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Abstract

Early and reliable identification of chemical toxicity is of utmost importance. At the same time, reduction of

animal testing is paramount. Therefore, methods that improve the interpretability and usability of in vitro assays are

essential. xCELLigence’s real-time cell analyzer (RTCA) provides a novel, fast and cost effective in vitro method

to probe compound toxicity. We developed a simple mathematical framework for the qualitative and quantitative

assessment of toxicity for RTCA measurements. Compound toxicity, in terms of its 50% inhibitory concentration

IC50 on cell growth, and parameters related to cell turnover were estimated on cultured IEC-6 cells exposed to 10

chemicals at varying concentrations. Our method estimated IC50 values of 113.05, 7.16, 28.69 and 725.15 µM for

the apparently toxic compounds 2-acetylamino-fluorene, aflatoxin B1, benzo-[a]-pyrene and chloramphenicol in the

tested cell line, in agreement with literature knowledge. IC50 values of all apparent in vivo non-toxic compounds were

estimated to be non-toxic by our method. Corresponding estimates from RTCA’s in-built model gave false positive

(toxicity) predictions in 5/10 cases. Taken together, our proposed method reduces false positive predictions and

reliably identifies chemical toxicity based on impedance measurements. The source code for the developed method

including instructions is available at https://git.zib.de/bzfgupta/toxfit/tree/master.

Keywords: Real-time cell analyzer, Toxicity, Mathematical modeling, IC50

1. Introduction

Identifying adverse effects of chemicals with respect to their distinguishing temporal and dose-dependent mode

of action denotes a formidable challenge in toxicological research. Often, however, identifying toxic effects is rather

difficult since indirect and long-term effects on both humans and the environment are not easy to assess, require an
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immense investment of resources, and moreover, systematic testing itself may be unethical. Consequently, information

about the hazards posed by a vast array of chemical substances is lacking (Schoeters, 2010).

A typical test routine for the prediction of toxicity relies on a sequence of stringent in vitro assays and in vivo

experiments. Established mammalian cell-based in vitro assays for toxicity testing produce a high number of false

positive results (Kirkland et al., 2007). Note, that any positive in vitro toxicity result leads to successive animal (in

vivo) testing for validation. In order to avoid unnecessary animal testing, it is highly desirable to improve the predictive

power of in vitro toxicity tests. Therefore, it is of utmost importance to integrate novel, resource-efficient approaches

into testing strategies, which allow benchmarking the safety levels of substances and guide further experimentations.

The impedance-based xCELLigence real-time cell analyzer (RTCA) is an in vitro assay that provides a

high-resolution temporal information about the physiological status of the cultivable attached cells such as cell

number, morphology and adhesion. Upon treatment of cells with a toxic chemical, the impedance measurements

(figure S1) change due to perturbation in the underlying cellular processes. Compounds with distinguishing RTCA

profiles are therefore indicative of a characteristic mode of action (MoA) and the magnitude of drug effect on the

cells (Abassi et al., 2009). The in-built RTCA software (Manual, 2009) uses a sigmoidal dose-response model which

is fitted to impedance measurements at a particular time instance. However, a problem with this model is that it may

produce small IC50/EC50 values (indicating potent effects) even when the absolute magnitude of the change in

impedance is small and possibly within the error of measurement, producing false positive predictions (figure 1).

Thus, to delineate the precise relation of cellular response in context of different conditions (such as chemical

concentration and time of administration) more reliability, application of mechanistic mathematical modeling is

crucial.

Previous studies used clustering-based approaches for screening a library of chemical compounds on the basis of

the RTCA profile (Abassi et al., 2009; Xi et al., 2014). Clustering-based methods provide a quick and reliable way

of screening chemicals, but limitations are posed by the requirement of large training datasets and the test conditions

(e.g. chemical concentrations used). Moreover, these methods may preclude a mechanistic insight into the chemicals’

mode of action, as well as a quantitative characterization in terms of a dose-response profile. For a detailed insight

into the chemicals’ effect on the physiological dynamics of the cells, mechanistic modeling is required (Liang et al.,

2014). Along these lines, Pan et al. (2013a,b) presented a two-exponent model for describing the cellular response

towards toxic chemicals. More recently, Witzel et al. (2015) proposed a model for the growth curves of various colon

cancer cells that allows predicting cell cycle time and IC50. However, to the best of our knowledge, the aspect of

mechanistic mathematical modeling has not yet been entirely explored with respect to predictive toxicology.

In this study, using the in vitro RTCA-based cell index data, we develop a methodology for quantifying the

cytotoxicity of chemicals with known genotoxicity in vivo. As shown in figure 2, the RTCA-based cell index curves

can be used to interpret the specific behavior of the cells (Kho et al., 2015). The initial period of the cell index curve

illustrates the phase of cell adhesion and spreading (figure 2, left part). It is followed by a plateau phase prior to

a gradual period of proliferation (Kho et al., 2015). Treatment with a chemical exposes the cells to an immediate
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Figure 1: Example fit. Figure illustrates the fit of a simulated experimental data set to the in-built sigmoidal dose-response model. We simulated

data without and with effect plus white noise for the non-toxic and toxic compound labelled in red and blue, respectively. A low estimate of

IC50/EC50 for the non-toxic compound (left panel) shows that the model produces a false positive result, although the absolute magnitude of

change in cell index is small.

and transient phase of genotoxic effects (figure 2, middle part), which denote damage to the DNA arising from the

specific MoA of the chemical (Scott et al., 1991). During this transient delay, cell cycle checkpoints are elicited in

response to chemical treatment that allows cells to repair damage before progressing to the next phase of the cycle

(Shackelford et al., 1999). Subsequently, the DNA damage accumulated during the genotoxic phase manifests in

the form of cytotoxicity (figure 2, right part) representing an overall decline in cell survival and proliferation rate

(Scott et al., 1991). Along these lines, we propose that the profiles from the cytotoxic phase can be used as a basis for

the identification of test concentrations that are relevant for predicting chemical’s genotoxicity in vitro and possibly

in vivo.

In the presented work, we develop and validate an analytical framework to investigate the in vitro RTCA data

on cultured IEC-6 cells for predicting cytotoxicity. We first propose a qualitative analysis based on the area under

the curve to assess the relevance of the data for characterizing the toxicity of test chemicals. Thereafter, based on the

insights obtained from this pre-analysis, a kinetic model is introduced for predicting the temporal- and dose-dependent

effects of chemicals in terms of its 50% inhibitory concentration IC50 and parameters related to cell turnover, taking

the actual cell impedance dynamics into account. The IC50 values obtained using our approach are compared to

the values obtained using a sigmoidal dose-response model described in the RTCA software (Manual, 2009). By

presenting a foundation work for modeling and analyzing the RTCA datasets for predicting cytotoxicity, we believe

that the study will contribute to the goal of improving in vitro strategies for genotoxicity testing (Waters and Fostel,

2004).
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Figure 2: Relationship between impedance measurement, genotoxic effects and their manifestation in terms of cytotoxicity. Figure illustrates

the change in cellular response upon exposure to a toxic chemical (red line) in comparison to normal condition (blue line). Upon addition of an

apparently toxic chemical, the cells are exposed to the specific genotoxic effects attributed to the chemical’s specific mode of action (MoA). Over a

period of time, genotoxicity manifests in the form of cytotoxicity causing an overall decline in cell survival and proliferation rate. The cytotoxicity

profile thus provides a basis for identifying test concentrations that are relevant for predicting MoA-based genotoxicity.

2. Methods

2.1. Chemicals

We evaluated 10 chemicals using a panel of test concentrations, summarized in table 1. In general, we used

chemicals that are recommended for evaluating the sensitivity and specificity of novel mammalian cell genotoxicity

assays (Kirkland et al., 2008). Importantly, these chemicals have been characterized for in vivo genotoxicity in

rodents, and provide the possibility of correlating in vitro findings with existing in vivo data. Chemicals possessing

tissue-specific genotoxicity in vivo included 2-acetylamino-fluorene, aflatoxin B1, benzo-[a]-pyrene,

chloramphenicol and N-ethyl-N-nitrosourea. On the other hand, erythromycin, urea, D-mannitol, resorcinol and

sulfisoxazole comprised chemicals that have not been found to exhibit genotoxicity. Non-genotoxic controls like

urea, erythromycin and sulfisoxazole have been reported to produce false-positive results in in vitro genotoxicity
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testing, despite clearly negative results in vivo (Kirkland et al., 2008). We chose to include these substances in order

to account for the problem of false-positive testing.

The stock solution of the chemicals was prepared using their respective solvents (table 1). For preparing varying

concentrations of the test chemicals, a dilution of the stock solution was carried out in a medium with 1% fetal

calf serum (FCS; Biochrom AG) and dexamethasone. The solvent concentration, depending on the solubility of the

chemical, was kept as low as possible to minimize the risk of solvent effects on impedance measurements.

Table 1: Summary of chemicals. List of test chemicals, their solvents and administered concentrations.

Chemical Solvent Test concentrations (µM)

2-Acetylamino-fluorenea Ethanol 1, 10, 20, 30, 40, 50, 60, 70

Aflatoxin B1a Dimethyl sulfoxide 0.01, 0.1, 0.5, 1, 2.5, 5, 10, 15

Benzo-[a]-pyreneb Dimethyl sulfoxide 0.01, 0.1, 2.5, 10

Chloramphenicolb Ethanol 1, 10, 20, 40, 60, 70, 80, 90

D-mannitolb Water 0.01, 0.1, 1, 5, 10, 25, 50, 100

Erythromycinb Ethanol 0.01, 0.1, 1, 5, 10, 25, 50, 100

N-ethyl-N-nitrosoureab Water and ethanol (2:1) 0.01, 0.1, 1, 5, 10, 25, 50, 100

Resorcinolb Water 0.01, 0.1, 1, 5, 10, 25, 50, 100

Sulfisoxazoleb Dimethyl sulfoxide 0.01, 0.1, 1, 5, 10, 25, 50, 100

Ureab Water 0.01, 0.1, 1, 5, 10, 25, 50, 100

apurchased from Sigma Aldrich, Germany; bpurchased from Carl Roth GmbH, Germany.

2.2. Cell culture

For the experiments, IEC-6 cell line (ATCC R© CRL1592TM) originating from the small intestinal epithelium of

Rattus norwegicus was used. Cell culture was performed in a medium containing 45% DMEM (4.5 g/l glucose with L-

glutamine; Biochrom AG), 45% RPMI 1640 (Biochrom AG), 10% FCS, 0.1 units/ml bovine insulin (Sigma Aldrich)

and 10 µg/ml gentamicin (Biochrom AG). Cells were incubated at 37 ◦C with 5% CO2 and a relative humidity of

95%. For the xCELLigence assays, we supplemented the medium with 5 µM dexamethasone, which was found to be

required to ensure proper cell growth on glass surfaces.

2.3. Real-time cell impedance measurement

For investigating the cytotoxicity of the test chemicals, a real-time cell analysis was performed using the

xCELLigence System RTCA SP Station (ACEA Biosciences Inc.). A 96-well electronic microtiter plate (ACEA

Biosciences Inc.) was used for seeding the cells in triplicates. Firstly, a calibration was performed with 50 µl

medium and subsequently 50 µl cell suspension with a cell number of 1.5 × 105 cells per milliliter was added to

obtain a cell number of approximately 7500 cells per well. After an incubation period of 24 h, the cells were treated

with 50 µl solution containing the test chemicals listed in table 1. For the negative controls, cells were supplemented
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with the medium after 24 h. In case of the solvent controls, cells were treated with the corresponding solvent not

containing the test chemical.

Using xCELLigence’s impedance-based measurements (expressed in terms of cell index), a surrogate estimate of

viability and proliferation of the adhering cells (see figure 2) was obtained from the time of plating until the end of the

experiment (96 h). Mean cell index values were calculated over the cell index values of the replicates for the control

and chemically treated cultures and normalized as explained in the next paragraph.

2.4. Data normalization

To correct for the potentially different cell seeding, the values of cell index were normalized with respect to the

cell index at the time of addition of the test chemical (24 h).

I(τ, i, j) = I(τ, i, j)/I(24, i, j) (1)

where I(τ, i, j) is the normalized cell index value for the ith chemical under the jth experimental condition

(concentration of test chemical) at the τth time-point. I(τ, i, j) is the corresponding measured cell index value for that

condition and I(24, i, j) is the measured cell index value at the time of chemical addition (24 h).

2.5. Qualitative Analysis

Preceding the modeling step, the cell-index data was analyzed by investigating the area under the cell-index curves

(AUC). AUC estimates allowed a qualitative assessment of the toxicity of chemicals being investigated in the study.

For example, in the presence of a cytotoxic chemical, a lower value of AUC indicated lower cell growth/higher cell

death. AUC values were computed using the trapezoidal method (trapz function in MATLAB c© version 8.4) for the

cell-index curves obtained after exposure to the chemical. Estimates of AUC were acquired for negative control,

solvent control and test chemicals. For a test chemical, AUC values were obtained for each of the test concentrations.

From these values, the minimum value of AUC was selected, corresponding to the maximum observed toxic effect of

the chemical, or in other words, the minimal growth of the cells.

2.6. Model

In the exponential growth phase of the cultured cells, the increase in the number of cells was modeled according

to the following equation:

Î(t, i, j) = Î(t0, i, j)eλ(i, j)t (2)

where Î(t, i, j) and Î(t0, i, j) are the simulated cell indices for the ith chemical at time t ≥ t0 and t0, respectively,

during the experimental condition j. λ(i, j) is the net growth rate. t0 denotes the time-point from which the data was

used for parameter estimation (compare figure 2); we used t0 = 50 h throughout the analysis.
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In the model, λ(i, j) is defined as a lumped parameter which is equal to the cell doubling rate minus the death rate of

the cells. It incorporates the inhibitory effect of the chemical on cell growth in relation to different test concentrations,

modeled via an Emax model (Ette and Williams, 2007):

λ(i, j) = λφ(i)
IC50(i)

IC50(i) + D(i, j)
(3)

where λφ(i) is the growth rate in the absence of the test chemical, IC50(i) is the concentration of the chemical

required to inhibit the cell growth by 50% and D(i, j) denotes the administered concentration of the ith chemical in the

experiment.

2.7. Estimates of λφ and IC50

Chemical-specific parameters, Î(t0, i, j), λφ(i), and IC50(i), were estimated in a maximum likelihood sense by the

optimization routine lsqcurvefit in MATLAB c© version 8.4 using an ordinary least-squares criterion to minimize the

residual error given as follows:

θ∗(i) = {I∗(t0, i, j), λ∗φ(i), IC
∗
50(i)} = argmin

∑

j

∑

t

|Î(t, i, j) − I(t, i, j)|2 (4)

where Î and I denote the estimated and experimental cell index values, respectively, and the superscript ∗ indicates

the optimal parameter estimate. Note that during parameter estimation, we implicitly assumed an additive normal

distributed measurement error ǫ ∼ N(0, σ2) with I = Î + ǫ.

2.8. Bootstrap sampling

We performed bootstrap resampling to assess the reliability of the parameter estimates. For 1000 iterations,

data was resampled with replacement and parameter fitting was performed on each of the bootstrapped samples.

Confidence intervals of the estimated parameters bounded by the 5th and the 95th percentiles were calculated from the

resampling estimates.

2.9. RTCA’s in-built dose-response model

To further validate the estimated IC50 values, we compared our results to the values obtained by fitting a sigmoidal

dose-response model described in the RTCA software (Manual, 2009) provided by xCELLigence:

Y = y0 +
(y1 − y0)

(1 + 10(LogIC50−X))
= y0 +

(y1 − y0) · D
(D + IC50)

(5)

where, as recommended by the software (Manual, 2009), Y is either the normalized cell index at the last time

point of the assay (equivalent to I(t96, i, j) above) or the AUC for the time-period between chemical administration

and end of the assay. y0 and y1 are the baseline and plateau in the sigmoidal curve, respectively. X is the logarithm

of the administered dose D. Depending on the specific action of the administered chemical (inducing or inhibiting),

the above formula can be used to calculate the molar concentration of an inducer that produces 50% of the maximal

possible cell index (EC50) or an inhibitor that reduces the cell index by 50% (IC50) (Neubig et al., 2003).
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3. Results

3.1. Impedance measurements

For all 10 chemicals tested, the cellular-response profile was monitored continuously by the xCELLigence for 96

h from the time of plating of the IEC-6 cells until the end of the experiment. The mean normalized cell index of the

control and chemically treated cultures are depicted in figure S1. A noticeable lowering of cell indices was observed

in case of 2-acetylamino-fluorene, aflatoxin B1 and benzo-[a]-pyrene (figure S1). Additionally, depending on the

dosage, these three chemicals had a wide ranging effect in comparison to the other tested chemicals.

3.2. AUC estimates

For all conditions, AUC values were calculated from the normalized cell index data (table 2). A comparison

between the AUC values of the negative and solvent control showed that the cell index values did not change

considerably indicating negligible solvent effects (table 2, middle column). The percentage change in the AUC

values between the solvent control and the test chemical provided an initial inference about the influence of the test

chemicals on cellular response (table 2, rightmost column). AUC based analysis indicated that

2-acetylamino-fluorene, aflatoxin B1, benzo-[a]-pyrene and chloramphenicol exhibit cytotoxic effects in comparison

to the rest of the chemicals. N-ethyl-N-nitrosourea is a mutagenic compound used for inducing tumors, which

preferentially manifests in the brain (Barth and Kaur, 2009). In the rat intestinal IEC-6 cell line used in our study it

did not show any significant decline in AUC. On the other hand, the non-genotoxic compounds sulfisoxazole and

resorcinol showed a slight decline in AUC. Therefore, for validating toxicity and overcoming a false

positive/negative result, further evaluation of the chemicals was performed using the described in silico model.

Table 2: AUC analysis. Table showing percentage change in the area under the cell index curves for the control and the test chemicals.

Chemical % change (SCa vs. NCa) % change (TCa vs. SCa)

2-Acetylamino-fluorene 2.67 -61.25

Aflatoxin B1 4.44 -20.18

Benzo-[a]-pyrene 2.91 -19.14

Chloramphenicol 2.67 -13.45

D-mannitol -3.33 -5.01

Erythromycin -4.11 -2.96

N-ethyl-N-nitrosourea 5.35 -4.57

Resorcinol 8.34 -9.42

Sulfisoxazole 5.05 -10.54

Urea 1.54 -1.90

aNC, SC and TC denote negative control, solvent control and test chemical, respectively.
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3.3. Parameter estimation

The response of the IEC-6 cell population under different concentrations of chemicals was fitted to the model

described in the methods section to obtain the growth rate λφ and drug specific estimates of IC50. Figure 3 illustrates

the fit of the simulated and experimental data points for aflatoxin B1, benzo-[a]-pyrene, 2-acetylamino-fluorene and

chloramphenicol, respectively. The results showed that aflatoxin B1, benzo-[a]-pyrene, 2-acetylamino-fluorene and

chloramphenicol were cytotoxic, with respective IC50 values of 7 µM, 29 µM, 113 µM and 725 µM (table 3). For

other chemicals, the estimates of IC50 approached very high values (> 900µM) such that their effect on the cell

index kinetics can be considered insignificant at the tested concentration ranges (table 3 and figure S2). Similar to

the AUC analysis, simulations also indicated that N-ethyl-N-nitrosourea was not cytotoxic within the administered

concentration range. The mean growth rate (λφ) of the IEC-6 cells was estimated to be 0.0162 h−1, i.e. a turn-over

time of 2.6 days (table 4).
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Figure 3: Time-profiles of the simulated and the experimental data. The figure depicts the fit of the simulated (in dark blue) and the experimental

data (labeled colored markers in the sub-figures). Simulations were performed for the time-period relevant to the cytotoxic phase, which in our study

was from 50 h until the end of the experiment. The cyan dashed line indicates the extrapolation of the simulated curves beyond the time-interval of

simulations.
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Table 3: Summary of the estimated IC50 values (µM). Table presents a summary of the IC50 estimate (in µM) using our model, including a

comparison to the values from literature and RTCA’s in-built model.

Chemical IC50 using Literatureb In-built modelc IC50/EC50

our modela [CI] I AUC

2-Acetylamino-fluorene 113.05 Cell-specific toxicity 37.75 50.28

[109.24 - 117.64]

Aflatoxin B1 7.16 Cell-specific toxicity 12.82 15.00

[7.01 - 7.32]

Benzo-[a]-pyrene 28.69 Cell-specific toxicity 0.17 1.52

[26.48 - 31.28]

Chloramphenicol 725.14 Antibiotic with 486.90 667.06

[679.39 - 778.68] adverse effects

D-mannitol > 900d Non-toxic at 482.98 94.05

test concentrations

Erythromycin > 900d Non toxic at 0.01 3.01

test concentrations

N-ethyl-N-nitrosourea > 900d Cell-specific toxicity 9.21 8.12

at high-doses

Resorcinol > 900d Non-toxic at 5.36×107 793.50

test concentrations

Sulfisoxazole > 900d Non-toxic at 132.46 4.63×10−4

test concentrations

Urea > 900d Non-toxic at 19.71 0.18

test concentrations

aThe second column shows estimates of IC50 with confidence intervals (CI) bounded by the 5th and the 95th

percentiles based on our model. bThe third column provides information about the toxicity of test chemicals as

described in literature. A detailed interpretation is provided in the discussion section. cThe fourth and fifth columns

give estimates of IC50/EC50 using RTCA’s in-built sigmoidal dose-response model. The estimates are based on

the normalized cell index values (I) and area under the dose-response curve (AUC). dAssuming that we observe

insignificant (less than 10%) effect on growth at the highest test concentration (Ch), a lower-bound of IC50/EC50

for the apparently non-toxic compounds was calculated from 0.1 > Ch
Ch+IC50

⇔ IC50 > 10 · Ch −Ch.
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Table 4: Summary of the estimated growth rate. The best estimates of growth rate of the IEC-6 cells with confidence intervals (CI) bounded by

the 5th and the 95th percentiles are shown in the table.

Chemical Growth rate (h−1) [CI]

2-Acetylamino-fluorene 0.0154 [0.0154 - 0.0155]

Aflatoxin B1 0.0137 [0.0137 - 0.0138]

Benzo-[a]-pyrene 0.0142 [0.0141 - 0.0143]

Chloramphenicol 0.0149 [0.0149 - 0.0150]

D-mannitol 0.0154 [0.0153 - 0.0155]

Erythromycin 0.0154 [0.0153 - 0.0154]

N-ethyl-N-nitrosourea 0.0147 [0.0146 - 0.0147]

Resorcinol 0.0190 [0.0189 - 0.0191]

Sulfisoxazole 0.0190 [0.0189 - 0.0191]

Urea 0.0201 [0.0200 - 0.0202]

Average growth rate 0.0162 [0.0161 - 0.0163]

3.4. Comparison to RTCA’s in-built model

Cell indices at the final time-point (t = 96) or AUC values were fitted to the model provided in the xCELLigence

manual (eq. 5) in a maximum likelihood sense. The resulting IC50/EC50 values are displayed in table 3. For apparently

toxic compounds, the estimates of IC50 were in reasonable agreement with the predictions by our approach. However,

for non-toxic compounds, the IC50/EC50 values obtained by the sigmoidal dose-response model showed unrealistic

values, indicating high potency (see table 3 and figure 4). The false positive predictions arise from the fact that the

model is intrinsically prone to measurement noise. For example, a sigmoidal response is fit to the data, even when the

magnitude of the absolute effect |y1 − yo| is very small. Our model (eq. 2) overcomes these pitfalls.

4. Discussion

In this study, we presented an in silico modeling framework based on real-time cell impedance measurements in

IEC-6 cells for predicting the cytotoxicity of chemicals. Intestinal cell lines are rarely studied in in vitro toxicology

despite the intestinal epithelium being a site of massive exposure to xenobiotics after oral ingestion. Additionally, the

intestine is considered to be the most important extrahepatic site of drug biotransformation (Thelen and Dressman,

2009), which can lead to the production of highly reactive metabolites in the gut wall. Regarding the tested

chemicals, benzo-[a]-pyrene, aflatoxin B1 and 2-acetylamino-fluorene require intracellular bioactivation into

mutagenic intermediates by cytochromes-P450 (CYPs) (Luch, 2005) to manifest their genotoxic effects. Since the

expression of CYP enzymes is cell-specific, with cells contributing to first-pass clearance of foreign

substances/toxins having the highest expression, the toxicity of these compounds is highly cell-specific and any in

vitro assay based on cells not expressing relevant CYP enzymes will underestimate or fail to detect the toxicity of
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Figure 4: RTCA’s in-built dose-response model. The figure illustrates the fit of the normalized cell index values at last time-point of the assay

using RTCA’s in-built dose-response model. The molar concentrations of the test chemicals are given in log10 scale.
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these compounds. Therefore, an in vitro assessment of a dose- and temporal-based response in this cell line under

relevant chemical exposure may provide critical data sets for the fundamental understanding of toxicity.

Using the RTCA assay, monitoring of cells started immediately after seeding. As a result, cells underwent an

automatic quality-controlling even before the addition of test compounds; a measure that is usually not undertaken

with standard endpoint assays of toxicity. On analyzing the data obtained from the RTCA assay, we observed

temporal- and dose-dependent modifications in cell indices in relation to the cytotoxicity of the test chemical, as

shown in figures 3 and S1. These variations in cell index at distinct time-instances suggest changes in the underlying

molecular processes. Consequently, the cell index profile provides a useful basis for selecting relevant time-points

for the application of successive in-depth experimental studies of toxicity. Furthermore, based on the RTCA profiles,

we investigated the relationship between AUC and cytotoxicity. We observed that compounds with previously

established genotoxicity, i.e. benzo-[a]-pyrene, chloramphenicol, 2-acetylamino-fluorene and aflatoxin B1, showed a

decline in AUC relative to their corresponding solvent control, suggesting that a change in AUC allows compound

classification into presumingly toxic versus non-toxic. However, the magnitude of change in AUC may not be used

to compare different compounds quantitatively, or to rank them, since the magnitude of change can be different when

the experiment is repeated (e.g. due to difference in seeding conditions, cell number etc.).

For predicting cytotoxicity, an in silico modeling approach was employed that investigated the changes in cellular

kinetic profile capturing the pattern of cell growth in relation to temporal- and dose-dependent effects of the drug. As

observed in the experimental data (figure S1), the cultured cells exhibited an initial genotoxicity specific lag-phase

and a later cytotoxicity specific exponential-phase, with no noticeable growth saturation during the studied time-span.

The cytotoxicity profiles present a fundamental basis for the identification of test concentrations that are relevant for

predicting the genotoxic action of a chemical in vitro and in vivo. Therefore, we utilized the subsequent cytotoxicity-

associated phase of growth for parameter inference and modeling; similar to (Witzel et al., 2015) emphasizing the use

of an appropriate time-interval for accurately predicting cytotoxicity.

The estimates of intestinal epithelium turn-over time/growth rate were close to the biologically observed value of

2–6 days (Delgado et al., 2016) showing that the mathematical model correctly captured the cellular growth kinetics.

In concordance with the AUC analysis, the estimates of IC50 from our model also indicated that 2-acetylamino-

fluorene, aflatoxin B1, benzo-[a]-pyrene and chloramphenicol were cytotoxic to the considered cell line. Note that

the IC50 value for a compound may vary for different cell lines, experimental conditions, analyzed endpoints and

species. For 2-acetylamino-fluorene, aflatoxin B1, benzo-[a]-pyrene particular variations between different cell lines

are expected, since these compounds undergo CYP-mediated intracellular transformation to produce the ultimate toxic

moiety. Thus, depending on the availability and absolute intracellular expression of relevant CYP enzymes, distinct

levels of cytotoxicity are expected.

Nonetheless, comparing against IC50 values from independent sources can be useful, given that the utilized cell

lines permit such comparison. Genotoxicity of benzo-[a]-pyrene primarily depends on its endogenous

biotransformation (e.g. into (+)-anti-BP-7,8-diol-9,10-epoxide). Biotransformation is controlled by the cell-type
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specific expression of CYP1 (CYP1A1, CYP1A2 and CYP1B1) and other phase I/II enzymes (Luch, 2005;

Nebert and Dalton, 2006). Therefore, its in vitro toxicity is likely to be different between CYP expressing cells (e.g.

liver and intestinal cells) and cells that do not express relevant CYP enzymes. Unfortunately, to our knowledge no

relevant data on the cytotoxicity of benzo-[a]-pyrene in rat intestinal cells is available. In liver cell lines, IC50 values

of 0.04–38.04 µM have been reported (Payen et al., 2001; Rodrigues et al., 2013), where the former values were

derived from F258 cells (rat liver epithelial cell line) and the latter from undifferentiated-HepaRG cells (human

hepatoma cell line). In comparison, we estimated a value of 28.69 µM in our intestinal cell line. As expected, the use

of cells that do not express significant amounts of CYP enzymes can result in an underestimated or false negative

toxicity predictions (for example, Carfi’ et al. (2007) used rat spleen cells and predicted a value of > 200µM).

Likewise, aflatoxin B1 requires CYP-mediated activation to form cytotoxic and DNA-reactive intermediate

aflatoxin-8,9-epoxide, mainly by CYP3A4 but also by CYP1A (Dohnal et al., 2014; Massey et al., 1995). Its

metabolism and toxicity in intestinal cells is not fully investigated, but correlated with the CYP3A4 expression

(Kolars et al., 1994). The most closely related cells in terms of relevant CYP expression, where literature data is

available, are liver cells. The IC50 measured in primary liver cells was 0.3 µM (Hanigan and Laishes, 1984), which

is, as expected (see above) slightly smaller than the value of 7.16 µM predicted in our study, given that the order of

adduct formation within tissues was proposed to be liver>kidney>colon>lung=spleen (Cupid et al., 2004). The

corresponding IC50 measured in the rat liver fibroblast cell line BRL 3A was 38 µM, which is slightly higher than

our prediction and may be related to the relatively low expression of CYP enzymes in this cell line (Boess et al.,

2003). 2-Acetylamino-fluorene undergoes transformation by the enzymes CYP1A1 and CYP1A2, and subsequently

by acyl-transferase and sulfo-transferase into genotoxic electrophilic compounds, which react with DNA to form

mutagenic adducts (Heflich and Neft, 1994). As in case of benzo-[a]-pyrene and aflatoxin B1, the distribution of

DNA adducts in various tissues is a direct function of the metabolic capacity of the target cells. The highest adduct

levels are often found in the liver, which contains high concentrations of enzymes important to the activation of

2-acetylamino-fluorene. Since the intestine is a site of first-pass metabolism, IC50 estimates in the studied IEC-6

cells (113.05 µM) are within a similar range to those observed in cell lines derived from rat liver (77 µM in cultured

rat liver epithelial F258 cell (Sparfel et al., 2002) and 130 µM in RL1, an epithelial-like cell line derived from rat

liver (Scott et al., 1991)). Unlike the previously mentioned compounds, chloramphenicol (a broad-spectrum

antibiotic) does not need to undergo intracellular activation in order to exert its (weak) toxicity. The predicted value

of 725.14 µM using our method and cell line is in good agreement with the literature 490–710 µM (Halle, 2003).

Our IC50 estimate for N-ethyl-N-nitrosourea indicated no cytotoxicity. N-ethyl-N-nitrosourea is a mutagenic

compound, which is used as a tool for inducing tumors (Kirkland et al., 2008). Unlike the previously discussed

chemicals, N-ethyl-N-nitrosourea decomposes heterolytically (without enzymatic involvement) with an intracellular

half-life of < 8 min (Goth and Rajewsky, 1972). The ultimate reactant, an electrophilic ethyl cation inducing DNA

damage, is thus produced indiscriminately in all tissues. However, toxicity has been observed to be tissue-specific in

vivo in rats; preferentially affecting the brain cells (Barth and Kaur, 2009). The reason for a selective toxicity is

15



believed to be due to cell-specific differences in the DNA repair mechanism; i.e. DNA repair may insufficiently

counteract DNA damage in brain cells (Müller and Rajewsky, 1983) whereas most cells have a high capacity for

repairing N-ethyl-N-nitrosourea induced DNA damage (Loquet and Wiebel, 1982). As a result, most in vitro studies

on rat utilized cells derived from the central nervous system for testing N-ethyl-N-nitrosourea’s toxicity. These

studies indicate IC50 values greater than 450 µM ((Kidney and Faustman, 1995)), which given the arguments above

are expected to be much higher in other cell lines including the tested IEC-6 cell line (IC50 values were reported to be

> 1 mM by Driscoll et al. (1995); Sehlmeyer and Wobus (1994); Elsner et al. (2000)). Given the low test

concentrations in the range of 0.01–100 µM in our study, we therefore did not observe cytotoxicity in IEC-6 cells.

Interestingly, the RTCA in-built model, in contrast, predicted a very low IC50 which is an artifact and a false positive

result under the investigated test condition.

The IC50 values of all apparent in vivo non-toxic compounds were estimated to be non-toxic (> 900 µM) by

our method. It is also evident from the non-saturating dose-reponse curves for all non-toxic compounds (figure

4) that these compounds did not manifest any cytotoxic effect on the cell. In contrast, RTCA’s in-built sigmoidal

dose-response model for estimating IC50/EC50 gave unrealistically low values (false-positively indicating toxicity)

for compounds which are considered to be non-toxic. The reason is that for a compound with little or no apparent

effect (difference between the baseline and plateau level), RTCA’s in-built dose-response model will always enforce

a sigmoidal response curve, deducing some values of IC50/EC50, even if the RTCA endpoints were derived under

non-saturating conditions. This is in fact a major downside of RTCA’s in-built model, which makes it prone to

predict low values of IC50 (false positives) for non-toxic compounds. Our model, on the other hand, simulates the

actual time trajectories of cellular growth and captures the kinetics of chemical action, thereby giving robust estimates

and reducing false positive test results. If the compound has no effect on the RTCA profiles and the corresponding

dose-response curve does not exhibit saturation for the tested concentration range, very high values (indicating no

toxicity under test conditions) of IC50 values are thus estimated by our model. Since a high IC50 value (far from the

biologically relevant concentration range) indicates no observed cytotoxicity, our model reduces artifacts and false

positive predictions generated by RTCA’s in-built sigmoidal dose-response model for non-toxic compounds.

Our aim was to reliably identify chemical toxicity, considering that in vitro toxicity tests are a major contributor to

false-positive results in genotoxicity testing. Our method eliminates many false positive results, and enables the design

of subsequent genotoxicity tests that considers cytotoxicity in a time- and concentration-resolved manner. However,

great caution needs to be taken when choosing appropriate cell lines as observed in this study, since many toxic

moieties (e.g. benzo-[a]-pyrene, aflatoxin B1 and 2-acetylamino-fluorene) may be generated by enzymes which are

differently expressed across cell types. Moreover, cellular detoxification and repair mechanisms can be cell-specific

as well, which is likely the case for N-ethyl-N-nitrosourea. As a consequence, systemic, or tissue dependent in vivo

toxicity can deviate substantially from observed in vitro toxicity, depending on the choice of the cell line studied.
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5. Conclusion

To summarize, using our mathematical framework for the qualitative and quantitative assessment of the RTCA

measurements, useful insights were obtained regarding chemicals’ toxicity and IEC-6 cells’ growth kinetics. Instead

of utilizing an empirical mathematical model, a simple mechanistic model of cell growth inhibition was developed

that quantified toxicity in terms of the biologically interpretable parameter IC50, a measure utilized by most

experimenters. The quantitative modeling approach in conjunction with the qualitative AUC analysis yielded

valuable information about the time- and concentration-specific effects of the tested chemicals. The results showed

that the proposed mathematical model predicted the IC50 and the growth rates of the cultured cells in agreement with

biological knowledge. This demonstrates that in silico models are crucial for testing toxicity of chemicals, especially

for overcoming spurious false positive results. Finally, bearing in mind the limitations of the current study, in future

we aim to direct our approach towards developing more advanced models and generating complementary

experimental datasets allowing to assess in depth the mode of action of drugs. The source code for the developed

method including instructions is available at https://git.zib.de/bzfgupta/toxfit/tree/master.

Acknowledgments

We would like to acknowledge financial support from the Freie Universität Berlin within the Excellence Initiative

of the German Research Foundation, the Forschungskommission of Freie Universität Berlin and the BMBF-funded

research group Meth4SysPharm, grant number 031A307. In addition, this work was partly funded by the GRACE

project (‘GMO Risk Assessment and Communication of Evidence’), financially supported by the 7th Framework

Program of the European Community for Research, Technological Development and Demonstration Activities

(FP7), Grant Agreement no. 311957. We would also like to express our gratitude to Dr. S. Sharbati for the helpful

suggestions.

References

Abassi, Y.A., Xi, B., Zhang, W., Ye, P., Kirstein, S.L., Gaylord, M.R., Feinstein, S.C., Wang, X., Xu, X., 2009. Kinetic cell-based

morphological screening: Prediction of mechanism of compound action and off-target effects. Chemistry and Biology 16, 712–723.

doi:10.1016/j.chembiol.2009.05.011 .

Barth, R.F., Kaur, B., 2009. Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas.

Journal of neuro-oncology 94, 299–312. doi:10.1007/s11060-009-9875-7 .

Boess, F., Kamber, M., Romer, S., Gasser, R., Muller, D., Albertini, S., Suter, L., 2003. Gene expression in two hepatic cell lines, cultured primary

hepatocytes, and liver slices compared to the in vivo liver gene expression in rats: possible implications for toxicogenomics use of in vitro

systems. Toxicological sciences : an official journal of the Society of Toxicology 73, 386–402. doi:10.1093/toxsci/kfg064 .

Carfi’, M., Gennari, A., Malerba, I., Corsini, E., Pallardy, M., Pieters, R., Loveren, H.V., Vohr, H., Hartung, T., Gribaldo, L., 2007. In vitro tests to

evaluate immunotoxicity: A preliminary study. Toxicology 229, 11 – 22. doi:10.1016/j.tox.2006.09.003 .

17



Cupid, B.C., Lightfoot, T.J., Russell, D., Gant, S.J., Turner, P.C., Dingley, K.H., Curtis, K.D., Leveson, S.H., Turteltaub, K.W., Garner, R.C.,

2004. The formation of AFB1-macromolecular adducts in rats and humans at dietary levels of exposure. Food and chemical toxicology : an

international journal published for the British Industrial Biological Research Association 42, 559–569. doi:10.1016/j.fct.2003.10.015 .

Delgado, M.E., Grabinger, T., Brunner, T., 2016. Cell death at the intestinal epithelial front line. The FEBS Journal 283, 2701–2719.

doi:10.1111/febs.13575 .

Dohnal, V., Wu, Q., Kua, K., 2014. Metabolism of aflatoxins: key enzymes and interindividual as well as interspecies differences. Archives of

toxicology 88, 1635–1644. doi:10.1007/s00204-014-1312-9 .

Driscoll, K.E., Deyo, L.C., Howard, B.W., Poynter, J., Carter, J.M., 1995. Characterizing mutagenesis in the hprt gene of rat alveolar epithelial

cells. Experimental Lung Research 21, 941956. doi:10.3109/01902149509031772 .

Elsner, M., Guldbakke, B., Tiedge, M., Munday, R., Lenzen, S., 2000. Relative importance of transport and alkylation for pancreatic beta-cell

toxicity of streptozotocin. Diabetologia 43, 15281533. doi:10.1007/s001250051564 .

Ette, E.I., Williams, P.J. (Eds.), 2007. Pharmacometrics: The science of quantitative Pharmacology. John Wiley & Sons.

Goth, R., Rajewsky, M.F., 1972. Ethylation of nucleic acids by ethylnitrosourea-1-14 C in the fetal and adult rat. Cancer research 32, 1501–1505.

Halle, W., 2003. The registry of cytotoxicity: toxicity testing in cell cultures to predict acute toxicity (LD50) and to reduce testing in animals.

Alternatives to laboratory animals 31, 89–198.

Hanigan, H.M., Laishes, B.A., 1984. Toxicity of aflatoxin B1 in rat and mouse hepatocytes in vivo and in vitro. Toxicology 30, 185–193.

doi:10.1016/0300-483X(84)90090-8 .

Heflich, R.H., Neft, R.E., 1994. Genetic toxicity of 2-acetylaminofluorene, 2-aminofluorene and some of their metabolites and model metabolites.

Mutation research 318, 73–114. doi:10.1016/0165-1110(94)90025-6 .

Kho, D., MacDonald, C., Johnson, R., Unsworth, C.P., O’Carroll, S.J., Mez, E.d., Angel, C.E., Graham, E.S., 2015. Application of

xCELLigence RTCA biosensor technology for revealing the profile and window of drug responsiveness in real time. Biosensors 5, 199–222.

doi:10.3390/bios5020199 .

Kidney, J., Faustman, E., 1995. Modulation of nitrosourea toxicity in rodent embryonic cells by O6-Benzylguanine, a depletor of O6-

methylguanine-DNA methyltransferase. Toxicology and Applied Pharmacology 133, 111. doi:10.1006/taap.1995.1120 .

Kirkland, D., Kasper, P., Müller, L., Corvi, R., Speit, G., 2008. Recommended lists of genotoxic and non-genotoxic chemicals for assessment

of the performance of new or improved genotoxicity tests: A follow-up to an ECVAM workshop. Mutation Research/Genetic Toxicology and

Environmental Mutagenesis 653, 99–108. doi:10.1016/j.mrgentox.2008.03.008 .

Kirkland, D., Pfuhler, S., Tweats, D., Aardema, M., Corvi, R., Darroudi, F., Elhajouji, A., Glatt, H., Hastwell, P., Hayashi, M., Kasper, P., Kirchner,

S., Lynch, A., Marzin, D., Maurici, D., Meunier, J.R., Müller, L., Nohynek, G., Parry, J., Parry, E., Thybaud, V., Tice, R., van Benthem, J.,

Vanparys, P., White, P., 2007. How to reduce false positive results when undertaking in vitro genotoxicity testing and thus avoid unnecessary

follow-up animal tests: Report of an ECVAM workshop. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 628, 31–55.

doi:10.1016/j.mrgentox.2006.11.008 .

Kolars, J.C., Benedict, P., Schmiedlin-Ren, P., Watkins, P.B., 1994. Aflatoxin B1-adduct formation in rat and human small bowel enterocytes.

Gastroenterology 106, 433–439. doi:10.1016/0016-5085(94)90602-5 .

Liang, Q., Gao, X., Chen, Y., Hong, K., Wang, H.S., 2014. Cellular mechanism of the nonmonotonic dose response of bisphenol A in rat cardiac

myocytes. Environmental Health Perspectives 122, 601–608. doi:10.1289/ehp.1307491 .

Loquet, C., Wiebel, F., 1982. Geno- and cytotoxicity of nitrosamines, aflatoxin b1, and benzo[a]-pyrene in continuous cultures of rat hepatoma

cells. Carcinogenesis 3, 12131218. doi:10.1093/carcin/3.10.1213 .

Luch, A., 2005. Nature and nurture - lessons from chemical carcinogenesis. Nat Rev Cancer 5, 113–125. doi:10.1038/nrc1546 .

Manual, 2009. RTCA Software Manual, Software Version 1.2. URL: http://sydney.edu.au/medicine/bosch/facilities/

molecular-biology/tissue-culture/RTCA%201.2%20Software%20Manual.pdf.

Massey, T.E., Stewart, R.K., Daniels, J.M., Liu, L., 1995. Biochemical and molecular aspects of mammalian susceptibility to aflatoxin B1

carcinogenicity. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New

18



York, N.Y.) 208, 213–227. doi:10.3181/00379727-208-43852A .

Müller, R., Rajewsky, M.F., 1983. Elimination of O6-ethylguanine from the DNA of brain, liver, and other rat tissues exposed to ethylnitrosourea

at different stages of prenatal development. Cancer research 43, 2897–2904.

Nebert, D.W., Dalton, T.P., 2006. The role of cytochrome p450 enzymes in endogenous signalling pathways and environmental carcinogenesis.

Nature Reviews Cancer 6, 947960. doi:10.1038/nrc2015.

Neubig, R.R., Spedding, M., Kenakin, T., Christopoulos, A., 2003. International union of pharmacology committee on receptor nomenclature

and drug classification. XXXVIII. update on terms and symbols in quantitative pharmacology. Pharmacological Reviews 55, 597–606.

doi:10.1124/pr.55.4.4 .

Pan, T., Huang, B., Zhang, W., Gabos, S., Huang, D.Y., Devendran, V., 2013a. Cytotoxicity assessment based on the AUC50 using multi-

concentration time-dependent cellular response curves. Analytica Chimica Acta 764, 44–52. doi:10.1016/j.aca.2012.12.047 .

Pan, T., Khare, S., Ackah, F., Huang, B., Zhang, W., Gabos, S., Jin, C., Stampfl, M., 2013b. In vitro cytotoxicity assessment based on KC50 with

real-time cell analyzer (RTCA) assay. Computational Biology and Chemistry 47, 113–120. doi:10.1016/j.compbiolchem.2013.08.008 .

Payen, L., Courtois, A., Langout, S., Guillouzo, A., Fardel, O., 2001. Unaltered expression of multidrug resistance transporters in polycyclic

aromatic hydrocarbon-resistant rat liver cells. Toxicology 156, 109 – 117. doi:10.1016/S0300-483X(00)00348-6 .

Rodrigues, R.M., Bouhifd, M., Bories, G., Sacco, M.G., Gribaldo, L., Fabbri, M., Coecke, S., Whelan, M.P., 2013. Assessment of

an automated in vitro basal cytotoxicity test system based on metabolically-competent cells. Toxicology in Vitro 27, 760 – 767.

doi:10.1016/j.tiv.2012.12.004 .

Schoeters, G., 2010. The reach perspective: Toward a new concept of toxicity testing. Journal of Toxicology and Environmental Health, Part B 13,

232–241. doi:10.1080/10937404.2010.483938 .

Scott, D., Galloway, S.M., Marshall, R.R., Ishidate, M., Brusick, D., Ashby, J., Myhr, B.C., 1991. Genotoxicity under extreme culture conditions.

Mutation Research/Reviews in Genetic Toxicology 257, 147 – 205. doi:10.1016/0165-1110(91)90024-P .

Sehlmeyer, U., Wobus, A.M., 1994. Lower mutation frequencies are induced by ENU in undifferentiated embryonic cells than in differentiated

cells of the mouse in vitro. Mutation Research Letters 324, 69 – 76. doi:10.1016/0165-7992(94)90070-1 .

Shackelford, R.E., Kaufmann, W.K., Paules, R.S., 1999. Cell cycle control, checkpoint mechanisms, and genotoxic stress. Environmental Health

Perspectives 107, 5–24. doi:10.2307/3434468.

Sparfel, L., Loewert, M., Huc, L., Payen, L., Guillouzo, A., Lagadic-Gossmann, D., Fardel, O., 2002. Acute cytotoxicity of the chemical carcinogen

2-acetylaminofluorene in cultured rat liver epithelial cells. Toxicology Letters 129, 245–254. doi:10.1016/S0378-4274(02)00015-2 .

Thelen, K., Dressman, J.B., 2009. Cytochrome p450-mediated metabolism in the human gut wall. Journal of Pharmacy and Pharmacology 61,

541–558. doi:10.1211/jpp.61.05.0002 .

Waters, M.D., Fostel, J.M., 2004. Toxicogenomics and systems toxicology: aims and prospects. Nature Reviews Genetics 5, 936–948.

doi:10.1038/nrg1493.
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Figure S1: Normalized cell index curves. The plots depict the normalized cell index values upon treatment with different concentrations of

test chemicals (i.e. 2-acetylamino-fluorene, aflatoxin B1, benzo-[a]-pyrene, chloramphenicol, D-mannitol, erythromycin, N-ethyl-N-nitrosourea,

resorcinol, sulfisoxazole and urea) during 96 h. SC and NC denote solvent and negative controls, respectively.
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Figure S2: Time-profiles of the simulated and the experimental data for compounds predicted to be non-toxic. Figure illustrates the fit of the

simulated (in dark blue) and the experimental data (labeled colored markers in the sub-figures). Simulations were performed for the time-period

relevant to the cytotoxic phase, which in our study was from 50 h until the end of the experiment. The cyan line indicates the extrapolation of the

simulated curves beyond the time-interval of simulations.
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