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ABSTRACT

The goal of quantitative photoacoustic tomography (qPAT) is to recover maps of the chromophore distribu-
tions from multiwavelength images of the initial pressure. Model-based inversions that incorporate the physical
processes underlying the photoacoustic (PA) signal generation represent a promising approach. Monte-Carlo
models of the light transport are computationally expensive, but provide accurate fluence distributions predic-
tions, especially in the ballistic and quasi-ballistic regimes. Here, we focus on the inverse problem of 3D qPAT
of blood oxygenation and investigate the application of the Monte-Carlo method in a model-based inversion
scheme. A forward model of the light transport based on the MCX simulator and acoustic propagation modeled
by the k-Wave toolbox was used to generate a PA image data set acquired in a tissue phantom over a planar
detection geometry. The combination of the optical and acoustic models is shown to account for limited-view
artifacts. In addition, the errors in the fluence due to, for example, partial volume artifacts and absorbers
immediately adjacent to the region of interest are investigated. To accomplish large-scale inversions in 3D, the
number of degrees of freedom is reduced by applying image segmentation to the initial pressure distribution to
extract a limited number of regions with homogeneous optical parameters. The absorber concentration in the
tissue phantom was estimated using a coordinate descent parameter search based on the comparison between
measured and modeled PA spectra. The estimated relative concentrations using this approach lie within 5 %
compared to the known concentrations. Finally, we discuss the feasibility of this approach to recover the blood
oxygenation from experimental data.

Keywords: quantitative photoacoustic tomography, model-based inversion, oxygen saturation, chromophore
concentration, photoacoustic imaging, Monte Carlo methods for light transport, boundary conditions, coordinate
search

1. INTRODUCTION

Photoacoustic tomography (PAT) is a hybrid imaging method combining optical excitation of tissues and
acoustic detection of the induced ultrasound waves.1 The main advantages of PAT are based on its high contrast
due to the spectral specificity of tissues, the low-scattering nature of ultrasonic waves, the large penetration
depth of light in the near infrared regime causing a high depth-to-resolution ratio, and its ability to noninvasively
provide in-vivo images at multiple spatial scales.2

In quantitative photoacoustic tomography (qPAT), the goal is to accurately determine the absolute concen-
tration of light absorbing chromophores. One of the main contrast agents in PAT is blood in form of oxygenated
hemoglobin and deoxygenated hemoglobin. The ratio of oxygenated hemoglobin and total hemoglobin sO2

provides physiological information about the metabolism and changes in the vasculature, which makes it an
important marker for a variety of pathologies characterized by metabolic or structural changes in the vascula-
ture,3 e.g. tracking of tumor growth and therapy in-vivo.4 Model-based inversion schemes have been shown to
be a promising approach for the recovery of chromophore concentrations from PA images quantitatively.5,6
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In order to determine sO2 from PA images, multiwavelength measurements and some form of spectral
unmixing, i.e. the recovery of the relative contribution of various chromophores to the PA signal, are required.7

Spectral unmixing at desirably high spatial resolution represents a large scale inverse problem that is ill-posed8

and non-linear because of the light fluence, which is a non-linear function of absorption in scattering media.

For the recovery of chromophore concentration from PA images, an accurate estimate of the light fluence
within the imaged volume is required.7 Modeling the fluence accurately requires a light model that is valid
not only in the diffuse regime, but also in the quasi-ballistic and ballistic regime, i.e. in proximity of the light
source. Most previous studies employed fluence estimations based on the radiative transfer equation (RTE)
or approximations thereof.9,10 Yet, analytical solutions of the RTE do not exist for arbitrary geometries, and
numerical solutions are computationally expensive. Approximations of the RTE, however, assume diffuse light
propagation, which is only valid for depths greater than a few scattering lengths inside the tissue (typically
∼ 10 mm), i.e. not near light sources which is a region of strong interest in PAT. Therefore, we use a Monte-
Carlo based approach to model the light transport which approximates the RTE with any desired accuracy11

and hence is accurate in all three regimes of interest.12,13

Another major challenge in recovering the chromophore concentration from PA images quantitatively is the
difference between the true initial pressure distribution and the measured PA image due to e.g. limited detection
aperture and the frequency response of the detectors.14,15 We aim to account for this by incorporating the
limited detection aperture in the acoustic forward model16 and by using a Fabry-Pérot interferometer as the
acoustic detector with high bandwidth and measured frequency response.

In this paper, we present a model-based approach that first reduces the scale of the inverse problem to a small
number of unknowns using image segmentation, and then estimates the relative chromophore concentration in a
tissue phantom using an iterative search that reduces the difference between measured and modeled PA spectra.
This paper is structured as follows: The experimental setting using a tissue phantom is introduced in section 2.1,
the two stage PA forward model and the image segmentation is explained in section 2.2. The parameter
estimation framework is outlined in 2.3, and the MC light model is evaluated with respect to boundary effects
and background absorbers in section 2.4. The results in section 3 comprise a comparison between measured and
modeled data and the results of the parameter search providing the relative absorber concentrations utilized in
the tissue phantom.

2. METHODS

2.1 Experimental setup

The PA imaging setup for acquiring 3D image sets consists of a simple tissue phantom that has been excited
using laser pulses and a Fabry-Pérot interferometer (FPI) for detection of ultrasound waves. The system is
based on previous work17 and is described in detail elsewhere18 ∗.

The tissue phantom consisted of three parallel fluoropolymer tubes that were filled with mixtures of CuSO4
and NiSO4 and immersed in diluted milk. A 3D view of the phantom is shown in Fig. 1 A, and a detailed
schematic of the phantom is shown in Fig. 1 B. The three tubes were filled with aqueous solutions of CuSO4 (0.4
M) and NiSO4 (1.52 M) at different relative concentrations. The leftmost tube was filled with 76.6 % NiSO4
and 23.4 % CuSO4, the center tube was filled with 51.7 % NiSO4 and 48.3 % CuSO4, and the rightmost with
27.3 % NiSO4 and 72.7 % CuSO4. The spectrum of different CuSO4 and NiSO4 solutions is shown in Fig. 1 C.

3D image data sets were reconstructed using the k-Wave toolbox16 for Matlab. The image dimensions of the
reconstructed images were 20 × 20 × 8 mm3 with a spatial resolution of dx = dy = dz = 70 µm (i.e. isotropic
voxelsize). The recorded PA signals had been calibrated with the excitation pulse energy to account for the
wavelength dependency of the energy emitted by the laser system.

∗A paper on the experimental setup entitled “Experimental validation of a Monte-Carlo-based inversion scheme for
3-D quantitative photoacoustic tomography” is published in Proc. of SPIE 2017

2



Figure 1: A: 3D view of the phantom setting as result of the image segmentation based on the PA image. The
reconstructed subvolumes for the three tubes is shown in blue, green and red. B: Schematic of the phantom as
cross section. OD (ID) stands for the tubes’ outer (inner) diameter, respectively. C: Absorption and scattering
spectra of the phantom constituents. The left vertical axis indicates µa for the blue, black and red curves. The
blue curve shows µa for a pure NiSO4 solution (1.52 M), the black curve shows pure CuSO4 (0.4 M) and the
red a mixture with 50% of each. The right vertical axis corresponds to the dashed green curve indicating µs′ of
the surrounding scattering material.

2.2 Model description

The PA forward model consists of three components: a light transport model, an acoustic propagation model,
and the reconstruction of the initial pressure distribution, which is later compared to the measured data. The
first component models the light transport in the tissue phantom and provides an estimate of the absorbed
energy distribution. The second component simulates the acoustic propagation of the sound waves induced by
the absorbed energy inside the tissue phantom. The third step reconstructs the simulated PA times series in
order to obtain psim0 (~r, λ). An overview of the PA forward model is shown in Fig. 2. The tissue phantom used
in the light model simulations had been reconstructed from the measured initial pressure distribution. The
process is described in detail in section 2.2.2.

Figure 2: Schematic of photoacoustic forward model. Left: Output of a light transport simulation. Fluence
distribution Φ seen for the center slice perpendicular to the tube axes.Color scale in arbitrary units represents
high fluence in white and yellow and low fluence in black. From this the initial pressure distribution is computed
and used as input for the acoustic forward simulation. Center: Pressure time series resulting from the acoustic
propagation model for an initial pressure distribution as seen in the left figure. Vertical axis indicates time;
horizontal axis indicates sensor position rsensor; color scale represents pressure intensity (high values in white
and yellow, low values in red, negative values in black). Right: Reconstructed initial pressure distribution using
time-reversal method including the limited aperture resulting from the planar FP sensor. The figure shows the
same slice of the volume as in the left figure.

2.2.1 Light transport model

The light transport was simulated in 3D using the Monte Carlo eXtreme simulator (MCX),12 which is parallelized
for execution on GPUs. In the MC light model, virtual photons are launched at a given source position and
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propagated as packets of energy through a volume defined by a regular grid of isotropic voxels. In this model,
photons are launched according to a beam profile, which is of similar shape as a 2-dimensional Gaussian curve.
Photons are scattered according to the scattering coefficient µs and the anisotropy parameter g of the current
voxel (defined by its material type). Photons deposit energy in a voxel when leaving that voxel, thereby
decreasing the weight of that photon packet according to the absorption coefficient of that voxel. The packet
weight deposited in the current voxel is added to its probability distribution, from which the absorbed energy
distribution H and fluence Φ is calculated according to:

H(~r, λ) = µa(~r, λ)Φ(~r, λ).

The input to an MCX simulation was a volume file containing 400 × 400 × 130 voxels identifying one
material type for each voxel. For each material type, the absorption coefficient µa, the scattering coefficient µs,
the anisotropy parameter g, and the refractive index n are given as input parameters. Each voxel has a size of
703 µm3, hence the total simulated volume is 28× 28× 9 mm3. In order to avoid limited volume effects on the
resulting fluence (due to photons interacting with the volume boundaries), the light transport was simulated
using a larger volume than the measured PA image, as studied in section 2.4. Four types of media were used
in the simulations presented here, one homogeneous background (diluted milk), for which we assume that the
absorption coefficient equals µa(λ) of water. The scattering coefficient of the background is represented by
the green curve in Fig. 1 C. The remaining three material types correspond to the three tubes, for which a
wavelength independent scattering coefficient of µs = 0.01 mm−1 and wavelength dependent µa(λ) as in Fig. 1
C has been assumed.

For the comparison between measured and modeled data described in section 3.1, the values for µa(λ)
were computed according to the known ratio of NiSO4 and CuSO4 solutions in the tubes. Pure solutions had
concentrations of cmax

NiSO4 = 1.52 mol/liter and cmax
CuSO4 = 0.4 mol/liter, respectively. Hence, µa(λ) was computed

for tube k using the known absorption spectra αNiSO4(λ), αCuSO4(λ), respectively, and the known mixture
parameter Rk. Furthermore, we assumed that both substances contribute linearly to the total absorption
coefficient:

µa,k(λ,Rk) = Rk · cmax
NiSO4αNiSO4(λ) + (1−Rk) · cmax

CuSO4αCuSO4(λ), (1)

where R1 = 0.75 for tube 1, R2 = 0.5 for tube 2 and R3 = 0.25.

For the parameter estimation procedure described in section 3.2, Rk and (thereby also µa) is considered
unknown and varied during the parameter search. An overview of the optical parameters used for the different
studies is given in Table 1.

Table 1: List of optical parameters

material µa [mm−1] µs [mm−1] n g Type of study

background (1) µH20
a (λ) µs(λ) see Fig. 1 C 1.33 0.9

Comparison measured
vs modeled data

tubes (2) µa(λ) see Fig. 1 C 0.1 1.33 0.9
Comparison measured

vs modeled data
background (1) 2e− 2 10 1 0.9 Boundary conditions
tubes (2) 5 10 1 0.9 Boundary conditions

For each MC light simulation we used 5 ·107 photons, which took approximately 1–2 minutes per simulation
on a desktop GPU.19 As µa(λ) and µs(λ) are wavelength dependent, each measured wavelength requires a
corresponding simulation of the light model for that particular parameter set. For the parameter search described
in section 3.2 the number of photons was reduced to 5 · 106 to speed up the parameter estimation procedure.

The output of the light transport model is the absorbed energy distribution H(~r, λ), from which the initial
pressure distribution is computed using the Grüneisen parameter Γ:
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p0(~r, λ) = ΓH(~r, λ).

For simplicity we assumed a Grüneisen coefficient of 1 for all materials. The initial pressure distribution
p0(~r, λ) gained from the result of a MC simulation serves as input to the acoustic propagation model, which
will be described in section 2.2.3.

2.2.2 Image segmentation

The goal of the image segmentation is to reconstruct the geometry of the tubes from the measured pressure
data. This way, the number of unknowns in the inversion scheme is reduced. That is, we do not seek the
chromophore concentration at every voxel independently, but only for a small number of material types, whose
continuous location were obtained through image segmentation. The optical parameters within one material
type are assumed homogeneous.

The image segmentation applied here is not a framework that is generally applicable, e.g. to vessel networks.
but rather represents a simple method using prior knowledge in order to proof the applicability of our model-
based inversion approach. The input to the image segmentation is the initial pressure distribution pexp0 (~r)
reconstructed from the measured pressure time-series for one excitation wavelength.

The image segmentation is based on the idea to search for local maxima in slices of pexp0 perpendicular to the
tube axes and to draw filled circles around the local maxima representing the tube centers. For this purpose,
we make use of prior knowledge regarding the number, the shape, and the geometry of the tube absorbers.

First, a gaussian blur filter with σ = 2 voxels is applied to the raw data pexp0 (~r) in order to reduce the impact
of noise on the location of the local maxima. Then, the locations of three local maxima are extracted for each
slice of pexp0 perpendicular to the tube axes. The location of the maxima within one slice are assumed to represent
the centers of the tubes. Around each local maximum, a filled circle with a radius of three voxels is drawn
marking the voxels belonging to that tube. The reconstructed tubes resulting from our image segmentation
approach are shown in Fig. 1 A with the original pressure data in gray. The result of the image segmentation
is a volume identifying four different media types, which serves as input to the MC light transport simulations.

2.2.3 Acoustic propagation model

The input to the acoustic propagation model is the absorbed energy distribution pMCX
0 (~r) obtained from

the results of the MC light transport simulations. The acoustic propagation model is simulated using the k-
Wave toolbox16 for Matlab. Its purpose is to account for the limited aperture inherent to the planar detector
geometry14,15 and its influence on the PA images. Homogeneous acoustic properties are assumed with a speed
of sound of 1500 m/s and a density of 1000 kg/m

3
. The computational grid used by k-Wave was initialized

with a spatial resolution of 70 µm and the standard temporal resolution defined by the sound speed. The initial
pressure distribution psim0 (~r, λ) is obtained using k-Wave’s time-reversal method kspaceFirstOrder3DG and is
accelerated by execution on a GPU. The result of the time-reversal based reconstruction psim0 (~r, λ) is used for
comparison with the measured pressure distribution pexp0 (~r) shown in section 3.1.

2.3 Parameter estimation

The parameter estimation framework aims to determine the relative concentrations of NiSO4 and CuSO4
solutions in the tube phantom, represented by the parameters Rk, k = 1, 2, 3 in Eq. 1. Our approach is based
on the comparison of PA spectra from measured and modeled data and the iterative update of the relative
concentration in the model, depending on the residual difference between the PA spectra and the previously
tested parameters. An overview of the approach is shown in Fig. 3. As the MC light model does not provide
any analytical form for the fluence (and hence the pressure distribution), the possibility to compute gradients
analytically is not given. Hence, we use an iterative, non-gradient optimization for the parameter estimation,
which is described in the following. First, PA spectra are obtained from multi-wavelength simulations using the
MC light model. Obtaining the PA spectra from the acoustic propagation model was omitted for the sake of
execution speed, but yielded equal final concentrations (not shown).

5



Figure 3: This schematic gives an overview of the workflow to obtain the relative concentration ratios in the
three phantom tubes. One instance of the PA forward model includes simulations of the light transport model,
acoustic propagation and reconstruction for all Nλ wavelengths. For each tube k, the measured spectrum is
fitted to the simulated spectrum using a linear scaling parameter βk. The sum of differences between the spectra
∆Fitk is used to guide the parameter search (see Eq. 2 and 3). If the minimum sum of differences has been
found, the concentration ratios in the tubes R∗ is estimated from the optical parameters {µa,1, . . . , µa,k } used
to obtain the minimal sum of differences. If the minimum is not yet found, the concentrations are updated
according to the coordinate search algorithm.

The PA spectra are computed by averaging the reconstructed pressure distribution psim0 (~r, λ) over all voxels
belonging to a tube.This provides a mean PA signal psim0 (k, λ, µa,k) for tube k using a relative concentration
of absorbers Rk, which yields µa,k according to Eq. 1. The experimental PA signal pexp0 (k, λ) is averaged using
the same voxels as to obtain psim0 . In order to compare the modeled and measured spectra, the measured PA
spectrum is fitted to the simulated one through least squares minimization using a scalar scaling (or calibration)
factor βk and the following error functional is used:

∆Fitk(Rk) =

Nλ∑

i=1

(βk · pexp0 (k, λi)− psim0 (k, λi, Rk))2. (2)

In order to find the optimal parameters for all tubes, we use a coordinate descent algorithm,20 where the
relative concentration Rk in one tube represents one dimension. During the coordinate descent, the geometric
parameters of the tubes and the optical properties of the background remain fixed. The only parameters that are
being varied are the concentration parameters Rk for the three tubes, that determine the absorption coefficient
µa,k (see Eq. 1).

The error landscape during the parameter search is determined by the sum of residuals (sum over all tubes):

E(R) =

Nk=3∑

k=1

∆Fitk(Rk), R = (R1, R2, R3) (3)

During the parameter search, the concentration parameters Rk are updated for each tube iteratively and
independently. In brief, the search is initialized using any (random) values for R. Furthermore, a direction
vk for each dimension k and a global step size h are initialized. As long as the error (Eq. 3) decreased, Rk is
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updated accordingly Rk = Rk + vk · h. The direction of the search is changed when the overall error E has
increased. If the direction along the current dimension Rk has already been changed, the optimum along the
next dimension is sought. If the minimum along all three dimensions has been found with the current step size
h, h is decreased (e.g. by a factor 2) and the search continues with the first tube, thereby trying to find the Rk
that minimizes the difference between PA spectra for the first tube (Eq. 2). As stop criterion we used the total
number of steps and whether a minimum step size has been reached. The values of R during the search are
used to avoid multiple visits of the same location in the parameter space. If a location has been visited, another
location in the same direction is sampled, while staying within the boundaries of Rk = (0, 1) . The progress
during and the results of the parameter search is shown in section 2.3 and Fig. 8.

2.4 Evaluation of Monte-Carlo light model

An important prerequisite in qPAT is the validation of methods underlying the quantification of chromophore
concentrations. In a model-based approach, this involves answering the question which model parameters
influence the solution that is being compared to measured data. When using MC simulations, naturally only a
limited volume can be simulated in order to gain the solution within the region of interest (ROI). However, this
choice regarding the position of the boundaries, i.e. how large the simulated volume is or how far the boundaries
are situated from the ROI, can affect the solution within the ROI.

Here, in preparation for the quantitative estimation of concentration ratios, we address two important issues
concerning the setup of the MC light model simulations: First, we study the question as to how large the
simulated volume needs to be in order to exclude boundary effects on the fluence distribution inside the ROI,
representing the size of measured PA images. Second, the effect of absorbers in the background (outside the
ROI) on the solution within the ROI is investigated.

The first question is addressed by simulating a phantom model using varying volume sizes while keeping the
phantom model (i.e. the ROI) in the center of the simulated volume. The phantom consists of multiple tubes
arranged in a grid of four layers with optical parameters very similar to the one used for the comparison of
experimental data and the parameter estimation (see Table 1). A schematic of the setting is shown in Fig. 4 A,
B, C.

The region of interest was defined as a cube with an edge length of 20 mm corresponding to the imaged
volume size in the PA measurements. The simulated volume was increased in several steps to a maximum size
of 503 mm3, and the fluence distribution inside the tubes (averaged over the tube’s cross section) was used as
a measure to test convergence (see Fig. 4 D). We observed that the influence of the boundary condition on the
fluence distribution inside the tubes is stronger with increasing depth. This is due to the fact that the fluence
at greater depths is strongly determined by scattered light and photons that have interacted with the volume
boundary if the boundary is close to the ROI. Hence, the fluence distribution inside a tube in the deepest layer
was used as measure to test convergence (indicated by the yellow cross in Fig. 4 B). We found that convergence
within the region of interest (ROI) was achieved by adding a boundary region that approximately doubled the
total volume of the model (see Fig. 4, D). Consequently, the MC model in the inversion (section 3) included an
additional boundary region in order to exclude these boundary effects due to limited volume size. The boundary
region had identical optical parameters as the background inside the ROI.

The second question, the effect of background absorbers on the fluence distribution within the ROI, was
addressed by comparing two settings, shown in Fig. 5 A. In one setting, the grid of absorbing tubes extended
into the additional boundary region, in the other setting the tubes were truncated and remained inside the ROI.
Again, we compared the fluence distribution in a tube at a depth of 7 mm averaged over the tube’s cross section
to study the influence of the background. The result is shown in Fig. 5 B. In the case with truncated tubes,
the fluence shows a strong increase near the ROI boundaries which extends even into the ROI, compared to the
setting with continuous tubes. This effect is due to the light scattered in the additional boundary region, which
acts as a light source leading to an increased absorption at the endings of the truncated tubes. In contrast, in
the setting with continuous tubes, there is no sharp transition between strongly absorbing and weakly absorbing
materials. In this setting, photons are absorbed by the continuous tubes when leaving the ROI. This leads to
a difference in the fluence distribution between the two settings and shows that absorbers outside the ROI do
affect the solution within the ROI.
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Figure 4: MC light model validation. A: Front view of the experimental setting used for the MC light model
evaluation. The profile of the excitation beam is shown in yellow and red (yellow representing high intensity).
The parts of the tubes lying within the ROI are colored in blue. Tube parts extending outside the ROI are
shown in green. The maximum dimensions of the simulated volume is 500 × 500 × 500 voxel, or 503mm3 B:
Phantom setting viewed from above. The dimensions of the ROI is 200×200×200 voxel, or 203mm3. The yellow
cross indicates the tube whose fluence distribution is shown in D. C: Distinction between ROI and background
volume for the same perspective as in B. D: Effect of boundary conditions on fluence within one tube at a depth
of 7 mm indicated by the yellow cross in B. The fluence is shown along the tube axis averaged over the tube
cross section of one central tube. The ROI is depicted in gray. The differently colored curves represent results
using different surrounding volumes, where Nx = 200 means that no additional surrounding volume has been
used.

3. RESULTS

3.1 Comparison of experimental data with model

For a qualitative validation of the PA forward model, the measured and modeled reconstructed initial pressure
distributions pexp0 (~r, λ) and psim0 (~r, λ) are compared. For this purpose, we used the known optical properties for
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Figure 5: Effect of background absorbers. A: Truncated (top) and continuous tubes (bottom) B: Fluence
within a tube averaged over cross section for the two settings shown in A.

the tubes and for the scattering background material (see Table 1) in the two-stage PA model. A comparison
of the measured data, the MC light model output, and the modeled PA image is shown in Fig. 6. A slice in
the center of the volume orthogonal to the tube axes shows that the PA image reproduces the limited aperture
artifacts (see Fig. 6 A, C). This also becomes visible in horizontal profiles seen in Fig. 6 D, showing data along a
line of voxels in the center of the volume, orthogonal to the tube axes and the excitation beam direction (indicated
by the horizontal line in Fig. 6 A-C). It can be seen that the PA image does not capture all artifacts (negative
p0 values) that are visible in the measured data pexp0 . The reason for the missing artifacts are likely acoustic
inhomogeneities21 or the interaction between pressure waves and the FPI detector, which are not modeled by
the acoustic propagation model. Still, the artifacts visible along the excitation beam direction (z-axis) shown
in Fig. 6 E are well reproduced in the PA image. The curves shown in Fig. 6 D-F have been normalized to
their respective maximum. Thus, the two-stage PA forward model shows good qualitative agreement with the
measured data.

In order to compare the PA forward model to measured data in a quantitative way, we compare the PA
spectra obtained through averaging the pexp0 (~r, λ) and psim0 (~r, λ) over all voxel belonging to the tubes. The PA
spectra pexp0 and psim0 were measured and simulated using seven wavelengths between 614 nm and 930 nm. As
the FPI detects pressure signals using voltage signals from a photodiode, a quantitative comparison requires
a calibration or scaling factor between modeled and measured pressure values. This calibration factor was
obtained by fitting the measured PA spectra to the modeled spectra using the least squared method with a
scalar factor, see Eq. 2. A comparison of the measured and predicted PA spectra for all three tubes is shown in
Fig. 7.

3.2 Parameter estimation

The aim of the parameter estimation is to determine the concentration parameterRk for all three tubes k = 1, 2, 3
(see Eq. 1) representing the relative concentration of NiSO4 and determining the optical properties of the tubes.
For this purpose, the PA spectra from simulations and measurements were compared using a least squares fit
between the two as described in section 2.3. The objective function E as given by Eq. 3 is sampled iteratively by
simulating one PA spectrum (comprising seven wavelengths) at a time using the MC light model. The value of
R (and thereby the µa,k) are updated after each iteration depending on the previous search and how the value

9



Figure 6: Measured and modeled PA images and intensity profiles: A: Measured cross sectional PA image
of the phantom, B: Initial pressure distribution obtained using the MC model, C: Cross sectional PA image
predicted using the forward model, D: Image intensity profiles corresponding to the dashed horizontal lines in
A)-C), E: Image intensity profiles corresponding to dash-dot lines in A)-C), F: Image intensity profile of along
a tube in x-direction averaged over the tube cross section.

of E has changed. The objective function E is a three dimensional function where each dimension represents
the concentration parameter Rk for one tube. A one- and two-dimensional representation of E is shown in
Fig. 8 A and B, respectively. The two-dimensional error landscape in Fig. 8 B has been interpolated using
cubic interpolation based on 11 × 11 evenly spaced samples for the two parameter R1 and R3. The progress
of the coordinate descent is shown in Fig. 8 B and C. In Fig. 8 B, the parameter search is initialized with
R = 0, which is indicated by the black cross at R1,2 = (0, 0). There, sampled values of the parameter space are
indicated by crosses with the gray value representing the progress, where black represents the beginning, gray
indicate intermediate samples and white represents the final convergence of the search. The real concentration
is indicated by the yellow diamond at (0.766, 0.273), and the final values are represented by the white cross in
Fig. 8 B. In the course of the parameter search, the error measure E (evaluated with the currently best values
of R) is decreasing monotonously, as shown in Fig. 8 C.

A comparison of the values obtained by the coordinate descent parameter search and the real values is given
in Table 2.

Table 2: Estimated relative concentrations. Results have been obtained running a coordinate search where the
relative NiSO4 concentration in one tube represents one dimension.

Relative NiSO4 concentration
Tube 1 Tube 2 Tube 3

Estimated concentration R∗ 79.7 % 56.2 % 29.0 %
Known concentration 76.6 % 51.7 % 27.3 %
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Figure 7: Measured and predicted PA spectra: PA image intensity was averaged over the respective tube
volumes. The spectra were fitted using least-squares with a linear scaling factor. Dashed lines indicate the
measured spectra, solid lines indicate simulated spectra. The blue curves correspond to tube 1, which contains
76.6 % NiSO4; the red curves correspond to tube 2 with 51.7 % NiSO4; the black curves correspond to tube 3
with 27.3 % NiSO4.

4. DISCUSSION

In this study, we presented a model-based inversion scheme for the estimation of absorber concentration ratios.
The model comprises a two stage approach with a MC light transport model and acoustic propagation model.The
MC light model has been evaluated with respect to boundary conditions and background absorbers. It has been
found that background absorbers influence the solution of the fluence inside the region of interest. The parameter
estimation was based on the comparison between measured and modeled PA spectra and a coordinate descent
parameter search with decreasing step size. The parameter search yielded an agreement between estimated
and known concentration values within 5%. The remaining difference arises from the minor mismatch in the
PA spectra, which is likely due to an incomplete representation of the experimental setting in the PA model.In
addition, effects of different Grüneisen parameters for different tubes could have contributed to the mismatch.
Furthermore, in the PA model presented here, acoustic absorption22 and attenuation were not considered. These
factors, as well as acoustic heterogeneities,21 which were not included in the model, could explain the remaining
mismatch between measured and modeled data and the incomplete representation of artifacts that has been
observed.

Despite the promising results obtained with the parameter estimation framework presented here, further
work is required to retrieve the absolute concentration of absorbers, which is an important issue for future
research. A limitation of the presented approach is based on the image segmentation employed here, which
requires prior knowledge regarding absorber geometries, which is not known for more complex settings including
data obtained from tissue. Nevertheless, our aim was not to provide a general solution for image segmentation
problems occurring in PAT, but rather to present an initial proof-of-concept that reducing the number of
unknowns using image segmentation and thereby allowing the use of a gradient-free parameter search.

The parameter estimation approach presented here is based on the fact that the MC light model does not
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Figure 8: Concentration estimation using coordinate search. Parameters are updated according to the difference
between measured and modelled PA spectra using the error measure

∑
k ∆Fitk. A Error measure as a function

of cNiSO4 in tube 1, all other parameters fixed (indicated by white dotted line in B). B Error landscape and
parameter search using the relative concentration of NiSO4 in tubes 1 and 3. Blue color in the error landscape
represent low values, red color indicates high values of E. Crosses indicate evaluations during the search. The
progress of the search (iteration number) is represented by the gray values of the crosses (from black=start to
white=finish). C Error measure versus iteration count. The y-axis represents the error measure as defined in
Eq. 3 on a logarithmic scale. The search has been stopped after reaching a maximum number of iterations.

provide an analytical access to gradients of the objective function. This requires the parameter space, i.e. the
absorber concentrations, to be sampled iteratively. This, however, becomes computationally expensive when the
number of parameters or unknowns is increased. Hence, the presented framework is likely limited to situations
in which the number of parameters is not significantly larger than ten. For problems with higher dimensions,
a gradient-based approach becomes inevitable. In this context, the use of adjoint models23–25 rather than pure
MC-based methods may be an alternative approach to overcome this limitation.
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