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Abstract

Finite reversible Markov chains are characterized by a transition ma-
trix P that has real eigenvalues and π-orthogonal eigenvectors, where π
is the stationary distribution of P . This means, that a transition matrix
with complex eigenvalues corresponds to a non-reversible Markov chain.
This observation leads to the question, whether the imaginary part of that
eigendecomposition corresponds to or indicates the “pattern” of the non-
reversibility. This article shows that the direct relation between imaginary
parts of eigendecompositions and the non-reversibility of a transition ma-
trix eP is not given. It is proposed to apply the Schur decomposition
of eP instead of the eigendecomposition in order to characterize its non-
reversibility. The Schur decomposition also allows to find the difference
matrix ∆P which turns a non-reversible Markov chain eP into a reversible
one P = eP +∆P , such that P and eP have the same stationary distribution
and the same metastabilities. P and eP even have the same eigenvalues, ifeP is diagonalizable in R.
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1 Introduction

Markov chains on finite sets of n states are defined by a transition matrix
P ∈ Rn×n. This matrix P is denoted as stochastic, i.e., its row-sums are 1
and its entries are non-negative. The Markov chain can be reversible or non-
reversible. Reversibility means, that the matrix DP is symmetric. The entries
of the digonal matrix D ∈ Rn×n are given by the stationary distribution π ∈ Rn

of P , i.e., π is a vector which meets πT P = πT . Transition matrices of re-
versible Markov chains have real eigenvalues. Thus, it is also true that complex
eigenvalues imply non-reversibility of P . However, this article will show that
the magnitude of the imaginary part of the eigenvalues does not provide any
information of the “magnitude”of the non-reversibility. In general, the eigen-
value analysis of P is used to decompose the matrix according to the equation
PX = XΛ. In this equation the matrix X ∈ Rn×n includes the eigenvectors
as columns, whereas Λ ∈ Rn×n is a diagonal matrix with the eigenvalues on its
diagonal. There are many articles in literature (e.g., [3, 4, 6, 8, 5, 9, 10]) which
discuss the cases where X and Λ are real valued versus the situation in which
the entries become complex valued. To our knowledge it is rarely discussed that
the transition matrix P can be non-diagonalizable. Even very simple examples
lead to transition matrices which are non-diagonalizable. Here is an example
for a doubly-stochastic matrix P , which can not be spectrally decomposed:

P =

5/12 5/12 1/6
1/4 1/4 1/2
1/3 1/3 1/3

 . (1)

In this example, the geometric and algebraic multiplicity of the eigenvalue λ = 0
does not coincide. The situation of a problematic eigenvalue at λ = 0 is not
the only case that can happen. In (11) below, we will construct a doubly-
stochastic matrix, which has an eigenvalue λ = 0.99 that is algebraically double
but geometrically simple. Thus, that matrix is another example for a non-
diagonalizable case (with regard to the dominant part of its spectrum). The
eigendecomposition may fail. However, the Schur decomposition is always pos-
sible [16] (but not unique). There is the common opinion, that non-reversibility
of a Markov chain is connected to complex eigenvalues (see [12, 11, 15] for a
very good analysis of this case). Recent investigations show [5], however, that
the non-reversibility is not only connected to complex eigenvalues, but -more
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general- it is connected to the non-symmetry of the real Schur decomposition.
The real Schur decomposition of a matrix P is also given by an equation of the
type PX = XΛ, but in this case X inculdes the real Schur vectors, whereas the
matrix Λ (Schur-value-matrix) is an upper triangular matrix with (additional)
2 × 2-blocks on its diagonal for every complex eigenvalue of P . We will use
Xs, Λs for the Schur and Xe, Λe for the eigen decomposition in the following.
For our case studies we will construct transition matrices P = XsΛsX

−1
s which

have a Schur-value-matrix of the following form:

Λs =


1 0 0 0 0
0 0.99 ε 0 0
0 −γ 0.98 + δ 0 0
0 0 0 0.005 0
0 0 0 0 0.001

 . (2)

If and only if the non-negative numbers γ and ε are zero, then the Schur-
value-matrix is symmetric. Only in this case, the transition matrix P will be
reversible. If δ = 0.01, then the transition matrix P has one (algebraically)
multiple eigenvalue. This type of construction will show, that non-reversibility
is not connected to the occurence of complex eigenvalues. It is connected to the
non-symmetry of the Schur-value-matrix Λs.

For the construction of P according to P = XsΛsX
−1
s , the Schur vectors Xs

are needed. In the case of a reversible Markov chain the matrix P is diagonal-
izable and the eigenvectors are orthogonal with regard to the stationary distri-
bution of P . This means, that the eigenvector matrix Xe satisfies XT

e DXe = I,
where I is the unit matrix. In order to account for this orthogonality condition
in the Schur context, we will construct the Schur vector matrix Xs in such a
way that XT

s DXs = I for a pre-defined vector π. It is important to note that
by the orthogonality construction of Xs via XT

s DXs = I and by P = XsΛsX
−1
s

it is assured, that π is the stationary distribution of P . This is because

πT P = (πT )XsΛsX
−1
s = (Xs(:, 1)T D)XsΛsX

−1
s = (Xs(:, 1)T DXs)ΛsX

−1
s

= (1, 0, . . . , 0)ΛsX
−1
s = (1, 0, . . . , 0)X−1

s = πT ,

where Xs(:, 1) denotes the first column of XS which is the constant 1-vector.
In the case studies, the transition matrix P is constructed in such a way, that

there exist three metastable subsets of states of the Markov chain. In order to
meet this condition, the vectors corresponding to the three leading Schur values
must span the space of the characteristic vectors χ of these subsets, i.e., there
must exist a 3 × 3-matrix A, such that the leading three Schur vectors can be
transformed into (see also references about PCCA+[7, 17, 14] and GenPCCA[13,
5]):

χ = Xs(:, 1 : 3)A =


1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

 , (3)

where the expression Xs(:, 1 : 3) means, that we take all rows but only the first
three columns of Xs. Since the leading eigenvector as well as the leading Schur
vector of P is constant, the construction of Xs can be based on the following
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full-rank matrix

X̂ =


1 0 0 1 1
1 1 0 1 0
1 1 0 0 1
1 0 1 1 0
1 0 1 0 0

 , (4)

such that the columns of Xs are stemming from a linear combination of the
columns of X̂ by applying a Gram-Schmidt orthogonalsation with regard to the
othrogonality condition XT

s DXs = I. The previous considerations lead to the
following MATLAB R©-Code for constructing different transition matrices P for
the case studies in Sec. 2:

clear
eps=0.000; % non-reversibility (0.004)
delta=0.00; % 0.01 leads to missing or multiple eigenvalues
gamma=0.000; % 1E-15 leads to complex eigenvalues
pi=[3,1,1,2,2]; % stationary distribution (doubly stoch [1,1,1,1,1])

% Construction of the Schur Decomposition
pi=pi/sum(pi); D=diag(pi);
X=[[1 0 0 1 1];[1 1 0 1 0];[1 1 0 0 1];[1 0 1 1 0];[1 0 1 0 0]];
L=diag([1 0.99 0.98+delta 0.005 0.001]);
L(2,3)=eps;
L(3,2)=-gamma;

% Orthogonalization with regard to stat. distr.
for i=1:5

v=X(:,i);
for j=1:(i-1)

X(:,i)=X(:,i)-((X(:,j)’*D*v)*X(:,j));
end
X(:,i)=X(:,i)/sqrt(X(:,i)’*D*X(:,i));

end

% Construction of P
P=X*L*inv(X)

At the beginning of this code the entries of the Schur-value-matrix Λs in
(2) can be determined and also the stationary distribution π of P . The Schur
vectors Xs are pre-defined by applying an orthogonalization to X̂ in (4) with
regard to the pre-defined stationary distribution π. The orthogonalization is
generated using the Gram-Schmidt algorithm. At the end of the code, the
transition matrix P is given by P = XsΛsX

−1
s .

2 Cases to be studied

With the aid of the algorithm shown in Sec. 1 and with assigning different
values to δ, ε, π, and γ we show different cases of reversible and non-reversible
transition matrices and their Schur as well as their eigen decomposition.
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2.1 Orthogonalization of X̂ (πT = (3, 1, 1, 2, 2))

The matrix X̂ is used to construct a transition matrix P such that there are
three metastable subsets of states of the Markov chain. This is done by chosing
the Schur vectors of the three highest Schur values to be a basis of the subspace
of the characteristic functions shown in (3). Furthermore, the matrix P should
have a certain stationary distribution πT = 1

9 (3, 1, 1, 2, 2), which can be satisfied
by applying the Gram-Schmidt orthogonalization algorithm to the matrix X̂
such that:

Xs =


1.0000 −0.5345 −1.3093 0.0000 0.0000
1.0000 1.8708 0.0000 1.2247 1.7321
1.0000 1.8708 0.0000 −1.2247 −1.7321
1.0000 −0.5345 0.9820 1.2247 −0.8660
1.0000 −0.5345 0.9820 −1.2247 0.8660

 . (5)

With the aid of this matrix Xs and with the special choice of Λs, the tran-
sition matrices are constructed. This approach to build P has an important
consequence: In the following case studies the Schur decompositions (with the
adjusted orthogonality condition XT

s DXs = I) of the P matrices are always
given by PXs = XsΛs, where Xs is identical to (5) and Λs is given by (2). The
eigen decompositions of the discussed matrices P are, however, very different
for every case study and will be explained later. This difference between Schur
and eigen decomposition in our opionion shows that the Schur decomposition
is a better analytical tool to investigate transition matrices than using spectral
decompositions.

2.2 P is reversible (ε = δ = γ = 0)

In the first case study we construct a reversible transition matrix P . For this
purpose we set ε = δ = γ = 0 in (2) and use Xs from (5). The result is:

P1 = XsΛsX
−1
s =


0.9876 0.0011 0.0011 0.0051 0.0051
0.0033 0.4973 0.4949 0.0036 0.0009
0.0033 0.4949 0.4973 0.0009 0.0036
0.0076 0.0018 0.0004 0.4969 0.4932
0.0076 0.0004 0.0018 0.4932 0.4969

 (6)

If we analyse the eigenvalues and eigenvectors of P1, then the result is that the
eigenvalues are identical to the Schur values, i.e., Λe = Λs and that the Schur
vectors are also eigenvectors of P1, i.e., Xe = Xs. In order to get the correct
scaling of the eigenvectors, the MATLAB R©-Code should not simply use the eig-
function. This would lead to orthogonal eigenvectors (with regard to D), but
not to π-normalized eigenvectors. Thus, for computing the eigenvectors and
eigenvalues we used a symmetrization of the reversible matrix P1 and a sorting
routine:

%Compute eigenvalues of the symmetrized matrix
[Xe, Le]=eig(sqrt(D)*P*inv(sqrt(D)));

% Sort them

5



[val, ind]=sort(-abs(diag(Le)));
Xe=sqrt(inv(D))*Xe(:,ind)
Le=Le(ind,ind)

Also for the computation of the Schur vectors and values this symmetrization
trick is useful. Since the ordering of the Schur values is not unique, we apply
the SRSchur-algorithm[2] to account for the correct order of the Schur values
shown in (2):

% Compute Schur decomposition for the symmetrized matrix
[Xs,Ls]=schur(sqrt(D)*P*inv(sqrt(D)));

% Sort the Schur values
[Xs, Ls]=SRSchur(Xs, Ls, 1, 0);
Xs = sqrt(inv(D))*Xs

By these two practical approaches we always assure that the decomposition
is correct, i.e., for a general matrix P we get P = XeΛeX

−1
e = XsΛsX

−1
s and

that the π-orthogonality holds. In the reversible case, there is no difference
between Schur decomposition and eigendecomposition.

2.3 P is non-reversible with real eigenvalues (ε = 0.004)

If we now set ε = 0.004 and γ = δ = 0 in the above example, then there will be
a discrepancy between the Schur decomposition and the eigendecomposition of
P . The constructed transition matrix which is result of the algorithm in Sec. 1
is:

P2 =


0.9886 0.0011 0.0011 0.0046 0.0046
0.0001 0.4973 0.4949 0.0052 0.0025
0.0001 0.4949 0.4973 0.0025 0.0052
0.0086 0.0018 0.0004 0.4964 0.4928
0.0086 0.0004 0.0018 0.4928 0.4964

 (7)

This matrix defines a non-reversible Markov chain, i.e., the matrix DP2 is not
symmetric, which implies that D0.5P2D

−0.5 is not symmetric. How can we
see the non-reversibility in the eigendecomposition of P2? The eigenvalues of
P2 are real {1, 0.99, 0.98, 0.005, 0.001}. The eigenvectors are real, too. The
non-reversibility is given by the fact, that the eigenvectors are not pairwise
π-orthogonal anymore. In contrast to that kind of decomposition, the Schur
decomposition still leads to π-orthogonal Schur vectors Xs given by (5). The
non-reversibility of P2 is indicated by the non-symmetry of the Schur-value-
matrix Λs in (2) which has one off-diagonal entry ε. The difference between the
reversible matrix P1 and P2 is given by the dyadic product εXs(:, 3)Xs(:, 2)T D =
P2 − P1, where Xs(:, i) is the i-th column of Xs. Note that XT

s D = X−1
s . The

deviation of P2 from a reversible transition matrix is directly encoded in the off-
diagonal entry of the matrix Λs, and the difference of P2 to a reversible matrix
can be computed by a weighted dyadic product of the two corresponding Schur
vectors.
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2.4 P is non-diagonalizable (ε = 0.004, δ = 0.01)

The next case study will turn the transition matrix P into a non-diagonalizable
matrix. If we set ε = 0.004, δ = 0.01, and γ = 0, then there is an “incomplete”
2 × 2-block on the diagonal of Λs in (2). The incompleteness is due to γ = 0.
The corresponding matrix is:

P3 =


0.9943 0.0011 0.0011 0.0018 0.0018
0.0001 0.4973 0.4949 0.0052 0.0025
0.0001 0.4949 0.4973 0.0025 0.0052
0.0043 0.0018 0.0004 0.4986 0.4949
0.0043 0.0004 0.0018 0.4949 0.4986

 . (8)

This matrix has an eigenvalue 0.99 which is algebraically double but geometri-
cally simple. P3 does not have an eigendecomposition, it is not diagonalizable.
Note, that reversible matrices are always diagonalizable. In this case, however,
the non-diagonalizability implies the non-reversibility of P3. In contrast to the
eigendecomposition, the Schur decomposition still exists. The Schur vectors are
again given by the matrix Xs in (5) and the Schur-value-matrix Λs is given by
(2). P3 is non-reversible like the matrix P2. Again, the difference between P3 and
a reversible Markov chain is given by the dyadic product εXs(:, 3)Xs(:, 2)T D.
The non-symmetry of Λs represents the non-reversibility of P3.

2.5 P is non-reversible with complex eigenvalues (ε = 0.004,
δ = 0.01, γ > 0)

If the 2×2-block is complete in the case of the matrix Λs in (2), then the corre-
sponding transition matrix P has complex eigenvalues. If we set ε = 0.004, δ =
0.01, and γ = 10−15, then the matrix looks like P3 (for the shown digits). The
difference is now, that this matrix is diagonalizable and the non-reversibility is
implied by the complex valued spectrum of P . The complex eigenvalues are
λ2 = 0.99 + 2.3 · 10−9i and λ3 = 0.99 − 2.3 · 10−9i. The size of the imaginary
part of those eigenvalues does not correspond to the “magnitude” of the non-
reversibility of the transition matrix. We will give a further example: Instead of
a very small value γ, we set γ = 0.001 and get the following transition matrix:

P4 =


0.9940 0.0014 0.0014 0.0016 0.0016
0.0001 0.4973 0.4949 0.0052 0.0025
0.0001 0.4949 0.4973 0.0025 0.0052
0.0044 0.0016 0.0002 0.4987 0.4950
0.0044 0.0002 0.0016 0.4950 0.4987

 . (9)

This matrix has two complex eigenvalues λ2 = 0.99 + 0.002i and λ3 = 0.99 −
0.002i. The non-reversibility is again implied by the fact that there are complex
eigenvalues. In case of the Schur decomposition, we still have the same real
Schur vectors Xs like in all cases before. These Schur vectors are useful for
identifyinfg the metastable subsets of states via χ = Xs(:, 1 : 3)A. There is
no special need for handling complex values. The non-reversibility of P4 is
indicated by the non-symmetry of the Schur-value-matrix Λs. Every off-digonal
entry of Λs leads to one additional dyadic product that indicates the deviation
of P4 from a reversible transition matrix, i.e., the matrix

P4 − 0.004 ·Xs(:, 3)Xs(:, 2)T D + 0.001 ·Xs(:, 2)Xs(:, 3)T D
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is reversible.

2.6 P is doubly stochastic (πT = (1, 1, 1, 1, 1))

The last example should show that the construction of transition matrices via
the algorithm given in Sec. 1 is also able to provide doubly-stochastic matrices.
The advantage of doubly-stochastic matrics (row sums and columns sums are
1) is, that a doubly-stochastic matrix is reversible if and only if it is symmetric.
Thus, reversibility can easily be checked by checking symmetry. For doubly
stochastic matrices, the Gram-Schmidt algorithm is based on the stationary
distribution π = 1

5 (1, 1, 1, 1, 1).. This leads via X̂ to the following matrix of
Schur vectors:

Xs =


1.0000 −0.8165 −1.8257 0.0000 0.0000
1.0000 1.2247 −0.0000 −1.1180 1.1180
1.0000 1.2247 −0.0000 1.1180 −1.1180
1.0000 −0.8165 0.9129 −1.1180 −1.1180
1.0000 −0.8165 0.9129 1.1180 1.1180

 . (10)

In this last example, we want to analyse a doubly-stochastic transition matrix
which is non-diagonalizable, i.e., we set ε = 0.004, δ = 0.01, and γ = 0, and end
up with

P5 =


0.9932 0.0020 0.0020 0.0014 0.0014
0.0002 0.4985 0.4955 0.0039 0.0019
0.0002 0.4955 0.4985 0.0019 0.0039
0.0032 0.0030 0.0010 0.4979 0.4949
0.0032 0.0010 0.0030 0.4949 0.4979

 . (11)

The Schur decomposition of this matrix leads to similar results as provided for
the matrix P3 in Sec. 2.4. For doubly-stochastic matrices, however, there is an
additional way to decompose them. This decomposition is denoted as Birkhoff-
von Neumann decomposition[1]. A doubly-stochastic matrix can be represented
as a weighted sum of permutation matrices. More precisely, it is a non-unique
convex combination of permutation matrices. In our case the leading weights of
such a decomposition are

P5 = 0.4979 ·Π12345 + 0.4949 ·Π13254 + 0.002 ·Π34521 + 0.0019 ·Π25413 + . . . .

In this decomposition, there are two main permutations: The matrix Π12345

represents the identity matrix, whereas, the matrix Π13254 represents the per-
mutation within the metastable subsets of states (not in between these sets). A
Birkhoff-von Neumann decomposition exists for every doubly-stochastic matrix
P , also in the case that P does not have an eigendecomposition. The dominant
permutation matrices in this Birkhoff-von Neumann decomposition represent
“typical” transition pattern of the doubly-stochastic transition matrix. A per-
mutation matrix is also an example for a transition matrix with (complex)
eigenvalues on the unit cricle. If and only if the doubly-stochastic matrix P
is reversible, then the summed matrix taken over the permutation matrices,
which have the same weight factor in the Birkhoff-von Neumann decomposi-
tion, is always symmetric. In the case of P5, the matrices Π12345 and Π13254 are
symmetric. Symmetric permutation matrices have eigenvalues in {−1, 1}. The
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non-symmetric permutation matrix Π34521 has the weight factor 0.002. It in-
cludes one 3-cycle of the form 1 → 3 → 5 → 1 and one 2-cycle 2 → 4 → 2. Thus,
Π34521 has the complex 3rd unit roots and −1 as its eigenvalues. 1 is geometri-
cally and algebraically double. The multiplicity of the eigenvalue 1 corresponds
to the number of different cycles that are included in the permutation matrix.
The permutation matrix Π34521 can be seen as one typical transition pattern of
P5 which is non-reversible, i.e, P5 includes at least one 3-cycle of weight 0.002.

3 Conclusion

This article shows that the Schur decomposition P = XsΛsX
−1
s is a useful

mathematical tool to analyze transition matrices. In this Schur decomposition
the matrix Xs encodes metastable subsets of states and X−1

s provides the sta-
tionary distribution of the system. It is the first row of that inverse matrix. The
matrix Λs encodes the non-revesibility of the Markov chain.

• If Λs is a diagonal matrix, then P is reversible.

• If Λs has different diagonal elements and additional off-diagonal elements
in the upper right triangle only, then P is non-reversible with real eigen-
values.

• If Λs has multiple equal entries on the diagonal and “incomplete” 2 × 2-
blocks on the diagonal (in our example: ε > 0, γ = 0, δ = 0.01), then P is
non-reversible and non-diagonalizable.

• If Λs has complete 2× 2-blocks on the diagonal, then P is non-reversible
with complex eigenvalues.

In all cases, the deviation of P from a reversible matrix is always given by
the sum of dyadic products of columns of Xs weighted with the corresponding
off-diagonal elements of Λs and weighted with D.
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