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Abstract

This paper has been motivated by the need for a fast robust adap-
tive multigrid method to solve the vectorial Maxwell eigenvalue problem
arising from the design of optical chips. Our nonlinear multigrid methods
are based on a previous method for the scalar Helmholtz equation, which
must be modified to cope with the null space of the Maxwell operator due
to the divergence condition. We present two different approaches. First,
we present a multigrid algorithm based on an edge element discretization
of time-harmonic Maxwell’s equations, including the divergence condition.
Second, an explicit elimination of longitudinal magnetic components leads
to a nodal discretization known to avoid discrete spurious modes also and
a vectorial eigenvalue problem, for which we present a multigrid solver.
Numerical examples show that the edge element discretization clearly out-
performs the nodal element approach.
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1 Eigenvalue problems for optical waveguide de-
sign

Integrated optical components like semiconductor lasers, optical switches, and
filters are essential parts of modern fiber-optical networks, see [7], [8, ch. 2].
Figure 1 shows a mounted MQW-laser of the latest technological generation.
Each of them consists of various sub-components, which are connected by waveg-
uides. Therefore, the design of optical waveguides is a central task. The analysis
of optical waveguides is based on the knowledge of their guided modes and prop-
agation constants. A schematic representation of an optical chip is given in Fig.
2. The optical beam propagates in z-direction. The geometry of the chip itself is
regarded as invariable in this direction. Guided modes are modes that exhibit an
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Figure 1: Si-Submount with MQW laser in material system InGaAsP /InP. (Os-
ram OS)

z

Figure 2: Schematic optical waveguide

intensity distribution invariant in z-direction and with finite lateral extension.
In former work we had simplified the basic vectorial Maxwell’s equations such
that a scalar Helmholtz eigenvalue problem arose [7]. As industrial optical com-
ponents get more and more complex [17], including sharp and significant jumps
in the permittivity of the waveguide materials, this approximation turns out to
be too crude. Therefore we have to return to the exact Maxwell’s equations
as a mathematical model. This leads again to an eigenvalue problem, which,
however, is much more complex and is the topic of this paper.

Starting from Maxwell’s equations in a source and current free medium and
assuming time-harmonic dependence of the electromagnetic field with angular
frequency w the electric and magnetic fields

E(iL‘,y,Z,t) = f}(z,y,z) ) eiwt’ H(x7yazat) = ﬁ(:v,y,z) ) ei‘Ut



must satisfy the time-harmonic Maxwell equations

curlE = —iwpH, diveE = 0
curlH = iweE, divpgH = 0.

Herein € = €(x, y) denotes the permittivity and p the permeability of the mate-
rial. For simplicity, we assume p to be constant, € = ep — i0/w complex, and
drop the wiggles, so that E — E, H — H. From the equations above we then
may derive (by direct substitution)

curle ‘eurlH — w?yH = 0, (1)
divpgH = 0,
where only the magnetic field is involved. Motivated by the z - invariance of

our geometry, we seek solutions of equation (1), which depend harmonically on
z,i.e.

H(z,y,2) = H(z,y) - e~ .

Here k, is the propagation constant, which is the eigenvalue of interest. In the
following, we again drop the hat, so that H — H. Let us introduce a reference
permittivity eg, the relative permittivity e, = €/€g and the corresponding refer-
ence wave number k3 = eouw?, which is assumed to be given. Upon splitting the
magnetic field into a transversal part H, (z,y) and a longitudinal part H, (z, y)

H(.’L’,y) = HJ_('Z-Jy) + Hz(x7y) s €z,

equation (1) is equivalent to the eigenvalue problem

Vixe'VixH) —kiH) = —k2e,'H +ik.e, 'V, H, (2)
—VJ_'G;IVJ_HZ—k'gHZ = ik‘ZVJ_'G;lHJ_ (3)
V,-H, = ikH,. (4)

In principle, Maxwell eigenvalue problems divide into two classes. In the so-
called resonance problem

Vi Xe;IVL X +k26;1 —ikze;IVL H, — 2. H, (5)
—iszL-e;l —Vl-e;le Hz 0 Hz

we ask for an eigenvalue kg or w, respectively. The structure of this problem is
rather simple - the left hand side of equation (5) is a selfadjoint operator in the
case of loss-free media and the right hand side consists of a positive definite mass
term. However, this is not the appropriate problem in integrated optics. There
the task is to determine the propagation constant k., which appears implicitly
in equation (5). By introducing u, =k, /i - H, this so called waveguide problem
also allows an explicit eigenvalue problem formulation,

lee;leX—kg 6;1VL HL _
0 —VJ_'G;IVJ_—/G(% U, -
(6)



with a non-selfadjoint operator on the left and a singular operator on the right
hand side. In view of a numerical approximation we have to choose a finite
domain of discretization and hence boundary conditions must be prescribed.
This is a rather complex issue in the case of optical waveguides, because in
many problems boundary conditions are not explicitly given on finite domains.
If only guided modes are sought, the magnetic field decays exponentially fast to
zero outside a finite domain, so we may prescribe zero boundary conditions on
a sufficiently large domain.

2 Variational formulations and discretizations

We present two different variational formulations of the system (2)-(4). These
two approaches differ by the incorporation of the divergence condition (4) and
the treatment of the H,-component. In the first approach we discretize the
transversal components H, with linear edge elements, H, with nodal elements
and set up a discrete analog of Maxwell’s equations. In the second approach
we eliminate the H,-component by the divergence condition and choose a nodal
element discretization for H, . For a discussion of these approaches see [10]. In
order to avoid confusions with the standard notation for Sobelev spaces we write
u; instead of H, and introduce u, = 1/i- H,. Recall that € is in general not
smooth. So the computational domain may be split up according to

0=0,U..UQy,

where € is now smooth on each subdomain ;. The boundary between (;
and (); is denoted by I';;. Furthermore we introduce the inner products by
(vi,up) = [, vy -urdQ and also (v;,u;) = [, v.u.dfd.

Edge element discretization.

In this approach we set up a direct discrete analog to problem (5) and additional
to the divergence condition (4). The weak form of the waveguide eigenvalue
problem is to find k., u_ , u., such that for any v, € Hop(curl, Q) and v, € H(Q2)

(VJ_XVL,G,’TIVJ_XUJ_)+kz'(VJ_,6;1v_Luz

)
+k§ . (VJ_,C;lllL)
)
)

+k§ - (vi,ul)  (7)
kg - (vz,uz) (8)
= k, (vs,uy). 9)

(Vva,e;leuz) +k, - (Vlvz,e;luL

In order to derive these equations, we use the continuity of E, =€,V x u,,
so that all line integrals over I';; and I';; cancel in the interior of ().

It is an important fact that a solution (uy,u,) € Ho(curl,Q) x H () of the
equations (7), (8) with finite k, and kg also satisfies the divergence condition
(9). This can be seen by the special choice v, = —1/k, - Vv, € Hy(curl, Q)
and inserting equation (8) into (7).

Given a regular triangulation of Q, the structure of (7)-(9) can be passed on
to a discrete version by using edge elements ([16],[4], [1]) for the transversal
components and nodal elements for u, . Let V| C Ho(curl,Q), V, C H}(Q) be
the corresponding linear finite element spaces with bases 91 - - - ¢, and ¢1 - - - ¢p.



Here m is the number of interior edges and p is the number of inner points of
the triangulation. We introduce the system matrices

Ay = (Vi x9e'Vixe), Ak = (Vidj,e Vi),
(BJ_)jk = (¢j,€71¢k) s (Mz)jk = (¢j,¢k)
M) = W)

(10)

The weak gradient of ¢; is an element of V1, so we may define G to be the
matrix representation (for the above bases) of the linear map

VL:VZ—)VJ_.

In this way we arrive at the discretized version of (7)-(8)

AJ_+kZ‘BJ_ k.-B,.G ug — k2. M, 0 u (11)
k. -G*B A, a, | ° 0 M, a, |’

Ares Mres

and the discrete divergence condition

[i]*[l\/gf kszz]{tj]zo, (12)

As in the continuous system, the divergence condition (12) automatically holds
for a solution (u, u;) of (13) with finite k, and ko. Problem (11) is a standard
eigenvalue problem A ou = AM,esu for X = k2 with a selfadjoint matrix A,es and
a positive definite mass matrix M,e. Here the unknown propagation constant
k. appears implicitly. As above for the continuous problem, we may rearrange
equation (11) by substituting G, = k, - u, we arrive at an explicit eigenvalue
problem

AJ_ BJ_G —k2- MJ_ 0 uy _—k2- BJ_ 0 uy
0 A, 0 0 M, u, |~ " | G*B, O U,

~ ~—_———
A B

(13)

for k.. Since the above matrix B is singular, this formulation is not well suited
for the construction of a multigrid method. That is why, in the following, we
will focus on a multigrid algorithm for equation (11), which we will solve for k.,
subject to the divergence condition (12).

Nodal element discretization.

We use the divergence condition (4) to substitute H, in (2), which gives the
modified transversal equation [10]

VJ_X€;1VJ_XUJ_—G;IVJ_(VJ_‘UJ_)—IC(%UJ_=—k§€7IUJ_, (14)



where only the transverse field u is involved. The corresponding weak problem
now reads

(VLXVL,E;IVLXUL)—k‘g-(VL,uL) +

Zﬁil fQ, (Vi -gtvi) (VL -uy)dQ; +
(15)
- ZQIJZI fFij (n ’ VL)e;l(vL ° uL)dS =

—kz'(VJ_,C;l'UJ_)

for all v € H(Q) x H(9).

As above all line integrals involving E, = ¢ 1V, x u, vanish in the interior of
. This is not the case for the second sum in (15), because V -u, =ik, H, is
continuous and hence €'V | -u; may jump across I';;. In (15) not only the curl
- operator but also the div - operator act on u_, which inhibits the use of linear
edge elements for the transversal field. A finite element discretization based on
the linear nodal elements space V1 C H§ () x H} () is yielding straightforward
the algebraic system

AUJ_ = —kg 'MUJ_, (16)

with a non-symmetric matrix A and a canonical mass matrix M.

3 Multigrid algorithms

In an adaptive finite element discretization of the above problems we have a
set of sequentially refined triangulations {7} of Q with corresponding finite
element spaces Vj, C Hop(curl, Q) x H}(Q) resp. Vi, C H§(Q) x HE(Q). In each
case this yields an algebraic eigenvalue problem Apu = A - Bpu. As in [12][13]
we generalize this problem for the ability to calculate simultaneously a certain
number ¢ of clustered or degenerate eigenvalues with smallest real part. Hence
we seek a ¢ - dimensional invariant subspace Uy, in particular

AhUh =B,U,T},. (17)

As mentioned above the structure of equation (17) depends on the chosen dis-
cretization. The edge element discretization for the waveguide problem (13)
leads to a singular matrix By, whereas a nodal basis discretization of the mod-
ified transversal equation (14) and the resonance problem (11) give a canonical
mass matrix By. There exist different multigrid solvers for the above problem
with a positive definite B [14], [5], [6]. Here we present the method developed
in [12] for the Helmholtz eigenvalue problem. The formulation of the waveg-
uide problem based on the modified transversal equation fits perfectly into this
multigrid concept. Therefore we can extend this algorithm directly to the vec-
torial case. Unfortunately, this is not true for magnetic or lossy materials. In
these cases the mass matrix By, is no longer positive definite.

3.1 General concept

In the following we suppress the subindex h and assume B to be a positive
definite operator. The backbone of our method is a pcg-like iterative eigenvalue



solver for problem (17), see [11]. The main advantage of this method is that it
allows the handling of subspaces whose B - orthonormality will not be destroyed
by the algorithm. As in [12] we use this method as a smoother. This method
reduces the high-frequency error on each grid very effectively and gets inefficient
after a few iterations. How does the smoother works ?

Recall that the above eigenvalue problem admits a Schur decomposition

AQ =BQK, QBQ=1Id.

Herein K = diag (K;) is a block diagonal matrix, with upper triangular blocks
K;. To each K; corresponds an invariant subspace E;. The subspaces E; are
chosen so that they possess no non-trivial invariant subspace. The matrices K;
depend on the chosen B - orthonormal basis, while trace K; does not depend on
it. Any g-dimensional invariant subspace Y is the sum of particular E;, say
Y:Eil +"'+EinY'

To Y corresponds the upper triangular matrix Z = diag;—; ., (K;). Hence
we may define traceY = traceZ. We characterize the sought g-dimensional
invariant subspace U with corresponding upper triangular matrix T by

trace U = min {trace Y | Y is g-dimensional invariant subspace}

Details of this algorithm are given in Algorithm 1.

Algorithm 1 Déhler pcg as smoother with v iteration steps
Require: U® T {initial guess}

G =0 (AU® - BUOTO)

P = G {initial correction space}

for k=0tov do

- (k) ' (k)
é [ U P ]/ ALTU P ] {projected problem}
B = [U®M P]B[U® P]
S L G Tk 0
US|A|U S| =
[ ], [ ] ( 0 Ts ) {Schur decomposition}
[0 S]B[U S] = Id

U+ = [ U P ]U {update of U}
S—[ UM PI§
G=C"1 (AU(k) _ BU(k)T(k))

solve for X : TgX - XT®) = _p' (AG — BGT(’“)) {Sylvester equa-
tion}
P = G + SX {new correction space}

end for

Given an initial guess U®, T(9 for the sought g - dimensional invariant subspace



on the finest grid we construct a correction space P in a pcg-like manner. We use
for example a Jacobi iteration step as the preconditioning matrix C~1. Now,
we correct U by solving a small projected eigenvalue problem (Ritz step).
Assuming that the g smallest eigenvalues are sufficiently well approximated such
that there is a spectral gap between the q first eigenvalues and the remaining
ones of the projected system, the Schur decomposition in Algorithm 1 supplies
upper triangular matrices T® € C7%9, Tg € €% with

Re(T{}) < --- < Re(T¥) < Re(Ts,11) < -+ - < Re(Ts,qq)-

This correction procedure is motivated by the minimal principle above. After
the correction of U we have to construct a new correction space P which is done
similar to the pcg-method again.

The proposed correction space P in Algorithm 1 is generated by a multiplication
of the current U with the discrete second order “differential operator” (A[] —
B[] T) and hence high-frequency errors are overstressed in P. But fortunately,
by the multigrid structure we can force low-frequency corrections to appear in
P. So, given the prolongation matrix I% from any coarse grid to the current fine
grid, we restrict the eigenvalue problem to the subspace [ U 1% ], especially

[U ™ ]A[U 14 ]0=[U T, |B[U 14, ]OT  (18)

~ - ~
v

>l

A B

and carry out Algorithm 1 for this restricted problem. Alternatively, this pro-
cedure may be interpreted in the sense that we just use the coarse grid basis I%
to construct low-frequency correction spaces P (see Algorithm 1).

On the coarsest level we may use an exact solver or the iterative method (1)
with a fixed number of iterations as well.

3.2 Edge element method for waveguide problem

Algorithm 1 is based on the Schur decomposition of a small restricted eigenvalue
problem which can only be done if By, is a positive definite matrix. But this is
not the case in our variational formulation (13). Therefore we go one step back
to equation (5) and its discrete analog (11) in which the desired value k, appears
implicitly within the selfadjoint eigenvalue problem A, es(k.)u = k3M,esu. The
idea now is to solve this equation for k., by a Newton-like iteration. To keep
the notation simple, we outline this algorithm for the case of a single non-
degenerate eigenvalue k, in the self-adjoint case (¢ = 1). Assume that we can
solve Ayes(k,)u = (k3 + J) - Myesu in a neighborhood of the exact value for k,
and that the “disturbed” normalized eigenvector u = u(k,) depends smoothly
on k.. The disturbed resonance wave number is given by the Rayleigh quotient

TAres(kz)u
k2 5) = u res Rz
( ot ) uTMresu
and k, is determined via the condition §(k,) = 0. On the basis of

7 1 7

8 (kz) = u” (k2) Apeg (k2 )u(kz) +u” (k:) Aves (ko )u (k2),

o(s)




we may construct a Newtion-like iteration dropping the O (§)-thus arriving at
the iteration

5(k)
uT (k) ALy (k7 Yu(kSY)

res

k£i+1) — kgz) _

The convergence properties of such an iteration are roughly the same as for
a simplified Newton iteration [9, chapter 2]. Numerical tests also show, that
this Newton-like iteration converges very fast, if we use the k, obtained from
the coarser grid as the initial guess. In order to get an algorithm of multigrid
complexity we need a multigrid solver for the resonance problem A, es(k.)u =
(k& +6) - Myesu.

3.3 Edge element method for resonance problem

Even the selfadjoint resonance problem (11) fits well into our multigrid concept,
some difficulties may arise due to the null space of the operator A,.s and to the
fact that we are only interested in positive eigenvalues close to k3. Therefore a
method which minimizes the Rayleigh quotient will converge to this null space.
As can be seen in equation (5), the null space consists in the continuous case of
3D-curl-free vector fields
Y
—ik.,p |°

This null space is closely tied to the divergence condition (4), see [3]. In fact,
by solving the Poisson problem

Ao+ ko= (ikH, =V, -H)),

one can split the magnetic field into 3D-div-free and curl-free parts (Helmholtz

decomposition)
H, | _| Vip n H,
Hz —lszD Hz '
—_——— —
curl—free div—free
The curl-free part is non-physical and violates the divergence condition. Follow-
ing [15], [2, p. 122] we remove that part throughout the multigrid algorithm,
whenever it arises (projection to the div-free subspace).

4 Numerical examples

The above two algorithms have been implemented in our fully adaptive software
package ModelLab. In order to compare the nodal with the edge element dis-
cretization on the same hierarchy of grids we restrict ourselves to uniform mesh
refinements for the following problems. In each problem choose kg = 27/1.55
and the smallest eigenvalue is computed (¢ = 1). Recall, that the refractive of
an material is defined via n? = ¢,. In case of the edge element discretization we
solve for k, by a Newton iteration. In each Newton step we solve a resonance
problem by our multigrid algorithm. In the Tables 1-3 we give the required
cycles per Newton step to reduce the error to a relative residual of 1075,



Table 1: Rectangular core waveguide. Required cycles of our multigrid-method
and approximated eigenvalue on each level and Newton iteration. The relative
residual error is reduced to 1072.

edge nodal
Level | cycles k. | cycles k.
1 - 2.5558 - 2.5362
2 3+1 2.5555 3 2.5474
3 3+1 2.5554 3 2.5518
4 240 2.5554 3 2.5537

Figure 3: Rectangular core waveguide. Isolines of the H,-components computed
with the edge element discretization. The rectangular core is plotted in grey.

Rectangular core Waveguide.

The geometry consists of a rectangular core of relative size 1 : 2 and n = 0.7 em-
bedded in a medium with nmedqium = 0.5. As can be seen in Table 1, the approx-
imation of the eigenvalue k, is much better in the edge element discretization.
In this example the Maxwell solution differs significantly from the Helmholtz
approximation, which provides k, = 2.5724. In Fig. 3 the H,-components of
the two orthogonal eigenfunctions of smallest eigenvalue are plotted. In the
Helmholtz approximation these components are assumed to be zero.

Rib waveguide.

The geometry is sketched in Fig. 2. Outside the waveguide we have a medium
of n = 1.The relative permittivity of the horizontal stripe with a width of 0.2
is n = 3.38. This strip is embedded in a material of permittivity n = 3.17 at
distance 0.2 to the medium. The rectangular rib has a size of 2.4 x 1. Again,
the edge element discretization approximates the eigenvalues far better than the
nodal one (Table 2). Furthermore the number of cycles diminishes in each step
for the edge element discretization. The magnetic field strength is plotted in
Fig. 4. You can see a singularity-like H,-distribution at the corner of the ribs.
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Table 2: Rib waveguide (compare Table 1).

edge nodal
Level | cycles k. | cycles k.
1 - 12.9685 - 12.9572
2 1942 12.9672 6 12.9624
3 9+0 12.9669 12 12.9647
4 6+0 12.9668 10 12.9658

S—

281

261

24r

22r

. . . )
6 7 8 9 10

3.8

3.6

34

3.2+

2.8

2.6

24+

22

. . . )
6 7 8 9 10

Figure 4: Rib waveguide. Isolines of H2 (left) and H? (right).
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Table 3: Circular optical fiber (compare Table 1).

edge nodal
Level | cycles k, | cycles k.
1 - 6.1308 - 6.1295
2 3+1  6.1317 2 6.1307
3 3+0 6.1313 2 6.1310
4 240 6.1313 2 6.1311
3 .
2t ol
1f 1l
of ol
_1 b _1 L
-2 -2
-3 -3
3 2 -1 0 1 2 3 3 2 -1 0 1 2 3

Figure 5: Circular optical fiber. Isolines of H2 of two orthogonal eigenfunctions.

Circular optical fiber.

The optical fiber consists of a circular core with diameter 2 and permittivity
n = 1.55 embedded in a medium of permittivity nmedium = 1.5. Due to rotational
symmetry the lowest eigenvalue is twice degenerated. As can be seen in Table
3 both variants converge after a small number of cycles per level. As in the
above two examples the edge element discretization approximates the eigenvalue
better. In Fig. 5 we plot the H,-components of two orthogonal eigenfunctions.
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5 Conclusions

The multigrid concept developed earlier for the scalar Helmholtz equation has
been extended herein to vectorial time-harmonic Maxwell’s equations in non-
magnetic materials. The algorithm depends on the chosen finite element dis-
cretization of the magnetic field. Using the divergence condition one can elimi-
nate the H,-component, which leads to a modified transversal Maxwell equation,
which may be discretized by nodal elements. Alternatively, we have directly dis-
cretized Maxwell’s equations by linear edge elements for the transversal compo-
nents and nodal elements for the H_-component thus setting up a discrete analog
of the continuous Maxwell equations. For both variants a multigrid algorithm
has been presented. It is shown experimentally that the edge element discretiza-
tion approximates the eigenvalues clearly better already on rather coarse grids.
All our codes are collected in the software package ModelLab, which also includes
adaptive mesh refinements.
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