ 2q2

items with colors from|Rk| such that the number of items with colors fromSj is B− q for
everyj, and the last|Rk| items all have a different color.

GREEDYFIT will pack all items given in Step2 into bin q (Lemma 3.7 (iii)). Hence
bins1, . . . , q− 1 only get assigned items during Step1, which implies the properties1 and
2.

The adversary assigns the items of Step1 such that every bin receivesq items, and the
items with colors in the color setSj go to binj. Clearly, the items in every bin have no more
thanq different colors. The items given in Step2 can by construction of the sequence be
assigned to the bins of the adversary such that all bins are completely filled, and the number
of different colors per bin does not increase (this ensures that property4 is satisfied).

Lemma 3.5. At the end of Phasek < M , bin q of GREEDYFIT contains exactlyB −
∑

j≤k |Lj | items, and this number is at leastq2.

Proof. After Phasek, exactlykqB items have been given. Moreover, afterk phases bins
1 throughq − 1 contain exactly

∑

j≤k |Lj | items because the items of Step2 are always
packed into binq by GREEDYFIT. Thus, the number of items in binq of GREEDYFIT equals

kqB −
∑

j≤k

|Lj | mod B = B −
∑

j≤k

|Lj |

︸ ︷︷ ︸

<B

mod B.
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We show thatB −
∑

j≤k |Lj | ≥ q2. This implies thatB −
∑

j≤k |Lj | mod B = B −
∑

j≤k |Lj |.
Sincek < M we know that each of the bins1 throughq − 1 contains at most2q2 − 1

colors. Thus,
∑

j≤k |Lj | ≤ (2q2 − 1)(q − 1) = 2q3 − 2q2 − q + 1. It follows from the
assumption onB thatB −

∑

j≤k |Lj | ≥ q2. �

Corollary 3.6. For any Phasek < M , bin q is never closed byGREEDYFIT before the end
of Step1 of Phasek.

Proof. The claim clearly holds for the first phase. Hence for the remainder we consider the
casek > 1.

Since there are exactlyq2 items presented in Step1 of any phase, the claim is true by
Lemma 3.5 as soon as|

∑

j≤k Lj | ≥ q2 at the beginning of Phasek: in that case, there
is even enough space in binq to accommodate all items given in Step1. We show that
|L1|+ |L2| ≥ q2 which implies that|

∑

j≤k Lj | ≥ q2 for k ≥ 2.
After Phase1, each bin ofGREEDYFIT containsq colors, which yields|L1| = q(q− 1).

It is easy to see that all items presented in Step2 of the first phase are packed into binq by
GREEDYFIT: All these items have colors fromR1 where|R1| = q. Either a color fromR1

is currently already present in binq or bin q has less thanq different colors, while all other
bins containq colors. In either case,GREEDYFIT packs the corresponding item into binq.

By Lemma 3.5 at the end of Phase1 bin q contains at leastq2 items. Since the last
|R1| = q items presented in Step2 of the first phase have all different colors (and all
of these are packed into binq as shown above) we can conclude that at the beginning
of Phase2 bin q of GREEDYFIT already containsq colors. Thus, in Step1 of Phase2
GREEDYFIT again putsq items into each of its bins. At this point, the total number of
distinct colors in the firstq − 1 bins is at least(q − 1)q + (q − 1)q = 2q2 − 2q ≥ q2 for
q > 1, so that|L1|+ |L2| ≥ q2. As noted above, this implies the claim. �

The success of our construction heavily relies on the fact that at the beginning of each
phase, binq of GREEDYFIT contains at leastq colors. We show that this is indeed true.

Lemma 3.7. For k ≥ 1 the following statements are true:

(i) At the beginning of Phasek bin q of GREEDYFIT contains exactly the colors
fromRk−1 (whereR0 := ∅).

(ii) After Step1 of Phasek, each of the bins1, . . . , q − 1 of GREEDYFIT contains at
least|Rk|+ |Rk−1| − 1 different colors.

(iii) In Step2 of Phasek GREEDYFIT packs all items into binq.
(iv) |Rk| ≥ q.

Proof. The proof is by induction onk. All claims are easily seen to be true fork = 1.
Hence, in the inductive step we assume that statements (i)–(iv) are true for somek ≥ 1 and
we consider Phasek + 1.

(i) By the induction hypothesis (iii) all items from Step2 presented in Phasek were
packed into binq by GREEDYFIT. Since at the end of Phasek bin q contains at
leastq2 ≥ |Rk| items (see Lemma 3.5) and the lastRk items presented in Phasek
had different colors, it follows that at the beginning of Phasek + 1 bin q contains
at leastall colors fromRk. On the other hand, since all theBq − q2 > B items
from Step2 were packed into binq by GREEDYFIT, this bin was closed during this
process and consequently can only contain colors fromRk.

(ii) By Corollary 3.6 binq is not closed before the end of Step1. After Step1 all colors
from Rk+1 are already in binq by construction. Since by (i) before Step1 also
all colors fromRk were contained in binq, it follows that binq contains at least
|Rk|+ |Rk+1| different colors at the end of Step1. By construction ofGREEDYFIT

each of the bins1, . . . , q− 1 must then contain at least|Rk|+ |Rk+1|− 1 different
colors.
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(iii) When Step2 starts then all colors fromRk+1 are already in binq by construction.
Therefore,GREEDYFIT will initially pack items with colors fromRk+1 into bin q
as long as this bin is not yet filled up. We have to show that after binq has been
closed the number of colors in any other bin is always larger than in binq. This
follows from (ii), since by (ii) each of the bins1, . . . , q − 1 has at least|Rk| +
|Rk+1| ≥ |Rk+1|+ q − 1 > |Rk+1| colors after Step2 of Phasek + 1.

(iv) At the beginning of Phasek + 1 bin q contains exactly|Rk| colors by (i). By the
induction hypothesis (ii) and (iii) each of the bins1, . . . , q − 1 contains at least
|Rk| + |Rk−1| − 1 ≥ |Rk| colors. Hence, at the beginning of Phasek + 1, the
minimum number of colors in bins1, . . . , q − 1 is no smaller than the number of
colors in binq. It follows from the definition ofGREEDYFIT that during Step1
of Phasek + 1, bin q is assigned at least theq2/q = q colors. In other words,
|Rk+1| ≥ q.

�

To this point we have shown that we can actually construct the sequence as suggested,
and that the optimal offline cost on this sequence is no more thanq. Now we need to prove
that there is a numberM ∈ N such that afterM phases there is a bin fromGREEDYFIT

that contains items with2q2 different colors. We will do this by establishing the following
lemma:

Lemma 3.8. In every two subsequent Phasesk andk +1, either|Lk ∪Lk+1| > 0 or bin q
contains items with2q2 different colors during one of the two phases.

Proof. Suppose that there is a Phasek in which |Lk| = 0. This means that allq2 items
given in Step1 are assigned to binq (|Rk| = q2). By Lemma 3.7 (i), at the beginning of
Phasek + 1, bin q still containsq2 different colors. If in Step1 of Phasek + 1 again allq2

items are assigned to binq, bin q contains items with2q2 different colors (recall that binq
is never closed before the end of Step1 by Corollary 3.6). If less thanq2 items are assigned
to bin q then one of the other bins gets at least one item, and|Lk+1| > 0. �

We can conclude from Lemma 3.8 that at least once every two phases the number of
items in the bins1 throughq− 1 grows. Since these bins are never closed (property1), and
all items have a unique color (property2), after a finite numberM of phases, one of the
bins ofGREEDYFIT must contain items with2q2 different colors. This completed the proof
of the Theorem. �

4. THE TRIVIAL ALGORITHM ONEBIN

This section is devoted to arguably the simplest (and most trivial) algorithm for the
OLBCP, which surprisingly has a better competitive ratio thanGREEDYFIT. Moreover, as
we will see later that this algorithm achieves essentially the best competitive ratio for the
problem.

Algorithm ONEBIN: The next itemri is packed into the (at most one) open bin. A
new bin is opened only if the previous item has closed the previous bin by filling
it up completely.

The proof of the upper bound on the competitive ratio ofONEBIN is along the same lines
as that ofGREEDYFIT.

Lemma 4.1. Let σ = r1, . . . , rm be any request sequence. Then fori ≥ 0 any algorithm
packs the itemsriB+1, . . . , r(i+1)B into at mostmin{2q − 1, B} bins.

Proof. It is trivial that theB itemsriB+1, . . . , r(i+1)B can be packed into at mostB dif-
ferent bins. Hence we can assume that2q − 1 ≤ B, which meansq ≤ (B − 1)/2 ≤ B.

Consider the subsequenceσ′ = riB+1, . . . , r(i+1)B of σ. Let ALG be any algorithm
and suppose that just prior to the arrival of the first item ofσ′, algorithmALG hasl open
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bins. Denote these bins byb1, . . . , bt. Let f(bj) ∈ {1, . . . , B− 1} be the number of empty
places in binbj , j = 1, . . . , t. Notice that

t
∑

j=1

f(bj) ≡ 0 mod B. (1)

Suppose thatALG uses at least2q bins to distribute the items ofσ′. By arguments similar
to those given in Lemma 3.1,ALG can maximize the number of bins used only by closing
each currently open bin and put at least one item into each of the newly opened bins. To
obtain at least2q bins at least

∑t
j=1 f(bj)+(q−t)+q items are required. Sinceσ′ contains

B items andt ≤ q it follows that that

t
∑

j=1

f(bj) + q ≤ B. (2)

Since by (1) the sum
∑l

j=1 f(bj) is a multiple ofB andq ≥ 1, the only possibility that the

left hand side of (2) can be bounded from above byB is that
∑t

j=1 f(bj) = 0. However,
this is a contradiction tof(bj) ≥ 1 for j = 1, . . . , t. �

As a consequence of the previous lemma we obtain the following bound on the compet-
itive ratio of ONEBIN.

Theorem 4.2. AlgorithmONEBIN is c-competitive for theOLBCPB,q with c = min{2q −
1, B}.

Proof. Let σ = r1, . . . , rm be any request sequence and suppose thatONEBIN(σ) = w.
Let σ′ = riB+1, . . . , r(i+1)B of σ be the subsequence on whichONEBIN getsw different
colors. Clearly,σ′ contains items with exactlyw colors. By Lemma 4.1OPT distributes
the items ofσ′ into at mostmin{2q − 1, B} different bins. Hence, one of those bins must
be filled with at least w

min{2q−1,B} colors. �

The competitive ratio proved in the previous theorem is tight as the following example
shows. LetB ≥ 2q − 1. First we give(q − 1)B items, after which by definitionONEBIN

has only empty bins. The items haveq different colors, every color but one occursB − 1
times, one color occurs onlyq− 1 times. The adversary assigns all items of the same color
to the same bin, using one color per bin. After this,q items with all the different colors
used before are requested. The adversary can now closeq − 1 bins, still using only one
color per bin.ONEBIN ends up withq different colors in its bin. Thenq−1 items with new
(previously unused) colors are given. The adversary can assign every item to an empty bin,
thus still having only one different color per bin, whileONEBIN puts these items in the bin
where alreadyq different colors where present.

5. A GENERAL LOWER BOUND FORDETERMINISTIC ALGORITHMS

In this section we prove a general lower bound on the competitive ratio of any determin-
istic online algorithm for theOLBCP. We establish a lemma which immediately leads to
the desired lower bound but which is even more powerful. In particular, this lemma will
allow us to derive essentially the same lower bound for randomized algorithms in Section 6.

In the sequel we will have to refer to the “state” of (the bins managed by) an algorithm
ALG after processing a prefix of a request sequenceσ. To this end we introduce the notion
of aC-configuration.

Definition 5.1 (C-configuration). Let C a set of colors. AC-configurationis a packing
of items with colors fromC into at mostq bins. More formally, aC-configuration can be
defined as a mappingK : {1, . . . , q} → S≤B , where

S≤B := {S : S is a multiset overC containing at mostB elements fromS }
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with the interpretation thatK(j) is the multiset of colors contained in binj. We omit the
reference to the setC if it is clear from the context.

Lemma 5.2. Let B, q, s ∈ N such thats ≥ 1 and the inequalityB/q ≥ s − 1 holds.
There exists a finite setC of colors and a constantL ∈ N with the following property.
For any deterministic algorithmALG and anyC-configurationK there exists an input se-
quenceσALG,K of OLBCPB,q such that

(i) The sequenceσALG,K uses only colors fromC and |σALG,K | ≤ L, that is,σALG,K

consists of at mostL requests.
(ii) If ALG starts with initialC-configurationK thenALG(σALG,K) ≥ (s− 1)q.

(iii) If OPT starts with the empty configuration (i.e., all bins are empty), thenOPT(σALG,K) ≤
s. Additionally,OPT can process the sequence in such a way that at the end again
the empty configuration is attained.

Moreover, all of the above statements remain true even in the case that the online algo-
rithm is allowed to useq′ ≥ q bins instead ofq (while the offline adversary still only uses
q bins). In this case, the constants|C| andK depend only onq′ but not on the particular
algorithmALG.

Proof. Let C = {c1, . . . , c(s−1)2q2q′} be a set of(s − 1)2q2q′ colors andALG be any
deterministic online algorithm which starts with some initialC-configurationK.

The construction of the request sequenceσALG,K works inphases, where at the begin-
ning of each phase the offline adversary has all bins empty. During the run of the request
sequence, a subset of the currently open bins ofALG will be marked. We will denote byPk
the subset of marked bins at the beginning of Phasek. P1 = ∅ and during some PhaseM ,
one bin inPM will contain at least(s− 1)q colors. In order to assure that this goal can in
principle be achieved, we keep the invariant that each binb ∈ Pk has the property that the
number of different colors inb plus the free space inb is at least(s− 1)q. In other words,
each binb ∈ Pk could potentially still be forced to contain at least(s−1)q different colors.
For technical reasons,Pk is only a subset of the bins with this property.

For binj of ALG we denote byn(j) the number of different colors currently in binj and
by f(j) the space left in binj. Then every binj ∈ Pk satisfiesn(j) + f(j) ≥ (s− 1). By
min Pk := minj∈Pk n(j) we denote the minimum number of colors in a bin fromPk.

We now describe Phasek with 1 ≤ k ≤ q(s − 1)q′. The adversary selects a set of
(s−1)q new colorsCk = {c1, . . . , c(s−1)q} from C not used in any phase before and starts
to present one item of each color in the order

c1, c2, . . . , c(s−1)q, c1, c2, . . . , c(s−1)q, c1, c2, . . . (3)

until one of the following cases appears:

Case 1: ALG puts an item into a binp ∈ Pk. In this case we letQ := Pk \ { j ∈
Pk : n(j) < n(p) }, that is, we remove all bins fromPk which have less thann(p)
colors. Notice thatminj∈Q n(j) > min Pk, since the number of different colors
in bin p increases.

Case 2: ALG puts an item into some binj /∈ Pk which satisfies

n(j) + f(j) ≥ (s− 1)q. (4)

In this case we setQ := Pk ∪ {j} (we tentatively add binj to the setPk).

Notice that after a finite number of requests one of these two cases must occur: Let
b1, . . . , bt be the set of currently open bins ofALG. If ALG never puts an item into a
bin from Pk then at some point all bins of{b1, . . . , bt} \ Pk are filled and a new bin, say
bin j, must be opened byALG by putting the new item into binj. But at this moment binj
satisfies satisfiesn(j) = 1, f(j) = B − 1 and hencen(j) + f(j) = B ≥ (s− 1)q which
gives (4).

Since the adversary started the phase with all bins empty and during the current phase
we have given no more than(s−1)q colors, the adversary can assign the items to bins such
that no bin contains more thans − 1 different colors (we will describe below how this is
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done precisely). Notice that due to our stopping criterions from above (case 1 and case 2)
it might be the case that in fact so far we have presented less than(s− 1)q colors.

In the sequel we imagine that each currently open bin of the adversary has an indexx,
where1 ≤ x ≤ q. Let β : Ck → {1, . . . , q} be any mapping of the colors fromCk to
the offline bin index such that|β−1({x})| ≤ s − 1 for j = 1, . . . , q. We imagine colorcr

to “belong” to the bin with indexβ(cr) even if no item of this color has been presented
(yet). For those items presented already in Phasek, each item with colorcr goes into the
currently open bin with indexβ(cr). If there is no open bin with indexβ(cr) when the item
arrives a new bin with indexβ(cr) is opened by the adversary to accommodate the item.

Our goal now is to clear all open offline bins so that we can start a new phase. During
our clearing loop the offline bin with indexx might be closed and replaced by an empty
bin multiple times. Each time a bin with indexx is replaced by an empty bin, the new bin
will also have indexx. The bin with indexx receives a color not inβ−1({x}) at most once,
ensuring that the optimum offline cost still remains bounded from above bys. The clearing
loop works as follows:

(1) (Start of clearing loop iteration) Choose a colorc∗ ∈ Ck which is not contained in
any bin fromQ. If there is no such color, goto the “good end” of the clearing loop
(Step 4).

(2) LetF ≤ qB denote the current total empty space in the open offline bins. Present
items of colorc∗ until one of the following things happens:

Case (a): At some point in timeALG puts the`th item with colorc∗ into a
bin j ∈ Q where1 ≤ ` < F . Notice that the number of different colors inj
increases. Let

Q′ := Q \ {b ∈ Q : n(b) < n(j)},
in other words, we remove all binsb from Q which currently have less thann(j)
colors. This guarantees that

min
b∈Q′

n(b) > min
b∈Q

n(b) ≥ min Pk. (5)

The adversary puts allt items of colorc∗ into bins with indexβ(c∗). Notice that
during this process the open bin with indexβ(c∗) might be filled up and replaced
by a new empty bin with the same index.

SetQ := Q′ and go to the start of the next clearing loop iteration (Step 1).
Notice that the number of colors fromCk which are contained inQ decreases by
one, butminb∈Q n(b) increases.

Case (b):F items of colorc∗ have been presented, butALG has not put any of
these items into a bin fromQ.

In this case, the offline adversary processes these items differently from Case (a):
TheF items of colorc∗ are used to fill up the exactlyF empty places in all cur-
rently open offline bins. Since up to this point, each offline bin with indexx had
received colors only from thes−1 element setβ−1({x}), it follows that no offline
bin has contained more thans different colors.

We close the clearing loop by proceeding as specified at the “standard end”
(Step 3).

(3) (Standard end of clearing loop iteration)
In case we have reached this step, we are in the situation that all offline bins

have been cleared (we can originate only from Case (b) above). We setPk+1 := Q
and end the clearing loop and the current Phasek.

(4) (Good end of clearing loop iteration)
We have reached the point that all colors fromCk are contained in a bin fromQ.

Before the first iteration, exactly one color fromCk was contained inQ. The
number of colors fromCk which are contained in bins fromQ can only increase
by one (which is in Case (a) above) ifminb∈Q n(b) increases. Hence, if all colors
from Ck are contained in bins fromQ, minb∈Q n(v) must have increased(s −
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1)q − 1 times, which impliesminb∈Q n(b) = (s − 1)q. In other words, one of
ALG’s bins inQ contains at least(s− 1)q different colors.

The only thing left to do is append a suitable suffix to our sequence constructed
so far such that all open offline bins are closed. Clearly this can be done without
increasing the offline-cost.

In case the clearing loop finished with a “good end” we have achieved our goal of con-
structing a sufficiently bad sequence forALG. What happens if the clearing loop finishes
with a “standard end”?

Claim 5.3. If Phasek completes with a “standard end”, thenmin Pk+1 > min Pk or
|Pk+1| > |Pk|.

Before we prove Claim 5.3, let us show how this claim implies the result of the lemma.
Since the case|Pk+1| > |Pk| can happen at mostq′ times, it follows that after at most
q′ phasesmin Pk must increase. On the other hand, sincemin Pk never decreases by our
construction and the offline costs remain bounded from above bys, after at mostq(s −
1)q′ phases we must be in the situation thatmin Pk ≥ (s − 1)q, which implies a “good
end”. Since in each phase at most(s − 1)q new colors are used, it follows that our initial
setC of (s − 1)2q2q′ colors suffices to construct the sequenceσALG,K . Clearly, the length
of σALG,K can be bounded by a constantL independent ofALG andK.

Proof of Claim 5.3.Suppose that the sequence (3) at the beginning of the phase was ended
because Case 1 occurred, i.e.,ALG put one of the new items into a bin fromPk. In this
caseminb∈Q n(b) > min Pk. Since during the clearing loopminb∈Q n(b) can never de-
crease andPk+1 is initialized with the result ofQ at the “standard end” of the clearing
loop, the claim follows.

The remaining case is that the sequence (3) was ended because of a Case 2-situation.
Then|Q| = |Pk ∪{j}| for somej /∈ Pk and hence|Q| > |Pk|. During the clearing loopQ
can only decrease in size ifmini∈Q n(i) increases. It follows that either|Pk+1| = |Pk|+ 1
or min Pk+1 > min Pk which is what we claimed. �

This completes the proof of the lemma. �

As an immediate consequence of Lemma 5.2 we obtain the following lower bound result
for the competitive ratio of any deterministic algorithm:

Theorem 5.4. LetB, q, s ∈ N such thats ≥ 1 and the inequalityB/q ≥ s− 1 holds. No
deterministic algorithm forOLBCPB,q can achieve a competitive ratio less than(s−1)/s ·
q. Hence, the competitive ratio of any deterministic algorithm for fixedB andq is at least
(

1− q
B+q

)

q. In particular, for the general case with no restrictions on the relation of the

capacityB to the number of binsq, there can be no deterministic algorithm forOLBCPB,q

that achieves a competitive ratio less thanq.
All of the above claims remain valid, even if the online algorithm is allowed to use an

arbitrary numberq′ ≥ q of open bins. �

6. A GENERAL LOWER BOUND FORRANDOMIZED ALGORITHMS

In this section we show lower bounds for the competitive ratio of any randomized algo-
rithm against an oblivious adversary forOLBCPB,q. The basic method for deriving such
a lower bound is Yao’s principle (see also [BEY98, MR95]). LetX be a probability dis-
tribution over input sequencesΣ = {σx : x ∈ X }. We denote theexpected costof the
deterministic algorithmALG according to the distributionX onΣ byEX [ALG(σx)]. Yao’s
principle can now be stated as follows.

Theorem 6.1(Yao’s principle). Let{ ALGy : y ∈ Y } denote the set of deterministic online
algorithms for an online minimization problem. IfX is a probability distribution over input
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sequences{σx : x ∈ X } such that

inf
y∈Y

EX [ALGy(σx)] ≥ c̄EX [OPT(σx)] . (6)

for some real number̄c ≥ 1, then c̄ is a lower bound on the competitive ratio of any
randomized algorithm against an oblivious adversary. �

Theorem 6.2. Let B, q, s ∈ N such thats ≥ 1 and the inequalityB/q ≥ s − 1 holds.
Then no randomized algorithm forOLBCPB,q can achieve a competitive ratio less than
(s− 1)/s · q against an oblivious adversary.

In particular for fixedB andq, the competitive ratio against an oblivious adversary is

at least
(

1− q
B+q

)

q.

All of the above claims remain valid, even if the online algorithm is allowed to use an
arbitrary numberq′ ≥ q of open bins.

Proof. LetA := { ALGy : y ∈ Y } the set of deterministic algorithms for the Uniform Bin
Packing Problem with capacityB andq open bins. We will show that there is a probability
distributionX over a certain set of request sequences{σx : x ∈ X } such that for any
ALGy ∈ A

EX [ALGy(σx)] ≥ (s− 1)q,

and, moreover,
EX [OPT(σx)] ≤ s.

The claim of the theorem then follows by Yao’s principle.
Let us recall the essence of Lemma 5.2. The lemma establishes the existence of a finite

color setC and a constantL such that for a fixed configurationK any deterministic algo-
rithm can be “fooled” by one of at most|C|L sequences. Since there are no more than|C|qB

configurations, afixed finiteset of at mostN := |C|L+qB sequencesΣ = {σ1, . . . , σN}
suffices to “fool”anydeterministic algorithm provided the initial configuration is known.

Let X be a probability distribution over the set of finite request sequences

{σi1 , σi2 , . . . , σik : k ∈ N, 1 ≤ ij ≤ N }

such thatσij is chosen fromΣ uniformly and independently of all previous subsequences
σi1 , . . . , σij−1 . We call subsequenceσik thekth phase.

Let ALGy ∈ A be arbitrary. Defineεk by

εk := PrX [ALGy has one bin with at least(s− 1)q colors during Phasek] . (7)

The probability thatALGy has one bin with at least(s− 1)q colors on any given phase is at
least1/N , whenceεk ≥ 1/N for all k. Let

pk := PrX
[

ALGy(σi1 . . . σik−1σik) ≥ (s− 1)q
]

. (8)

Then the probabilitiespk satisfy the following recursion:

p0 = 0 (9)

pk = pk−1 + (1− pk−1)εk (10)

The first term in (10) corresponds to the probability thatALGy has already cost at least
(s− 1)q after Phasek − 1, the second term accounts for the probability that this is not the
case but cost at least(s − 1)q is achieved in Phasek. By construction ofX, these events
are independent. Sinceεk ≥ 1/N we get that

pk ≥ pk−1 + (1− pk−1)/N. (11)

It is easy to see that any sequence of real numberspk ∈ [0, 1] satisfying (9) and (11) must
converge to1. Hence, also the expected costEX [ALGy(σx)] converges to(s − 1)q. On
the other hand, the offline costs remain bounded bys by the choice of theσij according to
Lemma 5.2. �
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7. CONCLUSIONS

We have studied the online bin coloring problemOLBCP, which was motivated by ap-
plications in a robotized assembly environment. The investigation of the problem from a
competitive analysis point of view revealed a number of odds. A natural greedy-type strat-
egy (GREEDYFIT) achieves a competitive ratio strictly worse than arguably the most stupid
algorithm (ONEBIN). Moreover, no algorithm can be substantially better than the trivial
strategy (ONEBIN). Even more surprising, neither randomization nor “resource augmenta-
tion” helps to overcome theΩ(q) lower bound on the competitive ratio (see [PK95, PS+97]
for successful applications to scheduling problems) can help to overcome theΩ(q) lower
bound on the competitive ratio. Intuitively, the strategyGREEDYFIT should perform well
“on average” (which we could sort of confirm by preliminary experiments with random
data).

An open problem remains the existence of a deterministic (or randomized) algorithm
which achieves a competitive ratio ofq (matching the lower bound of Theorems 5.4 and
6.2). However, the most challenging issue raised by our work seems to be an investigation
of OLBCP from an average-case analysis point of view.

REFERENCES

[AG+98] N. Ascheuer, M. Gr̈otschel, S. O. Krumke, and J. Rambau,Combinatorial online optimization, Pro-
ceedings of the International Conference of Operations Research (OR’98), Springer, 1998, pp. 21–37.

[BEY98] A. Borodin and R. El-Yaniv,Online computation and competitive analysis, Cambridge University
Press, 1998.

[CGJ97] E. G. Coffman, M. R. Garey, and D. S. Johnson,Approximation algorithms for bin packing: a survey,
In Hochbaum [Hoc97].

[CW98] J. Csirik and G. J. Woeginger,On-line packing and covering problems, In Fiat and Woeginger [FW98].
[FW98] A. Fiat and G. J. Woeginger (eds.),Online algorithms: The state of the art, Lecture Notes in Computer

Science, vol. 1442, Springer, 1998.
[Hoc97] D. S. Hochbaum (ed.),Approximation algorithms forNP-hard problems, PWS Publishing Company,

20 Park Plaza, Boston, MA 02116–4324, 1997.
[MR95] R. Motwani and P. Raghavan,Randomized algorithms, Cambridge University Press, 1995.
[PK95] K. Pruhs and B. Kalyanasundaram,Speed is as powerful as clairvoyance, Proceedings of the 36th

Annual IEEE Symposium on the Foundations of Computer Science, 1995, pp. 214–221.
[PS+97] C. Phillips, C. Stein, E. Torng, and J. Wein,Optimal time-critical scheduling via resource augmenta-

tion, Proceedings of the 29th Annual ACM Symposium on the Theory of Computing, 1997, pp. 140–
149.
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