
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

AMAL ABOULHASSAN, RONELL SICAT, DANIEL BAUM,
OLGA WODO AND MARKUS HADWIGER

Comparative Visual Analysis of
Structure-Performance Relations in

Complex Bulk-Heterojunction
Morphologies

The manuscript will appear in a slightly revised version in a special issue of Computer Graphics Forum.

ZIB Report 17-16 (April 2017)



Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +49 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782



Comparative Visual Analysis of
Structure-Performance Relations in Complex

Bulk-Heterojunction Morphologies

Amal Aboulhassan, Ronell Sicat, Daniel Baum,
Olga Wodo and Markus Hadwiger

Abstract

The structure of Bulk-Heterojunction (BHJ) materials, the main component
of organic photovoltaic solar cells, is very complex, and the relationship between
structure and performance is still largely an open question. Overall, there is a wide
spectrum of fabrication configurations resulting in different BHJ morphologies and
correspondingly different performances. Current state-of-the-art methods for as-
sessing the performance of BHJ morphologies are either based on global quantifi-
cation of morphological features or simply on visual inspection of the morphology
based on experimental imaging. This makes finding optimal BHJ structures very
challenging. Moreover, finding the optimal fabrication parameters to get an opti-
mal structure is still an open question. In this paper, we propose a visual analysis
framework to help answer these questions through comparative visualization and
parameter space exploration for local morphology features. With our approach,
we enable scientists to explore multivariate correlations between local features and
performance indicators of BHJ morphologies. Our framework is built on shape-
based clustering of local cubical regions of the morphology that we call patches.
This enables correlating the features of clusters with intuition-based performance
indicators computed from geometrical and topological features of charge paths.

1 Introduction
Organic photovoltaic solar cells (OPVs) are a promising flexible low-cost alternative
to traditional solar cells. An OPV is a device composed of three main parts (Fig. 1):
the two electrodes (anode and cathode), and a layer sandwiched between the electrodes
called the Bulk-Heterojunction (BHJ) [29]. The BHJ is a blend of two materials: the
donor and the acceptor. Donor and acceptor are separated by a surface called the
interface, whose morphology significantly influences the overall performance of BHJ
materials.

Fig. 1 illustrates the photovoltaic process that occurs in a sequence of stages: pho-
ton absorption, exciton generation, exciton diffusion, charge separation, and charge
transport. At each stage of the photovoltaic process, its performance is critically af-
fected by the morphology of the BHJ. The objective of designing good BHJ materials
is to maximize the generated photoelectric current.

However, the analysis workflow currently employed in practice for finding optimal
BHJ structures still solely depends on the use of global statistics. First, scientists create
simulators for the BHJ generation process. These simulators usually produce synthetic
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Figure 1: Illustration of the four stages of the photoelectric current generation process
in a BHJ morphology: I. photon absorption, II. exciton generation, III. exciton diffu-
sion, IV. charge separation and transport. Right: Structural features that influence the
quality of these stages, ultimately affecting the efficiency of OPV solar cells.

BHJ volumes in the form of regular scalar fields. From these volumes, structure metrics
such as domain size and acceptor-donor interface area are computed. Finally, global
statistics over the entire morphology are computed to characterize it with respect to
performance. However, performing comparisons via global statistics only has limita-
tions:

• Global statistics ignore the dependency among the different stages of the pho-
toelectric current generation. For example, a local region might have features
with excellent exciton diffusion probability. However, at the same time it might
also have features that result in low photon absorption probability. In this case,
it is very likely that no excitons will be generated at all. In global statistics for
exciton diffusion, however, these “dead zones” will have the same contribution
as active regions with many excitons.

• Designing efficient BHJ materials requires simulating and comparing hundreds
of different possible morphologies with dozens of simulated fabrication param-
eters each, while understanding their local performance characteristics and their
correlations with local morphology and simulation parameters. Global compu-
tations alone cannot uncover these correlations. A detailed comparison requires
additional local visual analysis.

We address these limitations with the following contributions:

• We facilitate local analysis based on the concept of patches. Patches are small,
local, cubical regions in a BHJ morphology. For each BHJ volume, a set of
patches is computed whose locations and sizes are adapted to the local morphol-
ogy (Fig. 3).

• We cluster patches according to patch descriptors. We define a local curva-
ture distribution descriptor, the patch interface shape distribution (PISD) of the
acceptor-donor interface contained in a patch. For each patch, we also compute
performance indicators, for example from local charge path computations.

• We provide practitioners in BHJ design with a tool for interactive visual explo-
ration, analysis, and comparison of performance-structure correlations and the
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Figure 2: Our visual analysis workflow comprises several linked views: The set of
patch descriptors (curvature distributions) is visualized after (a) k-medoids clustering,
and (b) t-SNE dimensionality reduction and visualization. (c) Interface surface of a
selected patch color-coded by Gaussian curvature. (d,e) Parallel coordinates views for
(d) performance metrics, and (e) simulation parameters. The highlighted lines repre-
sent the currently selected patch. (f) Histogram of a selected performance indicator
after filtering in the parallel coordinates views.

impact of BHJ simulation parameters, using brushing and linking of different
local and global parameters. This enables scientists to relate local parameters
to global performance. We provide a set of 2D and 3D visualization modules
designed for local analysis of BHJ morphologies.

Using our visualization tool (see Fig. 2), scientists can interactively explore local re-
gions (patches) and their charge properties. Instead of comparing global statistics only,
they can compare sets of patches across morphologies, based on both visual exploration
and interactive queries. The queries allow scientists to visualize ranges of parameters
as well as the dependencies between them.

Our results demonstrate how this has enabled scientists to analyze and understand
local BHJ properties and their relation to photoelectric current generation with higher
confidence. Moreover, they can interactively perform a top-down analysis of a set
of hundreds of global morphologies to the 3D information of a specific region in a
specific morphology. This helps them choose better fabrication parameters and design
strategies for the BHJ fabrication.

2 Related Work

2.1 Analysis of Bulk-Heterojunction Materials
Previous approaches for the analysis of BHJ materials still largely depend on trial and
error, and on comparing global statistics only. To make this process more efficient,
Wodo et al. [30] developed an approximation model that extracts a representative set
of charge paths that are physically intuitive. This approach has proved successful in
simplifying complex simulations. As a result, it has started to be employed in the
analysis of simulations [11].

Another example of computational methods is discussed by Ray and Alam [22]. In
this research, they generated tens of morphologies and explored if randomness influ-
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Figure 3: Patches are small, local, cubical regions that are extracted from the whole
BHJ morphology (a) for local analysis. Patches are sampled along the backbone (b)
of the BHJ morphology. This allows capturing more informative samples compared to
sampling patches on a regular grid as well as adapting patch size to the local size of the
morphology. In (b) three example patches are shown via volume renderings embedded
in the backbone of the morphology. Patches can be inspected via (c) a close-up view
of a selected patch, showing the center of the patch (red dot) on the backbone, and (d)
a visualization of the interface between acceptor and donor contained in the patch.

ences the performance. They also compared the performance to regular shape struc-
tures.

These techniques have obvious limitations. Overall BHJ performance results from
the complex interplay between many features related to structure and performance.
However, current techniques allow for comparing only a few at a time. Therefore, find-
ing the best-performing structures is an open question [22]. All these techniques also
depend on global statistics, which hampers exploring important geometric features [1].
Global techniques also do not allow relating local dependencies to global results.

In this paper, we tackle these limitations by enabling the comparison of local fea-
tures for hundreds of morphologies at the same time. We use the concept of visual
exploration to make this comparison effective and give fast feedback about the simula-
tion parameters that lead to certain performance characteristics.

Employing skeletonization for generating the backbone of a BHJ morphology has
proved to be a useful tool that facilitates local characterization of BHJs [1]. We also
compute backbones, using a conventional thinning algorithm [21], based on distance
maps [15] computed for each morphology. Other simplified representations include
Reeb graphs [19], distance field-based methods [9], extremum graphs [17], and other
topological methods [13]. We chose the backbone model because it facilitates visual
connectivity exploration in 3D.

2.2 Shape and Curvature Analysis
Several methods have been proposed to represent shapes by geometric invariants. For
example, Reuter et al. [23] proposed Shape-DNA, which is based on the computation
of the eigenvalues of the Laplace-Beltrami operator. They showed that this signature
is very well suited to identify equal shapes, but also to group similar shapes. Sun et
al. [25] proposed a point signature based on the properties of heat diffusion, which they
call Heat Kernel Signature (HKS). Bronstein and Kokkinos [4] extended this signature
to a scale-invariant version (SI-HKS). They showed that their method is superior to
both Shape-DNA and HKS in comparing shapes from the Shape Google database [3].

Curvature as a major shape cue has proven useful in physical applications that
need to characterize microstructure. Our patch interface shape distribution (PISD) as
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a descriptor for local patch shape is inspired by the work of Chen et al. [6], where they
introduced an interface shape distribution (ISD) to globally characterize and compare
different morphologies of nanoporous gold. We extend the ISD concept from a global
to a local characterization of shape by computing one ISD for each patch. Curvatures
are computed from the local morphology’s acceptor-donor interface. We favored this
curvature-based approach since the interface curvature can be directly influenced by
morphology simulation parameters. Furthermore, Shape-DNA as well as HKS-based
approaches were primarily developed to compare the global structure of shapes. In
contrast, curvature is a very local feature. It is also unclear how well the other methods
can deal with the patch boundaries we introduce.

To decrease the resulting complexity of thousands of PISD descriptors to a manage-
able amount, such that they can be explored interactively, we perform dimensionality
reduction and k-medoids clustering (using the medoid instead of the mean as clus-
ter center). t-SNE [27], which is an improved version of stochastic neighbor embed-
ding [12], is used to map many PISDs into two-dimensional space such that local dis-
tances are preserved. A hierarchical variant of t-SNE was recently also developed [20].

Kindlmann et al. [16] described curvature-based transfer functions. We also visu-
alize curvature of the acceptor-donor interface. However, our PISD descriptor charac-
terizes an entire local neighborhood (a patch) instead of only a point on the surface.
Xia et al. [32] proposed curvature-based analysis of protein electrostatic surfaces to
explore correlations between metrics derived from the principal curvature and protein
functions. Soldea et al. [24] used a curvature-based segmentation approach to identify
planar or cylindrical iso-surfaces, and volumetric regions with saddle-like iso-surfaces.
Explicit shape identification of local regions has also been applied, for example el-
lipsoidal Gaussian models for identifying fibre shapes in laser scanning confocal mi-
croscopy [14].

2.3 Ensemble Visualization
Ensemble visualization techniques are important when multiple runs of a simulation
are computed. Similarly, we cluster and compare patches from morphologies that result
from simulation runs with different parameters. An important issue in ensemble visual-
ization is characterizing the statistical distribution of the ensemble members around the
most central, or “deepest,” member, for which techniques such as contour boxplots [28]
and curve boxplots [18] have been developed. Demir et al. [7] proposed to use a lo-
cally most-representative shape together with a region-wise centrality quantification,
inspired by previous work on contour variability plots [8]. Computation of this most-
representative shape, however, requires shapes to be superimposed as well as having
similar geometries. It is not clear how this can be achieved for our patches. Instead, in
our framework each cluster is represented by the medoid of the PISD descriptors in the
cluster.

2.4 High-Dimensional Parameter Space Exploration
Finding relationships between simulation parameters and the corresponding simulation
results is a very challenging problem, especially due to the high dimensionality of the
involved parameter spaces. Visualization can help reduce the parameter space into
smaller selections, and hence reduce extensive trial and error.

Bruckner and Möller [5] proposed a framework for physically-based simulation
that enables graphics artists to decide on a set of simulation parameters that give de-
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sirable effects for phenomena such as fire, smoke, etc. They proposed density-based
clustering of animation sequences into fewer segments for a more concise view. They
represent the simulation parameters using star plots that show representative frames for
linked clusters.

Beham et al. [2] proposed the Cupid system for geometry generators used in video
games and computer vision applications. Cupid helps select geometric generator pa-
rameters that avoid generating redundant or invalid geometric shapes. The system starts
with a hierarchical DBSCAN clustering to group the 3D shapes based on mesh simi-
larity. The cluster hierarchies are visualized using radial trees, circular dendrograms,
and treemaps. Parameter selection is enabled through composite parallel coordinates.

Torsney-Weir et al. [26] proposed the Tuner system for parameter finding for image
segmentation. Tuner proposes a Gaussian model for generating sample points. The
samples and parameters are visualized using a combination of visual views: Pareto
panel, response view, controls, and histograms.

3 Overview
Our visual analysis workflow is based on extracting a large number of small local
regions from each BHJ volume. We call those regions patches. Two main factors
influence the local contribution of a patch to the overall performance of the morphol-
ogy: acceptor-donor interface shape and topology. Many of these properties intuitively
map to the efficiency of photoelectric current generation. Based on these observations,
we characterize the interface shape using each patch’s curvature distribution (PISD),
leverage topological information from the backbone of the morphology, and compute
a variety of performance indicators estimating BHJ efficiency.

Patch sampling. For simplicity, we use cubical patches (e.g., 93 voxels), although
other patch shapes could be considered as well. Each patch size is adapted to the lo-
cal morphology. Instead of extracting patches from the volume by sampling a regular
grid, we sample along the backbone of the BHJ morphology. From each patch we then
compute representative local properties (see Fig. 3).

Patch descriptors. For each patch, we compute a patch descriptor that is used for
local characterization. In collaboration with BHJ scientists, we have defined the patch
interface shape distribution (PISD), which is based on acceptor-donor interface curva-
ture computations, as an efficient tool for characterizing local shape.

Performance indicators. Table 1 summarizes the performance indicators that we
are using. These indicators have complex interdependencies, and in many cases they
correspond to conflicting design properties. Therefore, in order to design a BHJ mor-
phology, scientists need to explore combinations of these indicators based on the op-
timal choice of interdependent parameters. The interdependency of all performance
indicators, as well as the influence of local shape, represents the biggest challenge
for OPV designers. We tackle this challenge by providing concise visualizations of
thousands of patches and allowing scientists to specify visual queries about structure-
performance relationships.

Dimensionality reduction and clustering. In order to be able to handle a large
number of patches from many different morphologies, we first perform dimensionality
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reduction of the PISD descriptors using principal component analysis (PCA), and then
perform k-medoids clustering to group similar patches together.

t-SNE visualization. In order to be able to visualize the high-dimensional space
corresponding to the PISD descriptors, we employ t-SNE [27] to visualize all PISD de-
scriptors as “icons” in a two-dimensional space that scientists can easily interact with.
This is illustrated in Fig. 2 (b) and Fig. 4.

Visual analysis framework. Our framework allows scientists to interact with
patches by clicking on PISD icons in either the cluster view (Fig. 2 (a)) or the t-SNE
view (Fig. 2 (b)). The corresponding 3D morphology is then visualized on demand, and
individual patches can be inspected. Performance indicators and simulation parameters
are visualized in parallel coordinates views (Figs. 2 (d) and (e)). More details can be
inspected in histograms (Fig. 2 (f)). All of these views allow linking and brushing.

descriptor
/ indicator

description influence on physical
properties

PISD patch interface shape
distribution (curva-
ture distribution) of
the interface

bottlenecks and
amount of excitons
harvested by the
interface

Abs distance from a point
in the donor to the
anode

photon absorption
probability

Diff distance from a point
in the donor to the
nearest point on the
interface

life time of the exci-
ton, and exciton dif-
fusion probability

Orient angle between the
backbone and the
z-axis (anode to
cathode)

bottlenecks and tor-
tuosity

Tort (hole) path tortuosity life time of (hole)
charges

BN (hole) path bottle-
neck

(hole) charge trans-
portation speed

Comp regions that are con-
nected to both elec-
trodes at the same
time (complementary
paths)

charge accumulation

Table 1: Patch descriptors/performance indicators help map structure and topologi-
cal features to photoelectric current quality.
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4 Patch Descriptors and Performance Indicators
The patch descriptors (PISD), the performance indicators, and k-medoid clustering are
computed in a pre-processing stage in order to prepare for the subsequent interactive
visual analysis.

4.1 Morphology Backbone (Topology)
We start by generating the backbone, i.e., the skeleton of the BHJ morphology, using
the algorithm proposed by Aboulhassan et al. [1]. We chose this representation because
it provides an abstraction of the connectivity between local regions of the morphology
as well as of the distances to the acceptor-donor interface.

In order to estimate properties of charge paths, we compute shortest paths in the
morphology, following a previously proposed model [29]. Two types of paths are com-
puted: paths from the interface to the anode via the donor: hole paths; and paths from
the interface to the cathode via the acceptor: electron paths.

4.2 Patch Sampling
In order to successfully capture local features, the selection of the patches needs to
satisfy the following conditions: (1) The size of each patch should not be too big, to be
local, and not be too small, to capture enough interface fragments (see the discussion
below). (2) Patches should be sampled at locations that are neither too close to each
other, to avoid redundancy, nor too far from each other, to avoid missing important
features.

Patch centers. Since the backbone lies, by definition, in the middle of neighboring
interface fragments, we can use it to guide the determination of patch centers. We
select all patch centers to lie on the backbone. Currently, we consider only the donor
because it includes all the charge transport stages needed in the current analysis. The
patch centers are distributed iteratively along the backbone such that the patches cover
the whole backbone without creating too much overlap. That is, we use the minimal
number of patches that guarantees coverage of the backbone.

Patch sizes. To determine the size of each patch, we compute a distance field from
the backbone to the interface. The value of the distance field at each patch center on
the backbone then determines the patch size via the following equation:

D = s · d(x) + ∆D. (1)

Here, d(x) is the value of the distance field at the patch center, s is a constant scaling
factor, and ∆D is a fixed padding of extra voxels that ensures that enough interface
fraction is included. The local patch size is then set to D3 voxels. The parameters s
and ∆D are chosen by the user. In the current study, s = 1 and ∆D = 4 were adequate
for our exploration and our collaborators.

4.3 Patch Interface Shape Distribution (PISD)
Inspired by previous work in physics/materials science on the characterization of nanoporous
gold [6], we define a patch descriptor that characterizes local shape via its curvature
distribution.

Our patch interface shape distribution (PISD) descriptor is computed as the prob-
ability distribution of principal curvature values κ1 and κ2 (maximum and minimum
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principal curvature, respectively) of the acceptor-donor interface surface. More pre-
cisely, the PISD gives the probability of finding a small patch of interface surface with
a given pair of principal curvatures (κ1, κ2).

Curvature normalization. In order to be able to meaningfully compare different
patches and different morphologies, it is crucial that the curvature values are normal-
ized in a suitable way. We achieve this by normalizing with the physically meaningful
measure of surface area per volume [6], denoted by Sv below.

In order to obtain a probability density, the surface area for each combination of
(κ1, κ2) must also be normalized with respect to the total interface area in the given
patch, denoted by Apatch below.

PISD definition. We thus define the PISD descriptor as a probability density over
the two-dimensional domain

(
κ1

Sv
, κ2

Sv

)
, given by

PISD (κ1/Sv, κ2/Sv) :=
d2A (κ1/Sv, κ2/Sv)

d (κ1/Sv) d (κ2/Sv) Apatch
, (2)

where Apatch is the total surface area of the interface contained inside the patch. See
Fig. 4 for a visualization of an example PISD.

We implement this function in discretized form as a simple 2D array, where each
bin contains the probability that a randomly chosen point on the interface maps to the
range

(
κ1

Sv
+ ∆ κ1

Sv
, κ2

Sv
+ ∆ κ2

Sv

)
, where

(
∆ κ1

Sv
,∆ κ2

Sv

)
is the size (κ-range) of the bin.

The surface area per volume measure Sv is computed as

Sv :=
Apatch

Vdonor
, (3)

where Vdonor is the total volume of the donor part inside the patch. We refer to previous
work for details on Sv [6].

Surface and curvature computation. In order to perform the computations re-
quired above, we obtain the interface surface inside a patch via Marching Cubes fol-
lowed by mesh refinement. We estimate the curvatures on the obtained high-resolution
triangle mesh.

(0, 0)

κ2/SV

κ1/SV

Figure 4: PISD descriptor. Each patch, set of patches, or whole morphology, can
be visualized via the corresponding patch interface shape distribution (PISD) in the
domain of normalized principal curvatures. This helps with understanding shape char-
acteristics and similarities/differences between patches/morphologies.
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Figure 5: Comparative visualization of patch interface shape distributions. We
show the overall PISD of each of the 54 morphologies used in this study, and selected
examples of the corresponding volumes (bottom row). By studying the PISDs, scien-
tists can decide to quickly filter some volumes—for example, less dense volumes. The
PISD icons here show the total distribution of all patches in each morphology.

Dimensionality reduction and clustering. In order to handle large numbers of
patches, each PISD is treated as a point in a high-dimensional space by simply map-
ping the discretized 2D domain to a 1D vector whose dimensionality is the number of
PISD bins. In this space, we then perform dimensionality reduction using principal
component analysis (PCA). Afterward, similar patches are identified via k-medoids
clustering, which identifies meaningful groups of patches that have similar curvature
distribution, i.e., similar PISD descriptors, and hence have similar morphology with
respect to shape.

4.4 Performance Indicators
In this section, we explain the functions used to compute the performance indicators
discussed in Table 1. We characterize the performance of a patch using the indicators
proposed by Wodo et al. [31] restricted to each patch. We also include two indicators of
high interest to the scientists: (1) the bottleneck indicator, which estimates the charge
transport bottlenecks and their correlation to local cross-sectional areas; (2) the exciton
diffusion indicator, which estimates the correlation between the distance at the back-
bone to the nearest interface fragment and the corresponding probability of exciton
diffusion to the interface. Both indicators are discussed in detail in previous work [1].

In addition to these performance indicators, we propose the following additional
indicators to cover more stages of the photoelectric current generation process.

Photon absorption. The first step of the photovoltaic process is photon absorption,
which usually happens in the donor:

Abs = e−h(x)/Hd , (4)

where x is the current voxel, h(x) is the physical distance from x to the anode, and Hd

is the absorption coefficient, which is a property of the material. We use Hd = 100 in
the current paper.
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Figure 6: Patch cluster representatives. The cluster centers (medoids) of the 60 patch
clusters (computed from 3,135 patches) used in our case studies. 3D views of example
patches are shown in the bottom right. From the cluster centers, scientists can obtain a
quick characterization of the major shapes generated by the corresponding simulation
parameters with respect to curvature (PISD) characteristics.

In the current study, the scientists chose to use the h(x) value at the patch center to
compute the corresponding Abs value as given above as the representative value for a
given patch to be used in the correlation analysis.

Tortuosity. We use the indicator proposed by Wodo et al. [31]. To compute the
tortuosity of a path, we first determine the length L of the shortest path from a given
point in the donor to the corresponding electrode, i.e., the anode. In this way, we
estimate the deviation of the shortest path from the ideal shortest path (a straight line
of length Z)

Tort =
L

Z
. (5)

The Tort indicator for each patch is computed in the same way, but only in a segment
of the whole path clipped to the boundaries (the bounding box) of the patch.

In the current study, the scientists chose to use the maximum tortuosity value of all
path segments passing through each patch as the representative Tort value to use in the
correlation analysis.

Complementary paths. We propose the following indicator for estimating hole/electron
balance at each patch. This indicator is computed by first counting the number of vox-
els that belong to the patch interface that are the origin of paths to both the anode
and the cathode, respectively. We then normalize this value by dividing it by the total
number of voxels that belong to the interface inside the patch.
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5 Visual Analysis
After the patch descriptors and performance indicators have been computed, visual
analysis can be performed interactively. We describe the main views that comprise our
visualization system.

5.1 Patch Cluster View
The aim of this view is to provide a concise visualization of all patch clusters. As
described above, all patches are clustered based on the corresponding PISD descriptors,
which is an important property of interest for visualization and analysis. In this view,
we represent each patch cluster by the PISD icon of the cluster center.

Due to the use of k-medoids clustering, the cluster center is a patch that actually
occurs in the cluster, and we can therefore simply use the descriptor of this patch.
An example PISD icon is illustrated in Fig. 4. All path cluster PISD icons are then
visualized in a compact 2D layout. Each icon can have a label of interest. In this paper,
we use the cluster ID by default, and allow the user to add arbitrary text labels. This
view is illustrated in Fig. 2 (a).

5.2 t-SNE View
In addition to the patch cluster view described above, where the layout of cluster cen-
ters is essentially arbitrary, we provide a second view for the visualization of clusters
and patches, using t-SNE [27] to obtain a meaningful 2D layout that groups similar
patches/clusters together in the 2D visualization domain (see Fig. 2 (b)).

The t-SNE view can be used to very effectively inspect similarities between clus-
ters, similarities between individual patches, as well as for visualizing the contents of a
selected cluster. We provide zooming functionality to allow one to view all clusters but
also to investigate specific regions in more detail. When all patches/clusters are being
viewed, the plots might not be readible anymore. For this, we implemented a lense
functionality when hovering with the mouse over a specific patch plot.

5.3 Performance Metrics View
Performance metrics are displayed as parallel coordinates as illustrated in Fig. 2 (c).
We chose parallel coordinates because they are efficient at visualizing dependencies
between parameters, which is one of the main goals of this paper.

This view is not only important for visualization but also for queries: Users can
choose a range of performance metrics of interest and instantly see correlated values.
Similarly, multiple queries among dependent variables can be performed.

This view is linked to the patch cluster view. Users can brush (select) in the per-
formance metrics view and apply the corresponding query in the patch cluster view,
or they can click on one PISD icon and see the corresponding line highlighted in the
performance metrics view, as shown in Fig. 2 (d).

5.4 Simulation Parameters View
Similar to the performance metrics view, the simulation parameters view uses parallel
coordinates for the exploration of simulation parameters. This view is linked to both
the performance metrics view and the patch cluster view. It is illustrated in Fig. 2 (e).
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5.5 Performance Metric Histogram View
After performing queries via brushing, sometimes the corresponding relationships are
not obvious since there are lines in the parallel coordinates views that are passing
through all values. This may give an indication that there are no correlations after
applying this query. By exploring the histogram of the filtered data, this conclusion
can be corrected if there it is found that some bins have higher values than other bins,
as shown in Fig. 2 (f).

5.6 3D Exploration
Acceptor-donor interface surface view. Our collaborating scientists find it helpful to
be able to look at what interface surfaces look like in 3D, to be able to think about the
corresponding curvature distributions and how they are influencing the charge paths.
To visualize this data, we allow users to select any patch in the patch cluster view,
and then display the triangle mesh of the corresponding interface surface, as shown in
Fig. 6 (bottom right).

Pathlines view. The scientists want to be able to visualize all charge paths that are
passing through any given patch, in order to get more contextual information on why
there are high or low bottleneck values, and in order to understand specific tortuosity
values. Our pathlines view can therefore both visualize all pathlines selected by a query
as well as all pathlines that are passing through a given patch of interest. In addition,
we offer the possibility to display only the segments of paths inside a given patch, in
order to explore information such as local tortuosity. All paths are visualized using
ray-casting of surface-shaded tubes. We also allow color-coding of each path by its
tortuosity value, as shown in Fig. 7.

Backbone view. The scientists consider the backbone view to be one of the most
important basic views of our framework, since it gives a good uncluttered summary
of the topology of the morphology (its connectivity), and its relationship to individual
patches, as shown in Fig. 3.

6 Evaluation
We have evaluated our system together with our collaborators who are experts in BHJ
design, analysis, and fabrication.

System setup. We have used the Ising model-based simulator proposed by Heiber
and Dhinojwala [11] to generate a total number of 500 different morphologies. All
simulations were run on a compute cluster with 342 nodes of 8 core Intel Xeon X5570
(2.93GHz) and 24 GB memory, running Red Hat Linux. The simulator we used [10] is
implemented in C/C++.

As our basic visualization system we use Amira, for which specialized plugins were
implemented. The cluster view and parallel coordinates were implemented using D3.js.
K-medoids clustering and PCA computations were implemented using Matlab. The
shortest paths computations were implemented using the boost C/C++ graph library.
Shortest path computations, preprocessing and visualization are all run on a machine
with Intel Xeon CPU E5-2698 v3 @ 2.30GHz (2 processors) with 128 GB RAM.

The simulation to compute all morphologies was run overnight. The sizes of each
of the 500 final morphologies range between 1M to 6M voxels per morphology.
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Figure 7: Charge paths traversing a selected patch. The charge paths passing
through any given patch can be inspected individually. Important path properties, such
as their (global or local) tortuosity, can be color-coded on the visualization of the path
line.

6.1 Case Studies
In order to evaluate the usefulness of our system, we asked scientists with expertise in
computational physics, microstructure analysis, and OPV solar cell design to perform
visual exploration and analysis using our system. In this paper, we will discuss only
two of the main findings due to the limited size of the paper.

Morphology generation. We started by sampling meaningful ranges for all simu-
lation parameters for morphology generation, in accordance with the experience of our
collaborators. Using these parameter settings, we generated 500 different morpholo-
gies.

Using our system, we then first performed a selection of a target subset for more
detailed analysis together with the scientists, using the PISD descriptors of entire mor-
phologies, until we reached a set of 54 target morphologies that they thought cover
different shape- and topological features of interest sufficiently well. The PISD his-
tograms of these 54 morphologies are depicted in Fig. 5.

Patch computation. From the 54 target morphologies, we computed a total of
3,135 patches sampled along the backbones of the morphologies. For each patch, the
corresponding PISD descriptor was computed. Using a resolution of 10 × 10 bins per
PISD, we obtained 100-D vectors. On these vectors we computed PCA for dimension-
ality reduction and retained the 6 largest PCA vectors after inspecting the correspond-
ing eigenvalues, i.e., the variances in decreasing order. We looked at the decrease of the
eigenvalues, as well as at the explained variance measure, which measures how much
of the total variance is explained by the n largest eigenvalues.

Patch clustering. We then computed the patch clustering, using k-medoids clus-
tering with k = 60 clusters, where k was determined empirically. The corresponding
centers of these 60 clusters are shown in Fig. 6. These centers represent the 60 groups
of patches used to classify the whole set of 3,135 patches with respect to their local
shape characteristics (their PISD descriptors).
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Figure 8: Case study 1. 3D views of patches that belong to clusters 31 and 37 as
examples for the output generated during the analysis session for Case Study 1. This
illustrates why these cases had low bottleneck values, although they are close to the
anode. This is a new counterexample for a common domain expert belief. Moreover,
they have some distribution of an “hour glass shape.” For cluster 31, the figure shows
that this is caused by the local topology, since few paths are allowed to pass through
the patch, especially after branching.

6.1.1 Case Study 1: Finding low bottlenecks close to anode

In this case study, we start with the physical intuition of domain experts and progres-
sively move toward a more detailed local analysis.

Basic intuition. Local shapes in the form of an “hourglass” increase the probability
of bottlenecks compared to flatter shapes, which is a disadvantage. However, they have
the advantage of having larger surface area than flat shapes, which is favorable for
exciton disassociation (see Table 1). As a second consideration, the scientists had the
intuitive belief that for patches that are closer to the anode, the probability of forming
a bottleneck is higher than for patches farther away from the anode. At the same time,
however, locations closer to the anode are favored by photon absorption.

Domain questions. (1) In order to analyze the impact of these conflicting consid-
erations, the scientists posed the question whether there are patches with hourglass-like
shapes that are close to the anode, but which at the same time have low (good) bottle-
neck values. (2) The second question was what the corresponding simulation param-
eters are that result in the generation of these properties. These questions cannot be
answered using global statistics.

Visual analysis. Using our system, the scientists could answer their questions by
first performing filtering in the parallel coordinates view to isolate patches with low
bottleneck values and high photon absorption. Also, they restricted their selection to
high complementary paths, to make sure that low bottlenecks are not due to “islands”
(isolated parts of the morphology, see Fig. 1). Using this query, they filtered the se-
lected PISD descriptors.

To determine correlations with clusters, they explored the performance metric his-
togram shown in Fig. 8 (bottom right). They noticed that a high number of patches
comes from clusters 35 to 41. From the PISD descriptors of these patches (Fig. 6), they
determined that these patches have high curvatures. Therefore, the scientists applied an
additional query to select PISD descriptors with curvature probabilities corresponding
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Figure 9: Case study 2. (a): Before analysis using our system, the domain experts
considered a tortuosity value of less than 1.1 as good. Using the Case Study 2 analysis,
however, they could strengthen this assumption by jointly exploring good tortuosity
values and bad bottleneck values for each patch, rather than for the whole volume; then
generate histograms corresponding to this combination of properties instead. (b,c,d):
A second question concerned bottlenecks close to the cathode (low z values). (a) query
on very high bottlenecks after filtering the 3,135 patches. (b) query on intermediate–
high bottleneck values; (c) one patch that resulted from the intermediate bottlenecks at
low z values.

to ridge shapes with strong curvature. Two example patches are shown in Fig. 8.
For the patch in cluster 31, the reason is the local topology: the backbone passing

through the patch has some connectivity, but it is not connected to the deeper-lying
parts of the morphology. This means fewer paths are passing through, which results
in a lower path density. At the same time, other branches send charges into different
directions, which again reduces the path density.

For the patch in cluster 37, the reason is that it is located close to domain boundary,
where charge paths are coming in from fewer directions. This attracted the attention
of the scientists to the fact that the direction orthogonal to the electrodes (z axis) is not
the only major factor in morphology design, but that the horizontal directions (x and y)
are more important than they had previously believed.

The scientists further explored the simulation parameters to understand how to re-
generate these cases. One observation is that the patch from cluster 31 belongs to the
morphology generated by simulation parameter donor percentage d = 0.39. The sci-
entists had the common belief that the closer the percentage of donor to acceptor is to
0.5, the better the BHJ performance should be. This finding drew their attention to the
fact that sometimes lower donor percentage values can still be good or even better than
higher values.
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6.1.2 Case Study 2: Finding low (good) tortuosity combined with high (bad)
bottlenecks

Basic intuition. (1) Before our framework, our domain experts always considered a
morphology with global average tortuosity less than or equal to a value of 1.1 as good.
However, using our system they realized that they can create stronger characterizations
by selecting those parts that are close to ideal local tortuosity and high bottleneck val-
ues at the same time, and create histograms of bottlenecks for closer inspection after
filtering patches accordingly. (2) Another common belief among domain scientists was
that bottleneck values are low close to the cathode.

Domain questions. (1) Therefore, the first target scenario was characterizing mor-
phologies with respect to where good tortuosity and bad bottleneck values occur in the
same location. (2) The second question was whether it is true that bottleneck values are
indeed low close to the cathode (at low values of z). Answering these questions was
enabled by our framework for the first time.

Visual analysis. Fig. 9 illustrates the output of this case study. Regarding domain
question (1), the scientists are interested in understanding why there are bad bottlenecks
combined with good tortuosity. From the 3D view in Fig. 9 (a) we can see the influence
of the curvature distribution, as well as of the topology, by exploring all (global) paths
that are passing through the corresponding patch, and only the (local) path segments
that are inside the patch.

For domain question (2), Fig. 9 (b) shows a query on very high bottlenecks. None
of the selected patches are close to the cathode (low z values), which agrees with the
scientists’ assumptions. However, by exploring intermediate to high bottleneck values
in Fig. 9 (c), they found that still relatively high bottlenecks do occur close to the
cathode (low z). Further exploration in 3D as in Fig. 9 (d) showed—considering the
backbone—that the topology is the reason for this counterexample to their previous
assumptions.

6.2 Design Lessons Learned
The design choices in the current application have gone through several iterations. In
the beginning, we proposed visualizing patches by a representative 2D slice through the
3D morphology. The scientists did not find this helpful for getting a quick overview
of features corresponding to the 3D structure. They then proposed that focusing on
curvature information is more helpful, since it has an intuitive meaning for engineers in
general and characterizes shape very well for their purposes. This led to our definition
of the PISD descriptor.

For exploration and filtering, we were mainly relying on parallel coordinates. How-
ever, the scientists in some cases found that this alone does not reveal enough correla-
tions. Introducing additional histogram views helped them to enhance their analysis.

As a general comment, the scientists found the backbone to be very helpful. They
also found that our entire system design has a large potential to be used for the analysis
of other microstructures in different applications, such as porous materials.

7 Conclusions and Future Work
In this paper, we presented the first visual analysis framework for identifying structure-
performance correlations in large sets of simulated Bulk-Heterojunction morphologies
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based on local analysis.
Based on clustering patches, we proposed a cluster view and a t-SNE view to help

with exploring groups of similar patches. Linked to these views, we proposed a set
of parallel coordinates to visualize performance and simulation parameters, and de-
pendencies between them. Before the development of our framework, domain sci-
entists depended on global numerical statistics to compare morphologies. Using our
framework, domain scientists can now explore hundreds of morphologies with their
multivariate features in the same view using a top-down exploration paradigm. They
can also explore the performance at the local level which helps them determine the
best-performing morphologies with more accuracy and more insight on why they are
performing better, or worse, than other structures.

The next steps in the development of our framework will include the extension to
the acceptor part of the morphologies, as suggested by the domain scientists. Further-
more, we plan to extend the system to include editing features to explore the correlation
between certain modifications and the overall resulting performance.
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