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Abstract

This thesis is devoted to the interdisciplinary work between mathematicians and foren-
sic experts: the modeling of the human body cooling process after death laying the
foundation for the estimation of the time of death. An inverse problem needs to be
solved. In this thesis the inverse problem computes the time of death given the mea-
sured body temperature and the Forward Model that simulates the body cooling
process. The Forward Model is based on the heat equation established by Fourier.
This differential equation is numerically solved by the discretization over space by the
Finite Element Method and the discretization over time by the Implicit Euler Method.
The applications in this thesis demand a fast computation time. A model reduction is
achieved by the Proper Orthogonal Decomposition in combination with the Galerkin
Method. For reasons of simplification the computations and the measurements are
restricted to a cylindrical phantom that is made out of homogeneous polyethylene.
The estimate of the time of death is accompanied by an uncertainty. The inverse prob-
lem is incorporated by Bayesian inference to interpret the quality of the estimate and
the efficiency of the experiment. The uncertainty of the estimate of the time of death
is minimized by approaching the Optimal Design of the Experiment. An objective
function measures the certainty of the data and lays the foundation of the optimiza-
tion problem. Solving the optimization problem is successfully done by relaxing the
complex discrete NP-hard problem and applying a gradient-based method.
The results of this thesis clearly show that the design of an experiment has a great in-
fluence on the outcome of the quality of the estimate. The comparison of the estimate
and its properties based on different designs and conditions reveals the efficiency of
the Design of Experiment in the context of the estimation of the time of death.
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Zusammenfassung

Diese Masterarbeit widmet sich, im Rahmen eines interdisziplinären Forschungspro-
jekts von Mathematikern und Rechtsmedizinern, der Schätzung des Todeszeitpunktes.
Das inverse Problem bestimmt ein Schätzer des Todeszeitpunktes basierend auf Mes-
sungen der Körpertemperatur an einer Leiche und der Simulation des Abkühlungs-
prozesses des menschlichen Körpers nach Eintritt des Todes. Die Wärmeleitungs-
gleichung nach Fourier dient als Vorwärtsmodel. Diese partielle Differentialgleichung
wird numerisch mit der Ortsdiskretisierung durch die Finiten–Elemente-Methode und
mit der Zeitdiskretisierung durch das Implizite Euler-Verfahren gelöst. Um den nu-
merischen Aufwand gering zu halten, wird das Model mit Hilfe der Proper Orthog-
onal Decomposition mit Galerkin-Ansatz reduziert. Weiterhin werden als verein-
fachte Grundlage die numerischen Rechnungen an einem Zylinder aus Polyethylen
durchgeführt.
Das invserse Problem wird durch den Bayessche Ansatz gelöst, wobei dem Schätzer
eine Unsicherheit beigemessen wird. Die Minimierung der Unsicherheit dient als
Grundlage zur Bestimmung des Optimalen Designs eines Experimentes. Das daraus
resultierende NP-schwere Optimierungsproblem wird relaxiert, so dass dies in dieser
Arbeit durch das Gradientenverfahrens gelöst werden kann.
Es wird gezeigt, dass das Design eines Experimentes einen großen Einfluss auf die
Qualität der Schätzung besitzt.
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1 Introduction

1.1 Motivation

The estimation of an accurate time of death of a human body is of significant importance in
many fields, e.g., finding the right suspect during a criminal investigation or by confirming
the evidence of innocence based on an alibi during the estimated time of death. Estimating
the time of death is not only important for homicide cases. It is relevant for medical and
scientific aspects as well as in civil matters. Determining the effectivity of an insurance
policy might depend on the time factor. The realization of a will depends on the justness
of the probate, whether the wife or husband died first.
To develop a practical model interdisciplinary work between forensic medical experts and
mathematicians is necessary. Several different approaches have evolved concerning the
question of estimating the time of death as accurate as possible, whereby the origin of
the work focuses on the temperature based method which analyzes the heat loss of the
body after death. The practicability of the method depends on specific conditions and
parameters, e.g., the outside temperature. Approximately for 24 hours after the cooling
process started the temperature based method could be applied.
The time of death is evaluated based on the measured body temperature at certain points
of measurement. Post-mortem temperature-based models are necessary as they provide a
curve of the body temperature at a point of measurement with respect to the time that
has passed since death.

1.2 Current State of the Art

The empirical model according to Henssge is one option to determine the time of death
with the help of a widespread designed database of post-mortem cooling cases under spe-
cific conditions [36]. Experimental post-mortem cooling curves that include the related
conditioned factors and circumstances (e.g., gender, weight, height, outside temperature)
are recorded in a database. Complications concerning the data ascertainment occur since
the experiments on corpses are difficult to realize due to the lack of sampling and in ad-
dition for ethical and moral reasons. Furthermore, the number of considered conditions is
limited. On one hand, certain relevant conditions are not taken into account. On the other
hand, the relevance of inspected conditions is controversial, e.g., the body mass index that
does not distinguish between the relevant amount of different tissues.
The alternative approach by Mall [33] avails oneself of the Heat Flow Finite Element
Method relying on laws of nature. The dynamic process is displayed by a differential
equation, the heat equation by Fourier. The resulting computational model simulates
the body cooling process that is influenced by complex and to some extend unknown
factors. The different tissue compartments vary among their thermal properties. Indi-
vidual anatomical features are taken into account. The method quickly develops into a
high-dimensional model that considers only approximations of thermodynamic relevant
structures.
While observing the corpse, forensic experts perform measurements of the body temper-
ature at certain points in space and certain time intervals. Ordinarily, the collection of
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measurements is limited over space to one rectal point. The data ascertainment provides
the basis for the back-calculation to provide an estimate of the time of death of the corpse.

1.3 Problem Statement

This thesis focuses on the modeling of the body cooling process after death. Identifying
the parameters and designing the experiments are two important aspects that have to
be considered to evaluate a reliable estimate for the time of death. The foundation for
this analysis is the computational model which has to be validated such that the results
of the simulation coincide with the reality. By assuming that the mathematical formu-
lation of the cooling process is perfectly known the usability of the model relies on the
assumption of the unknown input parameters. Parameters are not completely predictable
and underlay certain changes during the cooling process. Considering the muscle tissue
it holds that different bodies, or even different parts of the muscle tissue of one person,
have a unique structure and various properties. Another example considers the outside
temperature during the cooling process that can only be determined precisely to a certain
extent. These so called uncertainties have to be taken into account.
The input parameters and the data that emanates from the experimental setting influence
the usability of the model. The experimental setting is chosen in such way that reliable
estimates are computed while considering cost and practicability at the same time. The
question evolves in which setting the experiment should take place to provide good results
that obtain the maximum amount of information under given constraints. By systemati-
cally planning the design of the setting the resulting model shall be optimized regarding
the accuracy and the stability, while keeping an eye on the experimental effort.
The experimental design includes the definition of control variables. These variables might
include the sample size, the selection of points of measurement, the prior accuracy, and
the assumptions respectively the knowledge considering the thermal parameters. Certain
decisions have to be made prior or during the data ascertainment accordingly as the ex-
periment consists of more than one series.
Considering experiments that cannot be performed more than once, the approach of de-
signing the optimal setting is unalterable, since the data collection is restricted. Prior
available data has to be valued. The experiment is put into a statistical context. The
degree of optimization is measured by statistical inference of the quantities of interest,
therefore we aim for estimates with maximal statistical reliability. An estimate of the
time of death with a small variance is a good intuitive example for a desired target in
terms of an optimal design of the experiment. The question to be answered is if an opti-
mal experimental setting leads to significant better estimates in comparison to estimates
of alternative experimental settings.

1.4 Structure of the Thesis

The current chapter is followed by Chapter 2 which covers the computation of the Forward
Model that simulates the cooling process of the body over time and space. The computa-
tion is based on the Finite Element Method. The reduction of the high-dimensional model
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by the Proper Orthogonal Decomposition application in combination with the Galerkin
Method is introduced.
The estimation of the time of death results in an Inverse Problem. Chapter 3 treats the
parameter identification, whereby it is stated in a Bayesian statistical context. Further-
more, the non-linearity of the model is examined and the local linearization is analyzed.
Chapter 4 approaches the topic of Optimal Design of Experiments. An optimization prob-
lem results, whose solution yields certain challenges. Former numerical results will be
illustrated to examine the outcome of an optimal design. The last chapter summarizes the
results of this thesis and gives an outlook on open issues and problems.
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2 Forward Model

2.1 Heat Equation

This thesis uses a post-mortem Forward Model to provide the temperature in any point of
the body with respect to the time that has passed since death [33]. The forward problem
is given by the heat equation by Fourier [52, 17]. This partial differential equation (PDE)
describes the distribution and transfer of the heat by conduction, convection, and radiation
over space D ⊂ R3 and time t ∈ [0, T ], whereby t = 0 defines the starting point of the
cooling process and T > 0. The temperature u is displayed as

u = u(x, t), x ∈ D, t ∈ [0, T ].

The differential form of Fourier’s law of thermal conduction,

cρ
∂u

∂t
= ∇ · (κ ∇u) + q in D × (0, T ], (2.1)

involves the heat capacity c(x), the mass density ρ, and the thermal conductivity κ(x).
The heat capacity and the thermal conductivity distinguish between the different tissues,
nevertheless for simplification reasons we write c = c(x), κ = κ(x). The mass density ρ is
fixed in this model for all points of measurement. Additional heat sources are accumulated
in q(x), x ∈ D, for instance heat as a result of continuing metabolism after death. Here
we assume that the model does not include additional heat sources, i.e. q = 0.

The convection interacts with the outside at the boundary ∂D. Convection transfers
heat by the movement of molecules. The thermal radiation concerns the electromagnetic
radiation emitted towards and from the body over time. It affects the environment and
not only the immediate surrounding of the body. Therefore, the two distinct tempera-
tures, uenv and uout are considered. The convection and radiation are represented in the
boundary condition,

nT (κ ∇u) = γ(uout − u) + εσ(u4
env − u4) in ∂D × (0, T ). (2.2)

The boundary equation involves the heat transfer coefficient γ, the emissivity ε, and the
Stefan-Boltzmann constant σ.
Considering the application we can simplify the heat equation as follows. Since the tem-
perature difference (uenv − u) of the radiation term is small the term approximates to a
linear relationship which allows us to write (2.2) in the form,

nT (κ ∇u) = γ(uout − u) + 4u3
env εσ(uenv − u) in ∂D × (0, T ). (2.3)

We assume the outside temperature and environmental temperature to be identical and
constant over time. The setup is further simplified; no heat factors are included. Therefore,
the temperature is no subject to variation such that (2.3) simplifies to,

nT (κ ∇u) = (γ + 4u3
out εσ)(uout − u) in ∂D × (0, T ). (2.4)
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The emissivity and Stefan-Boltzmann constant concerning (2.4) are fixed. An initial con-
dition u(x, 0) is included that states the body temperature at the starting point of the
cooling process,

u(x, 0) = u0(x) in D. (2.5)

The initial condition is known based on the average body temperature of the human body
controlled by the thermoregulatory center.

Definition 1. The considered computational Forward Model of the cooling process includes
(2.1), (2.4), and (2.5), and is defined as,

F (p;x, t) = u(x, t), (2.6)

with the state variable as a mapping,

u : D × [0, T ]→ R, (2.7)

and the parameter set,

p(x) := [c(x), κ(x), γ, uout], x ∈ D. (2.8)

Remark. The objection that the parameters in p(x) (2.8) are temperature-dependent is
justified. Due to the lack of scientific knowledge and research in the area of temperature-
dependent parameters with respect to the human tissue, these parameters will be inspected
independently from the current body temperature. Nevertheless, the literature suggests
different parameter ranges, whereby the discrepancies concerning the parameter determi-
nation will be addressed and apprehended in Section 3.4.2.

The solution of the heat equation with its boundary condition and initial value cannot be
obtained analytically, but numerically e.g. applying the Finite Element Method.

2.2 Finite Element Method

The computation of the solution of the Forward Model is based on the Finite Element
Method (FEM). Theoretical background can be found in Chapter 4 of Numerische Math-
ematik 3 by Deuflhard and Weiser [14]. Further details are found in [21, 43, 51, 14]. An
overview of the FEM follows in this section by applying the theory to the heat equation.
The FEM approximates the solution of (2.1), (2.4), and (2.5), by a linear combination of
so-called basis functions.

The first step involves the reformulation of the original problem to approach the FEM.
We consider a simple stationary heat equation,

−∇ · (κ ∇u) = q in D ⊂ R3. (2.9)

The constant term regarding the emissivity and Stefan-Boltzmann constant is embedded
for simplification in γ. The Robin boundary conditions are stated with,

nTκ ∇u+ γ(u− uout) = 0 on ∂D. (2.10)
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The second order PDE (2.9) requires a twice differentiable function u ∈ C2(D) ∩ C̄(∂D)
as the solution. Since this requirement is too strong in most cases, the so-called strong
formulation is transformed to a weak formulation by means of the integration against
a test function v ∈ C1(D) and the application of Green’s theorem [14, p. 397]. This
transformation results in a variational statement,∫

D
κ ∇uT∇v dx−

∫
∂D

κ vnT∇u ds =

∫
D
−∇ · (κ ∇u) v dx. (2.11)

If u is a solution of (2.9) it follows that,∫
D
κ ∇uT∇v dx−

∫
∂D

κ vnT∇u ds =

∫
D
qv dx. (2.12)

A weak formulation evolves by inserting the boundary condition (2.10) with β := γ uout,∫
D
κ ∇uT∇v dx+

∫
∂D

γuv ds =

∫
D
qv dx+

∫
∂D

βv ds. (2.13)

The Sobolev space H1(D) is introduced to analyze the solution.

Definition 2. With m ≥ 0 and 1 < p <∞ the Banach space

Wm,p(D) = {u ∈ Lp(D) : ∇u ∈Wm−1,p(D)} and W 0,p(D) = Lp(D)

is called a Sobolev space. The corresponding norm is defined as,

||u||pWm,p(D) = ||∇u||p
Wm−1,p(D)

+ ||u||pLp(D),

whereby Lp(D) = {D → R| ||u||pLp =
∫
D u

pdx < ∞} defines the Lebesgue space. If p = 2
the Sobolev space is an Hilbert space,

Hm(D) := Wm,2(D).

Further details are found in [14, pp. 403 ff.]. It holds that every solution of the strong
formulation is a solution of the weak formulation.

Definition 3. A function in the Sobolev space u ∈ H1(D) is called a weak solution of
(2.9) and (2.10) if the function u solves the weak formulation (2.13) ∀v ∈ H1(D).

The left-hand side of (2.13) states a symmetric bilinear operator,

a(u, v) :=

∫
D
κ ∇uT∇v dx+

∫
∂D

γuv ds, u, v ∈ H1(D).

The right-hand side of (2.13) displays a linear function b ∈ H1(D) with 〈b, v〉 denoting
the dual pairing of a function and a vector,

〈b, v〉 :=

∫
D
qv dx+

∫
∂D

βv ds. (2.14)

Hence we end up with a generalized formulation,

a(u, v) = 〈b, v〉, ∀v ∈ H1(D). (2.15)
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2.2.1 The Galerkin Approach

The Galerkin Method approximates the infinite-dimensional function space H1(D) by a
finite-dimensional function space Vh ⊂ H1(D), whereby the subspace is defined as Vh =
span{ϕ1, . . . , ϕN}, N ∈ N+. The discretization of the solution is then given by a linear
combination of basis functions ϕi (i = 1, . . . , N) with the weight vector α = (α1, . . . , αN )T ,

uh(x) =
∑
i

αi ϕi(x). (2.16)

The Galerkin discretization,

a(uh, vh) = 〈b, vh〉, ∀ vh ∈ Vh ⊂ H1(D), (2.17)

inserts the basis functions ϕi as test functions vh in (2.17),∑
i

αi a(ϕi, ϕj) = 〈b, ϕj〉, ∀j = 1, . . . , N. (2.18)

By defining the vector

fh := (〈b, ϕ1〉, . . . , 〈b, ϕN 〉)T ,

and the symmetric positive semi-definite matrix

(Ah)ij := a(ϕi, ϕj) ∈ RN×N ,

a linear system of equations evolves,

Ah α = fh. (2.19)

The theorem by Lax-Milgram states the existence of a unique solution of the weak formu-
lation [14, pp. 404-406].

Concerning the L2-inner product, the Galerkin Method computes the discretized solution
uh which is closest to the strong solution u. The proof can be found in [14, p. 95].

After setting the groundwork for the FEM the domain is subdivided into disjoint elements,

D = D1 ∪ · · · ∪Dm.

Functions on the domain D such as the solution u are represented by a linear combination
of basis functions, ϕi, i = 1, . . . , N . In the case of D ⊂ R3 the elements Di can be chosen
as tetrahedra. Globally continuous, piecewise polynomial functions with local support
are the preferred choice of FE-basis functions. Due to the local support of the basis
functions the so-called stiffness matrix Ah computes as a sparse matrix. The stiffness
matrix incorporates the parameters of the stationary model, the thermal conductivity,
and the heat transfer coefficient,

(Ah(κ, γ))ij = κ

∫
D
∇ϕTi ∇ϕj dx+ γ

∫
∂D

ϕiϕj ds. (2.20)
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This sparsity is an advantage of the FEM and the linear system (2.19) can be solved by
direct or iterative solvers [14, pp. 149 ff.].

As a next step, we apply the Galerkin Method on the time-dependent heat equation with
the Robin boundary conditions (2.4). The mass density ρ is fixed, w.l.o.g. ρ = 1. Therefore
(2.9) is expanded with the instationary term yielding the PDE,

c
∂u

∂t
−∇ · (κ ∇u) = q in D × (0, T ], (2.21)

with the initial condition (2.5). The weights αi from previous discretization (2.16) now
incorporate the time-dependence,

uh(x, t) =
∑
i

αi(t) ϕi(x), (2.22)

⇒ u̇h(x, t) =
∑
i

α̇i(t) ϕi(x). (2.23)

The variational statement evolves to,∫
D
κ ∇uT∇v dx+

∫
∂D

γu v ds =

∫
D
qv dx+ c

∫
D
−u̇v dx+

∫
∂D

βv ds. (2.24)

The Galerkin Method is applied with the left-hand side being identical to the stationary
case (2.13), stating the stiffness matrix Ah (2.20). The right-hand side yields in addition
to (2.14) the positive semi-definite mass matrix,

(Mh(c))ij := c

∫
D
−ϕiϕj dx, (2.25)

such that the ordinary differential equation (ODE) of order one results,

Ah(κ, γ) α = Mh(c) α̇+ fh, (2.26)

Mh(c), Ah(κ, γ) ∈ RN×N .

The ODE is solved by the Backward Euler Method [13]. A system of linear equations
with αj := α(tj) is solved by discretizing the time interval equidistantly with step size τ ,
whereas α1 = α(0) and αk+1 = α(T ),

Ah α
j+1 = Mh

(
αj+1 −αj

τ

)
+ fh, j = 1, . . . , k, (2.27)

with the initial condition defined as

u0(x) =
∑
i

αi(0) ϕi(x). (2.28)
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2.3 Computation of the Forward Model

The parameters ρ, ε, and σ are fixed and embedded in a constant matrix which will be
apprehended in (2.32). The other parameters (2.8) represent the input parameters of the
computed Forward Model.
The domain D is the digital corpse based on a computed tomography scan. The segmen-
tation is done by the ZIB Amira software [48, 54] that identifies the three main thermody-
namic tissue types: fat, bones, and muscles. Details of the concept of 3D Medical Imaging
by segmentation and its different techniques can be found in [39, pp. 467 ff.].
The body temperature u is computed for any point with respect to the time that has
passed since death. The noise e is added to incorporate accumulation of variables that are
not observable or of no interest. Changes in the initial body temperature and parameters
vanish over time by converging to the outside temperature, therefore the final temperature
is unbiased.
Further information of the Heat Flow Model regarding the human body can be found e.g.
in papers by Mall and Eisenmenger [36, 33].

2.4 Model Reduction

The large-scale dynamic system and the resulting intricacy of the designed Forward Model
are accompanied by a demanding computing time. For several applications considered in
this thesis a faster computation is necessary. The model reduction will be achieved by
the Proper Orthogonal Decomposition (POD) application in combination with the the
Galerkin Method. An overview of the POD theory is embedded in the following section.
The theory of the POD is based on the notes of Volkwein [50]. The theory of the Galerkin
Method follows the previous section. The reference [45] describes an example how to re-
duce a model using the POD Galerkin Method.
The foundation for the model reduction are potential solutions so-called snapshots com-
puted with the Forward Model. Furthermore, the mass matrix and stiffness matrix, as
well as the initial condition, of the forward problem, are provided and build the foundation
of the model reduction by the POD Galerkin Method.

2.4.1 Proper Orthogonal Decomposition

The key property of the POD Method is to produce an optimal orthogonal basis for a
given data set, where the main properties of the solution u ∈ V are represented by the
POD basis of a low-dimensional space Vh which is a subspace to V . The dynamics of the
system, i.e. the heat flow of the body, is captured by snapshots stating an ensemble of
potential solutions and providing the foundation for the POD modes that define the POD
basis. In our context the snapshots are computed by the high-dimensional Forward Model
consisting of n different potential values of the thermal parameters and m discrete time
steps, 0 = t1 < t2 < · · · < tm = T . By considering a set of parameter samples,

Ξn = {p1, . . . , pn}, n ∈ N+ (2.29)
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the solution matrix S is constructed by snapshots F (pi) ∈ RN×m such that,

S := [F (p1), . . . , F (pn)] ∈ RN×M , M = mn. (2.30)

The dimension M includes the solution over discrete points in time and different pa-
rameter sets, while the dimension N represents the number of mesh nodes modeling the
discretization over space given by the FEM.

The POD basis is evaluated by applying the Singular Value Decomposition (SVD) to the
solution matrix. The main information of the solution matrix will then be represented by
a small number of vectors corresponding to the greatest singular values, as will be shown.

Theorem 1. Let S ∈ RN×M and rank(S) = d ≤ min(N,M). The factorization,

S = WΣV T ,

exists with the orthogonal matrices

W ∈ RN×N and V ∈ RM×M ,

and the diagonal matrix,

Σ = diag(σ1, . . . , σd, 0, . . . 0) ∈ RN×M ,

that consists of the singular values in descending order,

σ1 ≥ σ2 ≥ · · · ≥ σd ≥ 0.

Proof. The proof can be found in [12, p. 146].

The magnitude of a singular value agrees with the significance and influence on the repre-
sentation of S. A reduction of the computational effort to evaluate a representative of the
matrix S can be achieved by regarding only a bounded number of the greatest singular
values σi with their corresponding vectors wi and vi.

Definition 4. The Truncated SVD of dimension l states the representation of the matrix
S ∈ RN×M by the rank l matrix,

∼
Sl := WlΣlV

T
l

in order that only the l ≤ d greatest singular values with their corresponding vectors wi
and vi are regarded,

Wl = [w1, . . . , wl] ∈ RN×l,
Σl = diag(σ1, . . . , σl) ∈ Rl×l,
Vl = [v1, . . . , vl] ∈ RM×l.

The matrix
∼
Sl is the best rank l approximation to S considering the Frobenius– and the

2-norm [49].
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In the context of model reduction the singular values σi usually decline rapidly and the
Truncated SVD can be applied to evaluate the POD basis.

Theorem 2. The vectors of the orthogonal matrix Wof the SVD form the span of the
column space of the solution matrix S. For l ∈ {1, . . . , d} the vectors {wi}li=1 build the
POD basis of rank l. For every l ≤ d the approximation of the columns of S by the
corresponding set {wi}li=1 is optimal among all rank l approximations to the columns of
S.

Proof. The proof can be found in [50, p. 6 ff.].

Remark. With given ε > 0 the l ≤ d greatest singular values σi > ε with their correspond-
ing vectors wi are regarded and define an adequate representation of the solution matrix
such that a certain error is not exceeded. Therefore, the cost of the computation is reduced.
The choice of ε, which estimates the dimension l of the POD basis and therefore the arising
error, is of central importance, though no general a-priori rules are available concerning
the application of the SVD truncation. With the introduced method of snapshots it is not
clear to what extent one might neglect certain singular values before analyzing the result

of the model reduction. Though the approximation quality by the matrix
∼
Sl of rank l is

bounded by
∑l

i=1 σi [50, pp. 6 ff.].

2.4.2 POD Galerkin Method

The model reduction is achieved by substituting the applied basis vectors of the Galerkin
Method with the POD modes (Theorem 2),

ϕi = wi, i = 1, . . . l.

The POD Galerkin Method reduces the dynamical system by an orthogonal projection
onto the subspace of the POD modes. The projection of the mass matrix and stiffness
matrix of the ODE (2.26) result in the following transformations with 〈·, ·〉 defining the
scalar product,

〈M
∑
i

α̇i ϕi + fh, ϕj〉 = 〈A
∑
i

αi ϕi, ϕj〉 ∀j = 1, . . . , l,

⇔ ϕTj M
∑
i

α̇i ϕi + ϕTj fh = ϕTj A
∑
i

αi ϕi ∀j = 1, . . . , l,

⇔
∑
i

(ϕTj M ϕi) α̇i + ϕTj fh =
∑
i

(ϕTj A ϕi) αi ∀j = 1, . . . , l.

By projection we obtain,

(
∼
M)ij := ϕTj Mϕi ∀i, j = 1, . . . , l,

(
∼
A)ij := ϕTj Aϕi ∀i, j = 1, . . . , l,

(fp)j := ϕTj fh ∀j = 1, . . . , l,

(αp)j := ϕTj α ∀j = 1, . . . , l,

(2.31)
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such that a reduced order ODE of dimension l < N evolves,

∼
M α̇p + fp =

∼
A α,

with

∼
M,

∼
A ∈ Rl×l and αp,fp ∈ Rl,

and the initial condition,

u0(x) =
∑
j

(αp)i(0) ϕi(x).

The definitions (2.20) and (2.25) permit the partitioning of the mass matrix and stiffness
matrix into constant initial matrices,

M0, A0 ∈ RN×N , (2.32)

and correction matrices,

∆Mc, ∆Aκ, ∆Aγ ∈ RN×N , (2.33)

that are individually scalable by the distinct parameter,

M(c) = M0 + c ∆Mc,

A(κ, γ) = A0 + κ ∆Aκ + γ ∆Aγ .
(2.34)

The POD projection can be applied individually on the distinct parameter matrices due
to linearity reasons (2.34),

(
∼
M)ij = (ϕTi Mϕj) = (ϕTi M0ϕj + ϕTi ∆Mcϕj) ∀i, j = 1, . . . , l,

(
∼
A)ij = (ϕTi Aϕj) = (ϕTi A0ϕj + ϕTi ∆Aκϕj + ϕTi ∆Aγϕj) ∀i, j = 1, . . . , l.

We introduce the abbreviated notation of the individual matrices,

∼
M0, ∆

∼
Mc,

∼
A0, ∆

∼
Aκ, ∆

∼
Aγ ∈ Rl×l,

such that,

∼
M :=

∼
M0 + ∆

∼
Mc,

∼
A :=

∼
A0 + ∆

∼
Aκ + ∆

∼
Aγ .

The POD Galerkin Method is efficient in terms of a model reduction if the resulting
dimension of the application of the Truncated SVD is largely smaller than the number of
grid points and a certain error due to the reduction is not exceeded. Therefore, the output
of the reduced-order model is analyzed.
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2.5 Application and Numerical Results

The POD Galerkin Method is applied to reduce the high-dimensional Forward Model.
For practical reasons a phantom that provides the foundation for the computation is
developed. The error resulting from the model reduction as well as the time performance
of the reduced model are analyzed.

2.5.1 Phantom

Experiments are performed on phantom models made out of different material. The val-
idation is realized step by step regarding the complexity of the model and approaching
the anatomical properties of a human body. In this thesis the cylindrical phantom is ob-
served with a radius of 10.25cm and a height of 29.5cm which is made out of homogeneous
polyethylene, as seen in Figure 1. For one, the evaluated experimental measurements are
realizable repeatedly. For another, the phantom’s geometry is well-defined and the un-
known parameters are assessable. The next step involves a phantom made out of beeswax,
brine solution, and bone tissue. This choice of material holds as a good representative of
the main human tissues: fat, bones, and muscles.
The phantom is heated in an incubator at an internal ambient temperature of approxi-
mately 40◦C. After 30 hours the phantom obtains a constant initial temperature of 39.4◦C.
Afterwards, the phantom is placed in a climatic chamber providing a uniform temperature
field over the period of the cooling process. The temperature measurement probe is placed
at a point of measurement 15cm deep located near the geometrical center [47]. In this
thesis we will only consider computations and experimental measurements based on the
polyethylene phantom.

Figure 1: The polyethylene phantom model

The first step to evaluate an accurate reduced model of the cooling process of the polyethy-
lene phantom involves the parametrization of the system, i.e. the definition of the set of
parameters that characterize the system. The model is made out of one material. We
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assume a constant ambient temperature of 25.1◦C. The heat capacity, the thermal con-
ductivity, and the heat transfer coefficient of polyethylene, and primarily the starting time
of the cooling process, represent the unknown parameters of the model.

2.5.2 Computation of the Reduced-Order Model

At first, the solution matrix is computed consisting of snapshots supplied by the high-
dimensional Forward Model. The grid of the phantom is adjusted to N = 21155 nodes.
Let m = 61 be the number of time steps over the time interval [0, 72.000] seconds, therefore
a step size of 1200 seconds is provided. In every time step a solution is computed by the
high-dimensional Forward Model. The computations are performed for different parameter
combinations considering the material of the phantom, whereby the parameters are chosen
in a plausible interval [25],

• the heat capacity of polyethylene: c ∈ [1800, 1880] J
kg ◦C ,

• the thermal conductivity of polyethylene: κ ∈ [0.36, 0.44] W
m ◦C ,

• the heat transfer coefficient of polyethylene: γ ∈ [3.0, 3.8] W
m2 ◦C

.

Information of the thermal properties are found in literature or can be evaluated by exper-
imental measurements. Details concerning the choice of the parameters is apprehended
in Section 3.4.2. Nevertheless, the properties are considered as unknowns that include
certain prior information, e.g. the expectation value and the range of the parameters. The
M = 7625 potential solutions are computed and form the solution matrix,

S ∈ R21155×7625.

After evaluating the solution matrix, the Truncated SVD is applied as introduced in Def-
inition 4. The corresponding POD modes of the l greatest singular values form the basis
of the orthogonal projection. For further applications an efficient model reduction accom-
panied by a small maximum error is required.

2.5.3 Error Analysis of the Reduced-Order Model

The reduction of the model is accompanied by an error measured on the basis of the dif-
ference of the temperature output of the two models in Kelvin. A reasonable compromise
of the computation time and the accuracy of the reduced-order model has to be found.
For one, the accuracy depends on the size and choice of the snapshots. For another, the
accuracy depends on the dimension of the POD basis and the number of discretization
time steps.
To measure the quality and efficiency of the model reduction we define the maximum error.

Definition 5. The maximum error of two matrices S,
∼
Sl ∈ RN×M is defined as,

emax(S,
∼
S) = ||S −

∼
S||max, (2.35)
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with the maximum norm,
||S||max = max

i,j
|sij |, ∀i, j.

The application of the SVD truncation regarding the chosen dimension l of Definition 4
highly depends on the magnitude and regression of the singular values. The greatest value
of the solution matrix is σ1 ≥ 3e6, and the singular values decline rapidly with σ8 ≤ 1e2
and σ13 ≤ 1e0 as displayed in Figure 2.
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Figure 2: Singular Values: 1:50

The maximum error of the solution matrix S and the truncated solution matrix of rank l
stated in Definition 4 is evaluated with Definition 5,

emax(l) = ||S −
∼
Sl||max. (2.36)
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Figure 3: The maximum error considering the solution matrix and the truncated solution
matrix of rank l declines rapidly by choosing a greater basis dimension l.

Figure 3 shows the error depending on the dimensional truncation stated by emax(l) in
(2.36). Clearly, the error declines rapidly with increasing basis dimension l and one can
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assume that a basis of dimension l ≥ 8 results in a proper approximation of the solution
matrix such that,

emax(l) ≤ 1e−1.

A selection of an efficient dimension of the POD Basis must be ensured. To justify the rep-
resentation of the model by the low-dimensional model, the output of the low-dimensional
model and the output of the high-dimensional model is computed and interrelated by the
maximum norm stating the error of the modeling process that results from the model
reduction.
Definition 6. Set uc as the computed solution of the high-dimensional model and ur(l)
as the computed solution of the low-dimensional model based on the l-dimensional POD
basis. The maximum error resulting by the model reduction over space and time is defined
as,

emax(l) = ||uc − ur(l)||max = max
x,t
|uc(x, t)− ur(x, t; l)|, x ∈ D, t ∈ [0, T ], l ≤ d. (2.37)

The following figures show the maximum error considering different dimensions of the
POD basis. The quality of the low-dimensional model concerning the chosen POD basis
dimension is specified by means of Definition 6.
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Figure 4: The maximum error of the high-dimensional model and the low-dimensional
model converges to zero by increasing the dimension of the POD basis.

The error vanishes and converges to zero by increasing basis dimension as seen in Figure
4. Choosing a basis of dimension l ≥ 8 provides sufficient results with,

emax ≤ 3e−2.

The basis dimension l = 8 is fixed and the step size of the Backward Euler method
is optimized [12]. Both, the maximum model reduction error by Definition 6, and the
computational time are considered. A compromise solution of the two mentioned aspects
is to be found.
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Figure 5: The maximum error depending on the step size of the Euler method

The maximum error that is displayed in Figure 5 varies in dependence of the step size of
the Backward Euler method. The error increases almost linearly with respect to the step
size. We observe the time performance to make a justified decision.
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Figure 6: The computational time depending on the step size of the Euler method

As seen in Figure 6 a step size τ ≥ 20 seconds leads to a reasonable time performance and
converges to the computational time that contains the POD Galerkin projection (2.31).
On the other hand, a computation with a step size of τ ≤ 40 seconds is accompanied by a
maximum error of ≤ 3e−2◦K. Therefore, it is justified to choose a step size 20 ≤ τ ≤ 40
seconds.
The basis dimension l = 8 and step size τ = 40 seconds are fixed. The body temperature
curve of the high-dimensional model and the low-dimensional model at a given point of
measurement x ∈ D is displayed in Figure 7. The absolute error is computed by

eabs(t) = |uc(x, t)− ur(x, t)| ∀t.

22



0 1 2 3 4 5 6 7 8

Time [s] ×10 4

298

300

302

304

306

308

310

312

314

T
e

m
p

e
ra

tu
re

 [
K

]

High Dimensional Model

Low Dimensional Model

Figure 7: The body temperature curve at the point of measurement over time

The absolute error over time regarding the fixed point of measurement as seen in Figure
8 declines while converging to the outside temperature.
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Figure 8: Absolute error over time between the high-dimensional and low-dimensional
model at one point of measurement

A computational time reduction is achieved by the Proper Orthogonal Decomposition ap-
plication in combination with the the Galerkin Method. The high-dimensional model goes
along with a computation time of more than 600 seconds. The low-dimensional model
computes a solution in less than 1 second.
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Remark. One has to keep in mind that the implementation of the low-dimensional model
is based on the solution matrix computed by the high-dimensional Forward Model. The
former computations have to be considered while comparing the computation time and
performance. For one thing, the computation time of the groundwork considers the time
required for evaluating the snapshots. Since the snapshots can be computed in parallel,
we have to consider one-time-only the computation time of a solution output by the high-
dimensional model to evaluate the solution matrix S. For another, the computation time
of the Singular Value Decomposition has to be considered evaluating the POD basis.
The quality of the output of the low-dimensional model depends on the assumed parameter
range that is included in the solution matrix. If the cooling process relies on a different
range of parameters a newly computed solution matrix S and POD basis are required.
In this thesis we rely on the computed low-dimensional model based on a snapshot matrix
that is generated from the stated parameter range (Section 2.5.2).
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3 Inverse Problem

The Forward Model by Definition 1 provides the body temperature based on the given set
of thermal parameters, the initial condition and the time that has passed since the cooling
process started. Henceforth, the unknown parameters p of (2.8) include the time of death
t ∈ [0, T ]. Here, the outside temperature is considered to be known. It holds that the
body temperature, the parameters and the Forward Model always refer to distinct points
of measurement x ∈ D and the Forward Model in Definition 1 is simplified.

Definition 7. In the context of the Inverse Problem the Forward Model is defined as,

F (p) = u, (3.1)

with the parameters,

p := [t, c, κ, γ]. (3.2)

Definition 8. The forward problem provides the body temperature of the corpse u at
certain points of measurement based on the Forward Model of Definition 7.

The forward problem is deterministic, i.e. a unique solution is computed with a given set of
parameters (3.2). In practice the forensic medical expert evaluates the body temperature
at certain points of measurement um, intending to estimate the time of death, and as
the circumstances require the thermal parameters of the Forward Model. For practical
applications the forward problem is inverted [31, 26]. The computation of the parameters
depends sensitively upon the measured data and a noise e is considered such that,

F (p, e) = um, (3.3)

and the unknown parameters cannot be determined analytically by,

F−1(um) = p.

An optimization problem rises that evaluates the least-square solution [7],

min
p
||F (p)− um||2. (3.4)

The problem of estimating the time of death is ill-posed. While the forward problem
is deterministic the back-calculation on the contrary does not have a unique solution.
Furthermore, changes in the time of death do not have a great impact on the body tem-
perature while converging to the outside temperature in the end. It proceeds that signifi-
cantly different initial conditions and parameters could have produced the measured body
temperature. Therefore, the so-called ill-posed inverse problem has to be approached by
certain numerical regularization methods [26].

3.1 Tikhonov Regularization

To estimate the time of death the inverse problem is addressed by the Tikhonov regular-
ization [26].
In this thesis we denote the weighted norm considering x ∈ Rn, A ∈ Rn×n by∣∣∣∣x∣∣∣∣2

A
= xTA x. (3.5)
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Definition 9. Based on measurements of the body temperature the inverse problem,

min
p

∣∣∣∣F (p)− uM
∣∣∣∣2
B

+ α
∣∣∣∣p− p̂∣∣∣∣2

LTL
, (3.6)

evaluates the time of death and the thermal parameters by solving the optimization problem.
The Tikhonov regularization includes prior information such that preferences to certain
parameters are given by defining the two matrices B and L, the regularization parameter
α > 0, and the prior assumption of the unknown p̂.

The regularization parameters have to be defined reasonably, which might lead to addi-
tional difficulties. The generalized Tikhonov regularization uses B = I and L = I.

3.2 Parameter Identification

Temperature measurements are performed on a phantom made out of polyethylene, as
introduced in Section 2.5.1. At a constant outside temperature of uout = 25.1◦C over
discrete points in time t ∈ [0, 72000] seconds at one point of measurement x ∈ D [47]
the temperature measurements are evaluated. The focus is laid on the evaluation of
the unknown thermal parameters, since the time component is given by the supervised
experiment. The results of the Forward Model stating the simulated data u(x, t) are
compared to the experimental data um(x, t). The Tikhonov regularization evaluates the
parameters,

c = 1840
J

kg◦C
, κ = 0.4

W

m◦C
, γ = 3.32

W

m2 ◦C
. (3.7)

In practice the time component is one of the biggest unknowns. For the experiment it
holds that the time component is known and well-founded prior knowledge of the thermal
parameters p̂ (Section 3.4.2) is given, therefore the generalized Tikhonov regularization
with B = I, L = I and α = 1 performs well.
The temperature of the simulated and the experimental data at one point of measurement
is displayed in Figure 9 with the body temperature converging to the outside temperature
(298.25◦K).
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Figure 9: The temperature curve at the point of measurement

The absolute error of the simulated and the experimental data,

eabs(t) = |u(x, t)− um(x, t)| x ∈ D, ∀t,

is shown in Figure 10 with eabs(t) < 3.5e−1 ∀t.

0 1 2 3 4 5 6 7 8

Time [s] ×10 4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
b

s
o

lu
te

 E
rr

o
r 

[K
]

Figure 10: The absolute error at the point of measurement

3.3 Bayesian Inverse Problem

The theory of the following section is based on the book Statistical and Computational
Inverse Problems by Kaipio and Somersalo [26]. The statistical approach of the inverse
problem treats variables of the model (3.3) as random variables. The Bayesian Forward
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Model considers the experimental data Um, the noise E, and the unknown parameters P
as random variables,

F (P,E) = Um. (3.8)

By assuming independence between the noise E and the unknown parameters P the ad-
ditive model results,

F (P ) + E = Um. (3.9)

Definition 10. The prior information of the unknown parameters P is coded in the prior
probability distribution,

πpr(p).

Definition 11. The likelihood probability distribution defines the plausibility of the
experimental data Um conditioned on P = p,

π(um|p).

Definition 12. The noise probability distribution defines the plausibility of the noise
E of the model,

πnoise(e).

Theorem 3. Considering the additive model (3.9) the likelihood probability distribution
is identical to the noise probability distribution,

π(um|p) = πnoise(e).

Proof. For the additive model it holds that P and E are mutually independent random
variables. The probability distribution of E is unaltered conditioned on P = p with P
being fixed. Um conditioned on P = p is distributed like E with the probability density
being translated by F (p),

π(um|p) = πnoise(um − F (p)),

⇔ π(um|p) = πnoise(e).

Definition 13. The solution of the inverse problem is the posterior probability distri-
bution,

πpost(p) = π(p|um),

that takes all measurements into account by evaluating the certainty of the unknown pa-
rameters P = p conditioned on Um = um.
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Theorem 4. The posterior probability distribution is defined by,

πpost(p) ∝ πpr(p) π(um|p). (3.10)

Considering the additive model (3.9) it holds that,

πpost(p) ∝ πpr(p) πnoise(e). (3.11)

Proof. With π(um) > 0 and π(p) > 0, the conditioned probability distributions are com-
puted by applying Bayes’ formula [9] with,

π(p|um) =
π(um, p)

π(um)
and π(um|p) =

π(um, p)

πpr(p)
,

it holds that,

π(p|um) =
πpr(p) π(um|p)

π(um)
∝ πpr(p) π(um|p).

Considering the additive model (3.9) and Theorem 3,

π(p|um) =
πpr(p) π(um|p)

π(um)
∝ πpr(p) πnoise(e).

For practical reasons the solution of the inverse problem provided by the posterior distribu-
tion is not sufficient. Instead, the unknown parameters are ascribed a value by evaluating
a point estimator. Different estimates of the unknown parameters can be evaluated based
on the posterior probability distribution. One possible point estimator is the Maximum A
Posteriori Estimator (MAP).

Definition 14. The Maximum A Posteriori Estimators are points of the parameter
space at which the posterior probability distribution is maximized,

pMAP = argmax
p
πpost(p).

Remark. Evaluating the MAP results in an optimization problem that might either not
have a solution at all, or not provide a unique solution. The computational difficulties
are similar to the ones we approach by classic regularization techniques, e.g. the intro-
duced Tikhonov Regularization (3.6). The correlation between the Bayesian Model and the
Tikhonov Regularization will be apprehended in Theorem 7.

3.3.1 Bayesian Normal Linear Model

Definition 15. A multivariate Normal (Gaussian) random variable X ∈ Rn with
the mean x0 ∈ Rn and the symmetric positive definite covariance matrix Γ ∈ Rn×n holds
the probability density,

π(x) =

(
1

2π|Γ|

)n/2
exp

(
− 1

2
(x− x0)TΓ−1(x− x0)

)
with |Γ| = det(Γ).

We write X ∼ N (x0,Γ).
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Henceforth, we consider the additive model (3.9), and the prior random variable, as well
as the noise random variable holding a Normal probability distribution (Definition 15).
In Section 3.4.2 values are assigned to the model parameters. The covariance matrix rep-
resents the spread of the random variable. A diagonal entry of the covariance matrix refers
to the corresponding marginal variance of one component of the multivariate random vari-
able. The independence of the parameters among themselves holds if a diagonal structure
of the covariance matrix is ensured.

Definition 16. The Normal prior probability distribution p ∼ N (p0,Γpr) is defined
as,

πpr(p) ∝ exp
(
− 1

2
(p− p0)TΓ−1

pr (p− p0)
)
, (3.12)

with the mean p0 ∈ Rn and the symmetric positive definite covariance matrix Γpr ∈ Rn×n.

Definition 17. The Normal noise probability distribution e ∼ N (e0,Γnoise) is de-
fined as,

πnoise(e) ∝ exp
(
− 1

2
(e− e0)T Γ−1

noise (e− e0)
)
, (3.13)

with the mean e0 ∈ Rm and the symmetric positive definite covariance matrix Γnoise ∈
Rm×m.

Theorem 5. The posterior distribution of the additive model based on the Normal prior
probability distribution

p ∼ N (p0,Γpr),

and the Normal noise probability distribution

e ∼ N (e0,Γnoise),

is defined by,

πpost(p) ∝ exp
(
−1

2
(p−p0)TΓ−1

pr (p−p0)−1

2
(F (p)−um−e0)T Γ−1

noise(F (p)−um−e0)
)
. (3.14)

Proof. Considering the additive model (3.9) the posterior distribution can be evaluated
by (3.11) of Theorem 4.

Theorem 6. The Normal posterior distribution is analytically computable for the linear
additive model,

F : Rn → Rm,

with the given matrix A ∈ Rm×n,

Um = A(P ) + E,

and the Gaussian random variables,

P : Ω→ Rn and E,Um : Ω→ Rm
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such that,
p ∼ N (p0,Γpr),

e ∼ N (e0,Γnoise).

The Normal posterior distribution evolves characterized by the posterior mean and the
posterior covariance matrix,

πpost(p) ∝ exp
(
− 1

2
(p− ppost)TΓ−1post(p− ppost)

)
, (3.15)

ppost =
(
Γ−1pr +ATΓ−1noiseA

)−1(
ATΓ−1noise(um − e0) + Γ−1pr p0

)
, (3.16)

Γpost =
(
Γ−1pr +ATΓ−1noiseA

)−1
. (3.17)

The posterior covariance matrix is a symmetric positive definite matrix [26, pp. 74-76].

Proof. Let

Γ =

[
Γ11 Γ12

Γ21 Γ22

]
∈ R(n+m)×(n+m)

be a positive definite symmetric matrix, and Γ11 ∈ Rn×n, Γ22 ∈ Rm×m. Obviously, it
holds that (Γ12)T = Γ21. The (positive definite) Schur complements are well defined by

S22 = Γ11 − Γ12Γ−122 Γ21 and S11 = Γ22 − Γ21Γ−111 Γ12. (3.18)

The inverse of Γ is computed by means of the Gaussian elimination [26, pp. 74-75],

Γ−1 =

[
S−122 −S−122 Γ12Γ−122

S−111 Γ21Γ−111 S−111

]
. (3.19)

By setting the off-diagonal blocks of Γ−1 equal up to transpose it holds,

−Γ−122 Γ21S
−1
22 = S−111 Γ21Γ−111 . (3.20)

Consider the two Gaussian random variables P : Ω → Rn and Um : Ω → Rm whose joint
density π : Rn × Rm → R+ is defined as,

π(p, um) ∝ exp
(
− 1

2

[
p− p0

um − u0

]T [
Γ11 Γ12

Γ21 Γ22

]−1 [
p− p0

um − u0

])
.

Since Bayes’ formula gives π(p|um) ∝ π(p, um), the joint density is considered as a function
of p. By shifting the coordinate origin such that p0 = 0 and u0 = 0, and taking (3.20) into
account we get,

π(p, um) ∝ exp
(
− 1

2

(
pTS−122 p− 2pTS−122 Γ12Γ−122 um + uTmS

−1
11 um

))
. (3.21)
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By completing the quadratic form in the exponential into squares with respect to p it
holds that,

π(p, um) ∝ exp
(
− 1

2

((
p− Γ12Γ−122 um

)T
S−122

(
p− Γ12Γ−122 um

)
+ c
))
,

where c corresponds to a term that is mutually independent of P = p, therefore can be
left out of consideration.
The probability distribution of P conditioned on Um = um evolves,

π(p|um) : Rn → R+, (3.22)

π(p|um) ∝ exp
(
− 1

2
(p− p̄)TS−122 (p− p̄)

)
, (3.23)

with p̄ = p0 + Γ12Γ−122 (um − u0),

S22 = Γ11 − Γ12Γ−122 Γ21.
(3.24)

The marginal density of P is evaluated by integrating the joint probability density with
respect to um,

π(p) =

∫
Rm

π(p, um) dum.

Setting L = Γ−1 as in (3.19),

L =

[
S−122 −S−122 Γ12Γ−122

S−111 Γ21Γ−111 S−111

]
=

[
L11 L12

L21 L22

]
, (3.25)

and rearranging the exponential term to squares with respect to um in (3.21) gives,

π(p, um) ∝ exp
(
− 1

2

(
pTL11 p− 2pTL12um + uTmL22um

))
∝ exp

(
− 1

2

((
um + L−122 L21p

)T
L22

(
um + L−122 L21p

)
+ pT

(
L11 − L12L

−1
22 L21

)
p
))

.

We integrate with respect to um and refer to

T22 = L11 − L12L
−1
22 L21,

as the corresponding Schur complement of L such that,

π(p) ∝ exp
(
− 1

2
pTT22 p

)
.

Since (3.19) defines

T−122 = (L−1)11 = Γ11,

the marginal density of P is

π(p) ∝ exp
(
− 1

2
(p− p0)TΓ−111 (p− p0)

)
.
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Analogously, the marginal density of Um is

π(um) ∝ exp
(
− 1

2
(um − u0)TΓ−122 (um − u0)

)
.

The elaborated theory is applied to the linear inverse model, whereby Bayes’ formula gives,

π(p|um) = πpr(p) πnoise(um −A(p)),

∝ exp
(
− 1

2
(p− p0)TΓ−1pr (p− p0)− 1

2
(um −A(p)− e0)T(Γnoise)

−1(um −A(p)− e0)

)
.

Since P and E are Gaussian independent random variables and we consider a linear model
such that Um results as a Gaussian random variable, it holds that,

E

{[
P
Um

]}
=

[
p0

u0

]
, u0 = A(p0) + e0,

E
{

(P − p0)(P − p0)T
}

= Γpr,

E
{

(Um − u0)(Um − u0)T
}

=
{(
A(P − p0) + (E − e0)

) (
A(P − p0) + (E − e0)

)T}
= A ΓprA

T + Γnoise,

E
{

(P − p0)(Um − u0)T
}

= E
{

(P − p0)(A(P − p0) + (E − e0))T
}

= ΓprA
T,

such that the covariance matrix of the joint probability density evolves

cov

[
P
Um

]
= E

{[
P − p0

Um − u0

] [
P − p0

Um − u0

]T}
=

[
Γpr ΓprA

T

A Γpr A ΓprA
T + Γnoise

]
.

By (3.23) and (3.24) it follows that

ppost = p0 + ΓprA
T(A ΓprA

T + Γnoise)
−1(um − F (p0)− e0), (3.26)

Γpost = Γpr − ΓprA
T(A ΓprA

T + Γnoise)
−1A Γpr. (3.27)

Theorem 6 holds with consideration of the Woodbury Matrix Identity [53, p. 4] that
rearranges (3.27) to,

Γpost =
(
Γ−1pr +ATΓ−1noiseA

)−1
. (3.28)

Since (ATΓ−1noiseA) defines a symmetric positive definite matrix it follows that the posterior
covariance matrix is a symmetric positive definite matrix.

Remark. It holds that Γpost ≤ Γpr, with (3.27) of Theorem 6. The uncertainty of the
model after adding measurements (information) is decreased. In the case of the introduced
Normal Linear model the expectation value ppost of the posterior distribution is equivalent
to the MAP (Definition 14). For the non-linear case the posterior distribution with its
properties cannot be computed analytically.
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Theorem 7. Maximizing the posterior distribution (3.14) yields the MAP. Evaluating the
MAP is equivalent to minimizing the functional J(p),

J(p) := ||F (p)− um||2Γnoise + ||p− p0||2Γpr ,
pMAP = arg min

p
J(p).

(3.29)

Proof. Maximizing the posterior distribution defined by an exponential function with a
negative exponent (3.14) yields the following minimization problem,

⇔ arg min
p

(
(p− p0)TΓ−1

pr (p− p0) + (F (p)− um)T Γ−1
noise(F (p)− um)

)
,

⇔ arg min
p

||F (p)− um||2Γnoise + ||p− p0||2Γpr .

In the context of the Bayesian Normal model the evaluation of the MAP by (3.29) is sim-
ilar to the Tikhonov regularization (3.6). The statistical approach declares the Tikhonov
regularization parameters in a meaningful way.

Remark. Choosing a Gaussian distribution for the parameters of the model is debatable.
It holds that the time of death and the thermal parameters cannot be ascribed a negative
value, since all thermal parameters are demonstrably positive given by the law of nature
and a non-positive time would imply that the corpse would still be alive. We know for a
fact that the parameters do not follow a purely Gaussian distribution. Nevertheless, the use
of Gaussian probability distributions have established successfully in the field of statistical
inversion theory. The behavior of many real-world incidents is modeled by Gaussian distri-
butions, since Gaussian distributions are easy to construct and to compute. The Gaussian
distribution is entirely outlined by its expectation value and its variance. Further, the
central limit theorem states that a non-Gaussian distribution approaches a Gaussian dis-
tribution by increasing sample size. Details of the central limit theorem can be found in
[9, p. 315].

3.3.2 Linearized Model

To apply the theory of the Bayesian Normal Linear Model (Section 3.3.1) we consider a
linear model that is evaluated by the local approximation of the Forward Model. Therefore,
the non-linear posterior distribution is linearized at the MAP with p̂ = pMAP by first-order
Taylor approximation,

F (p) ≈ F (p̂) + F ′(p̂)(p− p̂). (3.30)

The linearized model can now be applied in the context of the theory of the additive
Bayesian Normal Linear Model, as introduced in Section 3.3.1, to evaluate the posterior
distribution and its characteristics by Theorem 6.
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3.4 Posterior Distribution

The linearization simplifies the non-linear model. The non-Gaussian part of the poste-
rior distribution that originates from the non-linear Forward Model cannot be neglected.
Therefore, we compare the model of the original posterior distribution to the locally ap-
proximated linear one given in (3.30).

3.4.1 Sampling

We utilize the Metropolis-Hastings algorithm to explore the posterior probability distribu-
tion (3.14) by generating samplings of the posterior distribution,

d = {d1, . . . , dn}, n ∈ N+. (3.31)

Metropolis et al. proposed the algorithm in 1953 [35]. Hastings extended the algorithm
in 1970 [23]. The MH-algorithm is a well-established technique to earn a profound insight
and understanding of the behavior of a given probability density π referred to as the
target density. The target density is defined on a state space D and computable up to
a multiplying constant. The algorithm is based on the mathematical model of a Markov
chain. The current state of the chain (the random variable) depends on the previously
computed states. Hence, the algorithm generates correlated variables. The Markov chain
is ergodic stating that the random process is nearly independent of its initial state and it is
stationary regarding the target density, i.e. the algorithm converges to the stationary state,
if D(t)→ π(d), then D(t+ 1)→ π(d). The states converge towards the target density. A
proposal density proposes the candidates for the data set. Chapter 6 of Introducing Monte
Carlo Methods with R by Robert and Casella [44] gives a well-founded overview of the
algorithm and the theory of Markov chains. The publication of Hasting [23] summarizes
the idea of Metropolis and provides the theory of the method accompanied by further
techniques and examples.
By means of the MH-algorithm, the Gaussianity of the posterior distribution is analyzed.
After the sampling the mean and the variance of the proceeding data set (3.31) can be
evaluated.
For the purpose of this thesis, the characteristics of a Gaussian distribution are reviewed to
confirm the assumption of a local Gaussian behavior of the posterior distribution [9, 15].
Further, the sample-based density of (3.14) is compared to the analytically computed
density of the linearized model (3.15) from Theorem 6. The goal is to verify that the
posterior distribution of the linearized model follows in large part the original (to some
extent non-linear) posterior distribution. Thus, further computations of properties of the
non-linear posterior distribution do not rely on the expensive sample-based method.
Following, the basic steps of the Metropolis Hastings algorithm are outlined.
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Algorithm 1 Metropolis-Hastings Algorithm

Input: Target density π(·), proposal density q(·, ·), number of iterations n ∈ N, initial
parameter d1

Output: Data set d = {d1, . . . , dn}
1: Set k ← 1
2: while k ≤ n do
3: dc ∼ q(dk, dc) . Draw a candidate from the proposal distribution

4: α(dk, dc) = min

(
1, π(dc)q(dc,dk)

π(dk)q(dk,dc)

)
. Evaluate acceptance ratio.

5: U ∼ Uniform(0, 1) . Generate U from uniform distribution in [0, 1]
6: if U < dc then dk+1 ← dc . Accept candidate
7: else dk+1 ← dk . Neglect candidate
8: end if
9: Set k ← k + 1

10: end while

For simplification reasons the proposal distribution is defined by a uniform distribution.
In the case of a symmetric proposal distribution,

q(dk, dc) = q(dc, dk),

the acceptance probability simplifies to

α(dk, dc) = min

(
1,
π(dc)

π(dk)

)
.

For a multivariate target distribution the candidates can be updated component-wise fol-
lowing the steps of the algorithm. During one step a distinct component is updated by the
proposal distribution, whereby the other components are fixed, and the acceptance rate
is evaluated. It is sufficient to choose the components sequentially and not in a random
order [46, 23].

Remark. Drawn candidates that involve a negative time, a negative heat capacity, a nega-
tive thermal conductivity, or a negative heat transfer coefficient, are allocated a probability
of zero. Therefore, these candidates are never accepted. The allocation is based on reasons
given before (Remark on page 34).

A data set d = {d1, . . . , dn} (di ∈ R4) of n = 1e6 random variables of the posterior
distribution is drawn by the MH-algorithm. The quantity assures that the set holds as
a profound basis to uncover the underlying structure of the distribution. Starting, the
histogram of the data set is constructed by observing the marginal parameters individually.
The histograms shown in Figures 11(a), 11(b) and 11(d) give reason to expect good results
of the marginal posterior distributions following a Gaussian density. The histogram in
Figure 11(c) suggests that the marginal posterior distribution rather follows a Log-normal
distribution.
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(d) Heat Transfer Coefficient

Figure 11: Histogram of the Marginal Random Variables of the Sampled Based Posterior
Distribution

The data is mapped into characteristics features [9, 15].

Definition 18. The mean d̄ is the average of the data set,

d̄ =
1

n

i=1∑
n

di.

Definition 19. The median dm is the point below which and above which half of the data
lays,

P (D ≤ dm) = P (D ≥ dm) = 0.5.

Definition 20. The mode is the data point which most frequently occurs. On a histogram
it appears as the highest bar.

For the Gaussian case it holds that the mean, the median, and the mode are identical.
The histogram visually confirms that the data set holds approximately the same value for
the mean, the median, and the mode.
Definition 21. The variance measures how far the data set is spread out,

s2 =
1

n

i=1∑
n

(di − d̄)2.
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On the one hand, we compute the introduced statistical properties of the data set d.
On the other hand, the posterior covariance matrix for the Normal linearized model is
analytically evaluated by (3.17). By comparing the variance of the distinct parameters
of the sampled data s2

i , i = 1, . . . , 4, to the marginal variance of the linearized model
σi, i = 1, . . . , 4, the second important aspect of the validation process is outlined: the two
distributions provide an approximately similar marginal variance. The relative difference

ri =
s2i−σ2

i

s2i
gives,

|rt| ≤ 4e−3, |rc| ≤ 8e−3, |rγ | ≤ 2e−3, |rκ| ≤ 2e−1,

where the relative error of the conductivity, as already assumed in Figure 11(c), stands
out.
Definition 22. The skewness is a statistical measure of the symmetry or precisely the
amount of asymmetry of a probability distribution about its mean,

g =
1

n

i=1∑
n

(di − d̄)3

s3
.

A Gaussian distribution is symmetric and possesses a single peak. Therefore, the mean, the
mode, and the median are at the centre of the distribution and the tails are exact mirror
images of each other. The skewness defines the extent to which a distribution differs from
a Gaussian distribution. Hence, the skewness of a perfect Gaussian distribution is zero.
The skewness computes to nearly zero for all parameters of the sampled data,

|gt| ≤ 5e−3, |gc| ≤ 2e−2, |gγ | ≤ 6e−3, |gκ| ≤ 4e−1,

where the value for the conductivity stands out again.
Definition 23. The kurtosis describes the shape of a probability distribution regarding
the tail,

k =
1

n

i=1∑
n

(di − d̄)4

s4
.

The kurtosis of a Gaussian distribution is 3. A kurtosis greater than 3 implies that the
distribution produces more extreme values than a Gaussian distribution. A small kurtosis
goes along with a data set scattering evenly with few outliers. The data set is analyzed
and computes a kurtosis of approximately 3 for all parameters,

|kt − 3| ≤ 1e−2, |kc − 3| ≤ 4e−2, |kγ − 3| ≤ 4e−2, |kκ − 3| ≤ 8e−2.

The distribution of the conductivity lets us assume a Log-normal distribution in accor-
dance to the statement given to Figure 11(c), though the other three parameters let us
assume a Gaussian distribution. The nuances that differentiate a Normal and a Log-normal
distribution are minimal, as seen in Figure 12.
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(a) Normal Density
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(b) LogNormal Density

Figure 12: Histogram of the Thermal Conductivity

In conclusion, the sampling of the posterior distribution mostly confirms the assumption of
the posterior distribution following locally a multivariate Gaussian distribution. Further
purposes permit an analytic computation of the local statistical properties of the Normal
linearized model as representatives of the posterior distribution (3.14).

3.4.2 Determining the Model Parameters

References in the literature and experiments determine prior knowledge. Information of
the thermal parameters is accessible from the retailer [25], such that the expectation value
of the heat capacity: c̄ = 1840 J

kg◦C , the expectation value of the thermal conductivity:

κ̄ = 0.4 W
m◦C , and the expectation value of the heat transfer coefficient: γ̄ = 3.8 W

m2 ◦C
are

defined. At the crime scene the forensical expert evaluates a first guess of the time of
death t0 in seconds. A prior uncertainty exists and the potential temperature dependence
of the thermal parameters is embedded in the variance (the spread) of the parameters [34].
The marginal variance of the thermal parameters is minor in comparison to the marginal
variance of the time of death, the greatest unknown of the model. The prior covariance
matrix is a diagonal matrix that features the independence between the parameters,

Γpr = diag
(
σ2
t , σ

2
c , σ

2
κ, σ

2
γ

)
∈ R4×4.

The likelihood distribution quantifies the information that enters the model in the form
of temperature measurements at certain points of measurement. Since Theorem 3 holds,
the information is coded in the noise distribution. We assume the error mean of e0 = 0.
The diagonal entries of the noise covariance matrix, the marginal noise variance of every
distinct point of measurement xi, may differ due to different reliability of the information
based on the location over space and time and certain measurement techniques,

Γnoise = diag
(
σ2
x1 , σ

2
x2 , . . . , σ

2
xm

)
∈ Rm×m.
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Parameter pi Unit Mean Range Variance σ2
i

Time of Death t sec t0 [0, 1e9] 1e9

Heat Conductivity of Polyethylene κ W
m◦C 0.4 [0.33, 0.45] 0.1

Heat Capacity of Polyethylene c J
kg◦C 1840 [1680, 2000] 100

Heat Transfer Coefficient of Polyethylene γ W
m2 ◦C

3.8 [3.0, 4.6] 1.0
Noise Level Low e ◦C 0 [0, 0.01] 0.01
Noise Level Medium e ◦C 0 [0, 0.1] 0.1
Noise Level High e ◦C 0 [0, 1.0] 1.0

Choosing the right properties establishes the basis for the development of a design in
consideration of the allocation of points of measurement. This aspect is fundamental to
successfully approach the topic of the Optimal Design of Experiments in Section 4.

3.4.3 Computation of the Posterior Distribution

Different posterior distribution arise depending on a distinct selection of points of mea-
surement. The sets of regarded points of measurement differ by the quantity and the
quality of the chosen points of measurement. The MAP is evaluated, and the model is
locally linearized. The posterior covariance matrix that displays the uncertainty of the
model is computed by (3.17). Since we focus upon one unknown: the time of death, the
marginal distribution of the time of death is plotted and analyzed. The following plots
and figures refer to the normalized density.

The Prior versus the Posterior Distribution

The posterior distribution is evaluated by adding information to the model by means of
the likelihood information. The uncertainty of the prior distribution decreases evaluating
the posterior distribution. The quality of the data is represented by the noise distribution.
In Figure 13 the posterior distribution is evaluated based on two different data sets that
differ by the magnitude of the noise level. The quality of the data has a great impact on
the certainty of the posterior distribution.
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(a) Medium Noise Level: 0.1
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Figure 13: The prior distribution versus the posterior distribution regarding different data
quality

By considering a lower noise level, representing a good quality of the data, the posterior
distribution emerges more slender resulting from a smaller uncertainty. Figure 14 confirms
the assumption by comparing different posterior distributions based on different noise
levels. The better the quality of the data, the greater the certainty of the posterior
distribution evolves.
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Figure 14: The uncertainty of the posterior distribution decreases with declining noise
level.

The Quantity of Measurements

Collecting information has a down-scaling effect on the uncertainty of the model. The
certainty of the MAP increases with the number of measurements. Further measurements
are added over time, whereby the point of measurement is locally fixed.
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Figure 15: The uncertainty of the posterior distribution decreases with the increase of
number of measurements.

Figure 15 displays that the marginal variance of the posterior distribution decreases with
the incorporation of further measurements. The observed data integrates information into
the model, such that better knowledge of the model is obtained. A similar behavior is
observed when comparing the prior distribution to the posterior distribution as displayed
in Figure 13. Invariably it holds that data ascertainment increases the certainty as appre-
hended in Theorem 6.

The Location of Measurements

We analyze the certainty of the posterior distribution regarding different locations of the
points of measurement. The number of measurements is constant. Furthermore, the point
in time of the measurements is fixed. By considering points of measurement with a high
sensitivity the uncertainty of the model is reduced. Figure 16(a) and Figure 16(b) illustrate
the posterior distribution that considers points of measurement with a very low sensitivity
as shown by the blue line. The posterior distribution is nearly unchanged with respect
to the prior distribution (green). Furthermore, the posterior distribution that considers
very sensitive points of measurement is displayed by the red line. In marked contrast the
posterior distribution deviates clearly from the prior distribution. The effect intensifies by
increasing number of measurements as seen by comparing Figure 16(a) to Figure 16(b).
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Figure 16: The uncertainty of the posterior distribution varies by incorporating sensitive
or non-sensitive points of measurement.

The Instance of Time for Measurements

The influence of the time component of the measurement process regarding the uncer-
tainty of the model is analyzed. Therefore, the number of measurements is fixed and the
location of the points of measurement in space is fixed. A range of different moments for
measurements is realized, either at the beginning of the cooling process, or at the end of
the cooling process. Figure 17(a) lets us hypothesize that measuring at the beginning is
beneficial in terms of the certainty of the model. Figure 17(b) clearly shows however that
adding measurements at the end of the cooling process does not improve the certainty of
the model in contradistinction to adding measurements at the beginning of the cooling
process. Apparently the blue line, representing the certainty of the model by taking mea-
surements at the end of the cooling process, does not decline even when increasing the
number of measurements. The red line, representing the certainty of the model when tak-
ing measurements at the beginning of the cooling process, declines clearly as information
is added.
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Figure 17: The Posterior Distribution regarding different points of measurement in time

After laying the groundwork in Section 2 and Section 3 for the computation of posterior
distributions in an exemplary manner demonstrates the importance of a well-conceived
experimental setting. Since the uncertainty displays the reliability of the estimate a desired
target is a small uncertainty. The former computations give insight into the importance of
an optimal design. Optimizing the design of the experiment on a global level is of utmost
importance.
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4 Optimal Design of Experiments

The quality of the model relies on a proper estimate of the unknown parameters of Def-
inition 7. A well-established parameter identification correlates with the quality of the
experimental data. Therefore, one has to focus on a feasible design of the experiment that
is adjusted in terms of a statistical criterion. The accuracy, the efficiency, and the stability
of the model need to be optimized. The parameters of the model are uncertain and vary
among human bodies. Considering e.g. the muscle tissue, it holds that different bodies,
or even different parts of the muscle tissue, have an individual structure [5, pp. 48] that
might result in distinct thermal properties.
The time of death is determined by back-calculation based on the measured data evalu-
ated by the inverse problem stated in Definition 9. The process of data ascertainment is
often expensive, time-consuming or restricted. Especially in the case of the temperature
measurements on a corpse, the experiment cannot be repeated under the same condition.
Measuring the body temperature is limited to a certain number of allowed measurements
and furthermore the placement of the measurements underlay certain – legal and anatom-
ical – restrictions. Two important aspects are examined: When and where shall the
measurements of the temperature take place?
In 1993 the topic of the Optimal Design of Experiments (DOE) has been treated suc-
cessfully by Pukelsheim among others [41]. Linear models are examined and the design
problem is exclusively approached with the help of statistic tools in combination with
linear algebra and convex analysis. The approach of stating an experimental design in
this thesis follows the work of Körkel [6, 29]. The experiment is embedded in a statistical
context. Different criteria for the measurement of the statistical quality are introduced
[4, 42], where the uncertainty is expressed as a functional that depends on the poste-
rior covariance matrix. Therefore, the posterior covariance matrix assesses the quality of
the measurement process and is adjusted by allocating weights to the available points of
measurement. By minimizing the uncertainty an optimization problem evolves which is
approached by means of recent work of Ghattas [2, 1]. The innovative work of Ghattas
provides valuable insights in terms of the Optimal Experimental Design to Estimate the
Time of Death in a Bayesian Context. The optimization problem is NP-hard1, which is
why an heuristic approach is introduced.

1The class of Non-deterministic polynomial-time (NP) problems are avoided due to their high complex-
ity. NP-hard problems are at least as hard as the hardest problems in NP.
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4.1 Experimental Design

The output of the Forward Model depends on the chosen experimental design.

Definition 24. Considering u as the solution of the Forward Model by Definition 7 an
experiment is defined by a mapping,

M : u ∈ Rq → m ∈ Rq,

stating the available points of measurement such that q = Nτ ·Ns and,

mj := u(xij , tkj ), ij ∈ {x1, . . . , xNs}, kj ∈ {t1, . . . , tNr},
over Ns ∈ N+ points in space: {x1, . . . , xNs} ⊂ D,
and Nτ ∈ N+ points in time: {t1, . . . , tNτ } ⊂ [0, T ].

(4.1)

Definition 25. A design based on an experiment from Definition 24 is defined by the
weight vector of the available points of measurement,

w = [w1, . . . , wq] ∈ {0, 1}q.

The weight wj ∈ {0, 1} denotes the (non-)occurrence of a measurement at the corre-
sponding point of measurement mj, where wj = 1 represents an occurring measurement,
respectively wj = 0 the opposite.

For reasons of simplification we first examine the problem with respect to space before
integrating the time later. Therefore, the set of available points of measurement

m := [x1, . . . , xNs ] ∈ RNs

is given with a corresponding weight wi ∈ {0, 1} assigned to each point of measurement xi

w = [w1, . . . , wNs ] ∈ {0, 1}Ns .

Furthermore, the number of allowed measurements l ∈ N+ is limited by

Ns∑
i=1

wi ≤ l. (4.2)

The goal is to choose the optimal subset of all available points of measurement.

4.2 Design of a Bayesian Normal Linear Model

The experimental design is embedded in the theory of the Bayesian Normal Linear model
of Section 3.3.1. The statistical quantities of the model depend on the allocated design
displayed by the binary weight vector w ∈ {0, 1}Ns .
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Definition 26. The weight-noise distribution conditioned on a design characterized by

W = diag(w1, . . . , wNs) ∈ {0, 1}Ns×Ns ,

with the noise distribution e ∼ N(0,Γnoise) is defined as

πnoise(e|w) ∝ exp
(
− 1

2
eTW 1/2Γ−1

noiseW
1/2e

)
.

Definition 27. The weight-noise inverse covariance matrix

Wσ ∈ RNs×Ns

is defined as

Wσ = W 1/2 Γ−1
noiseW

1/2 = diag
(
w1/σ

2
1, . . . , wNs/σ

2
Ns

)
. (4.3)

Remark. Evidently, the weight-noise inverse covariance matrix Wσ highlights that the
components of the posterior covariance matrix are maximized by collecting no informa-
tion and minimized by collecting information at every available point of measurement xi.
Considering a weight wi = 1 the corresponding diagonal element of Wσ is unaltered with
respect to Γ−1

noise. On the contrary, a weight wi = 0 shifts the corresponding diagonal ele-
ment of Wσ to zero. In this case no information is gathered, such that the element of the
posterior variance approaches infinity.

Theorem 8. The design posterior distribution of the linear additive model (see The-
orem 6),

F : Rn → Rq,

with the given matrix A ∈ Rq×n,

Um = A(P ) + E,

and the Gaussian random variables,

P : Ω→ Rn and E,Um : Ω→ Rq,

conditioned on a design characterized by W = diag(w1, . . . , wNs) ∈ {0, 1}Ns×Ns states

π(p| um,w) ∝ exp
(
− 1

2
(p− ppost)TΓ−1

post(p− ppost)
)

with Γpost = (Γ−1
pr +ATWσA)−1, (4.4)

ppost =
(
Γ−1
pr +ATWσA

)−1(
ATWσ(um) + Γ−1

pr ppr
)
. (4.5)

Definition 28. The Maximum A Posterior Estimator conditioned on a design char-
acterized by W = diag(w1, . . . , wNs) ∈ {0, 1}Ns×Ns is defined as

pMAP (w) = argmax
p∈Rn

π(p|um,w).
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Definition 29. For the time-dependent problem the weight-noise inverse covariance
matrix Wσ ∈ Rq×q is defined with q = Ns · Nτ . The matrix holds the weights for all
available points of measurement over space and time. The matrix Wσ is a diagonal matrix
that holds Wj ∈ RNs×Ns as block entries,

Wσ =



W1 0 · · · · · · 0

0
. . . 0

. . . 0
...

. . . Wj
. . .

...
...

. . .
. . .

. . .
...

0 · · · · · · 0 WNτ


∈ Rq×q. (4.6)

Remark. Adjusting the weight-noise distribution considering all q points of measurement
over time and space is trivial. The design posterior distribution in dependence of a certain
design over time and space considering (4.6) is computed analogously to (4.4) and (4.5).

4.3 Statistical Quality of a Model

Measuring the quality of the experiment is based on the evaluation of the uncertainty of
the model. A common ground is to analyze the posterior covariance matrix since it in-
cludes the spread and extent of reliability of the unknown parameters. Different posterior
covariance matrices emerge depending on the chosen design.
The Normal Linear model provides a closed form of the posterior covariance matrix. Hence,
the posterior covariance matrix is computed analytically and independently of the exper-
imental data. The importance of a valid linearized local model is emphasized once more.
In terms of non-linear models the problem proceeds that for one, the posterior covariance
matrix cannot be evaluated by a closed form, and for another, the posterior covariance ma-
trix depends on the experimental data. Consequently, for strongly non-linear problems the
given approach does not evaluate a meaningful optimal design prior to the experimental
performance. One might consider a model based on the posterior covariance matrix over
all potential experimental data. Alternatively, the evaluation of the posterior covariance
matrix is performed via sampling methods, e.g. as introduced in Section 3.4.1. Evaluating
a good estimator for non-linear models is often accompanied with a high computation
time [1].

4.3.1 Criteria for Measuring the Uncertainty

The uncertainty of the model is assessed by a functional,

φ : Rq×q → R.

The functional outlines a chosen criterion according to the focus of the problem. Different
criteria have established in the statistical context of measuring the quality of a model [42].

• The A-optimality criterion observes the average of the marginal variances of all
parameters,

φA(Γ) =
1

n
tr(Γ).
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• The D-optimality criterion observes the determinant of the covariance matrix,

φD(Γ) = det(Γ).

• The E-optimality criterion observes the eigenvalues of the covariance matrix,

φE(Γ) = λmax(Γ).

• The optimality criterion observes a distinct selection of particular parameters of in-
terest. Therefore, we obtain a restricted case of the A-optimality criterion by choosing
a vector c ∈ Rn laying focus on certain unknown parameters,

φC(Γ) = cTΓc.

Considering the minimization of the average variance of all unknowns by means of an
A-optimal design has established as a popular criterion,

φA
(
Γpost(w)

)
=

1

n
tr
(
Γpost(w)

)
. (4.7)

Since we are interested in the time of death of the parameter set in Definition 7, a suitable
criterion is to suppress the uncertainty of only one unknown. The other parameters are of
no major concern. We choose the C-optimal design to lay focus on the marginal variance
of the time of death by defining c = e1 ∈ R4 as the corresponding unity vector,

φC
(
Γpost(w)

)
= cT Γpost(w) c. (4.8)

4.4 Optimization Problem

Finding the optimal experimental design is done by solving an optimization problem com-
posed of an objective function and suitable constraints. The constraints here ensure a bi-
nary design and a restricted number of allowed measurements that are henceforth stated
by l ∈ N+.

min
w

φ
(
Γpost(w)

)
s.t.

q∑
i=1

wi ≤ l

w ∈ {0, 1}q

(4.9)

The combinatorial optimization problem (4.9) transforms into the problem of the Sparse
Approximate Solutions to Linear Systems.

Definition 30. The Sparse Approximate Solutions to Linear Systems (SAS) treats the
computation of the vector w ∈ Rq with the minimal number of non-zero entries, such that
given the matrix A ∈ Rk×q, the vector b ∈ Rk, and the scalar ε ≥ 0 it holds that

||Aw − b||2 ≤ ε.
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The SAS -problem has been addressed as a fundamental problem in matrix computations
and states a NP-hard problem [37]. For binary matrices the problem refers to the Minimum
Weight Solution. The NP-hardness of the Minimum Weight Solution has been treated by
Gallager in the context of error corrective coding [19, pp. 196]. This thesis will not proof
the NP-hardness of the problem or go further into detail. The background of the theory
and the history of NP-completeness, as well as examples of NP-hard problems can be
found i.a. by Garey and Johnson [20].

4.4.1 Relaxed Optimization Problem

The NP-hard optimization problem is relaxed by solving (4.9) over the range of continuous
values instead of binary values, while l ∈ N+ invariably refers to the number of allowed
measurements. As from now

#»
0 ∈ Rq refers to the vector of all zeros, respectively

#»
1 ∈ Rq

to the vector of all ones.

min
w

φ
(
Γpost(w)

)
s.t.

∑
i

wi ≤ l

#»
0 ≤ w ≤ #»

1

(4.10)

The constraints are embedded in the objective function by considering a penalty function,

p(w) : Rq → R+,

and a multiplier λ ≥ 0 that controls the sparsity of the design. We ensure that the number
of allowed measurements is not exceeded in the experiment with choosing a proper λ.

min
w

φ
(
Γpost(w)

)
+ λp(w),

s.t.
#»
0 ≤ w ≤ #»

1 .
(4.11)

The lp-norm is chosen as a penalty function,

lp(w) =
(∑

i

(wi)
p
)1/p

.

The l0-norm defines here the number of non-zero components of the vector. The optimiza-
tion problem (4.11) including the l0-norm as means of a penalty function leads us back to
the NP-hard problem [37] (see Definition 30). The case of a sparse binary solution will be
discussed later in Section 4.4.3. To work around the indicated difficulties and avoid the
NP-hardness, the optimization problem refers to (4.11) with the continuous solution

#»
0 ≤ w ≤ #»

1 ,

and the l1-regularization as a penalty function,

p(w) = l1(w) =
∑
i

|wi|. (4.12)
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Theorem 9. If the penalty function p(w) is convex the optimization problem (4.11) has
a solution and the solution is unique.

Proof. The objective function is defined as

φ(Γpost(w)) + λp(w).

The index function or trace function φ(·) is linear. The weight vector enters linearly in
Γpost(w) by (4.3) and (4.4). The posterior covariance matrix and its inverse are symmetric
positive definite matrices by Theorem 6. The strict convexity is ensured sinceX → φ(X−1)
is a strict convex function on the cone of symmetric positive definite matrices [38, p. 82].
With p(w) also being a convex function the unique solution exists [24].

4.4.2 Gradient Descent

The optimizaion problem is numerically solved by the Gradient descent. In each iteration
the first-order optimization algorithm computes the search direction given by the negative
gradient of the functional,

d = −∇
(
φ
(
Γpost(w) + p(w)

)
.

The penalty term as the l1-norm is a non-differentiable convex function. The subgradient
is evaluated as a generalized gradient and stated in [8]. Considering a step size γ ≥ 0 and
the sequence,

w0, w1, w2, . . . ,wn,

the Gradient descent computes,

wn+1 = wn − γ · ∇φ
(
Γpost(w

n) + λp(wn)
)
.

The algorithm converges to the desired global minimum (Theorem 9),

φ
(
Γpost(w

0)
)

+ p(w0) ≥ φ
(
Γpost(w

1)
)

+ p(w1) ≥ · · · ≥ φ
(
Γpost(w

n+1)
)

+ p(wn+1).

Details of the Gradient descent can be found in [24, 18]. Both functionals, (4.7) and (4.8),
depend on the posterior covariance design-matrix (4.4). Therefore, the derivative of the
posterior covariance design-matrix will be evaluated in the following.

Theorem 10. Consider the matrix B(x) ∈ Rn×n whose elements are functions of the
scalar parameter x. Let B(x) be a non-singular matrix for all x ∈ R. The derivative of
the inverse B−1 = B(x)−1 with respect to x is in [40] defined as

∂

∂x
B−1 = −B−1∂B(x)

∂x
B−1. (4.13)
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Proof. Let bij(x) be the components of B(x) and
∼
b ij(x) be the components of B−1(x),

n∑
j=1

bij(x)
∼
bjk(x) = δik with δik =

{
1, i = k
0, i 6= k

⇔ ∂

∂x

( n∑
j=1

bij(x)
∼
bjk(x)

)
= 0

⇔
n∑
j=1

(∂bij(x)

∂x
b̃ij(x) + bij(x)

∂b̃ij(x)

∂x

)
= 0

⇔ ∂B

∂x
B−1 = −B∂B

−1

∂x
.

Theorem 11. The inverse of the posterior covariance design-matrix (4.4) is written as a
linear combination of independent matrices such that,(

Γpost(w)
)−1

=
(
Γ−1
pr +

∼
w1 Aw1 + · · ·+ ∼

wq Awi
)
,

∼
wi ∈ R, Awi ∈ Rq×q.

(4.14)

Proof.

With A =


a11 · · · a1n

a21
. . . a2n

...
. . .

...
aq1 · · · aqn

 ∈ Rq×n, Wσ =


w1

σ2
1

0 · · · 0

0 w2

σ2
2

. . .
...

...
. . .

. . . 0
0 · · · 0

wq
σ2
q

 ∈ Rq×q,

we set Awi =

ai1ai1 · · · ai1ain
...

. . .
...

ainai1 · · · ainain

 ∈ Rn×n,
∼
wi =

wi
σ2
i

∈ R,

such that AT Wσ A =


∑

i ai1
∼
wiai1 · · ·

∑
i ai1

∼
wiain

...
. . .

...∑
i ain

∼
wiai1 · · ·

∑
i ain

∼
wiain

 =

q∑
i=1

∼
wi

ai1ai1 · · · ai1ain
...

. . .
...

ainai1 · · · ainain

 ,

and Γpost(w) =
(
Γ−1
pr +ATWσA

)−1
=
(
Γ−1
pr +

∼
w1 Aw1 + · · ·+ ∼

wq Awi
)−1

.

Corollary 1. The derivative of the posterior covariance design-matrix with respect to
wi ∈ R is defined as

∂

∂wi
Γpost(w) = − 1

σ2
i

(
Γpost(w) Awi(w) Γpost(w)

)
.
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Proof. Applying (4.13) and (4.14) gives,

∂

∂wi
Γpost(w) =

∂

∂wi

(
Γ−1
pr +ATWσA

)−1

= −Γpost(w)
∂

∂wi
Γpost(w)−1 Γpost(w)

= −Γpost(w)
∂

∂wi

(
Γ−1
pr +

w1

σ2
1

Aw1 + · · ·+ wq
σ2
q

Awq
)

Γpost(w)

= − 1

σ2
i

(
Γpost(w) Awi(w) Γpost(w)

)
.

Corollary 2. The gradient of the scalar objective function φ(w) with respect to w ∈ Rq
is evaluated by,

∇φ
(
Γpost(w)

)
=
[
∂φ(w)
∂w1

∂φ(w)
∂w2

· · · ∂φ(w)
∂wq

]T
.

By considering the trace function or the index function, the gradient of the objective func-
tion is defined as,

(4.8) :
∂φC(w)

∂wi
=

∂

∂wi

(
cTΓpost(w)c

)
= cT

( ∂

∂wi
Γpost(w)

)
c

= − 1

σ2
i

cT
(
Γpost(w) Awi(w) Γpost(w)

)
c (4.15)

(4.7) :
∂φA(w)

∂wi
=

∂

∂wi

(
1

n
tr
(
Γpost(w)

))
=

1

n
tr
( ∂

∂wi
Γpost(w)

)
= − 1

n · σ2
i

tr
(

Γpost(w) Awi(w) Γpost(w)
)
. (4.16)

The algorithm that evaluates the optimal design by (4.11) is outlined in Algorithm 3 in
the Appendix.

4.4.3 Integer Optimization Problem

Clearly, the relaxed optimization problem (4.11) permits a greater solution set than the
original combinatorial optimization problem (4.9). In the context of an experimental design
by Definition 25 a strategy has to be evaluated to ascribe an importance and a meaning
to the continuous variables, since the original binary assertion wi ∈ {0, 1} cannot be taken
for granted. In the case of finding a binary optimal experimental design corresponding to
the relaxed optimization problem (4.11) an integer programming problem arises,

min
w

φ(Γpost(w)) + λp(w)

s.t. w ∈ {0, 1}q.
(4.17)

This integer programming problem cannot be solved in polynomial time. To evaluate a
binary design the continuous approach is embedded in the Branch and Bound algorithm
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(B&B). The functionality of the algorithm is outlined in [10], whereas the mathematical
background and theory is described in detail in [30, 16].
An heuristic approach, detached from the B&B algorithm, is introduced that determines
for our computational purposes sufficiently satisfactory results affirmed by the efficiency
(Definition 33) applied in Section 4.5.

Definition 31. The solution of the relaxed optimization problem (4.11) is defined as w∗

#»
0 ≤ w∗ ≤ #»

1

satisfying

l =
∑
i

w∗i .

Definition 32. The heuristic solution

wd ∈ {0, 1}q

of the continuous solution w∗ and the corresponding variable l of Definition 31 is defined by
setting the components wdi such that the l locations with largest values in w∗ are rounded to
one: wdi = 1, and the remaining locations to zero, wdi = 0, i.e. these points of measurement
will be neglected.

The heuristic solution of Definition 32 and its corresponding continuous solution of Defi-
nition 31 refer to the same instance since∑

i

w∗i =
∑
i

wdi .

Definition 33. The efficiency of the heuristic solution wd with respect to the optimal
continuous solution w∗ of the optimization problem (4.11) including the objective function
φ(w) is evaluated through,

eff(wd) =
φ(w∗)− φ(

#»
0 )

φ(wd)− φ(
#»
0 )
.

The efficiency rate provides a reference value for the quality of the heuristic solution.
Though one has to keep in mind that a small efficiency (< 0.9) does not go along with a
poorly chosen heuristic as such, since φ(w∗) holds merely as a lower bound of the integer
programming problem. However, an efficiency ≥ 0.9 is desirable and speaks for the quality
of the heuristic solution.

4.4.4 Branch and Bound Algorithm

The Branch and Bound algorithm is of fundamental importance in the field of finding
a global solution of an integer programming problem such as (4.17). The enumerative
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method divides the initial relaxed non-integer problem P0 as given by (4.11) into subprob-
lems. The complete solution space W (P0) is bounded such that a subsolution set W (Pi)
is defined that contains additional binary constraints. In the case of an experimental de-
sign as introduced in Section 4.2 two subproblems emerge by fixing one component of the
weight vector w with either wj = 0 or wj = 1. The branching contrives a tree structure
as seen in Figure 18, where each node represents a partially fixed design containing the
evolving entities including their solution sets. The root of the tree corresponds to the
original continuous optimization problem P0(w). The tree structure displays that the
children Pi0, Pi1 of a node Pi represent the optimization problem with the solution subset
such that,

W (Pi0) ∪̇ W (Pi1) = W (Pi).

P0

P1

P11

P111

P10

P2

P21 P20

Figure 18: The Binary Tree of Subproblems

The B&B is based on the so-called active set A which contains all entities that are still
taken into consideration of holding the optimal solution of the integer problem (4.17).
The process to trace suboptimal allocations at an early stage results from the so-called
bounding and branching steps of the algorithm. We determine the lower bound

lb ≤ φ(w) ∀Pi(w) ∈ A. (4.18)

Naturally, the lower bound of the relaxed optimization problem (4.11) holds as a global
lower bound of the integer programming problem (4.17). The upper bound ub ∈ R gives
the best known integer solution heretofore. The iterations of the algorithm are outlined
in Algorithm 2.
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Algorithm 2 Branch and Bound Algorithm

Input: Initial problem P0

Output: Optimal integer solution w∗ with φ(w∗) ≤ φ(w), ∀w ∈ {0, 1}q
1: A← P0 . Initial active set
2: lb ← φ(w0) . Initial lower bound
3: ub ←∞ . Initial upper bound
4: while A 6= ∅ do
5: Pick Pi ∈ A . The bounding step: Find solution of Pi
6: l∗b = φ(w∗) ≤ φ(wi), ∀w∗, wi ∈W (Pi)
7: if ub ≤ l∗b then . Pi is suboptimal and discard.
8: A← {A \ Pi}
9: else . The branching step: Consider subproblems of Pi

10: A← {A \ Pi} ∪ {Pi1 , Pi0}
11: if w∗ ∈ {0, 1} then . Best known integer solution w∗i
12: ub ← u∗b with u∗b = φ(w∗)
13: end if
14: end if
15: end while

The worst case scenario lists all possible integer solutions. Therefore, the exponential com-
plexity of the original problem is not avoided. To optimize the efficiency of the algorithm
the focus is laid on the identification of suboptimality at an early stage. Different tech-
niques evolved, e.g. based on the sequence of the considered nodes: breadth-first search
vs. depth-first search [10].
In this thesis the heuristic approach of Definition 32 will be applied for the computations
in the following Section 4.5.

4.5 Numerical Experiments and Results

The following experiments in this section are all optimized considering the C-optimal de-
sign (4.8). The uncertainty states the marginal variance of the time of death. Heretofore
we refer to φ(w) as the uncertainty. In this section, the efficiency of the heuristic solution
from Definition 32 is analyzed. The following experiments refer to Definition 24 and pro-
vide the basis for choosing a certain design given by Definition 25. Furthermore, different
designs are analyzed and compared to each other. The computational results should reveal
the meaningful application of an optimal design in the context of the estimation of the
time of death.

4.5.1 Experiment 1: Efficiency of the Heuristic Solution

Firstly, we analyze the efficiency of the experiment with Ns = 15 points of measurement in
space and one point in time, Nτ = 1. With w∗

l we refer to the optimal design considering
the restriction of

l ∈ {1, . . . , 15}
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allowed measurements. The uncertainty of the optimal solution w∗
l is compared to the

uncertainty of the corresponding heuristic solution wd
l . The uncertainty of the optimal

solution holds as a lower bound of the uncertainty of the heuristic solution,

φ(w∗
l ) ≤ φ(wd

l ), ∀l.

Figure 19 displays the two uncertainties. The uncertainties are similar, whereas the solution
of the optimal design given by the blue line lays marginally below the uncertainty of
the heuristic design given by the red line. We assume that in this case the heuristic of
Definition 32 performs well. The efficiency rate by Definition 33 confirms the assumption,

0.999 ≤ eff (wd
l ) ≤ 1, ∀l.

Since φ(w∗)� φ(
#»
0 ), we evaluate the absolute efficiency,

eff abs(w
d
l ) :=

φ(w∗
l )

φ(wd
l )
. (4.19)

Figure 20 displays the absolute efficiency,

0.97 ≤ eff abs(w
d
l ) ≤ 1, ∀l.
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Figure 19: The uncertainty of the optimal solution lays marginally below the uncertainty
of the heuristic solution.
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Figure 20: The absolute efficiency of the heuristic solution approximates 1.

Secondly, we analyze the efficiency of more complex experiments that consider a set of
Ns = 187 points of measurement (Nτ = 1). The optimal design is computed for

l ∈ {1, . . . , 150}

allowed measurements. Figure 21 displays that the uncertainty of the heuristic solution is
almost identical to the uncertainty of the continuous solution ∀l.
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Figure 21: The uncertainty of the continuous solution is almost identical to the uncertainty
of the heuristic solution.

Figure 22 refers to the absolute efficiency (4.19). The absolute efficiency converges to 1 for
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the experimental designs with a greater number of allowed measurements.
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Figure 22: The absolute efficiency of the heuristic solution converges to 1.

Here, the heuristic solution performs nearly as good as the optimal solution. In practice,
the efficiency has to be computed to be certain that the heuristic solution gives sufficient
results.

4.5.2 Experiment 2: Number of Points of Measurement

We analyze three independent experiments that each hold a certain number of available
points of measurement (4.1). For each experiment:

ei, i = 1, 2, 3,

the optimal design is evaluated. The points of measurement in space are identical for all
experiments,

N ei
s = 14,∀i.

The experiments differ by the number of points of measurement in time,

N e1
τ = 1, N e2

τ = 2, N e3
τ = 6,

such that the following points in time (in seconds) are considered,

te1 = 100, te2 ∈ {100, 1300}, te3 ∈ {100, 1300, 2500, 3700, 4900, 6100}.

The total number of points of measurement computes as,

qe1 = 14, qe2 = 28, qe3 = 84.

The experiments are embedded in each other, therefore it holds for the set of available
points of measurement that,

me1 ⊂ me2 ⊂ me3 .
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We analyze to what extent the number of available points of measurement qei affect the
uncertainty of the optimal design while the number of allowed measurements l stays fixed
in all instances. Additionally to the stated aspect, we analyze the effect of the number
of allowed measurements while the number of available points of measurement qei stays
fixed in all instances, i.e. we vary l,

1 ∈ {1, . . . , 14}.

Henceforth for simplification reasons the uncertainty of the optimal design with qei avail-
able points of measurement and l as the number of allowed measurements is defined by

φ
(
wi

l

)
∀i, l.

We analyze if the effort of regarding a more complex experiment pays off by observing a
significant smaller uncertainty. Figure 23 displays the uncertainty considering the different
optimal designs evaluated on the basis of different experiments. We consider experiments
that differ by the number of available points of measurement shown by: the red line
corresponding to e1, the blue line corresponding to e2, and the green line corresponding
to e3. Furthermore, the experiments differ by the number of allowed measurements l.
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Figure 23: The uncertainty decreases when considering a broader number of available
points of measurement and increasing the number of allowed measurements.

Figure 23 shows clearly that the uncertainty is smaller if a greater selection of points of
measurement is available. As computed it holds that,

φ
(
w1

l

)
> φ

(
w2

l

)
> φ

(
w3

l

)
, ∀l.

Furthermore, the uncertainty decreases when allowing more measurements,

φ
(
wi

(l−1)

)
> φ

(
wi

l

)
, ∀i, l = 2, . . . 14.
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These observations are intuitive since an experiment with less restrictions must perform
at least as well as an experiment with higher restrictions.
Firstly, we examine the impact regarding the number of available points of measurement.
Experiment 1 in comparison to Experiment 2 holds half the number of available points
of measurement and the uncertainty of Experiment 1 decreases approximately by half
(with constant l) which is displayed by comparing each point of the red line with the
corresponding point of the blue line. Nevertheless, the effect does not stay the same when
increasing the number of available points of measurement which illustrates through the
comparison of Experiment 3 with Experiment 2. Although Experiment 3 considers three
times the number of available points of measurement than Experiment 2 the difference of
the computed uncertainties is minor as seen by comparing the blue line to the green line.
Secondly, we analyze the effect of the number of allowed measurements l. The uncertainty
of Experiment 1, Experiment 2, or Experiment 3 decreases when allowing to perform more
measurements. The uncertainty drops significantly in between 1 ≤ l ≤ 4, though the effect
extenuates for greater l. The benefit of allowing 5 ≤ l ≤ 14 measurements might not be
worth the effort or costs.
In conclusion it holds that a greater number of available points of measurement and a
greater number of allowed measurements is beneficial, though we have to keep in mind
that the positive effect vanishes. At first the output changes significantly, while after a
certain point no distinct improvement of the uncertainty seems to occur. Therefore, it is
important to evaluate the uncertainty of the optimal design for different experiments to
evaluate a compromise between a small uncertainty and the effort that comes along with
the chosen experiment.

4.5.3 Experiment 3: Instance of Time for Measurements

We consider experiments with Ns = 25 available points of measurement in space and
Nτ = 1 available points of measurement in time. Five experiments,

ei, i = 1, 2, 3, 4, 5,

are performed for different points in time in seconds,

te1 = 0, te2 = 3000, te3 = 6000, te4 = 9000, te5 = 12000.

In each experiment l = 3 measurements are allowed. The optimal design is computed for
all five experiments, with the corresponding uncertainty defined as

φ
(
wi

l

)
,∀i, l = 3.

The uncertainty of the optimal design is shown with the red line in Figure 24. In addition,
we compute the uncertainty of a design that is optimized in t1 = 0 seconds. Thenceforward
the design stays fixed and is not further rearranged. Therefore, a non-optimal design might
emerge for t > t1. The uncertainty of the non-optimal design is shown with the blue line
in Figure 24.
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Figure 24: The uncertainty of the optimal design versus the uncertainty of the fixed design

Even by optimizing once in the beginning the certainty in the future differs severely com-
pared to the certainty of the optimal design. Figure 24 shows that the marginal variance
increases monotonically in both cases. For the chosen experiment it is important to place
measurements at the beginning of the cooling process. Clearly, the uncertainty for the
fixed design (blue) is higher compared to the uncertainty of the optimal design (red). The
significance of the optimization process and the importance of adapting to new experi-
ments, stated here by the new point in time, is highlighted. The points of measurement of
the optimal design shift over time. The computations are performed on the cylinder. The
following two illustrations serve as a simplification to display the dynamic of the optimal
design over time and space. The allocation of the optimal points of measurement w∗

i > 0
(Definition 31) are displayed in Figure 25 in red, respectively the allocation of the points
of measurement of the corresponding heuristic solution wd

i = 1 (Definition 32) are dis-
played in Figure 26. Both Figures show that the optimal points distribute widely over the
available points of measurement. Additionally, the results of section 4.5.1 are confirmed
since the optimal solution approaches a sparse solution.
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Optimal Design t=0 Optimal Design t=3000 Optimal Design t=6000 Optimal Design t=9000 Optimal Design t=12000

Figure 25: The optimal design over different points in time

Heuristic Design t=0 Heuristic Design t=3000 Heuristic Design t=6000 Heuristic Design t=9000 Heuristic Design t=12000 

Figure 26: The heuristic design over different points in time

4.5.4 Experiment 4: Optimal Design versus Uniform and Ordinary Design

The importance of choosing the optimal design is clarified by comparing the uncertainty
of the optimal design to the uncertainty of the chosen ordinary or uniform design. The
experiments,

ei, i = 1, . . . , 6,

are set by Ns = 60 points of measurement in space, Nτ = 1 points of measurement in
time, and l = 3 as the number of allowed measurements. The experiments differ by the
point in time of the measurements,

te1 = 100, te2 = 1300, te3 = 2500, te4 = 3700, te5 = 4900, te5 = 6100 seconds. (4.20)

The cylindrical phantom with its available points of measurement over space is shown in
Figure 27.
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Figure 27: The cylindrical phantom and its 60 available points of measurement

The uniform design and the ordinary design of the cylindrical phantom are illustrated in
Figure 28(a) and Figure 28(b). The uniform design considers one point of measurement
on the top, one on the bottom and one on the inside of the phantom. The ordinary design
is declared by three points of measurement situated at the drilling hole on the inside of the
phantom. The ordinary design represents the current state of the measurement process
at a corpse. The rectal measurement is performed without considering a different design.
The allocation of these points of measurement for both designs is identical for every point
in time (4.20).

(a) Uniform Design (b) Ordinary Design
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The optimal design with its corresponding uncertainty, as well as the uncertainties for the
ordinary and the uniform design, are evaluated for every point in time (4.20), such that the
results can be compared in the following Figure 28. Clearly, the optimal design computes a
significantly better certainty than the two alternatives. Furthermore, we observe that the
performance of the uniform design is superior to the performance of the ordinary design.
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Figure 28: The uncertainty of the three different designs over time

Figure 29 states the results of the optimal design for Experiment 1 given by the point in
time of t1 = 100 seconds. One measurement is performed on the top, one on the bottom
and one on the surface of the cylinder. The optimal points of measurement change over
time as listed in detail in Table 1.

Table 1: Optimal position of the three points of measurement
.

Time in seconds te1 = 100 te2 = 1300 te3 = 2500 te4 = 3700 te5 = 4900 te6 = 6100

Position Top Surface Surface Surface Surface Surface
Surface Inside Inside Inside Surface Surface
Bottom Inside Inside Inside Inside Inside
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Figure 29: The optimal design for t = 100 seconds

In the beginning of the cooling process the points of measurement on the top and on the
bottom of the phantom are favored, while the points of measurement on the inside are
unfavored. The points on the inside are rather important later in the cooling process.
Figure 30 shows the phantom with the optimal points of measurement for certain points
in time corresponding to Table 1.
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(a) t = 1300 seconds (b) t = 4900 seconds

(c) t = 6100 seconds

Figure 30: Different optimal points of measurement over time

We conclude from the experiment that the optimal points of measurement change over
time which has significant impact on reducing the uncertainty. The computations are
performed for a more complex design of Ns = 187 available points of measurement and
l ∈ {1, 3, 7}. The computational results confirm the former result. It holds that in the
beginning of the cooling process the measurements are performed on the top and on the
bottom of the phantom. Over time the optimal design changes. For the interested reader
the positions of the points of measurement are listed in detail in Table 2 in the Appendix.
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5 Conclusion and Outlook

This thesis provides insights how the design of the temperature measurement process
impacts the quality of the estimate significantly. The computations in Section 3 and
Section 4 are performed on the cylindrical phantom as given in Section 2.5.1. Different
designs result in different estimates that are accompanied by a particular uncertainty. The
uncertainty varies and can be minimized efficiently as shown in this thesis. By simulating
the cooling process and performing experimental measurements the estimate, in this case
the Maximum A Posteriori Estimator (MAP), is computed. To evaluate a reliable estimate
the optimization of the design of the experiment can now be applied.

The results as part of the Optimal Design of Experiments of the simplified model, the
cylinder, are generally applicable to other objects, in particular to the human body. The
evaluation of the MAP and the optimal design should be performed by the forensic experts
at the crime scene. The forensic experts evaluate the optimal design, the position of the
points of measurement, based on the given circumstances and constraints on-site. Since
the cooling process is an ongoing and fast moving process, the design has to be evaluated
quickly.

The approach in this thesis focuses on linear or linearized models. The theory for strongly
non-linear models needs to be approached differently. The optimal design of the experi-
ment depends on the experimental data that provides the foundation of the estimate of
the parameter identification. The planing of an optimal experiment results in a serial pro-
cess of parameter estimation and experimental designing. The non-linear experimental
design considering the parameter identification yields optimization problems embedded in
the validation process. New measurements and information give a more reliable MAP.
One should consider the current MAP for the local optimization design process of the
linearized model.

Currently only the rectal point of measurement is considered as a point of measurement
over space in the field of forensic legal medicine in Germany [11]. This restriction is based
on practical and legal purposes, since the method is non-invasive, the point of measure-
ment is reproductively accessible, and the temperature is close to the blood heat. Besides
the rectal point of measurement it reveals that measuring the temperature near the di-
gestive system or the esophagus is medically sensible. Clearly, more measurements over
space and time, give us more information. Nevertheless, it is not reasonable to consider
every accessible point of the body. Peripheral points located at the extremities should not
be considered, since the initial condition is too uncertain. The initial temperature varies
considerably, depending on e.g. the blood flow, the blood pressure, the activity and stress
level of the person, the outside temperature, or the genetic predisposition. The useless
points of measurement can either be neglected prior, or the great uncertainty can be dis-
played in the marginal variance of the respective point of measurement, the corresponding
diagonal element of the noise covariance matrix.
Changes considering the temperature measurements at corpses occur by proving the rel-
evance of the experimental design which can be deduced by the numerical results of Sec-
tion 4. This thesis should lay the foundation for future changes.
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Appendices

Algorithm 3 Optimal Design of Experiments: Gradient Descent

Input: Initial vector: wnew ∈ Rq, initial penalty multiplier: λ ∈ R, precision to adjust
λ : ε2 ∈ R, restricted number of measurements: restrict ∈ R, precision for gradient
descent: ε1 ∈ R

Output: Optimal design: w such that
∑

iwi ≤ restrict and 0 ≤ wi ≤ 1
1: weight← restrict+ 1
2: while weight 6= restrict do
3: w ← wnew +

#»
1

4: while ||w −wnew|| > ε1 do
5: w ← wnew

6: y ← φ(w) + λp(w) . Value of objective function
7: ynew ← y + 1
8: γ ← 0.1 . Step size
9: while ynew > y do

10: wnew ← w − γ(∇(φ(w) + λp(w))) . Gradient descent
11: for each component of wnew do . Projection onto set of constraints
12: if wnew(j) < 0 then wnew(j)← 0
13: else
14: if wnew(j) > 1 then wnew(j)← 1
15: end if
16: end if
17: end for
18: ynew ← φ(wnew) + λp(wnew) . Potential new value of objective function
19: γ ← 0.5γ . Adjust step size
20: end while
21: end while
22: w ← wnew

23: weight←
∑

iwi . Allowed measurements of optimal solution w
24: λ← λ+ ε2 ∗ (weight− restrict) . Adjust penalty term to meet constraint
25: end while
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Table 2: Optimal Position of Points of Measurement

Time in seconds te1 = 100 te2 = 1300 te3 = 2500 te4 = 3700 te5 = 4900 te6 = 6100

One Measurement Top Bottom Bottom Surface Surface Surface

Three Measurements Top Bottom Bottom Surface Surface Surface
Bottom Bottom Bottom Surface Surface Surface
Bottom Surface Bottom Inside Inside Inside

Seven Measurements Top Bottom Bottom Surface Surface Surface
Top Bottom Bottom Surface Surface Surface

Bottom Bottom Bottom Surface Surface Surface
Bottom Bottom Bottom Surface Surface Surface
Bottom Bottom Bottom Bottom Surface Surface
Bottom Bottom Bottom Inside Inside Inside
Bottom Surface Surface Inside Inside Inside
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