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Abstract. Mathematical optimization techniques are on their way to becoming a
standard tool in chemical process engineering. While such approaches are usually
based on deterministic models, uncertainties such as external disturbances play a
significant role in many real-life applications. The present article gives an introduc-
tion to practical issues of process operation and to basic mathematical concepts
required for the explicit treatment of uncertainties by stochastic optimization.

1 Operating Chemical Processes

Chemical industry plays an essential role in the daily life of our society. The
purpose of a chemical process is to transfer some (cheap) materials into other
(desired) materials. Those materials include any sorts of solids, liquids and
gas and can be single components or multicomponent mixtures. Common ex-
amples of chemical processes are reaction, separation and crystallization pro-
cesses usually composed of operation units like reactors, distillation columns,
heat exchangers and so on. Based on market demands, those processes are
designed, set up and put into operation. From the design, the process is ex-
pected to be run at a predefined operating point, i.e., with a certain flow
rate, temperature, pressure and composition [22].

Distillation is one of the most common separation processes which con-
sumes the largest part of energy in chemical industry. Figure 1 shows an
industrial distillation process to separate a mixture of methanol and water
to high purity products (methanol composition in the distillate and the bot-
tom should be zp > 99.5mol% and zg < 0.5mol%, respectively). The feed
flow F' to the column is from outflows of different upstream plants. These
streams are first accumulated in a tank (a middle buffer) and then fed to the
column. The column is operated at atmospheric pressure. From the design,
the diameter of the column, the number of trays, the reboiler duty @ and the
reflux flow L will be defined for the given product specifications.

For an existing chemical process, it is important to develop flexible oper-
ating policies to improve its profitability and reducing its effect of pollution.
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Fig. 1. An industrial distillation column with a feed tank

The ever-changing market conditions demand a high flexibility for chemical
processes under different product specifications and different feedstocks. On
the other hand, the increasingly stringent limitations to process emissions
(e.g., z < 0.5mol% in the above example) require suitable new operating
conditions satisfying these constraints. Moreover, the properties of processes
themselves change during process operation, e.g., tray efficiencies and fouling
of the equipment, which leads to reduction of product quality if the operat-
ing point remains unchanged. Therefore, keeping a constant operating point
given by the process design is nowadays an out-dated concept. That is to
say, optimal and robust operating policies should be searched for and imple-
mented online, corresponding to the real-time process situations.

In the past, heuristic rules were used for improving process operation in
chemical industry. However, since most chemical processes behave nonlinear,
time-dependent and possess a large number of variables, it was impossible to
find the optimal solutions or even feasible solutions by heuristic rules. There-
fore, systematic methods including modeling, simulation and optimization
have been developed in the last two decades for process operation. These
methods are model-based deterministic approaches and have been more and
more used in chemical industry [10].

1.1 Process Modeling

Conservation laws are used for modeling chemical processes. A balance space
is first chosen, for which model equations will be established by balancing
mass, momentum and energy input into and output from the space [3]. Thus



Stochastic Optimization for Operating Chemical Processes 3

variables of a space can be classified into independent and dependent vari-
ables. Independent variables are input variables including manipulated vari-
ables and disturbance variables. For instance, the reflux flow and the reboiler
duty are usually manipulated variables for a distillation column, while the
feed flow and composition are disturbance variables. Dependent variables
are output variables (usually called state variables) which depend on the in-
put variables. The compositions and temperatures on the trays inside the
column are dependent variables. Besides conservation laws, correlation equa-
tions based on physical and chemical principles are used to describe relations
between state variables. These principles include vapor-liquid equilibrium if
two phases exist in the space, reaction kinetics if a reaction takes place and
fluid dynamics for describing the hydraulics influenced by the structure of
the equipment.

Let us consider modeling a general tray of a distillation column, as shown
in Fig. 2, where 7 and j are the indexes of components (i = 1, NK) and trays
(from the condenser to the reboiler), respectively. The dependent variables
on each tray are the vapor and liquid compositions y; ;, %;,;, vapor and liquid
flow rate Vj, L;, liquid molar holdup Mj, temperature 7; and pressure P;.
The independent variables are the feed flow rate and composition F}, zp; j,
heat flow @); and the flows and compositions from the upper as well as lower
tray. The model equations include component and energy balances, vapor-
liquid equilibrium equations, a liquid holdup equation as well as a pressure
drop equation (hydraulics) for each tray of the column:

— Component balance:
d(M;wi,;)
dt

— Phase equilibrium:

= Lj1zij-1 + Viv1¥ij+1 — Lizij — Viyij + Fizriy (1)

Yij = 0 Kij (@i, Ty, Py)zig + (1 = n5)yi+1 (2)

Summation equation:

NK NK
Dwmg=1 Y y=1 3)
i=1 =1
— Energy balance:
d(M;HF)
# =Lj 1Hj  + Vi Hfy — LiHp = V;H + FHE ; 4+ Q; (4)

Holdup correlation:
M; = ¢j(z:;,Tj, Lj) (5)

— Pressure drop equation:

Pj = Pj_1 +9(i,j-1,Yi,, Li-1, V5, Tj) (6)
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Fig. 2. A general tray of the distillation column

In addition to the equations (1)—(6), there are auxiliary relations to describe
the vapor and liquid enthalpy HJV ,H JL, phase equilibrium constant Kj j,
holdup correlation ¢; and pressure drop correlation 1; which are functions
of the dependent variables. Parameters in these correlations can be found
in chemical engineering handbooks like [9,19]. Murphree tray efficiency 7; is
introduced to describe the nonequilibrium behavior. This is a parameter that
can be verified by comparing the simulation results with the operating data.

Equations of all trays in the column lead to a complicated nonlinear
DAE system. Moreover, some dependent variables are required to be kept
at a predefined value (e.g., the bottom liquid level of the column). This
will be realized by feedback control loops usually with PID (proportional-
integral-derivative) controllers. Thus controller equations have to be added
to the model equation system, if closed loop behaviors will be studied. Pro-
cess simulation means, with given independent variables, to solve the DAE
so as to gain the profiles of the dependent variables. In the framework of
optimization, an objective function will be defined (e.g., minimizing the en-
ergy consumption during the operation). The above DAE system will be
the equality constraints. The inequality constraints consist of the distillate
and bottom product specifications as well as the physical limitations of va-
por and liquid flow rates. Thus a dynamic nonlinear optimization problem is
formulated. Approaches to solve dynamic optimization problems use a dis-
cretization method (either multiple-shooting or orthogonal collocation) to
transform the dynamic system to a NLP problem. They can be classified
into simultaneous approaches, where all discretized variables are included in
a huge NLP problem, and sequential approaches, where a simulation step
is used to compute the dependent variables and thus only the independents
will be solved by NLP. Solution approaches to such problems can be found in
[15,23]. As a result, optimal operating policies for the manipulated variables
can be achieved. It should be noted that some processes may have zero degree
of freedom. In the above example, when the product specifications become
equalities, it implies that the independent variables at the steady state must
be fixed for fulfilling these specifications.
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1.2 TUncertainties in Process Operation

Although deterministic approaches have been successfully applied to many
complex chemical processes, their results are only applicable if the real op-
erating conditions are included in the problem formulation. To deal with the
unknown operating reality a priori, optimization under uncertainty has to
be considered [13]. From the viewpoint of process operation there are two
general types of uncertainties.

Internal Uncertainties. These uncertainties represent the unavailability
of the knowledge of a process. The process model is only an approximation
and thus can not describe the real behavior of the process exactly. Internal
uncertainties include the model structure and the parameter uncertainty.
For the description of a chemical or a thermodynamic phenomenon several
representations always exist. The selection of a representation for the model
leads to a structure uncertainty. Model parameters (such as parameters of
reaction kinetics and vapor-liquid equilibrium) are usually estimated from a
limited number of experimental data and hence the model may not be able
to predict the actual process [28].

External Uncertainties. These uncertainties, mainly affected by market
conditions, are from outside but have impacts on the process. These can
be the flow rate and composition of the feedstock, product specifications as
well as the supply of utilities. The outlet stream from an upstream unit and
the recycle stream from a downstream unit are usually uncertain streams of
the considered operating unit. For some processes which are sensitive to the
surrounding conditions, the atmospheric temperature and pressure will be
considered as external uncertain variables.

While some uncertain variables are treated as constants during the pro-
cess operation, there are some time-dependent uncertain variables which are
dependent on the process operating conditions. For instance, the tray effi-
ciency of a distillation column often changes with its vapor and liquid load.
Another example is the uncertainty of the feed streams coming from the up-
stream plants. In these cases a dynamic stochastic optimization problem will
be formulated. For such problems, rather than individual stochastic param-
eters, continuous stochastic processes should be considered. Approximately,
most of them can be considered as normal distributed stochastic processes.
There may exist correlation between these variables. Operation data from
historic records can be used to estimate these stochastic properties.

In deterministic optimization approaches the expected values of uncertain
variables are usually employed. In the reality the uncertain variables will
deviate from their expected values. Based on the realized uncertain variables a
reoptimization can be carried out to correct the results from the last iteration.
For dynamic optimization, a moving horizon with N time intervals will be



6 R. Henrion et al.

l/tik_m past horizon (k-1) u(kfz)
L /] LN
I 1/ | |
L .
u(k- D current horizon (k) u(k—l)
! / [N
T/ | |
—
L
(k) future horizon (k+1) (k)
Computation u /1 1 Un
for the future | 1l I I
horizon L

Fig. 3. Reoptimization over a moving horizon

introduced. Figure 3 shows the implementation of the three consecutive paces
of the moving horizon. At the current horizon k only the values of the available
policies for the first time interval u; which were developed in the past horizon
k—1, will be realized to the process. During this time interval a reoptimization
is carried out to develop the operating policies for the future horizon k + 1.
The method in which the expected values of the uncertainties are used in the
problem formulation is the so-called wait-and-see strategy. The shortcoming
of this strategy is that it can not guarantee holding inequality constraints.

1.3 Distillation Column Operation under Uncertain Feed
Streams

Now we consider again the industrial distillation process. The flows from
the upstream plants often change considerably due to the varying upstream
operation. We may have high flow rates of the feed during the main working
hours and decreased flow rates during the night hours or at the weekend.
Figure 4 shows the measured profiles of the total feed flow, composition and
temperature for 24 hours. Here we only focus on the impact of the variation
of the flow rate. One consequence resulted from the fluctuating feed streams
is that the tank level [ may exceed the upper bound [™2* (then a part of the
liquid must be pumped out to an extra tank) or fall below the lower bound
Imin (then a redundant feed stream must be added to the feed flow). Since
the appearance of these cases will lead to considerable extra costs, a careful
planning for the operation should be made to prevent these situations.

Another consequence of a large feed change is that it causes significant
variations of the operating point of the distillation column. To guarantee the
product quality (zp,zB), a conservative operating point is usually used for
a higher purity than the required specification. This leads, however, to more
energy consumption than required. The growth of energy requirement for a
column operation is very sensitive to the product purity, especially for a high
purity distillation.
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Fig. 4. Measured feed profiles of an industrial methanol-water distillation process

Conventionally a feedback control loop is used in process industry to keep
the level of the feed tank, using the outflow as the manipulated variable.
The drawback of this control loop is that it can not guarantee the output
constraints and it will propagate the inflow disturbance to the downstream
distillation column.

To describe the continuous uncertain inflow this stochastic process will be
discretized as multiple stochastic variables in fixed time intervals. We assume
they have a multivariate normal distribution with an available expected pro-
file and a covariance matrix in the considered time horizon. The reason for
this assumption is that the total feed of the tank is the sum of several in-
dependent streams from the upstream plants. According to the central limit
theorem [16], if a random variable is generated as the sum of effects of many
independent random parameters, the distribution of the variable approaches
a normal distribution, regardless of the distribution of each individual param-
eter. These parameters can be readily obtained by analyzing daily measured
operating data. It is obvious that a wait-and-see strategy is not appropriate
to be used in this process. Setting the feed flow with its expected profile in
a deterministic optimization can not guarantee holding the tank level in the
desired region. The product specification will also be easily violated by the
drastically changing real feed flow. Therefore, a here-and-now strategy, which
includes the uncertainties in the optimization problem, should be used. This
will be discussed in the next sections.
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2 Modeling Uncertainty

As discussed in the previous section, a common technique of correcting ran-
dom disturbances in chemical processes is moving horizon control (or model
predictive control): states are measured (or estimated) in relatively small in-
tervals, and optimal open-loop strategies are computed over a given planning
horizon—“optimal” under the simplifying assumption that no further dis-
turbances occur. In effect, the frequent repetition of this process implicitly
generates a (possibly nonlinear) feedback controller that reacts to the mea-
sured disturbances.

The stochastic approaches described here are naturally applicable within
such a moving horizon framework but differ in a fundamental aspect: rather
than just reacting they look ahead by taking stochastic information on fu-
ture events explicitly into account. This is possible if it is known which ran-
dom events may occur and how likely they are. In other words, a stochastic
model of the disturbances is required, taking the form of a random process
£ = (&)tefo,1) defined on some underlying probability space ({2, F, P). Here
T is the length of the planning horizon and 0 is the current time. In the
present context, only IR¥-valued discrete-time processes for t = 0,1,...,T
are considered, and it is assumed that & is observed just before time ¢ so that
&o is known at ¢ = 0. Thus, the processes can be seen as random variables
€ = (&,-..,&r) in R¥T. Moreover, we consider either discrete distributions
P or distributions with a continuous density function on R*T. (More details
will be given below.) For a comprehensive treatment of the measure-theoretic
and probability-theoretic foundations see, e.g., Bauer [1,2].

Apparently the explicit modeling of uncertainty adds information to the
optimization model and allows for more robust process control. The price
one has to pay is the necessity of solving a stochastic optimization problem
whose complexity may exceed the complexity of the underlying deterministic
problem by orders of magnitude.

The precise nature of uncertainties (such as the time dependence and the
significance in objective and constraints) leads to different classes of stochas-
tic optimization models; we will describe two of them. The first approach
yields a multistage recourse strategy consisting of optimal reactions to ev-
ery observable sequence of random events. It minimizes expected costs while
satisfying all constraints. This is appropriate if feasible solutions exist for
every possible disturbance, or if costs for the violation of soft constraints can
be quantified (as penalty terms). The second approach yields a single control
strategy that does not react to random events but is guaranteed to satisfy the
constraints with a prescribed probability. This is appropriate if constraint vi-
olations are unavoidable in certain extreme cases, or if they cause significant
costs that cannot be modeled exactly. For detailed discussions of stochastic
modeling aspects and problem classes we refer to the textbooks [5] and [14].
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3 Scenario-Based Stochastic Optimization

In scenario-based optimization, uncertainty is modeled as a finite set of pos-
sible realizations of the future with associated positive probabilities. Each
realization is called a scenario and represents a certain event or, in our case,
history of events. In precise probabilistic terms this corresponds to a discrete
distribution given by a finite probability space (£2, F, P), |£2| = N. One may
simply think of w as the “number” of a scenario, which is often emphasized
by using index notation. Thus, each elementary event w € (2 labels a possible
realization &, = ({1, ..,&u71), and the distribution is given by N probabil-
ities (pu)wen, that is, P¢(£,) = P(w) = p,. (The o-field is then simply the
power set of the sample space, F = 29.)

3.1 Scenario Trees

As indicated, we have to deal with event histories rather than single events.
This means that there is a finite number of realizations of &, each of which
may lead to a different group of realizations of &, and so on. The repeated
branching of partial event histories £¢ := (&, ..., &), called stage t scenarios,
defines a scenario tree (or event tree) whose root represents &y, the known
observation at ¢ = 0, and whose leaves represent the complete set of scenarios.
Thus any node represents a group of scenarios that share a partial history &¢.
We denote by V the set of nodes (or wertices) of the tree, by Ly C V the
level set of nodes at time ¢, and by L = Lp the set of leaves; further by
0 € Lo the root, by j € L; the “current” node, by i = w(j) € L;_1 its unique
predecessor (if t > 0), and by S(j) C Ly41 its set of successors. The scenario
probabilities are p; > 0, j € L. All other nodes also have a probability p;
satisfying pj = > jcq(;) Pr- Hence, 3 - cp, pj =1 holds for all ¢, and po = 1.

Seen as a partitioning of the scenarios into groups, each level set L; con-
sists of atoms generating a sub-o-field F; = o(L;) C F (where Fo = {0, 2}
and Fr = F), and & is measurable with respect to F;. The tree structure is
thus reflected by the fact that these o-fields form a filtration Fo C ... C Fr
to which the process (&)L, is adapted. For instance, in Fig. 5 the nodes rep-
resent scenario sets as follows: 0 ¢ {3,4,5}, 1 & {3,4}, 2 & {5}, 3 & {3},
4 ¢ {4}, and 5 + {5}. Since these abstract probability-theoretic notions are
unnecessarily general for our purposes, we will use the more natural concept
of scenario trees in the following. The notation & = (§;)jcr, or & = (§)jev
refers to the distinct realizations of £ on level ¢ or on the entire tree, respec-
tively. (Here we include the deterministic initial event & in &.)

3.2 Multistage Stochastic Programs

The main topic of this section are multistage decision processes, that is, se-
quences of alternating decisions and observations over the given planning
horizon. The initial decision must be made without knowledge of the actual
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LT = Lz = {3,4,5}
Ly ={1,2}
Lo = {0}

F2 = Fr =o({3},{4},{5})
Fi=0({3,4},{5})
Fo=0({3,4,5})

Fig. 5. A small scenario tree with level sets and corresponding o-fields

realizations of future events; hence it is based solely on &y and the probability
distribution of £. As the future unfolds, the decision maker observes realiza-
tions §; of random events &, thus collecting additional information which he
or she takes into account from then on. The resulting sequence of decisions
is therefore called nonanticipative. For instance, in controlling the feed tank
of the distillation column in Sect. 1, we have to decide in each time step
how much liquid to extract during the next period based on observations of
the inflow during all previous periods and taking into account the probabil-
ity distribution of future inflows. (For the initial decision, past observations
do not appear explicitly in the problem but are implicitly modeled in the
distribution.)

The specific class of problems considered here are (convex quadratic) mul-
tistage recourse problems on scenario trees, with decision vectors y; € IR",
j € V. Given are convex quadratic objective functions

1 * *
¢;(y;) == Eyjijj + £y,
and polyhedral feasible sets depending on the previous decision y; = yx(;),
Yo :={yo > 0:Woyo = ho }, (7)
Yiy) :=={y; 20: Wjy; =h; —Tjyi}, jeV :=V\{0}. (8

These are the realizations of random costs ¢:(y;) and random sets Y;(y¢—1),
that is, we take as random events the problem matrices and vectors

& = (Hj, f;,W;,h;,Tj)

or, more generally, the functions and sets §; = (¢;,Y;). (Conceptually we
are thus allowing entirely random problem data. In practice, however, only a
subset of matrix and vector elements will usually depend on an even smaller
number of random influences.) Decisions y; are to be made so as to minimize
the immediate costs plus the expected costs of (optimal) future decisions;
this is expressed in the general multistage recourse problem

iy, o) + B, iy, o) oo+ Bunc [ i oro)] - |

Here Ej, denotes the conditional expectation with respect to Ly,

ELt(_Xt_;’_l) :{ Z p—ka} .
JEL,

res() P
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The recourse structure of this class of stochastic programs is induced
by the stage-coupling equations in (8); it is best seen in the deterministic
equivalent form. Defining Q741 (yr) := 0 and then recursively

Qi(yt—1) ==Er,_, [y e?ngl_l) be(ye) + Qt+1(yt)]: t=T(-1)1,

or, in terms of the realizations,

Q)= > B[ min i)+ Quny)], t=T(-D1, i€l
ie500) Di Ly;€Y;(y:)

the deterministic equivalent problem reads

yfoneilf}o ®o(yo) + Q1 (vo)-

This has the form of a deterministic optimization problem (hence the name),
but Q; is nonlinear and in general non-smooth, so it is not necessarily an ap-
propriate formulation for numerical computations. In the case of interest one
can actually unwrap the nesting of minimizations to obtain a single objec-
tive; the deterministic equivalent then takes the form of a large but structured
convex quadratic program in the decision variables y = (y;)jev,

min ij[iyjijj + f; yj]: 9)
voojev
s.t. Woyo = ho, (10)
Wiy =hj —Tjy: VjeV™, (11)
yi >0 VieV. (12)
This is called the extensive form. In stochastic notation with y = (yo,...,yr)

the same problem reads

T
. 1 * *
min > E [iyt Hyye + [y (13)
t=0
s.t. Woyo = ho, (14)
Wiye = he =Ty 1 Vte{1,...,T}, (15)
g >0 Vte{o,...,T}. (16)

Problem (13-16) and its deterministic equivalent (9-12) represent a stan-
dard problem class in stochastic programming. Especially the linear case
with fized recourse (i.e., objective ), B[f;y;] and deterministic W) is very
well-understood and widely used in practice. An important property of the
deterministic equivalent is that, except for the recourse sub-structure, it has
the form of a standard mathematical program (LP, QP, CP, or NLP). Thus,
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even though the scenario tree may cause exponential growth of the problem
size, standard solution approaches are applicable when combined with suit-
able techniques that exploit the sparsity induced by the stochastic nature.
The most prominent such techniques are decomposition approaches which
split the large stochastic program into smaller problems associated with clus-
ters of nodes (or scenarios). For a discussion of these techniques we refer
the reader to the excellent survey articles [4,21]; our own approach combines
interior point methods with specially developed sparse-matrix techniques.

3.3 Dynamic Structure

The stage-coupling equations (15) or (11) define (implicitly) an underlying
dynamic process, usually combined with further equality constraints. More
precisely, the rows of conditions (15) can be categorized into dynamic equa-
tions and certain types of constraints which possess natural interpretations
and satisfy associated regularity conditions. In [25,26] we have developed com-
plete such categorizations for several formulations of stochastic programs, ac-
companied by solution algorithms that employ natural pivot orders resulting
from the refined sparse structure.

In processes governed by differential (or difference) equations there is typ-
ically also a natural partitioning of the decision variables y = (z,u) into (in-
dependent) control variables v and (dependent) state variables z, the former
representing the actual degrees of freedom available to the decision maker.
The dynamic equations are then often given in explicit form,

Tj =Gj.CL'i+Ejui+hj, (17)

which is equivalent to (11) if we define W; := (I 0) and T; := —(G; E;).
In this notation (and with the convention (), %) € R®), the multistage
stochastic program of interest takes the form

() (%) )+ () ()] oo

min D

(o) =

s.t. x; = Gj.’lli + E]‘Ui + hj VjeV, (19)
= [xmin’xmax]’ (20)
= [umin7umax]7 (21)
ij(FjIl’fj + DjUj + Ej) =0. (22)

jev
Apart from the form of dynamic equations, the major difference to the stan-
dard formulation consists in the additional equality constraint (22). This con-
dition represents a sum of expectations; we call it a global constraint since it
may couple all nodes of the tree. In the standard formulation (9-12), such a

condition cannot be modeled directly; it would require surplus variables and
additional constraints.
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The natural interpretation of the dynamics (17) is that the decision u; at
time ¢—1 controls all subsequent states z;, j € S(i), at time ¢. This is the typ-
ical situation in discretized continuous-time processes: actually u; determines
a control action for the entire interval (¢t —1,t) which becomes effective in ;
one period later. In other application contexts (particularly in the financial
area), decisions become effective immediately, leading to dynamic equations

T; = Gj.’L'i + EjUj + hj. (23)

Here each state x; has “its own” control u; rather than sharing u; with the
siblings S(4).

The problem classes and solution algorithms associated with the possible
formulations of dynamics are closely related; we refer to them collectively as
tree-sparse. (For details see [24-26].) Applications are not only in discrete-
time deterministic and stochastic optimal control but also in other dynamic
optimization problems with an underlying tree topology; extensions to net-
work topologies with “few” cycles are straightforward. A very general related
problem class is investigated in [20] using a similar formulation of dynamics
but o-fields and probability spaces rather than scenario trees.

3.4 Convex Programs

Since we are concerned with convex quadratic stochastic programs, we re-
call here some basic definitions and facts of convex optimization. A convex
optimization problem has the general form

mip f(y) (24)

where Y is a convex set and f:Y — IR is a convex function, that is,
(I-t)yo+ty1 €Y and f((1—1t)yo +ty1) < (1 —8)f(yo) +1f(y1)
for all yo,y1 € Y and t € [0,1]. A convez program (CP) is the special case

min f(y) st g(y) =0, h(y) 20, (25)

where g:IR™ — IR™ is an affine mapping, g(y) = Ay + a, and h:IR™ — R is
a (component-wise) concave mapping. If f, g, h are twice continuously differ-
entiable, this means that the Hessians of f and —h; are positive semidefinite,
D2f(y) > 0 and D?h;(y) < 0. The convex quadratic case (with H > 0) reads

1
miniy*Hy+f*y st. Ay+a=0, By+b>0. (26)
y

The feasible set Y is a polyhedron if and only if it is given by finitely many
linear equalities and inequalities, as in (26). It is easily seen that all level sets
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N.:={y €Y : f(y) <c} of (24) are convex. Moreover, every local solution
is automatically a global solution, and the set S of all solutions is convex. In
the general case § may be empty even if feasible solutions exist. This happens
either if f is unbounded below, inf,cy = —oo, or if f is bounded below but
the level sets N, are unbounded for ¢ | infycy > —oo. Both situations are
impossible in the convex quadratic case (26): existence of a solution § € YV
is then always guaranteed (unless the problem is infeasible). Uniqueness of
a solution § holds under standard conditions. For the convex QP (26), a
sufficient condition is positive definiteness of H on the null space N(A) or,
more generally, on its intersection with the null spaces of the rows of B
associated with strictly active inequalities at g. All this applies in particular
to the stochastic problems (9-12) and (18-22). For an exhaustive treatment
of the theory and numerical aspects of convex and (nonconvex) nonlinear
programming we refer the reader to standard textbooks, such as [17,8,7].

4 Stochastic Optimization under Probabilistic
Constraints

An important instance of optimization problems with uncertain data occurs
if the constraints depend on a stochastic parameter, such as the inequality
system

Mz, €) >0, (27)

where h: R™ x R® — R™, £ is an s-dimensional random variable defined on
some probability space ({2, A, P) and the inequality sign has to be understood
component-wise. Written as such, the constraint set is not a well-defined part
of an optimization problem since, usually, the decision on the variables x has
to be taken before £ can be observed. It is clear that, in order to arrive at an
implementable form of the constraints, one has to remove in an appropriate
way the dependence of h on specific outcomes of £&. The most prominent
approaches to do so are

the expected value approach

the compensation approach

— the worst case approach

the approach by probabilistic constraints

Using expected values, the system (27) is replaced by E h(z,&) > 0, which
now can be understood as an inequality system depending on z only, as
the expectation operator acts as an integrator over £. An even simpler form
is obtained when the random variable itself is replaced by its expectation:
h(z,E£) > 0 (both forms coincide in case that h depends linearly on &). The
last form corresponds to the naive idea of substituting random parameters
by average values. It seems obvious (and will be demonstrated later) that
such reduction to first moment information ignores substantial information
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about £. Indeed, the expectation approach guarantees the inequality system
to be satisfied on the average only, but a decision z leading to a failure of a
system for about half of the realizations of £ is usually considered as unac-
ceptable. On the other extreme, the worst case approach enforces a decision
to be feasible under all possible outcomes of &: h(z,&) > 0 VE. This puts
emphasis on absolute safety which is frequently either not realizable in the
strict sense or is bought by extreme increase of costs. Although diametrically
opposed in their modeling effects, both the expected value and worst case
approach share some ignorance of the stochastic nature of .

The basic idea of compensation relies on the possibility to adjust con-
straint violations in the system (27) after observation of £ by later compen-
sating actions. Accordingly, the set of variables splits into first stage deci-
sions z (to be fixed before realization of £) and second stage decisions y
(to be fixed after realization of £). As an example, one may think of power
scheduling where an optimal load pattern of power generating units has to be
designed prior to observing the unknown demand, and, where possible later
gaps between supply and demand can be corrected by additional resources
(e.g., hydro-thermal units, contracts etc.). The adjustment of constraint vio-
lation is modeled by an inequality system H (z,£,y) > 0, connecting all three
types of variables and it causes additional costs g(y, £) for the second stage
decisions. Of course, given z and &, y should be chosen as to minimize second
stage costs among all feasible decisions. Summarizing, compensation models
replace the original problem

min{ f(z) | h(z,€) 2 0}

of minimizing the costs of first stage decision under stochastic inequalities by
a problem where the sum of first stage costs and expected optimal second
stage costs is minimized:

min{f(z) + Q(2)}, Q(z) = Eq(z,£), ¢(z,§) = min{g(y,&) | H(z,&,y) 20}

The compensation approach, however, requires that compensating actions
exist at all and can be reasonably modeled. In many situations this is not
the case. For instance, operating an abundance of inflow in a continuous
distillation process may cause adjusting actions which are inconvenient to
carry out or the costs of which are hard to specify. In such circumstances,
emphasis is shifted towards the reliability of a system by requiring a decision
to be feasible at high probability. More precisely, (27) is replaced by the
probabilistic constraint
P(h(z,£) > 0) > p.

Here, P is the probability measure of the given probability space and p € (0, 1]
is some probability level. Of course, the higher p the more reliable is the mod-
eled system. On the other hand, the set of feasible x is more and more shrunk
with p 1 1 which makes increase the optimal value of the objective function at
the same time. The extreme case p = 1 is similar to the worst case approach



16 R. Henrion et al.

mentioned before. Fortunately, in a typical application, considerable increase
in reliability can be obtained—for instance when contrasted to the expected
value approach—at a small expense of the objective function and it is only
for requirements close to certainty that the optimal value of the objective
function worsens critically. This makes the use of probabilistic constraints a
good compromise between the afore-mentioned methods. For a detailed intro-
duction into various models of stochastic optimization the reader is referred
to the monographs [5], [14] and [18].

4.1 Types of Probabilistic Constraints

Both for theoretical and practical reasons it is a good idea to identify different
types of probabilistic constraints. First let us recall, that (27) is a system of
inequalities given in components by hi(z,&) > 0, ..., hp(z,€) > 0. Now,
when passing to probabilistic constraints as described before, one has the
choice of integrating or separating these components with respect to the
probability measure P:

Plhy(%,€) 2 0,..., hm(z, &) > 0]

2P or
> 0] > p.
These alternatives are referred to as joint and individual probabilistic con-
straints, respectively. It is easily seen that feasibility in the first case entails
feasibility in the second case while the reverse statement is false. In the con-
text of control problems, the components of £ may relate to a discretization
of the time interval. Then, joint probabilistic constraints express the con-
dition that at minimum probability p certain trajectories satisfy the given
constraints over the whole interval whereas individual ones mean that this
statement holds true for each fixed time of the discretized interval. From the
formal point of view, passing from joint to individual constraints may ap-
pear as a complication as a single inequality (with respect to the decision
variables z) is turned into a system of m inequalities. However, introducing
one-dimensional random variables (depending on ) n;(z) := h;(x,§), it can
be seen that the joint constraints involve all components 7; simultaneously,
whereas in each of the individual constraints just one specific component 7;
figures as a scalar random variable. Taking into account that the numerical
treatment of probability functions involving high-dimensional random vectors
is much more delicate than in dimension one, where typically a reduction to
quantiles of one-dimensional distributions can be carried out, the increase
in the number of inequalities is more than compensated by a much simpler
implementation. Of course, the choice between both formulations is basically
governed by the modeling point of view.

Another important structure of probabilistic constraints occurs if in the
constraint function h_decision and random variables are separated in the
sense that h(z,£) = h(z) — h(€). Using the distribution function Fy,(z) :=
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~

P(n < 2) for the transformed random variable 5 = h(§), the resulting (joint)
probabilistic constraint may be equivalently written as

P(h(z,£) > 0) > p <= P(h(z) > h(§)) > p < Fy(h(z)) > p.

In this way, the originally implicit constraint function on z has been trans-
formed into a composed function F;, o h. Taking into account that A is ana-
lytically given from the very beginning and that there exist satisfactory ap-
proaches of evaluating distribution functions (in particular multivariate nor-
mal distribution), one has arrived at an explicit, implementable constraint.
Thus it makes sense to speak of explicit probabilistic constraints here.

In the general implicit case, the evaluation of probabilities P(h(x,£) > 0)
as well as of their gradients with respect to x may become very difficult and
efficient only in lower dimension. Nevertheless, there is some good chance for
special cases like h;(-, &) concave. Another option for solution is passing from
joint to individual constraints.

4.2 Storage Level Constraints

An important instance of probabilistic constraints arises with the control
of stochastic storage levels. Here it is assumed that some reservoir storing
water or energy or anything similar is subject to lower and upper capacity
levels I™® and [™3, The reservoir is continuously fed and emptied. The
feed ¢ is assumed to be stochastic whereas extraction z is carried out in
a controlled way. We consider this process over a fixed time horizon [t,, 3]
and discretize £ and x according to subintervals of time as (&1,...,&s) and
(1,...,Ts), where & and z; denote the amount of substance directed to or
extracted from the reservoir, respectively, during the i-th time subinterval.
Accordingly, the current capacity level after the i-th interval amounts to [°+
& 4+ & —x1 — -+ - —x;, where [° refers to the initial capacity at ¢,. Thus,
the stochastic storage level constraints may be written as

PG G — e S0 (=1,.008)

or more compactly as the system [' < L& — Lz < 12, where L is a lower left
triangular matrix filled with ‘1’. Obviously, decision and random variables are
separated here and, according to the preceding section, the resulting prob-
abilistic constraints become explicit and can basically be reduced to level
sets of s-dimensional distribution functions in case of joint constraints. The
problem becomes particularly simple if the constraints are considered indi-
vidually both with respect to the upper and lower level and to time index <.
For instance, the i-th upper level constraint writes as

Pmi<UP+m+-+x)>p & F,Z+x1+--+z)>p
= o+ > (F) 7 ) - 1
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where n; = & +--- +&;, F,, refers to the 1-dimensional distribution function
of n; and (F,,) ! (p) denotes the (usually tabulated) p-quantile of this distri-
bution. Consequently, the probabilistic constraints can be transformed to a
system of simple linear inequalities in the decision variable z then. Storage
level constraints will be considered later in the context of controlling a con-
tinuous distillation process where the role of the reservoir is played by the
so-called feed tank which acts as a buffer between stochastic inflows and the
operating distillation unit.

4.3 Numerical Treatment

The solution of optimization problems involving probabilistic constraints re-
quires at least the ability of evaluating the function ¢(z) = P(h(z,£) > 0).
Thinking of discretized control problems which are typically large dimen-
sional, efficient methods like SQP have to be employed. Then, of course, the
gradient of ¢ has to be provided as well if not even second partial derivatives.

Assuming ¢ to have a density f¢, the function ¢ is formally defined as the
parameter-dependent multivariate integral

o) = [ g (28)
h(z,2)>0

where integration takes place over an s-dimensional domain. Thinking of dis-
cretized control problems again, the dimension s of the random variable may
correspond to the discretization of a time interval, hence values of s = 20
are more than moderate. In such dimension, however, an ‘exact’ evaluation
of the above integral by numerical integration is far from realistic. Rather,
two principal ‘inexact’ strategies have proven powerful in the past, namely
bounding and simulation. Some rough ideas can be illustrated for the ex-
ample of distribution functions, i.e., the special case where the domain of
integration becomes a cell h(z) +R? . As mentioned in the previous sections,
the evaluation of distribution functions is crucial for the important special
case of explicit probabilistic constraints.

The generic representatives of the bounding and simulation procedures are
the Bonferroni bounds and the crude Monte-Carlo estimator. The Bonferroni
bounds refer to the determination of the probability P(|J;_, Ax) of the union
of s abstract probability events Ay, and they are based on the inequalities

2m s 2m—+1
SIS < P AR) < D0 (-1)FS,
k=1 k=1 k=1

where m = 1,...,[s/2] on the left hand side and m = 0,...,[(s —1)/2] on
the right hand side, and

Sk = Z P(Ailﬂ---ﬂAik)

1<i1 <+ <ip<s
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denotes the summarized probability of all possible intersections of order k.
In case of s = 2, for instance, the very properties of a measure yield

P(A1 U As) = P(A1) + P(A2) — P(A1 N A2) < P(A1) + P(4z) = S,

so we have recovered the first Bonferroni upper bound in a trivial case. For
the evaluation of a distribution function one has

F(z) = P(& Szl,---,£sst)zP(Am---nAs):1—P(O Ap),
k=1

hence the Bonferroni bounds can be applied to the last expression. Specifying
these bounds for m up to 2, one gets

1—51§F(2)S1—51+SQ.

Increasing m, these bounds become sharper and sharper until the maximum
possible value of m exactly realizes the desired probability. On the other
hand, the determination of Sy becomes increasingly complex. For instance,
in the context of F' being a multivariate normal distribution, the determina-
tion of probabilities P(A;, N---N A4;,) leads to k-dimensional integration of
that distribution. This can be efficiently done for £ = 1,2 but gets quickly
harder with higher dimension. At the same time, the number of such prob-
ability terms to be summed up in the determination of Sy equals (;) and
thus makes the numerical effort soon explode. That is why in the determina-
tion of distribution functions, one has to be content with the very few first
terms Si. Often, the gap between the resulting Bonferroni bounds is too large
for practical purposes then.

Fortunately, sharper bounds can be derived on the basis of appropriate
linear programs (see [18]). For k < 4 there even exist explicit expressions
for these improved bounds, for instance 1 — S; + %Sz < F(z) provides a
much better lower bound on the basis of Sy, with & < 2 than the Bonferroni
counterpart 1 — Sy < F(z) (where Sy does not figure at all in the first lower
bound). Still the gap may remain unsatisfactory. Another strategy of deriving
bounds relies on graph-theoretical arguments. The prominent Hunter bound
(see [12]), for instance, is based on finding a maximum weight spanning tree
in a graph the vertices of which are represented by the single events Ay and
the edges of which correspond to pairwise intersections of events Ay N A;.
The weight of an edge is given by the probability P(Ag N A4;) which is easily
calculated for all edges. The Hunter bound can be shown to be at least as
good as, but frequently much better than the (improved) lower Bonferroni
bound 1 — 51 + %Sz mentioned above, although calculated with basically
the same effort. The idea behind the Hunter bound has been continuously
generalized towards more complex graph structures (hypertrees defined by
hyperedges) in the last few years resulting in amazingly efficient lower and
upper bounds. Excellent results for the multivariate normal distribution are
reported in [6] with dimension up to s = 40.
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The simplest scheme of Monte-Carlo simulation for evaluating (28) con-
sists in generating a sample of IV realizations z1, ..., znx of £ and to take then
the ratio k/N as an estimate for the desired probability, where k = #{i |
h(z, z;) > 0}. For larger dimension s, the variance of this estimate becomes
quite large which makes it unsatisfactory soon. Similar to the starting point
of Bonferroni bounds, more efficient simulation schemes have been developed
as well. At this point, we may refer to Szdntai’s simulation scheme (see [27],
related approaches are described in [18]) which is based on the knowledge of
the first two terms S, .Sy of probabilities of single events and pairwise inter-
sections. Using the same sample as already generated for the crude Monte-
Carlo estimator, these terms allow immediately to calculate two additional
Monte-Carlo estimators, the reason behind being a simple cancellation rule of
binomial expressions. Now, the main idea is to convexly combine these three
Monte-Carlo estimators (including the crude one) and to exploit correlations
between them in order to minimize the variance of the combined estimator. In
this way, simulation results become considerably more precise. Finally, an ex-
tension to incorporating Hunter’s and the other mentioned graph-theoretical
bounds into this scheme has been successfully carried out.

The procedures described so far are related to the evaluation of functional
values of ¢ in (28) with special emphasis on distribution functions. As for
gradients or higher order derivatives, these can be reduced analytically to
the determination of functional values again at least in case of a multivariate
normal distribution (for details see [18]). Hence, the same basic strategies
apply although with repeated effort now (n components for the gradient and
n(n + 1)/2 components for the Hessian if wanted).

4.4 Probability Maximization

As already mentioned above, increasing the probability level p in a proba-
bilistic constraint shrinks the feasible set. Typically, the feasible set becomes
empty starting from a critical value p which may be less than 1. In particu-
lar, a user of some implemented solution method dealing with probabilistic
constraints might unintentionally have chosen a value of p above that critical
value. Then, for instance, SQP codes working with infeasible iterates and en-
forcing feasibility in convergence only, will consume a lot of computing time
in vain due to operating on an empty constraint set. This effect is particu-
larly undesirable in an environment of on-line optimization. Therefore, one
has good reason prior to the optimization problem itself to determine p by
probability maximization over the constraints:

max{p| P(h(z,) > 0) > p}.

As long as probabilistic constraints are considered alone in this auxiliary
problem, it can be solved rather quickly as compared to the original opti-
mization problem. However, one has to take into account that the obtained
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maximum value of p is just an upper bound for p since the other constraints
of the optimization problem (usually related to the dynamics of the under-
lying control problem) are not involved here. At least, this bound gives an
indication for a probability level which cannot be exceeded at all. In order to
calculate the exact bound, one would have to include all constraints which,
of course, is almost as time consuming as the original problem.

4.5 Structural Properties

For an efficient treatment of probabilistic constraints, it is crucial to have
some insight into their analytical, geometrical and topological structure.
While corresponding statements are well-known and immediate for usual (an-
alytical) constraints of the type g(z) < 0 (e.g., when g is linear, convex or
differentiable), there are no obvious relations between the quality of data and
the structure of probabilistic constraints. Most results in this direction are
concerned with convexity issues which have direct consequences for numerics
and theoretical analysis. A corresponding important statement in simplified
form is the following one (cf. [18]):

Theorem 1. In (27), let the components h; of h be convex and assume that
& has a density the logarithm of which is concave. Then, the function o(x) =
P(h(z,&) > 0) is concave and, hence, the corresponding probabilistic con-
straint may be convexly described, i.e., P(h(z,£&) > 0) > p < —p(z) <p.

Many but not all of the prominent multivariate distribution share the prop-
erty of having a log-concave density as required in the last theorem (e.g.,
multivariate normal distribution or uniform distribution on bounded convex
sets, cf. [18]).

An alternative structural characterization relates to the weaker property of
connectedness (cf. [11]):

Theorem 2. The constraint set {z | P(h(z) > h(€)) > p} of an explicit

probabilistic constraint is connected whenever the components h; are concave
and the constraint qualification

Im(A) N (t-(1,...,1)+RT) #£0 VteR.

In the affine linear case lNl(:c) = Ax + b, this constraint qualification reduces
to the positive linear independence of the rows of A.

Note that this last result does not require any assumptions on the distribu-
tion of the random variable. Applying the previous theorems to the specific
situation of joint storage level constraints to be considered later on in the
context of a distillation process, one may infer that the feasible set is convex
for many and connected for all distributions of the random variable &.
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