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based on the pole condition: Theory
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Summary The pole condition is a general concept for the theoret-
ical analysis and the numerical solution of a variety of wave propa-
gation problems. It says that the Laplace transform of the physical
solution in radial direction has no poles in the lower complex half-
plane. In the present paper we show that for the Helmholtz equation
with a radially symmetric potential the pole condition is equivalent
to Sommerfeld’s radiation condition. Moreover, a new representation
formula based on the pole condition is derived and used to prove ex-
istence, uniqueness and asymptotic properties of solutions. This lays
the foundations of a promising new algorithm to solve time-harmonic
scattering problems numerically and provides a new approach for
analyzing existing algorithms such as the Perfectly Matched Layer
(PML) method and the Bayliss-Gunzburger-Turkel (BGT) algorithm.
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1 Introduction

Differential equations of Helmholtz type arise in acoustic, electro-
magnetic and quantum scattering theory. Such equations have an
infinite number of bounded solutions satisfying a given condition on
the boundary of the scatterer. To make the solution unique, we have
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to impose the additional condition that the solution be an “outgoing”
wave. The standard condition in this context is Sommerfeld’s radia-
tion condition (cf. [15,16]). The pole condition, which has briefly been
described in the abstract, is an alternative and more general condi-
tion. It is shown that for the Helmholtz equation both conditions are
equivalent. In the context of acoustic and two-dimensional electro-
magnetic as well as quantum scattering problems, both conditions
imply that energy is transported away from the origin.

The aim of this paper is not only to give a new proof of existence,
uniqueness and asymptotic properties of solutions to scattering prob-
lems based on the pole condition, but also to lay the foundations of
a new efficient numerical algorithm. In this paper we derive a set of
equations, which can be solved numerically. Algorithms for the so-
lution of these equations and numerical results will be reported in
[7]. Our method has the remarkable feature that the far field pattern
(or scattering amplitude) of the solution is computed automatically
even if the user is only interested in the behavior of the solution on a
bounded domain. In many situations, e.g. for inverse scattering prob-
lems, the far field pattern is the main quantity of interest, and in this
case our method has an important advantage, in particular if Green’s
function is not known explicitly.

Besides giving rise to a new algorithm, our analysis also sheds new
light on existing methods. In [6] we show that the approximate so-
lutions obtained by the PML method converge exponentially to the
true solution as the thickness of the sponge layer tends to infinity.
Moreover, we analyze the BGT method for the general situation con-
sidered in this paper. A brief overview on existing numerical methods
will also be given in [6].

The pole condition has first been considered for problems with one
space-like and one time-like variable. In [12,13] the time-discretized
Schrodinger equation is interpreted as a sequence of inhomogeneous
Helmholtz problems. One-way wide angle Helmholtz equations, rang-
ing between the Schrodinger and the Helmholtz equation, have been
studied in [14]. With the results below, we hope to be able to carry
over the analysis of these papers to problems with arbitrary space
dimensions.

2 Main results and outline of the paper

We consider partial differential equations of the form

Au + (1 + p(|z]) + # q <|z—|>> K*u =0 (1)
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with real-valued functions p, ¢ in some exterior domain 2 C {z €
R? : |z| > ay}, @y > 0. p is assumed to be analytic of the form
p(t) = Z;’;ijt_j, and ¢ € C°(S%") where S := {z €¢ R? : |z| =
1}. p describes either a radially symmetric potential or a variation
of the refractive index. The function ¢ allows to treat problems in
hyperbolic-elliptic coordinates (cf. Section 4). This is advantageous
for numerical computations with elongated obstacles.

Let us first motivate the pole condition for the simplest case d = 1,
p = 0 and a, = 1. Here (1) reduces to the ordinary differential
equation u” + k?u = 0 with the general solution

u(l+r) = C1e"" + Coe™ ™, r > 0.

The term C1e**" corresponds to an outgoing wave, and Coe™ " to an

incoming wave. The Laplace transform @1(s) := [;° e *"u(1 +r)dr
of u(1+-), Res > 0, is given by

N O Co

i(s) = s — ik + s+ik

This function, which has a holomorphic extension to C \ {ix, —ik},
satisfies res;, 47 = C1 and res_;, 47 = Cy. We define the residual of a
function f : U C € — C at a point 0 € U by res,, f := lim, 5 st (s —
o) f(s) if the limit exists. u is outgoing if and only if 4; has no pole
at —ix, i.e. if and only if res_;, 1 = 0.

In order to formulate a similar condition for d > 2, we introduce
the function

d—1

Ulp, ) :==p 2 u(p2) (2)

for p > ay, # € S4! and its (shifted) Laplace transform
o0

Ou(s,3) == / e~TU(r +a,2) dr, (3)
0

for Res > 0, 2 € S ! and a > a,. Note that U is defined such that
U6, za(se 1) = lulzz(psi s or all p > .

Definition 1 (pole condition) A bounded function u : {z € R :
|z| > ay} — C satisfies the pole condition if for some a > a,, the
function Uy(-,4) defined by (2) and (3) has a holomorphic extension
to the lower complex half-plane C~ := {s € C :Ims < 0} for all & €
591 such that the function s — [ga_, |‘93%(s,§:)|2 ds(z) is bounded
on compact subsets of C™.
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Remark 2 If the pole condition is satisfied for one a > a,, it is
satisfied for all a > a,. This follows from the identity

[ b—a
/ e "Ula+r,z)dr = / e "U(a+r,z)dr (4)
0 0

+e30-0) / e "Ub+rz)dr
0

and the fact the both s fob_a e 5"U(a+r, &) drand s — e=5(=%) are
entire functions. Hence, the pole condition is a condition concerning
the behavior of u at infinity, but not the behavior of u on any compact
set.

A similar condition without the scaling (2) has been considered in
[11]. We will show that a solution u to the differential equation (1)
satisfies the pole condition if and only if it satisfies the Sommerfeld’s
radiation condition

a-1 [ Ou
lim p 2 | — —iku ) =0, = |z 5
o2 (G - im) p=lo )

p—00
uniformly for all directions |%|
The structure of the singularity is more complicated in general
than in the simple example above. If a solution to (1) satisfies the
pole condition, then U(-, #) has an analytic extension not only to C_,
but even to C\{ix — ¢t : ¢t > 0}, i.e. we do not have an isolated pole,
but pole with a branch cut. The functions

A~

Uoo (£) = e "% res;,. Uu(+, 2), (6a)
—iKka . .
U, (t,2) = & lim (Ua(m —t—ie, ) — Ua(ik — t + ie)) (6b)
271 €—0

are well defined for 2 € %!, ¢t > 0, and a sufficiently large. It is
a crucial result of our analysis that these functions determine the
solution U completely via the representation formula

3 o
Ula +r,&) = eetT) (uoo(:f:) + / e W, (t, %) dt) . r>0. (7)
0
Let Ags—1 denote the Laplace-Beltrami operator on S%~! and define

Agp = Aga—1p + (W + q) ® (8)
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for ¢ € C?(S%1). Then uy and V¥, satisfy the Volterra integro-
differential equation

{Pa(t) + te™ Ay} oo (&) + t(t — 2iK) T4 (t, &) (9)
t
+ [ {ple— + 0 - we a2 dn =0

Here p, is the inverse Laplace transform of p(a + -) (cf. Lemma 4).
If p = 0, then (9) can be converted to a differential equation by
multiplying by e* and differentiating twice with respect to ¢.

Given boundary data f(Z) = U(a, %), eq. (7) implies

oo (3) + /0 T Wt 2) dt = e~ f(2). (10)

We show that the system (9), (10) has a unique solution (e, %s).
The numerical solution of these equations, which are typcically cou-
pled with a finite element method inside of the artificial boundary
Iy := {z : |z| = a}, is studied in [7]. Other boundary conditions can
easily be taken care of by differentiating (7). It suffices to to compute
V,(t,Z) on a small interval ¢t € [0,T] since ¥,(¢,%) decays exponen-
tially as ¢ — 0o. Once uy, and ¥, are known, U(p, ) can be evaluated
for p > a using (7).

The plan of this paper is as follows:

In Section 3 we introduce the Dirichlet-to-Neumann map on [},
and prove an existence and uniqueness theorem based on properties
of this operator. In Section 4 we derive an ordinary differential equa-
tion for the Fourier coefficients of U (r, -) and a corresponding Volterra
integral equation for the Laplace transform of these functions. The
unique solvability of these integral equations is established in Sec-
tion 5. In the following section the main results of this paper are
proved for single Fourier modes. As a simple consequence of a repre-
sentation formula corresponding to (7) we derive asymptotic formulas
for (generalized) Hankel functions for large arguments. In Section 8
we construct the Dirichlet-to-Neumann map using Fourier series and
show that it satisfies the assumptions of the existence and uniqueness
theorem in Section 3. Then, in Section 9, we establish the formulas
(7) and (9) and show the equivalence of the pole condition and Som-
merfeld’s radiation condition.

3 The Dirichlet-to-Neumann map on the artificial boundary

For simplicity, we assume that {2 is the complement of some suffi-
ciently smooth compact set K contained in {z : |z| < a} such that
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p(|z|) is well defined and finite for z € (2. Moreover, we assume that u
satisfies the Neumann boundary conditions g—}j = f on the boundary
O0K. We could easily accommodate for more complicated situations,
e.g. different boundary conditions or inhomogeneities in the interior
of I,.

From now on we assume w.r.o.g. that x = 1. Since a and p are ar-
bitrary, this can be achieved by the following rescaling: & = 'z, p =

k'p, a=r"ta, t = kt, 5= ks, p(p) = plp), P(t) = x~'B(1), (%) =
u(z), U(p,2) = kT Ulp,2), U(5,2) = k5 U(s,2), Goo(®) =
KT e (2), U(F, ) = k=T U(L, 1)

To arrive at a weak formulation, we multiply (1) by a function
—7 and integrate over {2, := {z € 2 : |z| < a}. Formally applying

Green’s Theorem yields

/ (VuVi — (1 + p(|z]) + &32) uﬁ) dz — / 8—u6ds =0
. |z| ruuak OV

where the unit normal vector v points to the exterior of (2,. Now
we introduce a so-called Dirichlet-to-Neumann map L : HY/?(T,) —
H~'/2(I,) which maps the Dirichlet data u|r, of a solution u satisfy-

ing (1) and (5) to its Neumann data %| r, - Existence and uniqueness

of such solutions in {z : |z| > a} will be proved later. With the
sesquilinear form a : H'($2,) x H'(12,) — C,

au,v) := / (vuw— (1 +p(lz)) + %) fm) dx—/ra Luw ds

and the continuous anti-linear functional F : H'(£2,) — C,
F(v) := fuds,
oK

the variational problem reads
a(u,v) = F(v) for all v € H'(02,). (11)
Proposition 3 Let L be an operator with the following properties:

1. L: HY*(I,) - H-Y*(I,) is linear and bounded.

2. There exists a compact operator L : HY2(T,) — H-'Y2(I,) such
that Re [, (=L + L)p @ ds >0 for all p € HY2(T,).

3. Imfpa Lo@ds > 0 for all ¢ € HY2(I,), ¢ # 0.

Then the variational problem (11) has a unique solution u for all
right hand sides F', and u depends continuously on F.
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Proof As the proof is rather standard (cf., e.g., [1, Theorem 5.7] for a
similar proof), we only give a brief sketch. Condition 1 ensures that
the sesquilinear form a is well-defined. Condition 2 is used to establish
the Garding inequality

Rea(u,u) + CZH““%%%) + <LTru,Tru>L2(Fa) > Cl”““%ll(na)

for all w € H'(£2,) with constants ci,cy > 0 and the trace operator
Tr: H'(2,) — HY?(I},). Since the embedding operator H*(2,) <
(H'(£2,))" and the operator Tr' L Tr : H'(£2,) — H'(§2;) are com-
pact, it can be shown by the Lax-Milgram Lemma and Riesz theory
that the operator induced by the sesquilinear form ¢ is Fredholm with
index 0, i.e. uniquess implies existence and stability. Let u € H*(£2,)
satisfy a(u,v) = 0 for all v € H'(£2,). Taking the imaginary part of
this equation and using Condition 3, it follows that u has vanishing
Cauchy data on Iy,. Hence, by virtue of the Cauchy-Kowalewskaya
Theorem and elliptic regularity results, v must vanish everywhere.
O

Usually the properties of L required in the previous proposition
are proved using special properties of the Hankel functions (cf. [1,8]).
In the following we present a more systematic approach which also
works for p # 0.

4 The Laplace transform of the separated differential
equation

We first show how the two-dimensional Helmholtz equation in elliptic
coordinates can be transformed to the form (1). An analogous trans-
form exists for prolate spheroidal coordinates in IR3. Let f > 0 and
consider the coordinate transforms

§\ ._ ¢ cosO £\ cosh & cos 0
T(B = ¢ \sing ) 5 0 =1 sinh¢sinf |-
Note that I', := Y'({Ina} x [0, 27]) is the circle with radius a centered
at the origin, and that I, := @;({Ina} x [0,27]) is the ellipse with
foci located at (f,0) and (—f,0) and eccentricity H% Let :& satisfy
the Helmholtz equation A% + #?u = 0 in the exterior of I,. Then
u(z) := (P (Y '(z))) is defined in the exterior of I},. A computation
shows that the Gramian matrix G = D(®; o Y 1)TD(®; 0 T7!) is

given by G(z) = %2(1 + p(|z]) + |z| 2q(£))I where

p(p) =p~* and q ((:?53)) = —2cos 26. (12)
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Therefore, by the formula for the Laplacian in general coordinates
(cf. [17, Sec. 2.4]), Au = f% (1+p(z)) + |ac|_2q(:f:))_1 Au. This shows

that u satisfies the differential equation (1) with k = Fa% and p, g given
by (12).

Let {(¢;, ;) : j € IN} be a complete orthonormal system of eigen-
functions and eigenvalues of the operator A, defined in (8). The ex-
istence of such a system follows from the fact that A, is self-adjoint
and has a compact resolvent for ¢ € C*®(S%71) (cf. [17, Sec. 8.2]). If
g = 0, then ¢; may be chosen as trigonometric monomials for d = 2
and spherical harmonics for d = 3. In the example above the func-

tions ¢; will be Matthieu’s functions. Let U;(r) := [o, U g1 ) @;ds
denote the Fourier coefficients of U. Using the formula
d? -19 1
A= — A
8p2 + P ap Sd—1

it follows after some simple computations that the Fourier coefficients
U;(r) satisfy the differential equations

Uj(p) + (1 +p(p) + Xjp~?) Uj(p) = 0. (13)
Note that there is no term involving UJ'- due to the scaling factor
(d—l)/2
P

Let (Lf)(s) == [, e *f(p)dp, Res > 0 denote the Laplace

transform of a functlon f. In order to derive an equation for Uj, :=
LU;(- + a) we need the following lemma:

Lemma 4 Assume that the convergence radius of the series p(t™1) =
Yoo Pmt™ is greater than é, ap € (0,00) and let a > a,. Let

o0

Pal(s) i =e™% Z ﬁsm_l (14)

m=1

be the inverse Laplace transform of p(-+a) (i.e. (Lpa)(r) = p(r+a)),
and let u € C([0,00)) be a bounded function. Then

L(p(- +a)u) (s) = /Ooﬁa(81 —s)(Lu)(s1) ds1 (15)

forRes > 0. Here [*° f(s1)dsy := [° f(s+t)dt. Forallk =0,1,...
s 0
there exists a constant C > 0 such that
5 (s)| < CemaRestarls (16a)
for all s € C. If p1 = 0 then also
a(s)] < C|s|e-aRestanls], (16b)
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Proof We first prove by induction in m € IN that (15) is true for
p(t 1) = tm To show this for m = 1 we consider the function f(¢) :=
(t + a)~'u(t). A simple computation shows that lim,_,o £f(s) = 0
and

(Lu)(s) = (L((- +a)f))(s) = a(Lf)(s) = (Lf)'(s)-

On the other hand, the right hand side of (15) with p,(s) = e™%% is
the unique solution of this differential equation vanishing at co. Now
assume that (15) holds true for p(t ') = ™ with m < j, j € IN. Then

(o) 0= [ 25 (2o

oo La(s—s1) — )it oo
_ / e 1 .(31 S) / ea(81*52) ([,u)(SQ) d32 d81
s S1

(G —1)!
oo 52 (59 — s)77!
:/ ols=52) (L) (s )/ %dsld@
00 ca(s—s2) (g, — g)J
_ / J(_!? Y (Lu)(s2) dso.

So far we have proved (15) if ¢ — p(t~!) is a polynomial. It remains
to consider the case that p is given by an infinite series. It follows
from the definition of a), that C' := sup,;>¢ [pm+1/a,™ < co. Hence,

plsl™

1)
~ —aRes |pm+1||3| —aRes P
als)] < emeres 3 Pmaile™ g Z ky

m!
m=0

< CefaRes+ap\s|'

The other estimates in (16) are derived in a similar manner. Since all
partial sums in the definition of p, are bounded by the right hand side
of the previous inequality and since the series p(t) converges uniformly
for |t| > a, it can be shown by Lebesgue’s Dominated Convergence
Theorem that

—8T — s —8T
/0 e "p(r+a)u(r)dr = ]\/}I—I>noo i e m§:1 mu(r) dr
m 1
_ . s ) pm S
N A/}l—r)noo N Z (m — ' o L) ds

_ /wﬁa(sl — 5)(Lu)(s1) dsy.
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It follows from (13) and Lemma 4 that

/ (ﬁa(sl — S) + e_a(sl_s)(sl — S))\j) 0j,a(31) dsy

+(s? + 1)Ujals) = sUj(a) + Uj(a), Res>0. (17)

5 The integral equation in the Laplace domain

In this and the following two sections we consider differential equa-
tions of the form

Ula+7)+ 1+ (LP)(r)U(a+r) =0, r>0 (18)

with an analytic function P of the form (14) with p; = 0 which
satisfies the estimates (16). The equations (13) are of this form. The
dependence of the solution on A; will be discussed later. For studying
the integral equation in the Laplace domain, it is useful to factor out
the singularities of U at =i, i.e. to look at the function

w(s) = U(s)(s* + 1). (19)

Here and in the following we often omit the index a in U,. Due to
Lemma 4 the function w satisfies the Volterra integral equation

w(s) + Jw(s) = sU(a) + U'(a) (20)
with
- [T w(s1)
(Jw)(s) = / P(sy — 5) 21 dov. (21)

Let us introduce the cuts Sy; := {*i+t : ¢t < 0} and V =
C\(S; US_;) (cf. Fig. 1a)). We define the metric on V' by d(s1,s2) :=
V0s1 — 822 + [p(s1) — p(s2)|? with the function ¢ : V — IR given
by ¢(s) := —Res if Res < 0 and |Ims| < 1, ¢(s) := 0 else. This
metric is defined such that points on opposite sides of the cuts are
far away from each other. Let (V,d) denote the completion of the
metric space (V,d). Then V is the union of V and the set of points
54 = lime_,0 ¢>0 5 £ 4€ with s € 5; US_;. For a continuous function
v:V — C we can define a “jump function” [v] : S; US_; — C by

[v](s) :=v(s-) —v(sy), s€S;US_;. (22)

Note that [v] is continuous on S; U S_; with respect to the topology
induced by the usual norm of C.
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We introduce the norm

and denote by X the space of all w € C(V) which are holomorphic
in V and satisfy w(s) = o(|s|?) uniformly for |s| = co. X is equipped
with the norm || - || x

In the following we use the notation |s|; := |Res| + |Ims| for
s € C. Moreover, we define the diamond shaped domains D := {s €
V:lsFil <3}

In order not to interrupt the flow of the argument, the proofs of
the following two lemmas will be given in the appendix.

Lemma 5 Let 0 < o < 1. Then there exists a constant ¢ such that
forallwe X

|<c(R sup 1o 31+)|1), s € V\(Ds+ UD_),(23a)
e s es

(s1)] >
su , s€ V\(DyUD_),(23b

‘ (Resl>pRes |31| + 1) \( + ) ( )
[(Jw w)(o)| < c||lw||x d(s,0)%, s,0 € Dy, (23c)

[(Jw)(s)] < cllw|lx, s€V. (234d)
Lemma 6 The operator J is compact from X to X.

Proposition 7 The integral equation (20) has a unique solution in
X for all U(a),U'(a) € C.

Proof Let w € X satisfy the homogeneous equation w + Jw = 0. If
we can show that w = 0, then the assertion follows from Riesz theory
and Lemma 6. (23d) implies that ||w||e < oco. Hence, there exists
s* € C with |Re s*| > o := 24/¢/a? such that |w(s)| < 2|w(s*)| for
all s € C with |Res| > o. It follows from (23a) that

c

[w(s*)| = [(Jw)(s)| < sup

— o~ w(s1
S0 e e

1 x

<7 sup Jw(s1)] < —|UJ(8 )
4 Resi >0 2

i.e. w(s*) = 0. This, however, implies that w(s) = 0 for all s € C

with Re s > o, and since w is holomorphic in V' and continuous in V/,

w(s)=0forallseV. O
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6 The cut functions

In this section we study the cut functions
[0a](:ti — t)

2miresy; Uy, ’
(cf. (22)). Note that res; U, = +2iw(+i). Again, we will often drop
the index a. In the next lemma we derive Volterra integral equations
for 1+, which are uniquely solvable. This shows that ¥ can be de-

fined without the assumption res; U, # 0 and that, in fact, ¥+ only
depends on P, but not on U.

Lemma 8 Ifres; U # 0, the cut functions 1 (t) defined by (24) for
t > 0 satisfy the integral equations

Yo,k (t) == t>0 (24)

b+ [ R an =TS
P(t—t) P(%)
/ T - dn =~ (25

Proof We will only prove (25a) since the proof of (25b) is analogous.
Due to (20) and (19) we have

(s2 + 1)U (s4) + ‘/E P(sy — s+)U(s1) dsy = s+U(a) + U'(a)

for s =4 —1t € S; and € > 0. The paths v{ and ¥¢ are shown in
Fig. 1. Subtracting the equation with the + sign from the equation
with the - sign yields

—€

tt—20[01G—t)+ [  PE+t)[U])G+t1)dt

~t
27 ; )
I w(i — ee'?)
+ 0 Pt - e )(—eew)(% — €e'¥)
Since w is continuous at i, the last integral converges to wP(t)w(i) =
2miP(t)res; U as € — 0. Dividing by 2i(res; U)t(t — 2i) establishes
(25a). O
Since both the kernel of the integral operators and the right hand
sides are bounded due to our assumptions on P, the Volterra inte-
gral equations (25) are uniquely solvable (cf.,e.g.,[9, Theorem 10.15]).
From these integral equations we can deduce the following two lem-
mas concerning the behavior of 1+ near 0 and near oco. Since

o (t) = 9 (2) (26)

the first lemma is only formulated for . .

(—i€)e dp = 0.
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m Vi
it NS

2¢€

Fig. 1. Integration path in the proof of Lemma 8

Lemma 9 The function 14 defined in (24) belongs to C*°([0,0)),
and the derivatives of ¥4+ at 0 can be computed recursively as follows:

¢+ (O) = - }1_{% %, (273.)
k+1
d)gﬂ-l) (0) = — %I_I)% (Z}H_l {t(t]:)_(t)Q,L) } (27b)
k+1)! A 1 N,
a 2i | ; (20)FF173 (5 + 2)! nz_:lp( % ().

The proof will be given in the appendix. Since the first term on the
right hand side of (the analog of) (4) does not contribute to resy; U,
and 1, +, the quantities

Uoio = eTresy; U, (28)
are independent of a, and
o (t) = O™V ey 4 (2). (29)
for b > a. The last identity can be used to define 9, + for all A € IR.
Lemma 10 For all a € R and € > 0 the cut functions satisfy
s (B)] = O(e=@=0) | ¢ o, (30)

Proof Due to (29) it suffices to prove the lemma for a = a,. It follows
from (16a) with ¥ = 0 and (25) that

C t
oy 0] < g (14 [ W (@)l an)

for all ¢ > 0. Choosing ¢, such that ﬁ < ¢, it follows that

t
W%HWSF+/d%ﬂﬁm&h >t
tx

where I' := ¢(1 + fg* [Ya,,+(t1)| dt1). Now Gronwall’s lemma (cf. [2,
Sec. 3.1]) implies |1hq, + ()] < et for t > ¢,. O
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Theorem 11 The function U has a holomorphic extension to {z €
C :Rez > a}, and U and U® (k > 1) satisfy the representation
formulas

U(z +a) = UL, 1) (1 + / e 1 1 (1) dt) (31a)
0
+ Uy e~ieta) (1+ / e~ ap, (1) dt),
0

UR (2 4 a) = UL +0) (ik + / b (i —t)Fe " hy 4 (1) dt) (31b)
0
+ Uy e ieta) ((—z’)k + / ” (=i — t)Fe eh, _(2) dt)
0

for Re(z) > 0 and a > ay.

Proof Let vE(t) :=1+it, —R <t < R (cf. Fig. 2a)). Then

R—o0 271

U(a+r)= lim i/ e U,(s) ds
"

for a > a, and r > 0 by the inversion theorem for the Fourier trans-
form. Now

L, €U, (s)ds = —L, e U,(s)ds
2mi Jyr 2mi J R
due to Cauchy’s integral theorem. Due to (19), (20) and (23d) the
function U decays of order |U,(s)| = O(|s| 1) as |s| — oo uniformly
for all directions. Using this and the exponential decay of the inte-
grand as Res — —oo, it can be shown that the integrals from B to
C, from C to D and from D to A vanish as R — co. A computa-
tion similar to that in the proof of Lemma 8 shows that the integrals
around =+ converge to resy; Uue* as R — co. The integrals along
S1; converge to res.; U, fooo e’"(ii_t)wa,i(t) dt as R — oo. This yields
(31a) for z > 0. Differentiating (31a) and changing the order of differ-
entiation and integration, which is possible by Lebesgue’s Dominated
Convergence Theorem and (30), we obtain (31b). It is obvious that
(31a) defines a holomorphic extension of U. O

Equation (31a) provides a decomposition of any Fourier mode U
satisfying eq. (18) into an outgoing part and an incoming part. For
a solution u to the full partial differential equation (1) a correspond-
ing decomposition is not always possible. For example, the solution
u(z) = €*® for p = ¢ = 0 does not decay like O(p*(dfl)/Q). Since
the Sommerfeld radiation condition implies such a behavior (cf. [1,
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Ims
~—B
Y5
2R | V§
s C AN
\N Res
s, oT . W
R
Y5
a) A

Fig. 2. Integration paths in the proofs of Theorem 11 and Proposition 13.

Sec. 2.2]) and since incoming solutions are complex conjugates of
outgoing solutions, u cannot be decomposed into an outgoing and an
incoming part. The reason that Theorem 11 does not carry over in
full extent to the partial differential equation (1) is concerned with
the fact that the condition numbers of the matrices L, in the next
corollary increase exponentially with |A;].

Corollary 12 The matriz L, defined by

(g'(&))) :L“(gé)

via (31a) and (31b) is regular. Hence, there exists (U(a),U’(a)) # 0
such that res_; U, = 0. In this case U, satisfies the pole condition.

Proof Let L,(UL,Ux )T = 0. Since U solves a linear second order
differential equation, U(r) = U’(r) = 0 implies that U = 0, and
hence UY, = U, = 0. Hence, L, is regular. If res_; U, = 0, then
[Ua](—i — t) = 0, and therefore [w](—i —¢) = 0 for all ¢ > 0, i.e. w
is continuous in the lower half-plane. Using Morera’s Theorem and
a contour deformation around the cut S_; it can be shown that w
is holomorphic in the lower half-plane. As w(—i) = 0, U, is also
holomorphic in the lower half-plane. 0O

Finally, we need a representation formula for U, in terms of the
cut function.

Proposition 13 Let res_; U, = 0. Then U,(s) satisfies the represen-
tation formula
- res; U, * res; Ua¢a,+(t)

—_ra — o7 ;- 2
Us(s) p— ; i — dt, se C\S; (32)
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Proof Due to Corollary 12 the assumption res_; U, = 0 implies that
U, is holomorphic in €C\(S; U {i}). Therefore, Cauchy’s formula

o= 5= | Oas1) dsu
’ 20 JyR iR iafiaf  S1 TS

with the contour shown in Fig. 2b) holds true. The integral over 74
converges to the first term on the right hand side of (32). Recall from
the proof of Theorem 11 that U,(s) = O(|s|~") as |s| — oo uniformly
for all directions. Hence, the integral over 4 tends to 0 as R — oo
since the integrand is of order O(|s|™2). Finally, the integrals over
7 and v£ yield the integral term in (32). O

7 Asymptotic expansion of the far field

Theorem 14 Let m € {0,1,2,...}, and assume that UL = 0 or
Uy =0, respectively. Then U and U’ satisfy the asymptotic formulas

U(z) = U etz (1+Z Vi Hﬁho(ﬁ)), (33)

m—1 (-1)
U'(2) = Uke (iz’—i— it 0) s ”w(il ))

oA+l ‘z|m+1
=0

respectively, for z — oo such that |arg z| < ¢ < 5. Here 0-1&(();1)(0) =
0.

Proof Note that the integral term in (31a) is the Laplace transform
of 1g +. Due to (29) we may choose a = 0. Using the asymptotic
formula

,_.

m—

fz +0(l2 7, (34)
=0

z — o0, |argz| < ¢ < /2, which holds for bounded functions f €
C™([0,00)) (ct. [3, p-47]), (31a) and Lemma 9 we immediately obtain
(33). The asymptotic formula for U’ follows analogously from (31b)
and the identity 9 ((£i — t)9po,(1)) |,_, = i (0) — 12 (0).
g

As a special case of the previous theorem we reproduce the asymp-
totic formula for the Hankel functions for large arguments (cf. [18]).
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Corollary 15 The Hankel functions H of the first kind of order j
satisfy

m k.2 12

/2 i(z— iz = 2: 3 (=3 —m—

H](l)(z): Ee( ]7 4)( {H%}—I-O('d 1))
k=0 \i=1

for z — oo such that |argz| < ¢ < T (m >0).
Proof With P(t) = e~%(3 — j2), U, = fexp ( z% - 14) we get

H](.l) (p) = p /?U(p). Using the identity (=) 21) = =57 ineth(2i) !
and (27) we obtain

#-1
¢0,+(0): EDYEE
(k+1) () — k+1 1 1 (k)
o= (A s (5-2)) o

ity (7 (-3) ) o

Now the assertion follows from (33). O

8 Spectral properties of the Dirichlet-to-Neumann map

Let #; denote the solution to (13) with UE = 1 and Uy = 0. For

the Helmholtz equation in IR? we have H ](-1) (p) = ,/l exp(—ill —
iZ)H2;j(p). A complete orthonormal system in L?*(I}) is given by
pi(az) == a 5 @;(£). We expect the solution to (1) satisfying the

pole condition and the boundary condition Try, u = f (f € H/*(I,))
to be
N o —d=1Hi(p) .
wlp2) = 3 (6507 22 40 (39
; Hj(a)

J=1

for p > a and Z € S4°!. Since the Dirichlet-to-Neumann map L
satisfies (Lf)(z) = %u(pzfrﬂp:a, this leads to the definition

ZDtN ) {f:05) 0i(2) (36)
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with the eigenvalues

(1) e @) a1
DtN(};,a) = e @ 2 (37)

The Sobolev norm on I, of index s € R is defined by || f|| s (r,) =

I
145 f | z2(r,y where Ay := /I — Ar, (cf, e.g., [17, Chapter 4]). We
show that an equivalent norm is obtained if A is replaced by A, :

Vel — Ay with ¢ :=14 1(d —1)(3 — d) + |g]| -

Lemma 16 For all s € IR there exist a constant v > 0 such that for
all f € C°(T,)

1
;YIIASJ”IIL2 < [[4gf e < ANAGS || ze- (38)
Proof The operator c,I — A, is strictly positive since

(e = A, Fpa = IIVFIZ: + {1 =g+ llallo) £, F)z2 2 aniz:",g)

Here V f is the surface gradient of f. Hence, A, is well defined. Since
Ak — Agk is a differential operator of order 2(k — 1) for k£ € IN,

it follows that ||(AZ% — AZ5)f|l.2 < c||f|l;2-1). Ehrling’s lemma
0 q H

(cf. [10, Sec. 6.4]) and the compactness of the embedding of H?*(I7,)
in H?®=U(T,) imply that || f|lg2e- < el fllg2 + C(e)l|f]2 for
all € > 0. Together with (39) and the triangle inequality this yields
A3 f1I < (14+C(€))|| A" f|| + €] AZF f||. Choosing e = 5, we obtain the
first inequality in (38). With this result, it follows analogously that
||A%kf|| < (14 C(e))|| A2 || + 6’)/||A%’“f||. Setting € = % yields the
second inequality in (38), possibly with a larger . Hence, we have
proved (38) for s = 2k. Then (38) for s € (0,2k) follows from the
Heinz inequality (cf. [5, Satz 3]). Finally, the assertion for s < 0 can
be shown by duality. O

As a consequence, an equivalent norm is given by || f ||§{S (ra) ™
o0

(g = A)° (S, go?>|2 for all s € IR. Hence, the properties 1-3 in
Proposition 3 are equivalent to

IDEN (A, a)] = o(\/m) . jo oo, (40a)

DtN(Aj,a) +I; <0 for some sequence |I;| = o(\/|/\j|) , (40b)
Im DtN(Aj,a) > 0 for all j. (40c¢)
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Lemma 17 Let U satisfy the assumptions of Sections 5-7, and let
Uy, =0. Then

ImU'(p)U(p) = |Ug;\2 for all p > a. (41)

Proof Taking the imaginary part of

p _
0= / (U"+ 1 +p)U)Udp

p
~ V(TG -~ V@U@ + [ -V + (14 5) [UP) d
a
yields ImU'(p)U(p) = ImU'(a)U(a) = const. The constant can be
evaluated using Theorem 14 by taking the limit p — co. O
Eq. (41) with p = a implies (40c) after dividing by |U(a)|?. The
next corollary shows that no division by 0 can occur in (35) and (37).

Corollary 18 Under the assumptions of Lemma 17, U(p) = 0 for
some p > a 1mplies U = 0. Furthermore, there exists at most one so-

lution to (1) satisfying the pole condition and the boundary condition
Tru = f for f € HY*(I,).

Proof If U(p) =, then UL = 0 due to (41). Since Uy, = 0 by as-
sumption, (31a) implies U = 0. It suffices to prove uniqueness for
f = 0. Under the given assumptions all Fourier modes of u satisfy
res_; U'j,a = 0 and Uj4(a) = 0. This implies U;, = 0, and hence
u=20. 0

Next, we will prove (40a) and (40b). Let v; = /—X;, and let
Py a,+ denote the solution to (25a) with P(t) = p,(t) — ujzte_“t. Since
Aj = —oo0 as j — oo, it follows that v; — oo. For looking at this
limit process, we may assume w.r.o.g. that p = g, (0) = 0 by setting
vj = y/—p2 — Aj. Multiplying (25a) by t(t —2i), applying the Laplace
transform and using the identity E(f(f ft—t1)g(t1)dtr) = (Lf)-(Lg)
yields the ordinary differential equation

(82 + 20, + p(2) — ijz_Q) v(z;v;) =0 (42)

for v(z;v) == 14 (L1py,0,+)(z). Here and in the following we use the
variables z = p + 10 with p,o € IR. Since

H;(p) = ev(p; ;) (43)

due to (31a), eq. (42) can alternatively be derived immediately from
(13).

In this section f’ denotes the usual derivative of a holomorphic
function f whereas f denotes the partial derivative of f with respect
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to 0. By the chain rule, f = if’, so — 4+ 20 + (p — 22 2)v = 0
where the argument (z) of p and the arguments (z,v) of v have been

omitted. Hence, the logarithmic derivative x(z;v) = ZE;’Z% satisfies
the Riccati differential equation
X(zv) + X (zv) = 2x(z%v) = pl2) — v (44)

It follows from Plancherel’s Theorem and (30) that

x
. 1
/ lv(p+io;v) —11*do = —|[$hyp +||32 < 00 and
00 27

o0
) ) 1.
[ tito+ioi) P do = 5t s < oo

—0o0

Therefore, the Lebesgue measure of the sets Ac(p,v) := {o : |v(p +
ic) — 1| > eor |0(p + i0)| > €} < oo is finite for all € > 0. Hence,
for all p > a and all v > 0 there exists a sequence o; such that
o1 ¢ Ayyi(p,v) and oy > . This implies

lim x(p + ioy;v) = 0. (45)
=00

We now construct an approximation to x(p + io;v) for o > 0 by
formal computations and then prove its validity. We rewrite (44) as
X =—(x=1+7)(x —1—m) with mi(z;0) 1= /1+p(z) —v22
Here and in the following we choose the negative real axis as branch
cut of the square root function. Neglecting the term x yields the
two possible approximations 1 4+ y; and 1 — «y;. Only the latter of
these approximations has the right behavior as ¢ — oo. The "error
function” A; := x — 1 + v, satisfies the differential equation

Al =41 — (A1 — 271) Ay (46)

Since this equation has the same structure as (44), we can apply the
same procedure as above to (46) and hopefully get a better approxi-
mation to y. This process may be repeated recursively as follows: Set
7o := 1 and assume we have constructed a function v; (j =1,2,...)
such that

x=1-7+4,, (47)
where A; satisfies the differential equation

Aj = —(A; — 29) A+ — Fj-1. (48)
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This equation can be rewritten as A; = —(A; —v; —vj4+1)(4; —v; +

7]'-1—1) with
Vi1 =47+ — Y1 (49)

The function Aj;yq := A; — 7 + vj4+1 satisfies (47) and (48) with j
replaced by j + 1.

It turns turns out that the approximation of order 7 = 2 is the low-
est which is sufficient for our purposes. In the appendix we establish
the following bounds on Ay = x — 1 + 7s:

Lemma 19 Given 0 < a < A < oo there exist constants I, N > 0
such that for all p € [a,A] and allv > N

2, 0<o<TI/v
|As(p +io;v)| < K T'(ov) L, I'lv<o<uy, (50)
rjo~2, v<o.

It follows from (43) that Zj Ei; =i+ Z;((ﬁ.;,,uj))

computation shows that y2(p,v) = iv/p+O(1) as v — oo. Using (47)
and (50) we obtain

H;(p)
H;(p)

This implies (40a) and (40b). Thus, we have proved existence and
uniqueness of the variational problem (11) with L defined in (36).

=1i(1—x(p;v;)). A simple

= i(r(pv)) — A2p3vj)) = —% +0(1). (51)

Corollary 20 1. Given a < R} < Ry < oo, there exists constants
C,N > 0 such that

l v
| <on@ (2) (4 52)
p) \p

forallv; >N, R <p< Ry andl=0,1,2.
2. u defined in (35) is a solution to (1) with corresponding Dirichlet-
to-Neumann map (36), and the series in (35) and all its term-by-
term derivatives of order < 2 converge uniformly on compact subsets
of {z : |z| > a}.

Proof Tt follows from (51) that

= ([ i an) o= (3 +(2))
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This implies (52) for [ = 0. Together with (51) with obtain (52) for
[ = 1. The case [ = 2 follows from differential equation (13).
Now the second part follows from the estimates

1+d/2
lillcr < Cllgjllmvars < CTN AT 4]l 2 = CTV/eg = A
(53)

(I =0,1,...) on the eigenfunctions ¢;. Here we have used Sobolev’s
Embedding Theorem on S%~! (cf. [17, Sec. 4.3]) and Lemma 16. O

Corollary 21 For any a > ap we have
2 .
|H;(a)| = exp (Vj In e—l;j + O(In Vj)) , j — oo. (54)
Proof It follows from the definition of x and o; before (45) that
o0
1 = lim |v(a + ioy;v;)| = exp <Re/ x(a +io;v;)) da) lv(a; v))],
l—o0 0
ie. [H;(a)] = exp(—Re [;° x(a+io;v;) do). By virtue of Lemma, 19,
Re [;° Az(a+io;v)do = O(v~'Inv) as v — oo. It can be seen from
eq. (79) that there exists a constant C' > 0 such that 1 — Re~ys(a +
io;v) <0and 1 —Reys = (1 —Rey/1— (v/2)?)(1 + O(v™!)) uni-

formly for 0 > C'/v as v — oco. Moreover, fOC/” Re|ye(a+io;v)|do =
O(1). Hence,

o
/ Rex(a +io;v)do
0

:/CO/OV (1—}@%) do (1+0(%)) +0(1).

Finally,

o0 2 a+ico 2
/ (1-Rey/1— —0 2)olazRe/ (1—,/1—”—2)3
clv (a+io) atiC/v Z27 i

2 2

—Reliz| 1441 -Z | +ovm(Z-iy/1-L

22 V4 z2

2
:u—z/ln—y+(9(1), v — 00.
a

Z=a+1i00

z=a+iC/v

This completes the proof. O

For the special case of Hankel functions, eq. (54) agrees with a well-
known formula, which can be derived from the series representation
of the Hankel functions (cf. [1,18]).
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9 Equivalence to Sommerfeld’s radiation condition

A crucial tool in the proofs of this section are the following uniform
estimates of the cut functions.

Lemma 22 There ezists a constants C, N > 0 such that the estimates

2v
o ()] < CvPe o ow) ('J+ M ‘2”) . (559)

v3e—tla—ap) (|f+m|)2“
Vit —2i] V2

hold true for all all t > 0 and all v > N. If p = 0 then (55) is valid
with ap =0, C =% and N = /2.

91,0+ () < C (55b)

Proof Due to (29) it suffices to prove (55) for a = 0. Set po(t) :=
e po(t) and recall that we have assumed w.r.o.g. that pj(0) = 0.
Multiplying (25a) by t(t — 2i), differentiating twice and dividing by
t(t — 2i) yields the integro-differential equation

2

ve—2 t—1
v — 41,
Wooe ) = r—grbons(8) — 4=t 1)
t =n 51!
Po(t —t) Po(t)
/0 1t = 20) Yu,0,+(t1) dtr — Wt —20)" (56)
Here P(t) = —v% + po(t) in (25a). We will derive bounds on the
function

v = (10) = (o2 o)

where (,(t) := Y2=2 The function ¢, is chosen such that both
t(t— 2)

components of y have approximately the same size, i.e. such that ¢,
approximates the logarithmic derivative 1, , , /%v,0,+. Using (56) and

Re(¢u,0,+"/’ll/,0,+) = Re(¢u,0,+¢,',,o,+) we get

1d o,
5 7| v(AI” = Re (V17 + v573) (57)

) ¢ i ol
_Re((lﬂcm)”’”“%“ H—2) 6P

THORA 5 (t — ¢ ’
_Re< (1) ,o,++/ Bty an )
0

t(t —24) |G t(t — 20) ¢ I
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Using the identity |1 + 22| = 2Re z with z = ¢, /|(,| and the inequal-
ities 2|ab| < |a]? + |b|? and Re(, > 0 we obtain

% -
‘1 |gy|2 buo,4900,+| < Re(G) (fol* +lwal) -
14
Moreover, note that Re (t 2z) — tég—i) > 0. If p = 0, this implies

2Ult\y( )12 < Re(¢,())|y(t)|? and hence, by Gronwall’s lemma,

t
y(O)? < exp (2 | re c,,(tl)dtl) ().

Here |y(0)| = [t,,0,+(0)] = 212 due to (27a). Using the indefinite

integral [ (¢(t — 2i))~ Y2 qt = 2In(v/t + v/ — 2i) and the estimate
V2 —2 < v for v > /2, we obtain the assertion for the case p = 0.

Next we are going to derive a bound on |y(t)| for ¢ < 1 and general
p. The inequality —z? + 2zy — y? < 0 for z,y € IR yields

\V”()I |t — 2] |55(t)?
S 12024 #2) 2

2+ t?
w2t —

||¢I/0—|—|2 |¢u0—|—|

Moreover, [; pott 221)%/0 +(t1)[dt1 < Cmaxgey, <y [y1(t1)] for 0 <

t < 1. Hence, (57) 1mphes

Sl OF < RGO + 2+ max )P (59)

with a constant C independent of v. Let ¢(¢) be the solution to the
initial value problem

1
370 = (S4ree0)) o0+ 50 w0 =OP, 69
We claim that |y(t)|? < ¢(t) for 0 < t < 1. Assume on the con-
trary that the set M := {0 <t < 1: |[y(t)]*> > ¢(t)} is not empty,
and let t, := inf M. Then t, > 0 since 4|y(0)]> < ¢'(0). More-
over, it follows from the definition of ¢, that ¢'(t,) < Z|y(t,)[%. On
the other hand MaX)< <ty |y( )| S NAXQ<t<t, (p(t) = (p(t*) Hence,
dt|y( O < <p( «) due to (58) and (59). This is a contradiction.
Hence, |y(t)|? < ¢(t) for 0 < ¢ < 1. From the explicit solution

o(t) = exp (/0t2 (% +Re cu(tQ)) dt2> 1y(0) 2
-I-i—g/otexp (/;2 (% —I—ReC,/(tg)) dt2> dty
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it follows that ¢(t) < Cv*exp (2tap + fJZRe Cu(ta) dt2>. This im-
plies (55) for 0 < ¢ < 1.

Now we will prove (55) for ¢ > 1. We may assume |y(t)| # 0.
Otherwise (55) is trivially satisfied at ¢, and we have to apply the fol-

lowing argument separately on all intervals where |y| does not vanish.
Dividing (57) by |y(t)| and using (16a) with k = 2 we obtain

f_ 1 dy e _n C
| - 2|y(t)|dt|y(t)| SR (Cl/(t))|y(t)| + t‘(t—Q’I:)Cy(th

with n(t) := e%!(1 + fot e %" |y(t1)| dt;). Inserting the identities

ly(?) (t)

ly(®)] = e {e='n(t)} =n'(t) — apn(t), (60a)
ly@®)|" = n"(t) — apn (t). (60b)
and using the estimate t\(tTC;Cu(t)\ < ap Re (,(t), which holds for all

t > 1 and v sufficiently large, we obtain 1" < (a, +Re(,)n’. This
implies ' (t) < 7'(1) exp(ap(t—l)—l-flt Re (. (t1) dt1) due to Gronwall’s
lemma. Now it follows from (60a) and (55) for ¢ = 1 that |y(¢)| <

a7\ 2V
Ce%t (%) fort>1. O

Corollary 23 Fork € {0,1,...} and m € {0,1} there exist constants
C,o > 0 such that for all a > ap and all v; > N

[ER7 P c a
bhad] < . i
Hi(@)]  ~ (a—aFrm P ( ("““a—a)) (61)

Proof We use the estimate

WVE+VE=2i] _ [yvE >,
V2 &2 0<t<1

. Using Stirling’s formula I'(z + 1) = exp(zIn g +

1+v5
V2
O(lnz)) as © — oo, we obtain

> —t(a—ap) |\/i + Vit — 21" v k
e NG tvdt
0

00 1
721// e—(a—ap)ttu—l—k dt + 721// e—(a—ap)t dt
0 0

with v =

IA

<y ((a —ap) I+ k1) + 1)
¢ 2 v+k
Smexp (Vlny —vin(a —ap) +vin —I—O(lny)).
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Together with (55a) and (54) this implies (61) for m = 0. The case
m = 1 follows analogously from (55b) using +/t|t — 2i| > ¢. O

Theorem 24 Assume that u satisfies (1) in {z € R? : |z]| > ay},
that Tru € HY?(I,, and that res_ ZUJ,% 0 for all j. Let a be
sufficiently large such that o + In a_’ap < 0. Then the following is
true:

1. The functions

- Uj(a)
uOO(m) = Z HJ(G,) (pJ( ) (623‘)
J
- Uj(a) .
Uo(t,2) := E]: 7,(0) P a,+(8) @5 (2) (62b)
are well defined for all t > 0 and & € S%~1. Moreover,
||Uoo||cl (Sd-1) < 00, (63&)
/ #2 y,-) dt < % (63b)
0 at Cl(sd—l)

form € {0,1} and k,l € {0,1, ...}, and the series (62a) and (62b)
converges with respect to all of these norms.

2. The formulas (7) and (9) hold true. Equation (7) may be differ-
entiated any number of times both with respect to p and &, and
integration and differentiation may be interchanged.

Proof Due to (31a) the assumption res ; U; ,, = 0 implies that
Uj(ay)
H,; 64

for all p > ay. It follows from Corollary 20 and the boundedness of
the Fourier coefficients Uj(a,) that

@) = 100l 5225

Choose J such that v; > N for j > J, N given in Lemma 22. Using
Corollary 23 and the bound (53) we obtain

|| kwu ,0, —|—|| 1
Z Uj(a)| lejllcrsa-1y W (66)

i>Jd

Uj(p) =

<C (“—")”j. (65)

a

<CZ (@—a )k+1 — exp (uj(a—i—lna_ap—l—ln;)).
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Since N(A) == #{v; : u]? < A} has the asymptotic behavior N(A) ~
CAX4=1/2 (cf. [17, Sec. 8.3)), it follows from our assmuption on a
that the sum on the right hand side of (66) is finite. For j < J we use
Lemma 10. This proves (63b). (63a) follows analogously from (53),
(54) and (65).

To prove (7) for fixed £ € S4!, we set 1,4+ = Yu;,a,+ and

Us, = 3ei(#) in (31a). Then U(p) = Uj(p)p;(d) due to (64).
Now the assertion follows by summing up over j and using (63). The
differentiability properties of (7) are shown analogously using (31b)
instead of (31a) and replacing ¢;(Z) by a derivative of ¢; at Z. (9)
follows in the same manner from (25a) multiplied by UL. O

Note that u., may be interpreted as a delta peak of the cut func-
tion ¥, at ¢ = 0. In other words, the formulas (7) and (9) remain
valid if we formally replace ¥, (¢, Z) by ¥, (¢, Z) 4 0o (t)uco (%) and then
set ug = 0.

Theorem 25 A bounded solution u to the differential equation (1)
satisfies the Sommerfeld radiation condition (5) if and only if it sat-
isfies the pole condition.

Proof Let us first assume that u satisfies the Sommerfeld radiation
condition (5), and let U be defined by (2). Then

0 . .o d—1 N
a—pU(p,:v) - (z + W) U(p,z) =o(1), p— 00 (67)

uniformly for # € S% L. Therefore, the Fourier coefficients U;(p) :=
(Ulp,-), p5) satisty

vito) - (i+ 4 ) Uit =o),  pr o

A

Due to Theorem 14 this is equivalent to res_; U; , = 0. Hence, U;(p) =
Uj(a)H;(p)/H;(a). Here a is chosen such that the assumption of The-
orem 24 is satisfied. A comparison of Fourier coefficients shows that

Ua(s,) = X, 72]]((2)) ¢j(2)Hjq(s) for Res > 0 and & € S41. We
claim that for £ € S9! a holomorphic extension of U'a(.’ #) to C\S;

is given by the function

5y —g i (“C"’(i) + /Ooo Falt,2) dt) . (68)

17— 8 1 —1t—8

Due to the estimates (63) this function is well-defined and holomor-
phic in C\S;. To show that it coincides with U,(s,%) for Res > 0,
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A~

we use Proposition 13 and the identity res; H;, = e~* which fol-
lows from (28) and the definition of ;. The boundedness of s —
Jsa-1 |%ﬁa(s, #)|? d follows from (63b) using Cauchy’s inequality.

Now assume that u satisfies the pole condition, and let 0a(-,:f:)
be defined by (3). Using a standard corollary to Lebesgue’s Dom-
inated Convergence Theorem and the boundedness assumption in
the pole condition, it follows that the Fourier coefficients Uj,a(s) =
(Ua(s,-), ;) satisfy res_; U; , = 0. Differentiating (7) once and using
a partial integration we get

9 U(p. 5) — iU(p, ) = — / 0=y (1 ) dt
op 0

B / T eto-0 0 g 4 )Y dt

 p—aly ot " )
By virtue of (63b), the integral term on the right hand side of this
equation is uniformly bounded for & € S%!. Since U is also uniformly
bounded, this implies (67), which is equivalent to (5). O

We mention that (6) holds true with us, and ¥, defined by (62).
This follows from the Sokhotski-Plemelj formula (cf. [4]) and the fact
that the function (68) coincides with Uy (-, 2).

We have constructed a solution (u,¥,) to the system (9), (10)
if f(2) = U(a,%) and if the assumptions of Theorem 24 are satis-
fied. Uniqueness of this solution follows from the uniqueness of the
corresponding system for each Fourier mode.

Remark 26 We have proved (9) for separable coordinates. In some
interesting applications non-separable coordinate systems occur, e.g.
optical components involving optical fibers or evanescent field mi-
croscopy, where the interaction between an optical fiber and a rough
surface is investigated. Modeling optical components has actually
been one of the motivations for our work. In many cases one can
formally derive an equation similar to (9) where p(t) + te™* A, is re-
placed by a differential operator depending on ¢ and Z in a more gen-
eral way. The numerical algorithms are almost the same in this more
general situation, and we are already using non-separable coordinate
systems in our codes. A theoretical justification of these formulas and
algorithms remains an interesting open problem for future research.

Appendix

Proof of Lemma 5.
Part a) Since the operator J is defined by an integral over a holo-
morphic function (cf. (21)), we may deform the integration path in
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order to facilitate the proof. Hence, we choose the path 7,(t) := s+1,
t > 0 if it does not intersect with D, U D_. Otherwise we set

vs(t) == s+t + i)s(t), t>0 (69)

with a real-valued function 9, as shown in Fig. 3(a). 1 is chosen such
that s does not intersect Dy UD_ U S; US_;, ¥5(0) =0, |[¢] < %,
[¥L| <1, meas(supp ¥s) < 1, and lim;_, 9 (t) = 0. We have

[ b sy O L wln®)
(u)e) = [ P+ i) LT e (o

Due to (16b) there exists a constant ¢ > 0 such that for all ¢ > 0

sup |P(t+it)|dt < cte”(@=@)t/2, (71)
|7|<min(t,1/2)

To see this, choose T' such that —at + ap/12 +1/4 < —(a — ap)t/2

for t > T. Then (71) holds for ¢ > T'. By a compactness argument it

is also true t < T'. Here and in the following, c is a generic constant.
|s|?+1

Moreover, supseqe\(p, up_) 15751 < 00 Hence,

00
Jw)(s)| <e / te*(a*ap)t/Q dt) su |’LU(51)|
|( )( )| ( 0 Reslszes|31‘2+1

IR A e |
" (- w)f2? (ResepRes fsr 2+ 1) |

This implies (23a).
Part b) Differentiating (21) yields

(Jw)(s) = / T Py — s);%(il)l ds, (72)

since P(0) = 0. Now we use (16a) and estimate the integral term as
above to establish (23b).

Part ¢) W.r.o.g. we may assume that s,o € D, and that [s—i|; >
|oc — i|1. In this proof we say that s and o are on opposite sides of S;
if Res,Reo < 0 and Im(s—14) Im(o —7) < 0 or if s and o are the limit
of a sequence of such points. We first assume that s and ¢ are not
on opposite sides of S;. Let 7,5 be the shortest path from o to s in
D, such that |s; —i|; > |0 — 4| for all s; € 7,5 (cf. Fig. 3(b)). The
length of this path can be estimated by {(,5) < 3J where § := |s—0|.
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S Ys Ims
S D,
2 Ys
< . Vs Res
! D.
@) (b)

Fig. 3. Integration paths in the proof of Lemma 5

Moreover, we choose the path 7, from s to oo such that |s; —i|; >
|s — |1 for all s € ;5 (cf. Fig. 3(b)). We have

P(81 —O’)

2
s S1H1

+ /Ys (P(sy — o) — P(s1 — 9)) :%(%)1 dsy

(Jw)(o) — (Jw)(s) =

w(s1) dsy

To estimate the integral over 7y,,, we use the inequalities |s| < |s]|; <
V2|s| and (16b):

P(s; —s)
(s1+14)(s1—19)| ~

1
s1+1

S — 81

_ ‘P(s ~s1)

Together with the bound on [(v,5) this yields ‘f%s . ‘ < cb||lwl|x-
The integral over v, is estimated by the mean value theorem:

w(sy) dsy

| (Pl ) = oy s P

<5 [ sup |P(sr — 2 [l [ds1]
Vs 2€[0,5] |s? + 1]

To bound the integrand for s; € D, Ny we note that
|31 — Z"l Z ‘81 — 3|1 — |S — i|1 Z |31 — 8‘1 — ‘81 — ’i|1 and
2‘81—2"1 Z2|S—i|1 2 |S—’i|1+|0’—’i‘1 Z|S—O"1 2(5

due to the choice of ;. Adding these inequalities yields 4|s; — i|; >
|s1 — s|1 + 6. Together with the estimates |s; — s[1 > Re(s; — s) and
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|s1+il1 > 1 we obtain |s34+1] > &[s1+i|1|s1—i|1 > § (Re(s1 — s) + 6).

Outside of D the bound ‘Lﬂ)‘ < ¢|jw||x holds true. With (16a) and
1

t* :=sup{t >0:s+t € D,} we obtain

/ < cb)|w]| /t* _dt + /oo e—(a—ap)t/2 34
s Y - X 0 t+6 t*

< cblfullx (mA " %) < 0wl x.

Since ¢ < d(s, o), we have proved (23c) if s and o are not on opposite
sides of S;. Otherwise, we obtain from our previous estimates that

[(Jw)(o) = (Jw)(s)| < [(Jw)(o) — (Jw)(@)] + [(Jw)(é) — Jw(s)|
< el —4|* + [i — s[%)

Using the inequalities

|Im(o — i)| + | Im(i — s)| = |Im(o — s)| < d(a, s),
|Re(s —i)| = |Res| < |Reo| +|Re(s — o)| < d(s,0),
|Re(o —i)| = |Reo| < d(s,0),

we also obtain (23c).
Part d) (23d) follows easily from (23a) and (23c). O

Proof of Lemma 6. It follows from eq. (72) that Jw is holomorphic
in V for w € X and from Lemma 5 that Jw is continuous in V.
Together with the estimate (23d) this shows that J maps X into X.
To prove compactness, let (wy,)neN be a sequence in X with ||wy||x <
1 for all n € IN. We have to show that the sequence v, := Jw,,
n € IN has a convergent subsequence in X. Let us first consider the
restrictions of v, to some compact subset K C V. Due to (23b) and
(23c), the sequence (vy|K)nen is equicontinuous on K with respect
to the metric d. Hence, by the Arzela-Ascoli Theorem, there exists
a subsequence of (v, )nen which converges with respect to the norm
l¢]loo, k& := SUpsex |¢(5)|- In order to construct a subsequence which
converges globally, we introduce the sets K, := {s € V : |s| < j} for
j € IN. It is easy to show that these sets are compact with respect
to the metric d. By the argument above, there exists a subsequence
(vp, (1y)1 which converges with respect to ||+ ||cc, ;- Applying the same
argument again, we get a subsequence (vy,(;)); which converges with
respect to ||+ ||oo,x,- Repeating this process of selecting subsequences,
we arrive at an array Un; (1) with the property that each row is a
subsequence of the previous row. The diagonal subsequence v, :=
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Un,(1) converges to some function v with respect to the supremum

norm on each K. In particular, lim_,q v,,(y(s) = v(s) for all s € V.
It remains to show that |v,; — v[x — 0. Let ¢ > 0. By virtue of
Lemma 5(b) there exists a constant C > 0 such |v,,;)(s)| < C for all

s € V and I € IN. Therefore,

— v, 9
() = vnp(5)] <e for all l € IN and |s| > 4/ — C (73)
€

1+ |s|?

Let J > 4/2C/e, J € IN. Since v,,(;y converges to v with respect to
Il * lloo,x,, there exists L € IN such that

|v(s) — vn@y(s)]

< — Un < 74

sselg)J |52| +1 — H’U(S) v (l)“oo,KJ € ( )

for I > L. Putting (73) and (74) together yields [|v — v,()l|x < € for
I>L. O

Proof of Lemma 9. Introducing (Kwv)( ft Ij(gt Zt; 1) dtq,

eq. (25a) can be written as

P(t)

P4(t) + (K ) (8) = Tt - 2i) t>0. (75)

By repeated partial integration we obtain

i+l

¢ t! > Yt —t) e >, PO(0)
Pt — ;)L dt; = P(l)o/ Vg =y ——2
/0 (t=t)3 dt lz_; Of 7 —5rdn lz_; (I+j+1)

Changing the order of integration and summation in the first equality
is justified because the Taylor series of P converges uniformly. The
right hand side of the last equation is an analytic function in ¢. If

v(t) = Z;"’:O %tj is a polynomial, then
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Expanding (¢ —2i)~! in a power series and using the Cauchy product
twice yields

(Kv)(t) = i ( ¢ )T Z L' Z P™(0)u™)(0) (76)

—24 —~ 23 — (m+1) oyt
1 ) l l 1 1—j 1 J (n) ()
= — t — P n Jj—n .
- z‘zl:l ]Z:o (m) (G +2)! nz_l (0)=7(0)

In particular, it can be seen that Kv is analytic at £ = 0.

We prove by induction that . € C™([0,00)) for n € IN. Let us
start with the case n = 0. Note that the right hand side of (75) can
be continuously extended to a function in C*°([0, 0c0)). We know from
Lemma 5 that ¢4 (t)] = O(t* 1) as t — 0. Moreover, P(t) = O(t),
SO

C ¢ C
K < _ -~ _ a—1 =~ _(Qa+1)tte o

as t — 0. This shows 94 € C([0,00)) and (27a).
Assume now that 1, € C¥([0,00)), k& > 0. Then there exists a

function Ry, such that (t) = Z?:o %tj—l—Rk(t) and Ry (t) = o(tF)
as t = 0. We have

1 t
KRy < ——— [ |P(t—t1)|dt Ry ()| = o tF*!
(KRO] < gy [ 1PE= 1) 1 su [Relin)| = ot!)
since P(t) = O(t) as t — 0. Therefore, KR;, € C**1([0,00)) and
(K Ry,)* 1) (0) = 0. Now it follows from (75), (76) and the analyticity
of t = jruk that ¢ € C¥+1([0,00)) and that y(*+D(0) satisfies
(27b). O

Proof of Lemma 19. We may assume w.r.o0.g. that As(p+io) # 0
for all p € [a,A] and o € R. Otherwise, if Ay(py + i0p) = 0, then
Ag(po+io;v) =0 for all 0 € IR due to the uniqueness of initial value
problems for (48), and then (50) is trivially satisfied for p = py. Our
proof is based on the observation that the function o — |Ag(p+io;v)|
is decreasing at the point o if and only if 9,(|Az(p + io;v)[?) <0,
if and only if Re(Aa/A2)(p + io;v) < 0 (divide by |As(p + io; v)|?).
Due to (48), 0 — |Az(p + io;v)| is decreasing at o if and only if
Ag(p +io;v) € G(p +io;v) where

G(zv) :== {(5 € C: Re[—d + 27a(z;v) + Yo(z) g;yl(Z;V)] < 0}.
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Introducing the variable = for the expression in brackets and solving
a quadratic equation for § shows that G = GT UG~ with

— z Y2—n ]
G* ._{(72—5) (11\/1+m) .Rexgo}.

For the following arguments we introduce the strips Sy := {p + io :

a < p< Ao >A} (A>0)in the complex plane. Note that there
exist constants C, N > 0 such that

1 1 ¢ <
- = { A ()
lzr|  v|/r=222(1 +p) — 1] < o> v,
for all z € Sy and all v > N and that
v? 25p
1 =1—— |14+ =—=].
Y1 12371 ( + 21/2) (78)

Therefore,

2
9 9 .V 1
72—1—’71—1—’71——2—2(14‘0(;)); v — o0, (79)

uniformly for 2z € Sp. Using (79) and v = Z4/1—v=222 + O(v 1),
it can be shown that there exist constants C, N > 0 such that

Cuvo, 0<o<1],
|z| Reya(z) > < Cv, 1<o<uy,

Co, v<o

for all v > N and all z € Sp. As yo =71, /1 + %lg, we have
1

g W\ (AR
Jo—H1=%|4/1+5 -1 +<1+—2> (——2—1).
7 7

mno A

(80)

Since & = O(2
71 (I/

) uniformly for z € Sy due to (77) and (78), we have
g} INEAS ol
{41+ 5 -1 :—( ) +O(—1)=(’) 2| 7?).
( ’Y% ) 2 0%l ,Y4 (| ‘ )

1

Moreover,
Yo 3 () EB 2% (v (v \ (2P o)
7 2%(z71)? v? 22 \ 2 2 2iv? 22
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uniformly for z € Sy, so
92 — 41| = O(|27?) (81)

uniformly for z € Sy. Hence,

B L[S osest
720(7)2 o(v2), 1<o<v,
‘ (v2 — z/2)? |2|?(Re y2)? O(c—2 v<o

uniformly for z € Sy and Rexz < 0 (cf. (80)). Now the Taylor formula
V1i+e=1+¢/2+ O(e?) (e — 0) implies that there exist constants
I'' N > 0 such that

() [yt

('y - %) (1 —1- % (732—_3:’}112)2 +O (‘ (732—_:1:’;;)2
1
<

-2

2))
o3I\ L [Tt Tpw<a<n
|Re72|3 a F/U_27 v<o

for all v > N, z € Sp/, and Rex > 0. Performing an analogous
computation for G (z;v), we obtain that for v > N

_ C:|¢| < I'/(ov)}, I'lv<o<v,
DI S Rt (82a)

Gt (z;v) C {¢:Re( > 1}, I'/v<o. (82b)

Now we are going to show that (82) and (45) imply (50) for z €
Sr/v- Let py € [a, A]. By virtue of (45) and the fact that limy 0 (1 —
Y2(po +io;v)) = 0 for all v, there exists a sequence I'/v = 0p < 01 <

. such that lim;_,o 07 = oo and |Az(po + ioy;v)| < 1/(1 + 1) for
[ > 1. We may also arrange that dy|A2(po + i0y;v)| < 0. Then the
maximum of the function o — |As(po+io;v)| on the interval [0y, 0741]
is attained at the point o} € [0y,0741), and 0| A2(po + io};v)| < 0,
ie. A(po+io);v) € G(po+ioy;v). If A(pg+iog;v) € Gt (po+ioo;v)
then, due to (82b) and the choice of the o;’s, there exists a largest
& € (0F,0141) such that [As(pg + iG;v)| = %, and As(py + iG;v) €
G(po + i04;v) since O,|A(py + i6;v)| < 0. This contradicts (82).
Hence, A(po +io};v) € G~ (po +io};v), and (50) follows from (82a).

It remains to show (50) for 0 < ¢ < I'/v. In this case, there exists
constants C, N > 0 such

Yo — 71
Reyo

Re —= = —ReA2+2Re72+Re72A_71 > -C
2
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if Ag(z;v) is in the annulus 1 < |Ag(z;v)| < 2 and v > N (cf. (80)
and (81)). Since

exp / Re —A2(p +ioi;v) do

r
Ag(p+ioyv)| = |Ax(p+i—;v :
N O A S

exp(C(I'/v — o)) <2for 0 < o < I'/v and v > max(N,CI'/In2).
O

and since |Aqg(p+iI'/v;v)| < 1, it follows that |Agx(p + io;v)| <
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