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Abstract. The SCIP Optimization Suite is a powerful collection of optimization software that
consists of the branch-cut-and-price framework and mixed-integer programming solver SCIP, the linear
programming solver SOPLEX, the modeling language ZiMPL, the parallelization framework UG, and the
generic branch-cut-and-price solver GCG. Additionally, it features the extensions SCIP-JAck for solving
Steiner tree problems, PoLySCIP for solving multi-objective problems, and SCIP-SDP for solving
mixed-integer semidefinite programs. The SCIP Optimization Suite has been continuously developed
and has now reached version 4.0. The goal of this report is to present the recent changes to the collection.
We not only describe the theoretical basis, but focus on implementation aspects and their computational
consequences.
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1 Introduction

Mathematical programming, which includes mixed integer linear programming (MIP) and mixed
integer nonlinear programming (MINLP), is a very valuable tool for many areas of academia and



industry. Its success stems from progress in both theory and practice, paralleled by the con-
tinuous development of software. Starting from the seminal contribution of Dantzig, Fulkerson,
and Johnson [43] to computational mixed integer linear programming, software has become an
important research tool for the development of new optimization methods. This has led to a long
list of codes and software packages that have been developed to tackle problems of academic and
industrial importance. An overview of these developments is presented by Bixby [22].

One culmination of the effort by research scientists and industry practitioners is the high
quality software packages now available to solve MIP and MINLP problems. Some of the most
prominent commercial solvers are CPLEX [81], Gurobi [77] and Xpress [51]. In addition, many
successful non-commercial solvers have been developed such as Cbe [35], SYMPHONY [88], and
SCIP (Solving Constraint Integer Programs) [2, 63].

A significant part of the success of many MIP and MINLP solvers comes from the keen
attention to detail in the software implementation of fundamental theoretical ideas. Many of
the most efficacious algorithms in MIP and MINLP solvers were derived from early theoretical
contributions—particularly in relation to cutting planes [74, 43]. The effects from the imple-
mentation of key theoretical results are evident in the performance improvement of CPLEX [81]
from version 6 to 6.5, see Bixby [22].

The constant progress in MIP and MINLP solver technology comes with a changing envi-
ronment for software development. For many years, the repeated development of solvers to
satisfy a singular purpose—the completion of a PhD thesis or to solve a particular industrial
problem—was satisfactory. However, the growth of the field has led to many theoretical contri-
butions and, equally important, technical advancements that have become necessary components
of state-of-the-art MIP and MINLP solvers. This evolution has made it necessary to build future
developments on flexible software frameworks.

This paper provides a snapshot of the development process for the mathematical program-
ming solver SCIP. Many areas of the solver will be covered to provide the reader with a detailed
understanding of the necessary technical and theoretical developments. This paper will deliver
insights beyond the theoretical basis of the implemented algorithms by describing the fundamen-
tal technical considerations with the hope to inspire developers of mathematical programming
solvers.

1.1 The SCIP Optimization Suite

From its conception as a Constraint Integer Programming (CIP) solver [2], SCIP [148] has
evolved through the development of features, extensions and applications into an immensely
versatile branch-cut-and-price framework and standalone CIP solver—with a particular focus on
MIP and MINLP. Consider a mixed integer nonlinear program of the form

min  f(z)

st gi(x) <0 Vie M,
j<x;<u; VjEN,
v €T Vjel,

(1)

where Z C N :=={1,...,n} is the index set of integer variables, f(z) =R" - R, g; = R" - R
forie M:={1,...,m}andl € (RU{—o0})"” and u € (RU{+00})™ are lower and upper bounds
on the variables respectively.

Different problem types within this class can be described by imposing restrictions on the
constraints of (1). Specifically, SCIP can be employed to solve the following problems:

o Mized integer nonlinear program (MINLP): given by (1).



(e}

Convex MINLP: f(x) and g;(z) are convex functions for all i € M.

(e}

Mized integer quadratically constrained program (MIQCP): f(x) and g;(x) are quadratic func-
tions for all 1 € M.

e}

Mized binary quadratic program (MBQP): a MIQCP with the additional constraint that z; €
{0,1} for all j € 7.

o Mized integer program (MIP): f(z) and g¢;(z) are linear for all 4 € M.

In addition, if Z = () then the above problem classes are called nonlinear program (NLP),
convex NLP, quadratically constrained program (QCP), and linear program (LP), respectively.
Furthermore, if several objectives fi(z), ..., fi(z) for k > 2 are given, then the problem class is
called multi-objective program (MOP). Throughout this paper, f(x) is assumed to be linear. If
f(z) is nonlinear, an equivalent formulation with a linear objective function can be formed with
one additional auxiliary variable and coupling constraint.

As its name suggests, SCIP allows to formulate and solve optimization problems including
more general constraints in the sense of constraint programming. Such problems are described
as constraint integer programs (CIP). The ability to solve CIPs has been achieved through the
implementation of many effective and fundamental algorithms, such as constraint and domain
propagation and conflict analysis.

Finally, an important feature of SCIP is the native support for branch-and-price. With the
use of the pricer plugin type, users are able to employ branch-and-price without having to develop
a tree search algorithm.

The continued development of the SCIP Optimization Suite has resulted in the introduction
of many new, powerful features. This makes SCIP one of the fastest non-commercial MIP
solvers, see Mittelmann [101]. The LP solver SOPLEX [150] is a major component of the SCIP
Optimization Suite and is fundamental for solving many of the problem classes handled by SCIP.
A stalwart of the SCIP Optimization Suite is ZIMPL [152], which is a very versatile mathematical
programming modelling language. The collection of SCIP, SOPLEX and ZIMPL represent the
founding software of the SCIP Optimization Suite.

Building upon the powerful branch-and-price framework of SCIP, GCG [146] provides user-
driven or automatic Dantzig-Wolfe decomposition and supporting solution techniques like generic
column generation. The value of GCG is the functionality that supports users in employing
Dantzig-Wolfe decomposition, even as a non-expert. This includes state-of-the-art branching
techniques, primal heuristics, and cutting planes. Additionally, GCG provides a platform for
investigating decomposition techniques and related solution algorithms.

Parallelization has been important in pushing SCIP to solve previously unsolved instances
from the MIPLIB 2003 [5] and MIPLIB 2010 [85] instance collections. The UG [151] framework
was developed as an external parallelization framework for branch-and-bound solvers. Until now
it has been predominantly used to parallelize SCIP, but this release features implementations
for the base solvers PIPS-SBB [105] and XPRESS [51]. Complementing the UG framework, the
current release presents a first internal parallelization infrastructure for SCIP.

Many extensions and applications are provided within the SCIP Optimization Suite. Two
very successful applications are the Steiner Tree Problem (STP) solver SCIP-JAcK [65] and
the multi-objective optimization solver POLYSCIP [27, 147]. SCIP-JACK implements a state-
of-the-art branch-and-cut based algorithm to solve 11 different Steiner tree problem variants.
The current release introduces many new solving techniques and general enhancements that
significantly improve the performance of SCIP-JACK. The multi-objective optimization solver
PoLySCIP enables users to compute non-dominated points for MOPs. This release includes



developments for POLYSCIP that enable the computing all non-dominated points for integer
problems with two and three objectives.

The plugin SCIP-SDP [149] further extends SCIP to solve semidefinite programs (SDPs)
with integer variables. This new plugin can be combined with interior-point SDP solvers in a
nonlinear branch-and-bound algorithm. Alternatively, SCIP-SDP can be used with a cutting
plane approach, which is similar to how SCIP currently solves MINLPs. The current release
provides an interface to the commercial SDP solver MOSEK [103]. Furthermore, the updated
handling of relaxation solutions during enforcement, which was added for SCIP 4.0, allows
SCIP-SDP to be combined with all constraint types implemented in SCIP to solve mixed-
integer nonlinear semidefinite programs.

1.2 Structure of the paper

The features and contributions of the most recent release of the SCIP Optimization Suite will
be sectioned by each component. Section 2 describes the technical and theoretical advancements
that have been developed for SCIP. New interfaces for the SCIP Optimization Suite will be
described in Section 3. The features developed for SOPLEX, GCG, and UG will be presented in
Sections 4, and 5. The updates to the SCIP-based applications of SCIP-JAckK, PoLySCIP and
SCIP-SDP will be presented in Section 7. While the results from computational experiments
will accompany each of the features, an overall performance analysis of SCIP in regards to MIP
and MINLP will be presented in Section 8. Finally, Section 9 will conclude this report with some
remarks on the presented improvements and developments of the SCIP Optimization Suite.

2 SCIP

The central pillar of the SCIP Optimization Suite is the CIP solver SCIP. This SCIP Optimiza-
tion Suite release presents SCIP 4.0. Development effort has touched all aspects of the solver
and has resulted in technical and theoretical contributions.

2.1 Technical improvements

As part of the ongoing development of SCIP, the improvement in the implementation of algo-
rithms is important to maintain a strong solving performance. In this regard, much effort has
been devoted to developing better algorithms for critical features of SCIP.

The current release presents technical improvements to the following features of SCIP:

o cycle detection in the variable bound graph (Section 2.1.1),

o connectivity of the conflict graph for clique partitioning (Section 2.1.2),
o the improved handling of connected components (Section 2.1.3)

o propagation loop and event handling system (Section 2.1.4),

o enforcement of relaxation solutions (Section 2.1.5),

o the ability to input partial solutions (Section 2.1.6)

o the use of randomization (Section 2.1.7),

o revised hash table implementation (Section 2.1.8).



2.1.1 Cycle detection in the variable bound graph

Given a linear constraint on two variables, for example z+ ay < b with a # 0, implicit bounds on
each variable can be defined with respect to the alternate variable. In the given example these
bounds would be z < b —ay and y < g — Z (if a > 0, otherwise the relation symbol changes to
>). Such bounds, which depend (affine linearly) on the value of exactly one other variable, are
called variable bound relations or v-bounds in SCIP, see Achterberg [1]. V-bounds can be used
among others to replace non-binary variables by binary ones when creating ¢-MIR cuts [97] or
to guide primal heuristics [62].

During the presolving process of SCIP, v-bounds are extracted not only from linear con-
straints on two variables, but also from more general constraints and by probing [121]. The set
of all v-bounds identified within a problem is stored in a global structure called the variable bound
graph. This directed graph has two nodes per variable x;, one for each of its bounds. These nodes
are called Ib(x;) and ub(z;), representing the lower and upper bound of z;, respectively. Each arc
in the graph represents a v-bound. For example, if z; < ax; + 3, the upper bound of z; depends
on the value of z;. If z; is not fixed yet and « > 0 holds, au; + 8 forms a valid upper bound
on z; already, where u; is the upper bound of x;. This v-bound is represented by a directed
arc pointing from ub(x;) to ub(z;). Analogously, if @ < 0 holds, al; + § establishes an upper
bound on z;, with /; being the lower bound of z;, and the variable bound graph would contain
an arc pointing from Ib(x;) to ub(x;). Figure 1 shows a set of constraints (a), the corresponding
v-bound relations (b), and the resulting variable bound graph (c). In general, an arc in the
variable bound graph represents the knowledge that a tightening of the bound represented

The variable bound graph is currently used by two algorithms implemented in SCIP: the
variable bound propagator and the variable bound heuristic [62]. Both make use of an “almost
topological ordering” of the nodes in the variable bound graph. Given an acyclic directed graph,
a topological ordering of the nodes is an order of the nodes such that for each arc in the graph the
tail precedes the head in that order. The variable bound graph in practical problems however,
is not always acyclic, and so SCIP breaks cycles randomly (which gives an almost topological
ordering). However, more information can be extracted from a cycle in the variable bound graph.
SCIP 4.0 uses this additionally extracted information to deduce bound changes.

Feature description. A cycle in the variable bound graph means that the value of a given
variable gives a bound for that same variable (after influencing the bounds of some variables in
between). Essentially, this means that the cycle represents a v-bound of the form z; < az; +
or ; > ax; + . Such a v-bound can be redundant, e.g., if « = 1 and 8 = 0. The v-bound
can also prove infeasibility of the problem, e.g., if « = 1 and 8 < 0 for the case of an upper
bound. As a third possibility, the v-bound may be redundant within an interval of values of x;,
but contradictory for all other values. Consider for example the v-bound z; < 2z; + 4, which is
contradictory for z; < —4. By analyzing cycles in the variable bound graph, SCIP can apply the
valid bound change x; > —4. If this bound is not applied, it may happen that SCIP decreases
the upper bound to —5 in branching. This bound could then be decreased to —6 by domain
propagation based on the variable bound graph or also the constraints from which the v-bounds
were extracted originally. After the decrease to —6, further decrease it to —8 by propagation
is possible. This process of decreasing the upper bound can continue until either infeasibility
is proven by passing the lower bound of the variable, some limit on the number of propagation
rounds is reached, or the upper bound reaches a value of minus infinity. At that point SCIP
will also conclude that there is no valid value for this variable and the current sub-problem is
infeasible. Thus, detecting the valid bound change at the beginning of the solving process by
analyzing the variable bound graph is preferred.



r—2y< 3 (1)
r+22< 2 (2)
r+3y< 6 (3)

(a) Constraint set.

r < 2y+3 (1a)
y = 3r—5 (Ib)
r < 2-2z (2a)
z < 1—-0.5x (2b)
r < 6-3y (3a)
y < 2- 131 (3b)
(b) V-bounds. (¢) Variable bound graph.

Figure 1: Example of a variable bound graph.

The topological ordering is computed by a depth-first search in the variable bound graph.
During this search, if one of the outgoing arcs of the current node leads to a predecessor of the
node in the depth-first search tree, a cycle is detected.

Let (n1, ..., ng) be such a cycle where n; is either Ib(z;,) or ub(z;,) and ny = ng. Each arc
(ni, nyy1) for i =1,...,k — 1 represents a v-bound:

L. Tji 2 QTG+ Bi i njp1 = lb(xjiﬂ)

2. QL'jl.Jrl S Q; Tj, + ﬁz if Ni4+1 = ub(xjiﬂ).

Note that this implies n; and n; ;1 represent the same type of bound (lower or upper) if a; > 0,
and different bound types (one lower, one upper) if o; < 0. Without loss of generality, let
ng = Ib(x;, ) in the following.

The v-bound coefficients related to the arcs of the cycle can be aggregated in the following
way:

L o' =ap_1, B = Br
2. af =ap_;0t L Bi= B v ap_i i fori=2,... k- 1.

Then, the following v-bounds are valid:
xj, > aixjk_i + B foralli=1,...,k—1, (2)

which can be seen as follows. Let z;, > ap_1z;,_, + Br—1 be the v-bound corresponding to
the last arc in the cycle. Now, if ng_1 = Ib(x;,_,), the second-last arc corresponds to z;, , >
Qk—2%;, _, +Br—2. This gives a lower bound on z;, , and since both nodes n;, and nj_1 represent
lower bounds aj_1 > 0 holds. Therefore, when replacing x;, , in the first relation according to
the second, this gives the following lower bound relation:

zj, > ap—1(ag—22j, , + Br—2) + Br—1 = ap—10p—22j,_, + 2 Pr—2+ Br-1 3)

=a? Tjy o, + B2.
On the other hand, if ng_1 = ub(z;, ,), the second-last edge corresponds to z;, , < ag_az;, ,+
Br—2. This is an upper bound on z;, , but now both nodes nj, and nj_; represent different bound
types and thus ai_1 < 0, so (3) is still valid. Applying this argument repeatedly proves validity
of the aggregated v-bounds (2).



Since z;, = xj,, the v-bounds (2) for i = k — 1 gives the following relation:
T 2 akille + ﬂkil' (4)

If a*=1 = 1, this boils down to 0 > B¥~! and infeasibility is proven for the case ¥~! > 0. On
the other hand, if o1 < 1, 15’27;1,1 is a valid lower bound of z;,. Finally, if afF=1l > 1, 15327;1,1
is a valid upper bound of z;, .

If ny, = ub(zj, ), the inequality sign in (4) is changed from > to < and thus infeasibility

i r is a valid upper bound of z;, if

is proven for o*~! = 1 and B*~! < 0 and otherwise, 1?%
aF~1 < 1, and a valid lower bound if o~ > 1.

Note the argument to derive valid bounds only relies on the fact that x;, = x;,, the stricter
condition n; = ny is not needed. Therefore, the algorithm is also applied for paths with start-
and end-node corresponding to the same variable, but representing two different bound types.

The development of this feature was motivated by a toy instance where domain propagation
repeatedly tightened the bounds of two variables until the bounds reached infinity. By using the
described cycle detection, infeasibility of the respective sub-tree was proven immediately. On
standard MIP benchmarks, however, the cycle detection does not find any reductions. Although
cycles are identified within the variable bound graphs of some problems, they only provide
redundant bounds on the involved variables. Additionally, for performance reasons, SCIP does
not build the complete variable bound graph including clique information (see the next section
for a definition of cliques). While building the complete variable bound graph would lead to
detecting more cycles in the problems, it poses too large a computational overhead. Specifically,
the depth-first search performed in the variable bound graph when computing the topological
ordering is computationally expensive. For these reasons, cycle detection is currently disabled by
default, but it can be enabled by setting the parameter propagating/vbounds/detectcycles
to TRUE.

2.1.2 Connectivity of the conflict graph for clique partitioning

An important global structure of a CIP P containing binary variables is the conflict graph
G, Tts use for deriving cutting planes and propagating linear constraints for MIP has been
investigated in Atamturk et al. [11]. The conflict graph is defined as the undirected G :=
(BU B, E), where B denotes the binary variable indices, B the set of complemented binary
variables

B={7:jeBx;=1—-x;},

and E denotes the edge set E == {{i,j} C BUB : z; + z; < 1is valid for P}. The edge set
of G represents all pairs of binary variables (and their negations), which cannot be set to 1
simultaneously in any feasible solution for P. Note that {j,7} € E for all j € B, i.e., there is
always an edge between a binary variable z;, j € B, and its complement zj.

We call every complete subgraph with node set C C B U B a clique. A clique of the conflict
graph is sometimes referred to as generalized upper bound [11]. It is important to know that
SCIP does not store the edges of G explicitly, but rather stores a list of cliques of G,
where each clique is represented as a list of involved vertices. This has advantages in the memory
consumption of the conflict graph storage. However, the downside of this representation is the
computational cost for querying if a pair of binary variables {i,j} € BU B, i # j is connected
by an edge in the conflict graph. In the worst case, such a query requires to iterate over the list
of cliques of 7 and j combined.

For a given set of variables A C B U B, a clique partition A= {A;,..., Ay} is a partition of
A such that every A; is a clique. Clique partitions play an important role for certain presolving



and propagation algorithms. An example is the knapsack constraint handler of SCIP that uses
clique partitions for a stronger propagation as described by Atamturk et al. [11].

SCIP provides a greedy clique partitioning algorithm for a set of variables, which considers
the connectivity of G as of this release. Indeed, two variable indices i # j cannot appear in
the same part A of any clique partition, if they are in different connected components of the
conflict graph.

The modified partitioning process is presented in Algorithm 1. The modification consists of
only one line of pseudo code, namely line 2. Given connected component labels for every index
j € A, a linear time bucket sort algorithm is used to group variables together that belong to
the same connected component of G°™. In previous versions, SCIP simply used the entire set
A= Af ie,s=1.

In order to appreciate the modification, it must be noted that the operation in line 12 requires
|Ag| checks whether an edge is contained in E in the worst case, which is itself an expensive
operation due to the representation of the conflict graph. A threshold t°°™P ensures that the
algorithm does not exhibit quadratic worst behavior if no nontrivial partition of a component
exists. Therefore, SCIP uses a hard-coded limit of t°°™P = 105, Thus, the limit can only affect
connected components containing at least |Af| > 1000 variables. When Algorithm 1 reaches the
threshold in line 9, the remaining variables are appended as one-element cliques to the returned
clique partition A.

This approach has been tested on a special test set of 13 instances from a line planning appli-
cation [26], which combine very long knapsack inequalities (involving several thousand variables)
and set-packing inequalities that do not intersect. Here, the described modification saves 35%
of presolving time, and increases the average number of successful calls to knapsack domain
propagation by 29%. Before the use of connectedness for clique partitioning, almost all variables
would have been partitioned into singleton cliques, thereby weakening the propagation routines.

Algorithm 1: Clique partitioning algorithm of SCIP
Input: Conflict graph G = (BU B, E), a set of binary variables indexed by
A C BU B, limit ™ > 1
Output: A clique partition A = {A;,..., A} of A

1 A+ 0

2 Compute connected component partition A§,..., A of A
3 k=0

4 foreach [ =1,...,sdo

5 Q +— A7

6 t+0

7 foreach i € @ do

8 k< k+1, Ay {i}, t +—t+1

9 if ¢t < to™?/|A7| then

10 Q<+ Q\{i}

11 foreach j € @ do

12 if {j',j} € EVj € A then

13 L | Ar A4 U} Q< Q\{jht—t+1
14 A— AU {AL}

15 return A




2.1.3 Improved handling of independent components

The components presolver [66] has proven to be very successful in improving the solver perfor-
mance for problem classes such as supply network planning problems. It exploits a decomposable
structure within the problem, namely completely independent sub-problems. For example, in
supply network planning problems a decomposable structure arises when different regions or
products do not interfere with each other. Given such a structure, the exponential nature of a
branch-and-bound search suggests that solving these sub-problems individually should be pre-
ferred to solving the problem as a whole. Indeed, computational experiments by Gamrath et
al. [66] show significant performance improvements.

The components presolver identifies independent sub-problems and tries to solve them to
optimality during presolving using a sub-SCIP, which is an auxiliary SCIP instance to which
(a part of) the problem is copied. To this end, it constructs the connectivity graph of the MIP
where each node represents one variable and each constraint is represented by a set of edges,
connecting the first variable in the constraint with all other variables of the constraint. This
representation ensures that all variables in the constraint are within one connected component
of the graph while keeping the number of edges in the graph small. The connected components
of the graph can be determined efficiently using a depth-first-search and each component then
represents one independent sub-problem.

In many cases, near-optimal solutions are suitable in practice for hard problems since the
runtime to prove optimality may be too large. Therefore, solving one component to optimality
after the other should be avoided in practice if the solving process of single components tends
to take a significant amount of time. Thus, only sub-problems that do not exceed a given upper
bound on the number of discrete variables are processed by the presolver. If there are sufficiently
small sub-problems, they are copied to a sub-SCIP, which is then solved with a node limit
to further limit the effort spent in the presolver. If the sub-SCIP was solved to optimality,
the respective variables in the original problem are fixed to the optimal values and the related
constraints are deleted.

SCIP 4.0 introduces the components constraint handler to extend this concept by providing
functionalities to also benefit from larger independent components that cannot be solved to
optimality in a short amount of time. First, however, it fully replaces the components presolver.
A presolving callback is implemented in the constraint handler that is executed during the
presolving process and provides the same functionality as the original presolver. Additionally,
the components constraint handler allows sub-problems to be solved individually that became
independent during the solving process due to branching decisions. For this, (locally) fixed
variables are disregarded when checking the connectivity of the problem.

If the problem at one node in the branch-and-bound tree can be divided into independent
sub-problems, the node is processed by solving them individually. The optimal solution for
this branch-and-bound node is then constructed by merging the solutions of the sub-problems.
Other than in presolving, the disconnectivity information should be exploited also for larger
sub-problems that cannot be expected to be solved to optimality in a short amount of time.
Therefore, the sub-problems are not solved to optimality one after the other. Alternatively, the
main solving process may solve other open nodes from the branch-and-bound tree while delaying
the solving of subproblems from the components constraint handler.

The components detection is performed in the propagation callback of the components con-
straint handler. If the problem decomposes at the current node, a sub-SCIP is created for each
of the components. Additionally, a components constraint is attached to the current node to
store the sub-SCIPs together with additional information about the decomposition. The gen-
eral behavior afterwards is the following: rather than processing the node and enforcing the LP



solution by branching if needed, the solving process of one of the sub-SCIPs is continued. In
the first call of a sub-SCIP, only its root node is processed. In later calls, the node limit is
increased and the gap limit is set to half of the current gap of that problem. After a sub-SCIP
was solved or a limit was reached, the dual bound of the current node is updated (if dual bounds
for all sub-problems have already been computed) and a new primal solution is constructed from
the best solutions found so far in all subproblems. Then, the current node in the main SCIP is
postponed. This means that it is put back into the queue of open leaf nodes and will be processed
again later. When the node is processed again, the attached components constraint signals that
a decomposition took place at this node. Therefore, the next sub-SCIP is selected whose solving
process is then continued.

When there are multiple open sub-problems at a node, those with a high absolute gap are
preferred. However, during the main solving process SCIP tries to keep the number of calls for
each sub-SCIP balanced. When all sub-SCIPs related to a decomposition at a node were solved
to optimality, this node is pruned. The same happens if the dual bound obtained through the
sum of the sub-SCIPs dual bounds exceeds the cutoff bound in the main SCIP.

Note that creating a number of sub-SCIPs for the individual components causes some over-
head that might outweigh the benefits obtained by solving several smaller problems rather than
one large one. Therefore, some parameters are provide to adjust the handling of components.
First, the maximum depth up to which the detection is applied can be specified. Nodes far down
in the tree can often be expected to be solved without too much additional effort, so the overhead
of creating the sub-SCIPs should be avoided. It also happens regularly that after some branch-
ing decisions, a few variables become disconnected but do not complicate the current problem,
for example because they are integral in each optimal LP solution. The overhead of creating a
sub-SCIP in such a case is avoided by enforcing a minimum size for a sub-SCIP to be created.
Multiple smaller components will be merged to a larger one if this achieves the threshold. Note
that more tuning and research is needed in this context.

Computational results have been performed using a set of supply chain instances and general
MIP instances from MIPLIB. On the supply chain models, components handling during the
branch-and-bound search can drastically improve the solving performance. This holds in partic-
ular for large supply network planning problems where some of the components are too large to
solve in presolving. The performance improvement from the components constraint handler has
been observed on one particular instance that can be split into 66 independent sub-problems at
the root node. The use of this constraint handler helps to reduce the optimality gap to less than
1% within a few seconds. When the components detection is restricted to small sub-problems
in presolving, the gap after 20 minutes is still larger than 60 %.

General MIP instances on the other hand feature decomposable structures less often. If a
decomposable structure is identified, the independent components are small enough most of the
time to solve them to optimality during presolving. Therefore, component handling during the
tree search introduces computational overhead for these instances with no performance improve-
ment. As such, the new component handling is disabled by default and only small components
are solved during presolving.

2.1.4 Improvements of propagation loop and event handler system

An issue sometimes identified in the development of pre-root heuristics is the unexpected change
in solver behavior after their call. In particular, even if a heuristic did not find a new solution or
update additional data, such as conflicts or inference scores, its call altered the branch-and-bound
tree search.

The reason why this occurs was identified as follows: The heuristics were executed at the

10



beginning of the node processing, before domain propagation at the node was called. Addition-
ally, they often start the probing mode of SCIP to create a temporary dive in the tree where at
each auxiliary node, some variables are fixed and those changes are propagated afterwards. This
led to the issue that the domain propagation calls within the heuristic changed internal flags
of the constraint handlers, stating that domain propagation or specific propagation algorithms
were already performed for a constraint. The plugin concept of SCIP does not allow for an
automatic reset of these flags when the probing mode is finished and domain propagation at the
root node is performed. As a consequence, the internal flags did not always correctly reflect the
need to propagate a constraint. Thus, root node propagation might incorrectly not propagate
some constraints.

This issue was fixed by two changes to the main solving loop in SCIP. First, the constraint
handlers now use the SCIP methods SCIPmarkConsPropagate and SCIPunmarkConsPropagate
more frequently. These methods provide a unified scheme for marking/unmarking a constraint to
be processed in the next propagation round, for example if a bound of one of the variables in the
constraint is tightened. By using these methods rather than internal flags in the constraint data,
SCIP 4.0 can ensure that the propagation status of a constraint is not lost during intermediate
propagation calls in probing mode. To this end, all marked constraints are buffered when probing
is started and this information is restored when probing ends. Second, even if no information
is lost, SCIP first propagates the general root propagation plus some additional changes at an
auxiliary probing node. After the probing heuristic finished, everything is reset and almost the
same propagation is done again to apply the changes at the root node. This inefficient behavior
is overcome by performing the first domain propagation call at each node now before calling the
first heuristic at this node.

Additionally, the evaluation of whether performing another presolving round is promising
was improved so that another propagation round is now triggered more often. In particular,
successful propagation calls with timing DURINGLPLOOP, which are called during the separation
loop, will trigger another propagation round with timing BEFORELP, which mainly includes non-
LP-based algorithms like activity-based bound tightening. The interaction of BEFORELP and
AFTERLPLOOP propagators was also improved. The latter propagators typically execute more
expensive algorithms that need information from an optimal LP relaxation. If the LP solution
changed after the last AFTERLPLOOP propagation call, another propagation round with this timing
will be performed directly before the BEFORELP propagators, which can further tighten domains.

Finally, propagation was improved by a change to the event handling system. Most constraint
handlers make use of event handlers in order to be informed when a bound in one of their
constraints was changed. This information is used to update activities or mark the constraint for
propagation. When jumping to a node in a different sub-tree, SCIP first traces the path in the
tree to the common ancestor node, thereby relaxing all bounds that were previously tightened
at the previous focus node. After that, nodes are activated on the path to the new focus node.
To reduce the event handling effort, the corresponding bound change events are not processed
one after the other, but rather buffered and only the final bound change event for each variable
is processed. This results in at most one event being handled per bound of a variable. In
many cases, no event has to be processed for a variable at all, for example if it was fixed to the
same value in both sub-trees. This reduces the effort needed for activity updates and avoids
unnecessary propagation calls. If a node was previously propagated, all bound tightenings are
re-applied when it is once again activated. So there is no need to repropagate this node. However,
this is not the case for the new focus node, where all bound tightenings compared to its parent
node need to be taken into account when deciding which constraints should be propagated. With
SCIP 4.0, buffering of bound changes is only done for the switch from the old focus node to the
parent of the new focus node. All bound changes applied at the new focus node trigger an event.
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Computational results. Together these changes improve SCIP by applying successful do-
main propagation more often and more consistently. Computational experiments to evaluate
the changes were performed on the MMM test set which is the union of the last three MIPLIB
versions: MIPLIB 3 [24], MIPLIB 2003 [5], and the benchmark set of MIPLIB 2010 [85]. We
ran SCIP with five different random seeds on each instance, once with and once without the
changes described in this section. The random seeds are used to reduce the impact of perfor-
mance variability [85] and get more significant results. Each individual instance is counted as
solved only if it was solved within the time limit of two hours with all five seeds. The solving time
for an instance is the average over the solving time with the five seeds. The updates described
in this section allow to solve two more instances and reduce the solving time by 2 %. The shifted
geometric mean over the number of processed branch-and-bound nodes was even reduced by
5% for the set of instances solved by both variants. However, more importantly, these changes
help reduce performance variability and the unintended side effects of including newly developed
plug-ins, which cannot be measured directly. An indication for the reduced variability is the
fact that the relative difference between the shifted geometric means of the solving time for the
fastest and the slowest seed is reduced from 7.6 % to 5.5 %

2.1.5 Enforcement of relaxation solutions

An important part of a branch-and-bound approach is solving continuous relaxations of the CIP
or MINLP. There are two main uses of continuous relaxations in branch-and-bound algorithms.
First, the bound computed by the continuous relaxation can be used to prune the node, given a
better known solution. Second, the solution can be enforced, meaning that it is used for branch-
ing or to compute cutting planes. While the usage of the computed bound was implemented for
both the LP and general relaxations in previous SCIP versions, only the LP solution was en-
forced. SCIP 4.0 has been extended to include the possibility to enforce the solution of arbitrary
relaxators and use their tighter relaxations to compute stronger cutting-planes or make better
branching decisions. This also allows user-written relaxators to be combined with any type of
constraint handlers implemented in SCIP—even without solving any LPs—since the constraint
handlers can now work on the relaxation solution. In this section, the usage of non-LP relaxations
in a branch-and-bound context and its potential for enhancing the solving process is discussed
and the implementation of the relaxation enforcement in SCIP is explained.

While the enforcement of relaxation solutions may be useful for general CIPs, it is most
interesting for convex and nonconvex MINLPs. The usual approach to solve nonconvex MINLPs
is to combine a spatial branch-and-bound or branch-and-reduce algorithm, as introduced by
Ryoo and Sahinidis [120], with convex under- and concave over-estimators. The most important
decision in the design of such algorithms is the choice of over- and under-estimators. They can
either be chosen as linear functions—like in SCIP with default plugins—or as general nonlinear
convex or concave functions like in the a-BB approach [8, 9]. The advantages of solving linear
relaxations are the efficiency of LP solvers and the availability of sensitivity information which
can be used for inferring domain reductions, see for example Burer and Letchford [32].

The disadvantage of the LP-based approach is that an arbitrary number of spatial branchings
or cutting planes may be needed to enforce even a single convex constraint using linear functions
only. Therefore, it may still be worthwhile for many applications to solve nonlinear relaxations
in some or all nodes of the branch-and-bound tree of a convex or nonconvex MINLP to compute
stronger dual bounds, make better branching decisions and create stronger cutting planes already
in the first enforcement rounds, as shown for example by the numerical experiments of Bonami
et al. [25]. Furthermore, for specific applications special types of relaxations like semidefinite
relaxation as in Buchheim and Wiegele [31] and Burer and Vandenbussche [33]| or even mixed-
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Figure 2: Node processing loop in SCIP 4.0 with differences to previous version

integer linear relaxations like in Geifler et al. [68] may be available.

Feature description. The core of SCIP 3.2.1 only uses the lower bounds computed by re-
laxator plugins, while the relaxation solution is only used if the relaxator itself, manually, tries
to add it to the solution storage or adds external branching candidates. In SCIP 4.0 the best
relaxation solution is stored for comparison with the LP solution. The relaxation solution is
enforced if it’s objective value is strictly greater (for a minimization problem) than that of the
LP or if the LP was not solved at the current node. Note that if the optimal objective of the LP
is equal to the objective of the best relaxation, the LP solution will be enforced.

It is necessary to restrict this process to those relaxators that include all linear constraints
in their relaxation. This ensures that added cuts are obeyed by the relaxation and the previous
optimal solution is cut off when resolving the relaxation after adding corresponding cuts. For
this purpose, the additional parameter RELAX_INCLUDESLP has been added to the properties of
relaxation handlers. If this flag is set to false, or if the relaxation handler only provides a lower
bound but no solution, the behavior is the same as with SCIP 3.2.1.

In case the relaxation solution is chosen for enforcement, the enforcement-loop will try to cut
off the relaxation solution if it violates some constraint. If all constraints are fulfilled but some
integral variables take fractional values, these will be added as external branching candidates.
Finally, if the solution is feasible for all constraints including integrality, the relaxation solution
is added to the solution storage. For an overview of the updated node processing loop with and
without solving LPs see Figure 2, with the main difference to SCIP 3.2.1 being the additional
option of enforcing the relaxation solution.

2.1.6 Partial Solutions

In practice it is often possible to guess problem specific solution values for a subset of the
variables. One such example is setting all integer variables to zero. Guessing solution values
for only a subset of variables can be interpreted as a partial solution. A solution & is called
partial, if &; € [I;, u;] for all guessed solution values, and Z; =1 otherwise, which means that the
variable has an unknown solution value. These guesses can be used to produce primal solutions
heuristically.

In SCIP 3.2.1 and previous versions, however, the task of extending such partial assignments
to a complete and feasible solution that could be added to SCIP was left to the user. SCIP 4.0
now provides the possibility to read in (via the console) and create (via the API) solutions
where only a subset of variables is fixed to a solution value. At the beginning of a solve, before
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presolving the given problem, a new primal heuristic (called completesol, see 2.3.2) will be
executed if partial solutions are present.

In contrast to the usual SCIP solution format .sol, where each variable that is not listed is
assumed to be fixed to zero, the new solution format .mst (MIP start) introduced in SCIP 4.0
describes a partial solution where all non-listed variables are assumed to be unfixed, i.e., the
solution values are unknown. However, both formats can describe the same solutions as is the
case in the following example.

.sol format: .mst format:
x1 1 z1 1
x4 0.5 z3 0
T5 unknown z3 0
zq 0.5

In order to allow for partial solutions defined in the .sol format, the format has been ex-
tended. Specifically, a variable without a “guessed” solution is labeled as unknown. As such, in
SCIP 4.0 each variable stated in a .sol file can take either a real value, &=inf, or unknown.

In addition to the new functionality of reading partial solutions, SCIP 4.0 provides a new
interface method SCIPcreatePartialSol that creates a partial solution. Analogous to complete
solutions, partial solutions can be added by calling SCIPaddSolFree or SCIPaddSol before the
solving process commences. As for complete solutions, both methods add the solution to the
internal storage, SCIPaddSolFree additionally frees the solution pointer afterwards. Moreover,
SCIP 4.0 provides the possibility to write only the integral part of the best known solution to a
file. Such a solution is also known as a MIP start, which can be written and read by other MIP
solvers like GUROBI, XPRESS, and CPLEX.

2.1.7 Randomization in SCIP

Random numbers have a strong influence on the solution process of a modern MIP solver. This
is due to the multitude of locations where (pseudo) random numbers are used within the solver.
For example, random numbers can be used if a tie needs to be broken when ordering variables or
constraints. Moreover, random numbers are also used to reduce numerical troubles by perturbing
objective coefficients. Since changing the random seed of a MIP solver leads to a different solving
behavior it can also be used to simulate testing on a much larger set of instances. Averaging
the results for each instance over all used random seeds leads to more robust results when
measuring the overall performance by reducing the impact of outliers. Alternatively, a test set
can be enlarged by permuting variables and constraints of a given problem. However, testing
and tuning without changing the seeds used within a random number generator can lead to the
over tuning of parameters in a MIP solver. One negative outcome of over tuning can be large
performance variability after the addition or removal of plugins.

In previous versions of SCIP it was not possible to easily change the random behavior of the
solver. To remedy this, SCIP 4.0 provides a new parameter class randomization to modify the
random numbers used during the solving process. This new parameter class contains three differ-
ent parameters, which can be found in Table 1. Changing the new parameter randomseedshift
will affect all random numbers used in the plugins by shifting the predefined initial random seed.
Beside changing the random behavior of the SCIP plugins itself, the random seed of the linked
LP solver can also be changed (1pseed). This parameter is also affected by changing the random
seed shift. The random seed that is used to permute the variable and constraint ordering of a
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Table 1: Overview of all global parameters related to randomization in SCIP 4.0.

parameter range default description

lpseed [0, 231] 0 Random seed for LP solver, e.g. for perturbations in the
simplex.

permutationseed [0, 23!] 0 Seed value for permuting the problem after read-
ing/transformation.

randomseedshift [0,23!] 0 Global shift of all random seeds in the plugins and the

LP random seed.

given problem instance (permutationseed) will not be affected by changing the random seed
shift.

In addition to providing convenience functions that allow changing the random behavior,
SCIP 4.0 comes with a new random number generator. Instead of using the C library function
rand (), the KISS random number generator [98] is used. In comparison to rand (), KISS has a
much larger period (> 2'24) and is able to pass statistical tests, such as the BigCrush-Test from
the TestUO1 library [89]. This has no impact on the performance of SCIP, but increases pseudo
random number generation stability.

Given the heavy reliance on random number in SCIP, the arithmetic operations used by a
random number generator have an impact on the overall solving performance. Compared to other
random number generators that pass statistical tests of randomness, like MERSENNE-TWISTER,
KISS uses only simple arithmetic operations like multiplication, addition, and bitwise XOR.

2.1.8 Hash tables in SCIP

Hash tables are a widely used data structure where elements are stored in an array by computing a
hash value from their keys. This allows elements from a large key universe to be stored in a much
smaller array, while accessing the elements by their key still requires amortized constant time.
Hash tables are used throughout the SCIP code, for example when finding duplicate constraints
or cliques. The performance of the hash table implementation can have a high impact on the
presolving time as there are instances where several millions of cliques are found. A hash table
allows to determine the duplicates using pairwise comparisons only on the elements that have an
equal hash value. When different elements have the same hash value, this is called a collision.
A high quality hash function should be fast to compute and distribute the keys well, ideally as
if the hash values where chosen uniformly at random.

One improvement for the hash tables in SCIP 4.0 regards the hash function. Previously the
size of the array was chosen to be a prime number and the hash function was solely a modulo
operation with this size, whereas SCIP 4.0 uses a multiply-shift hash function [46] given by

ax mod 264
h(x) = (26474)7
where a € [1,2%% — 1] is some odd integer and [ € IN is the desired bit length of the output. This
hash function is fast to compute and distributes the keys well [132, 117]. In fact it was shown
to be universal, i.e., for a chosen uniformly at random and arbitrary x # y the probability for
h(z) = h(y) is at most Z [46].

When hashing from a larger universe of keys into the indices of a smaller array collisions
cannot be avoided and need to be resolved by the hash table implementation. The hash table
implementation of prior SCIP versions used chaining, a common strategy for resolving a collision.
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When using this strategy each slot of the array stores a linked list containing all elements that
where hashed to this index. While this is easy to implement, a series of pointers must be followed
when looking for an item in one of the linked lists. Due to cache effects in modern microprocessors,
such scattered memory accesses are far more expensive than accesses to contiguous memory
locations. Another strategy for collision resolution is open addressing. Here a collision is resolved
by storing an element at a different position than the one it was hashed to, according to some
rule. A simple rule that highly compatible with the CPU caches is called linear probing. As the
name suggests, the array is scanned linearly until an empty slot is found.

In SCIP 4.0 the old implementation using chaining was replaced by an implementation of
Robin Hood hashing [36] with linear probing. The name stems from the insertion algorithm: if
an element is encountered that has a better position than the element being inserted—closer to
the position it was hashed to—the position will be “stolen” from this element and given to the
new one. In that case the insertion continues with the element until it either takes the position
of another element or finds an empty slot.

The Robin Hood insertion strategy reduces the variance and the worst-case of the required
search length for a lookup in the hash table and gives good performance even for high occupancy.
This allows SCIP 4.0 to use considerably smaller hash table sizes than before. A comprehensive
experimental comparison of hashing methods by Richter et al. [117] supports the algorithmic
choices for the new hash table implementation. They found the multiply-shift hash function
to be the best trade-off between distribution quality and throughput in practice. Among the
collision resolution schemes they compared, Robin Hood hashing with linear probing was always
among the top performers and in many cases the best method.

2.2 Presolving

Presolving applies a collection of algorithms in an attempt to reduce the size of the given problem
or improve its formulation. Achterberg et al. [4] have recently presented an overview that covers
a broad range of presolving techniques for solving mixed-integer programs. In this section, two
new presolving techniques included in SCIP 4.0 are described. Further, the coordination of the
presolving methods has been improved in SCIP 4.0 with addition of the new presolving level
FINAL.

Extended stuffing presolving. Singleton variable stuffing [66] was previously implemented
using the matrix module of SCIP [63]. This introduced some overhead that is now avoided by
moving this presolving step into the linear constraint handler.

Additionally, a related presolving step was added to the linear constraint handler, called single
variable stuffing. This presolving step is not restricted to continuous variables and can also be
applied to non-singletons, as long as the variable locks allow this.

Before going into detail about the new presolving step, let us shortly review the concept of
variable locks as introduced by Achterberg [1].

Definition 2.2.1 (Variable locks). Let x; be a variable in problem (1). A constraint g;(z) <
0,7 € M down-locks (up-locks) x; if there exists a solution T with g;(Z) <0 and € > 0 such that
gi(z') >0 for 2’ =z —ce; (' =z +eej). The number of constraints that down-lock (up-lock) a
variable is called the number of down-locks (up-locks) of that variable.

Single variable stuffing is a presolving step that investigates a single constraint. Let a con-
straint .. ;a;jz; > b be given with non-negative variables z;,j € J, coefficients a; > 0 for
J € J, right hand side b > 0, and objective coefficients c¢; > 0 for all variables x;,j € J. Since all
variables have a non-negative coefficient, setting all variables to 0 would be optimal with respect
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to the objective function but infeasible for the problem due to the investigated constraint. How-
ever, if one variable xj with smallest ratio Z—’; suffices to satisfy the constraint, its lower bound

can be increased to % and all other variables z;,j € J\{k} can be fixed to 0 under the following
conditions:

1. i < uy, where wuy, is the upper bound of the variable,
2. xj has no up-locks,

3. all z;,5 € J\ {k} have exactly one down-lock (originating from the constraint that is inves-
tigated), and

4. if xy is an integer variable, then % €Zorc, < Z—; (b — {%J ak) holds for all j € J\ {k}.

Through the lower bound tightening of xj, the constraint jes @ = b becomes redundant.
This presolving step is implemented in SCIP 4.0 and generalized to variables with lower bounds
different from 0. Further, it is possible to investigate variables with negative coefficients if they
also have non-positive objective coefficients.

Exploiting complementary slackness. The theory of duality for linear programming is
well-developed and has been successfully applied in advancing algorithms for solving linear pro-
grams. In principle, many of the results for linear programming can be extended to mixed-integer
programming, but this has proven difficult. The method described in this section is a particu-
lar case where the conveyance of properties from linear programming duality to mixed-integer
programming works well.

Consider for ¢ € R™, A € R"™*" b € R™, and variables € R™ the mixed-integer program

min {¢'z : Az >b, x>0, 2; € ZVj €L} (5)

By applying bound strengthening on the dual of the linear programming relaxation of (5) ap-
propriately, we are able to determine bounds on the dual variables and on reduced costs. The
reduced costs may be used to fix variables and the bounds on the dual variables to detect implied
equalities in the mixed-integer program (5).

Let us consider one important statement from linear programming duality. If x* is a feasible
solution for

min {c¢" 2 : Az > b, z > 0} (6)
and y* is a feasible solution for
max {b'y : ATy <¢,y >0}, (7)

then a necessary and sufficient condition for z* and y* being optimal for (6) and (7), respectively,
is complementary slackness [125].

To gain valuable insights for problem (5), we are primarily interested in the following impli-
cations of complementary slackness

y;‘>0 = A;x"—b;=0,
¢;—(A;)Ty >0 = a3 =0,

wherei € {1,...,m} and j € {1,...,n}. Animportant part of this presolving step is determining

the values of y*. However, solving a linear program introduces a computational burden. So it
may be more efficient to alternatively obtain bounds on the dual variables ¢/ < y < @. This
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is achieved by performing bound strengthening only on the columns of (5) corresponding to
continuous variables.
We summarize this idea in the following statement, which was first published in Achterberg
et al. [4]. By considering only the columns of the continuous variables z; with j € S =N \Z
and applying bound strengthening on (A.5)Ty < cg, y > 0, to get valid bounds ¢ < y < 4, the
following implications hold:
i) If £; > 0 for i € {1,...,m}, we can convert constraint 4 into an equation A; z = b;.
ii) If ¢; > max {(A;) Ty : £<y<u}forje{l,...,n}, we can fix x; to its lower bound 0.
This presolving technique typically detects only limited reductions on MIPLIB instances.
However, on real-world supply chain instances several thousand of constraints can be turned into
equations, which for its part triggers aggregation presolving techniques. Although this presolving
technique can fix integer variables, we observe that the majority of fixed variables is of continuous
type for supply chain instances.

New presolving level FINAL. The concept of presolving levels introduced in SCIP 3.2 (see
Gamrath et al. [63]) is extended in SCIP 4.0 by the introduction of the FINAL level. Presolvers
declaring the level FINAL are only called once after all presolvers for the levels FAST, MEDIUM and
EXHAUSTIVE did not find enough reductions to trigger another presolving round. The level FINAL
allows for the implementation of presolve reductions that do not enable further reductions. An
example for this is the components presolving, see Section 2.1.3 and [66]. When successfully
applied, it fixes all variables of an independent subproblem and deletes the corresponding con-
straints. Therefore, no reductions in other (independent) parts of the problem can be derived
from that result. Consequently, the FINAL presolving level is always the last one and never
triggers another round of presolving.

Please note that it can not be assumed that a presolver called in this level is the last to
perform any reductions, so further cleanup of internal structures in the PRESOLEXIT callbacks
may still be needed.

2.3 Primal heuristics

Primal heuristics denote auxiliary algorithms aimed at finding good incumbent solutions to sup-
port the branch-and-bound procedure. For the release of version 4.0, some new primal heuristics
have been added to the battery of about 50 primal heuristic plugins of SCIP. Graph induced
neighborhood search (GINS) (Section 2.3.1) is a large neighborhood search (LNS) heuristic that
uses the distance between variables in the connectivity graph for its neighborhood definition.
Completesol (Section 2.3.2) is a new LNS heuristic designed to complete partial solutions, see
also 2.1.6. Furthermore, SCIP comprises a new primal heuristic LP face (Section 2.3.3) that
searches the optimal face of the LP relaxation, as well as a new constructive pre-root heuristic,
Locks (Section 2.3.4). Note that these primal heuristics were designed with the primary goal
to improve SCIP on MIP problems. For new MINLP-specific primal heuristics in SCIP, see
Section 2.6.2.

Numerous primal heuristics for mixed-integer linear optimization have been proposed in the
literature, see [19] for an overview and a SCIP-specific list of available primal heuristics. A
widely-applied concept is large neighborhood search (LNS). An LNS heuristic for MIP performs
the three main steps:

1. Create an auxiliary mixed-integer optimization problem P,

2. Solve Paux,
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3. Transform solutions found for P*"™* back to the main problem.

In designing LNS heuristics for MIP there is a lot of freedom regarding the definition of a
search neighborhood P*"*. The only restriction placed on P*"™* is that it should contain integer
variables. Most proposed LNS heuristics derive their P*"* by fixing the domains of a subset
T' C T of the integer variables to values of an incumbent solution at hand. This procedure is
formalized in Algorithm 2. The subroutine LNS-fix expects a MIP P and a (not necessarily
feasible) reference point z*. The search space is reduced by restricting all values of the variables
indexed by Z’ to their reference point values. If the reference point is a solution of P, the search
is further restricted to solutions that improve the objective function value of z* by at least €
in line 4. Note that the objective cutoff may be rounded down if the objective is known to be
always integer. The remaining problem is solved in line 5. Since the solving time of the resulting
P2 can take arbitrarily long even for very large sets Z’, working limits on the solution process
must be applied in order to achieve acceptable running times.

Alternative approaches to define auxiliary LNS problems include the addition of constraints
to the original formulation [54], a combination of variable fixings and additional constraints [69],
or the use of an alternative objective function [56].

Algorithm 2: Subroutine LNS-fix(P, z*,7")
Input: MIP P, reference point z*, variable subset () # Z' C N such that Z\ Z' #
Output: An improved solution ™%, or null if not successful
pax o p
Add restrictions {z; = z}} to P Vj e T'
if x* feasible then
L Add objective cutoff c'x <cla* — ¢ to Paux

Solve Paux

if P% has solution r*** then
‘ xlnsﬁx o paux

else
L 2lnsfix o pall

Insfix

W N =

© 0w N o w;

10 return

2.3.1 Graph induced neighborhood search

For a given MIP P
min{cTz cAx>b <z <u, x; €ZVjel},

let the undirected connectivity graph of P be Gp = (VUW, E) with V = {v1,...,v,}, W =
{wi,...,wy} and E = {{vj,w;} : A;; # 0}. The connectivity graph connects the node corre-
sponding to a variable z; to the nodes corresponding to the rows of A where z; has a nonzero
coefficient. Note that the definition of Gp allows a straightforward generalization beyond lin-
early constrained problems to arbitrary CPs. In the following, Gp is assumed connected. For
two (variable) nodes v,v’ € V, let R, ,+ denote the set of all paths connecting v and v'. For a
path R € R, ., the number of edges of R is called the length |R| of R. The length of a shortest
path between v and v’ is called the distance

d(v,v') = Rrr71zin |R|
S ’

v,V
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between v and v’. For v = v/, the distance is d(v,v) = 0. All other nodes v' € V have an even
distance from v because G p is bipartite—variable nodes are only adjacent to constraint nodes.
For v € V, the k-neighborhood Ny (v) comprises all nodes v’ € V with distance at most 2 - k from
v, and v is called central node of N (v).

This heuristics ranks two k-neighborhoods around central nodes v # v’ by the root LP
potential: For k > 0, a root LP solution 2° and a current incumbent solution z*,

m(v) = Y e(af —af)

v ENg (V)

is called the root LP potential of v.

The outline of the proposed graph induced neighborhood search (GINS) primal heuristic is
given in Algorithm 3. For a subset S C N, Algorithm 3 uses the notation Vg == {v; : i € S}
for the subset of V' indexed by S.

Algorithm 3: Rolling horizon algorithm of the GINS heuristic
Input: MIP P with integer variable indices Z, incumbent solution z*, distance k,
minimum fraction « of integer variables that must be fixed in the auxiliary
problems
Output: An improved solution, or z* if not successful
/* 1. Selection of an initial neighborhood */
Construct the connectivity graph Gp = (VU W, E)
Q< Vg
v(© « pull, 79 + —c0
while Q #0 do
Select v € @ uniformly at random
if 2 < [Ny(v) N Vgl < (1= a)|Z| and mi(v) > 7@ then
L v v, 7O 7 (v)
Q <+ Q\ Nk(v)
9 if v(©) = null then return z*
/* 2. Solve series of auxiliary problems with increasing distance from v(0) */
10 [+ 0, 20 « 2%, Q + Vg
11 while Q # 0 do

N 0 Rk W -

o]

12 VP < argmin, ¢ d(v, v(9), Q « Q\ {v™*}

13 if 2 < |Ni(v™*") N Vig| < (1 — @)|Z| then

14 22 ¢ LNS-fix(P,zW, T\ {i : v; € Njp(v"*)})
15 if % #£ null then

16 | 141 a0 Q= Q\ Ny (o)
17 else

18 L break

19 return z®

Algorithm 3 involves two major stages. The first is the selection of an initial neighborhood.
The second is the processing of a series of auxiliary problems as long as improving solutions
are found in a rolling horizon fashion on structured problems. Throughout Algorithm 3, the
parameter « is used to control the difficulty of the resulting auxiliary problems by restricting the
fraction of unfixed integer variables. Neighborhoods with more than (1 — «)|Z| integer variable

20



nodes are discarded by the conditions in line 6 and line 13. A random sampling procedure is
used for the selection of an initial neighborhood. During one sampling step starting from line 4,
an integer variable node v is selected uniformly at random, and its k-neighborhood is checked
for an appropriate number of nodes corresponding to integer variables. If the root LP potential
7k (v) exceeds the root LP potential of the currently selected node, v is selected as initial variable.
Regardless of its size or root LP potential, N (v) is dropped from further sampling iterations in
line 8.

It is not guaranteed that a suitable initial neighborhood can be found for the selected value
of the parameter av. However, if Algorithm 3 reaches line 12 for the first time, the selected node
vt i always v(?) whose neighborhood is ensured to match the size requirement because of the
selection procedure. Therefore, at least one auxiliary problem is created and solved by calling
the subroutine LNS-fix. If successful, the procedure then solves a series of auxiliary problems for
neighborhoods around central nodes with an ever increasing distance from v(°). By removing the
current neighborhood from the set of remaining variables, it is ensured that no central variable
from a previous iteration is part of a future neighborhood.

2.3.2 Completion of partial solutions

Since SCIP 4.0 the user has the possibility to add partial solutions (see Section 2.1.6) via the API
and the interactive shell. At the beginning of a solve SCIP 4.0 tries to complete all given partial

solutions. This is achieved by calling the new LNS heuristic completesol before presolving.
Recall that for a given MIP P

min{cTa:|Ax >bl<zx<ux €ZVieTl},

a partial solution has the form & € R", with &; € {[l;,w;], L} for all i = 1,...,n. The heuristic
used to complete a given partial solution is summarized in Algorithm 4. The auxiliary problem
used in this LNS heuristic depends on the partial solution . First, the domain of all integer
variables for which a solution values is given gets reduced, either by fixing or reducing the domain.
In a second step the heuristic tries to reduce the domain of all continuous variables with a given
solution value. In addition to the domain reduction steps the objective function can be modified
to prefer solutions close to .

So that not too much time is spent in Line 18 of Algorithm 4 working limits are used. In
addition to the standard limits on the number of exploited branch-and-bound nodes or memory
consumption, the heuristic will stop if a certain number of improving solutions was found. By
default, SCIP 4.0 will stop after 5 (improving) solutions were found. Moreover, SCIP 4.0 will
not try to complete a given partial solution if the number of unknown solution values is greater
than a parameterized threshold. The optional loop can be activated to enforce solutions that are
close to , which is disabled by default.

2.3.3 LP face

It is possible that the hyperplane {x : ¢z = ¢"2*"} contains a solution for a MIP P, but the
LP relaxation solution ™" does not satisfy the integrality requirements. In such a case, the
dual bound obtained from the LP relaxation solution is already best possible and cannot be
further improved by branching. There exist both primal heuristics such as feasibility pump [53]
as well as LP methods, for example Section 4.2, which repeatedly solve an LP to attain feasibility.
However, if there is no basic solution that is feasible for P, it might not be enough to rely on
such LP-based methods.

The LP face heuristic is an LNS approach that restricts the neighborhood to the optimal
LP face of P. Therefore, all nonbasic (integer and continuous) variables with positive reduced
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Algorithm 4: Completesol heuristic

oA W N -

10

11
12
13

14
15
16
17

18
19
20
21
22

23

Input: MIP P, partial solution #, index set of all variables N, index set of integer
variables Z, scalar for bound-widening 3 € [0, 1].
Output: An feasible solution z°°™P!, or null if not successful.
pax ¢ p
for i€ 7T with ; #1 do
if #; € Z then
| Add restriction {z; = #;} to Paux

else
/* Allow ranges with size up to four to increase degree of freedom */
Add restrictions {max{l;, |#;] — 1} < z; < min{u;, [;] +1}} to P>

for i ¢ T with &; #1 do
Add and propagate domain reduction {max{l;, |Z;| — 8 (u; — l;)} < z;}
if P% pecame infeasible then
L Backtrack and add restriction {z; < max{l;, |Z;] — - (u; — l;)}} to P

Add and propagate domain reduction {x; < min{[Z;] + 8- (u; — ;), u; }}
if P became infeasible then
| Backtrack and add restriction {z; > min{[&;] + - (u; — l;),u; }} to P~

/* The following loop is optional and forces solutions close to & */

for i e N with z; #1 do
if [; <wu; in P** then

Add a continuous (nonnegative) variable s; with objective coefficient d; = 1 to P>
L Add a restriction {|#; — z;| < s;} to P2

Solve paux

if P has feasible solution z®"* then
‘ xcompl ¢ paux

else

L Pl pull

return zmp!
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costs in the optimal LP solution are fixed to their value in the LP solution. Additionally, all LP
rows with nonzero dual multipliers are turned into equations and an equation {c¢'z = c"2MF}
is added to the auxiliary problem to restrict the search space to the optimal LP face. Since
the goal of this heuristic is to provide a feasible solution that lies on the optimal LP face (and
hence terminate the solution process), it is only executed at dual-bound defining nodes. In
addition to the usual working limits on the number of branch-and-bound nodes and minimum
number of fixed integer variables in the auxiliary problem, this heuristic waits for a number of
nonimproving branching decisions in the search tree before running, which is controlled by the
parameter heuristics/lpface/minpathlen.

2.3.4 Locks heuristic

The locks heuristic is a LNS heuristic in the spirit of the clique and variable bound heuristics [62].
It is a pre-root heuristic that constructs its neighborhood based on structures in the problem, in
this case based on the variable locks (see Definition 2.2.1). To do so, it iteratively fixes variables
and performs domain propagation after each fixing in order to identify any resulting implications.
After that, the resulting problem is solved as an LP and a simple rounding heuristic is applied
on the LP solution. If the rounded solution is feasible, then a solution that is feasible for the
original problem has been constructed, if not, the remaining problem is copied to P*"*, that is
then solved with some working limits.

In the fixing step, the locks heuristic first sorts the binary variables based on the sum of
each variable’s down and up locks. Variables with the highest numbers of locks are treated first,
since they are expected to be the most influential. Each variable in the sequence is then fixed to
their upper (lower) bound if its number of up locks is smaller (higher) than its number of down
locks. The motivation is that fixing the variable on this bound gives a higher chance to render
constraints redundant and preserve feasibility of the remaining problem. If the number of locks
is the same in both directions, variables are fixed randomly to one of their bounds, based on
a given probability threshold. By default, a variable is rounded up with a probability of 67%,
which proved to be reasonable in our computational experiments. After a variable was fixed and
the change was propagated, the heuristic updates the locks of all variables. The update checks
if any of the LP rows became redundant, based on their minimum and maximum activities after
the last fixing. If a row is redundant, the variable locks for all variables in it are reduced.

Note that the constraint-based system of SCIP makes performing this update at the con-
straint level difficult. This is due to each constraint being treated as a black-box by the heuristic.
Instead, the LP rows are used for this, which typically works well for MIPs, but might lead to
incorrect updates of the locks for more general constraints. This is because one constraint may
add multiple rows to the LP while locks are only added for the original constraint itself. While
such incorrect updates may impact the fixing decision, the heuristic algorithm is still correct.

2.3.5 Computational Results

In order the assess the individual performance of the three heuristics LP face, locks and GINS, a
computational experiment has been conducted using the MIPLIB 2010 benchmark test set [85]
with a time limit of 2 hours. A configuration in which all three heuristics are activated serves as
base line for comparisons to three configurations that disable one of the heuristics each.

GINS and LP face both incur a slight slow-down of 1.5%. GINS finds improving solutions
for 15 of the 27 instances where it is executed, which shows the general purpose applicability of
this heuristic. The structural requirements regarding the variable constraint graph are satisfied
reasonably often. In contrast, LP face does not find any solutions on the MIPLIB 2010 benchmark
set. However, in experiments on permuted instances (see Section 8), the heuristic is able to find
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the optimal solution for 40 % of the permutations of instance lectsched-4-obj very fast, leading
to significant performance improvements in these cases.

Finally, the locks heuristic has the most positive impact on the overall SCIP performance.
Out of the 87 instances in the test bed, SCIP solves 2 more instances (72 instead of 70) and is
3.7% faster if locks is active. The locks heuristic finds improving solutions on 41 instances. In
the default settings, all three heuristics are enabled.

2.4 Reoptimization

Since version 3.2, SCIP provides reoptimization that can be used to warmstart the branch-
and-bound tree after modifying the objective function or restricting the search space, see [64].
Consider a (finite) sequence of MIPs (P;)

min {¢; z : Az >b, | <z <wu, x €ZP x R"P}, (8)

which differ in the objective function. While solving problem F; all following problems P; with
j > i are unknown. A possible application and one of the major motivations for providing this
feature is column generation. In this case, the sequence of the MIPs is formed by the pricing
problems that need to be solved at each node.

The main challenge in warmstarting the branch-and-bound tree is to guarantee optimality,
because state-of-the-art MIP solvers extensively use dual information, e.g., variable bound reduc-
tions based on the current cutoff bound or strong branching. Whereas a reduction is called dual
if it preserves, at a minimum, only one optimal solution. In contrast to that, a reduction is called
primal if all feasible solutions will be preserved. Thus, deductions based on dual information are
not necessarily valid after changing the objective function.

In SCIP 3.2, reoptimization could only be applied if (8) is a mixed-binary problem. Between
two reoptimization solves, SCIP rebuilds parts of the solution space pruned due to dual reduc-
tions at each branch-and-bound node. This rebuilding process can be performed using a single
linear constraint if the problem is mixed-binary, see [64]. In contrast to that, using this approach
for a general MIP will either yield a constraint program (CP) or additional integer variables need
to be introduced for the problem to remain linear.

Since the approach to rebuild parts of the search space pruned by dual reductions—which is
described in the following—will enlarge the search tree, all methods using dual reductions except
for strong branching will automatically be disabled when reoptimization is used. Therefore, we
can restrict ourself to reduction performed on integer variables.

Let min {c;'—a: s Ar > b, U <z <o/, x € ZP x R" P} be a subproblem corresponding to a
node of the branch-and-bound tree with local bounds | < I’ < w' < u. Moreover, let T+, 7" C T
be disjoint subsets of integer variables such that for each x; with i € Z*, the upper bound has
been tightened to u} and for each x; with j € ZT, the lower bound has been tightened to I, both
by dual deductions. In the case of a mixed-binary program, which was handled by SCIP 3.2, this
is equivalent to fixing an integer variable to its lower or upper bound, respectively, i.e., u} = 0
for all 4 € Z% and l; =1 for all j € Z'. Thus, the part of the search space pruned by applying
those reductions can be represented by creating a copy of the node without the dual reductions
but extended by a single linear constraint

i€V JEIT
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In SCIP 4.0, the reoptimization feature is extended to be also applicable to general mixed-
integer programs. If Z¥UZ' contain non-binary integer variables, a constraint of type (9) cannot
be formulated. Thus, two possibilities are provided to reconstruct the part of the search space
pruned by applying dual reductions. First, similar to (9), a so-called bound-disjunction constraint

V@zu+1)v \/ (@ <l-1) (10)

€T JEIT

is added to a copy of the node without applying the dual reductions. Second, SCIP 4.0 can
perform interdiction branching [93] on T+ U Z" w.r.t «' and I'. Therefore, |Z¥+ U ZT| — 1 many
nodes will be generated and a variable ordering on Z+ U Z" is needed.

2.5 Conflict and Dual Ray Analysis

In this section we give a brief summary of the results published in [139]. The analysis of infeasi-
ble subproblems plays an import role in solving MIPs. Most major MIP solvers implement one
of two fundamentally different concepts to generate valid global constraints from infeasible sub-
problems. The first approach is called conflict analysis and has its origin in solving satisfiability
problems and is similarly used in constraint programming, too. It is used to analyze a sequence
of implications obtained by domain propagation that resulted in an infeasible subproblem. The
result of the analysis is one or more sets of contradicting variable bounds from which conflict
constraints can be generated. The second concept is called dual ray analysis and is based in LP
theory and is used to analyze infeasible LP relaxations. The dual LP solution provides a set
of multipliers that can be used to generate a single new globally valid linear constraint. In the
following, we will focus on subproblems

min{c' x| Az >b, I' <z <, x; € ZVYie I} (11)

with local bounds | <1’ < v’ < u and an infeasible LP relaxation. In the following, the index set
of all variables is denoted by A and the index set of all integer variables by Z C A. The dual
LP of the corresponding LP relaxation of (11) is given by

max{y ' b+r"l' —F W |ATy+r—F=c, y,rTC R% }, (12)

By LP theory, each unbounded ray (y,r,7) of (12) proves infeasibility of (11). Moreover, the
Lemma of Farkas states that exactly one of the following two systems is satisfiable

Ar>b, U'<z < (Fy)
Yy A+r+7=0, y o+r'I'4+7"4 >0, y, r, 7>0. (Fy)
It follows immediately, that if (F7) is infeasible, there exists an unbounded ray (y,r,7) of (12)

satisfying (F»). An infeasibility proof of (11) is given by the local bounds in combination with
a single constraint

y Az >y b, (13)

which is an aggregation of all rows A;. for j € M with weight y; > 0, where M is the index set
of all model constraints.

In addition of using (13) for creating an “artificial” initial reason of the conflict graph (SCIP
3.2 and below), SCIP 4.0 uses this constraint directly for domain propagation in the remainder
of the search. Since constraint (13) is a conical combination of model constraints, it is valid
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within the global bounds. The infeasibility within the local bounds [I’,u'] follows immediately
from the Farkas Lemma, i.e., the maximal activity

A(yTAa llr ul) = Z (yTA’L)u; + Z (yTA’L)l;

i€EN:yT A, >0 ieN:yT A,;<0

of y" Az w.r.t. variable bounds [I’, /] is strictly less than the corresponding left-hand side y b.
This constraint along with an activity argument can be used to deduce local lower and upper
variable bounds. Therefore, consider a subproblem with local bounds [I’,«']. For any i € N with
a non-zero coefficient in the proof-constraint (13), the mazimal activity residual is given by

N Al W) = Y WA+ Y (YT A,
JEN\i: yT A ;>0 JEN\i: yT A ;<0
i.e., the maximal activity over all variables except x;. Hence, valid local bounds are given by

y'b—Al(yT Al W) [ < Jifa; >0
a; > ! 1f a; < 0

This procedure is called bound tightening [30], which is widely used in all major MIP solvers,
for all kinds of linear constraints.

The analysis of dual rays is enabled by default in SCIP 4.0. In the following, we refer to
this setting by dualray. We compared the performance of this new feature with a setting where
the analysis of dual rays is disabled (no-dualray). For our computational experiments we used
a collection of 254 instances taken from MIPLIB [23], MIPLIB 2003 [6], MIPLIB 2010 [85],
Cor@lI collection [92], ALU" test set, and markshare test set [40], that can be solved by dualray,
no-dualray, or both within a time limit of 3600 seconds. Over the complete test set of 254
instances a reduction of solving time and generated branch-and-bound nodes by 5% and 7%,
respectively, could be observed with the dualray setting. Moreover, use of dual ray analysis
reduced the number of time outs from 12 to 8. On a subset of affected instances (105), where
at least one setting analyzed more than 100 infeasible LP relaxations successfully, a reduction of
time and nodes by 11% and 14%, respectively, could be observed. The no-dualray setting could
not solve three of those instances within the time limit of 3600 seconds whereas all instances
could be solved with the other setting. On a further subset of highly affected instances (22),
where at least one setting analyzed more than 50.000 infeasible LP relaxations successfully, using
dualray led to a reduction of time and nodes by 39% and 41%, respectively. No highly affected
instances reached the time limit when dual ray analysis is enabled. In contrast, no-dualray
could not solve two instances within the time limit.

2.6 Mixed integer nonlinear programming

A valuable feature of SCIP is the ability to solve mixed integer nonlinear programs. The current
release of SCIP presents many extensions and improvements to the mixed integer nonlinear
solver. The major improvements available in SCIP 4.0 include:

o A feature providing the KKT reformulation of mixed binary quadratic programs (Section
2.6.1),

o a multi-start primal heuristic (Section 2.6.2),

1The ALU instances are part of the contributed section of MIPLIB 2003.
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o the OBBT propagator has been extended to solve nonlinear relaxations (Section 2.6.3), and

o a collection of new methods for generating outer approximation cuts for convex relaxations
(Section 2.6.4).

2.6.1 KKT reformulation for mixed binary quadratic programs

SCIP 4.0 provides a new presolving method that improves the formulation of a (mixed binary)
quadratic program with linear constraints by adding KKT-like conditions. This section presents
a brief explanation of this method and computational results on randomly generated instances
from the literature as well as instances from benchmark libraries.

Consider a mized binary quadratic program (MBQP) of the form

min % 2 Qr+c'z
s.t. Az <D, (14)
z; €{0,1} Vjel,

where Q € R™ ™ is symmetric, ¢ € R", A € R™*", b € R™, and Z C {1,...,n} is the set
of integer variables. In the following, it is assumed that the feasible solution set S of (14) is
nonempty and bounded. Note that the requirement of a symmetric matrix @ is not restrictive:
In case that @) is not symmetric, it can be replaced by % (Q+QT) without changing the objective
function.

If all variables are continuous, i.e., Z = ), then (14) is a quadratic program (QP). Convex QPs
with a positive semidefinite matrix () and rational data can be solved in polynomial time via the
ellipsoid method, see Kozlov et al. [86]. However, the method proposed in [86] does not cover
the case of a nonconvex objective function. In the present work, the focus is on the case where
MBQP can be nonconvex and N P-hard, see Pardalos and Vavasis [108]. Nonconvex MBQPs
have many applications, for instance, in production planning (see Baron [14]) and graph theory
(see Motzkin and Straus [104]).

There also exist other solution approaches for (14) based on KKT reformulations: Chen and
Burer [38] consider nonconvex QPs, and present an SDP-based branch-and-bound algorithm
where the complementarity constraints of the KKT conditions are enforced by branching. Lin
and Vandenbussche [91] investigate a KKT-like reformulation to solve QPs with fixed charge
constraints of the form 0 < z <y, where 2 € R™ and y € {0,1}".

In the following, a new reformulation for general MBQPs is proposed: Given Z; € {0,1} for
j € Z, consider the subproblem of (14) with the added constraints z; = Z; for all j € Z. Since
now all binary variables are fixed, the following KK'T conditions are applicable:

Qr+c+ AT+ I\ =0,

Ax < b,

T =1T; Vjel, (15)
i (Az —5); =0 Vie{l,...,m},

e R

=0,

where u, A are the Lagrangian multipliers of the linear constraints and I7 is the submatrix of
the n x n identity matrix with columns indexed by Z. Introducing auxiliary variables z; := x; A;
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for all j € Z, it can be shown for a KKT point (z, u, \) that
%xTQm—f—cTﬂv: c m—%xTATu—%xTIIA

1
2
:%cTzf%ube%ij)\j:%c xf%ube%]sz, (16)
where 1 is the vector of all ones of dimension |Z|. Observe that the constraints z; = x; A\; and
z; € {0,1} imply the validity of the complementarity constraint (1 — z;) - z; = 0. Therefore,
zj = xj z; holds, and hence
Zj:IIZ’j)\j R Zjil?j:{EjAj < ‘Ij'(Zj*)\j):O.

This proves that

min 3 (c'x—b'p—1"2)

s.t. (15),
(I1—-z4)-2,=0 Vjel,
zj- (2, —A;) =0 vVjiel

is equivalent to the subproblem of (14) with z; = &, for all j € Z. Thus, the following mized
binary program with complementarity constraints (MBPCC) is equivalent to (14):

min 3 (cTe—bTp—172)

st. Qr+c+ATpu+IzA=0,

Az <b,

z; €{0,1} Vjel, (17)
(I1-=zj)-2,=0 Vjel,
zj-(z;—A;) =0 VjeZ,
i - (Az —b); =0 Vie{l,...,m},

> 0.

Note that the objective function of (14) needs to be bounded on the feasible solution set S for
this equivalence because the KKT conditions are only guaranteed to be satisfied for optimal
solutions.

Feature description. SCIP 4.0 includes a reformulation method that automatically converts
a given MBQP instance into an MBPCC instance. The complementarity constraints of (17) are
handled by the SOS1 constraint handler in SCIP. If it is not explicitly specified in the settings,
then the KKT reformulation is not performed for MBQP instances where the matrix @ is positive
semidefinite or the feasible solution set S is not known to be bounded. By default, the KKT
reformulation is only applied to QPs. For MBQPs with binary variables, the KKT reformulation
should only be used for certain hard instances, as the computational results of the next section
show.

To improve the performance of the branch-and-cut algorithm, it is often advantageous to
keep the information about the quadratic objective function in the reformulated problem. This
information can be extracted from the quadratic constraint = ' Qxz + ¢’z +b"p + 172z = 0,
which can be derived from (16). Adding this (redundant) constraint to (17) is useful for the
generation of McCormick cuts [99] and can be exploited by propagation and by primal heuristics

28



(see Berthold et al. [20]). Nevertheless, in the default settings of SCIP, branching is exclusively
performed on the complementarity constraints.

Moreover, with the help of an implication graph analysis (see [52]) the SOS1 constraint
handler of SCIP tries to extract additional (redundant) complementarity constraints from the
constraint system of (17). This additional data can be exploited during the whole solution
process and may improve the branching rules and cutting planes that are implemented in the
SOS1 constraint handler of SCIP. By default, implication graph analysis is turned off, but for
certain problems it can be efficient as the following computational results show.

Computational results. The computational experiments were performed on a subset of the
instance collection used in Chen and Burer [38] and instances from the libraries QP1ib2014 [112]
and MINLPLib2 [100]. The instances are of the following types:

o BoxQP: Box QP instances where Az < b coincides with 0 < x < 1. The test set contains 20
of the 90 instances used in [38] that could not be solved in a few seconds, but in less than one
hour by SCIP.

o RandQP: 20 of the 64 randomly generated QP instances generated by Chen and Burer [38]
that could not be solved quickly.

o LibsQP: 83 instances taken from the benchmark libraries Globallib [73] and CUTEr [42].
The original test set used in [38] consists of 89 instances where 6 duplicates are removed here.

o LibsMBQP: 15 instances included from the libraries QP1ib2014 [112] and MINLPLib2 [100].
The majority of these instances have a convex objective function.

The computational experiments were run with three different settings: one setting (“KKTref0ff”)
where the KKT reformulation is turned off and two settings (“KKTrefOn” and “KKTref0On-impl”)
where the KKT reformulation is turned on. The nondefault settings of the latter two are:

o The KKT reformulation is also applied to convex MBQPs with unbounded variables.

o A higher priority was put for the enforcement of integer variables than for complementarity
constraints; this means that the complementarity constraints were only enforced at search
nodes with integral LP relaxation solution, which produced the best results on the LibsMBQP
test set.

o Only for the setting KKTrefOn-impl, we additionally make use of an implication analysis to
extract additional complementarity constraints from the constraint system.

Table 2 shows aggregated computational results on all four instance sets on a cluster of
64-bit Intel Xeon E5-2620 CPUs running at 2.10GHz. We used CPLEX 12.6.3 [81] as LP
solver. Column “solved” lists the number of instances that could be solved within a time limit
of one hour and column “time” the CPU time after the solving process terminated in shifted
geometric mean with a shift of 10. The results show that KKTref0On performs best for the BoxQP
instances and that KKTrefOn-impl is the best choice for the RandQP and LibsQP instances
among the three settings. For the LibsMBQP instances the best results regarding the CPU
time were obtained if the KKT reformulation is turned off, but if the KKT reformulation is
turned on, then two more instances can be solved within the time limit. One of these two
instances has a nonconvex objective function. This indicates that for MBQP instances involving
binary variables, the KKT reformulation might generally only be beneficial for hard instances.
Surprisingly, for the BoxQP instances, the use of an implication graph analysis deteriorates the
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Table 2: Computations with four test sets of (mixed binary) quadratic programs.

BoxQP (20) RandQP (20) LibsQP (89) LibsMBQP (15)
Setting solved time solved time solved  time solved time
KKTrefOff 0  3600.0 16 132.7 86 2.9 12 144.9
KKTrefOn 20 101.5 15 3915 89 0.7 14 264.5
KKTrefOn-impl 12 667.0 19 53.5 89 0.6 14 244.2

solution time on the BoxQP instances. In additional tests, this was even true if all cutting planes
for complementarity constrains were turned off. Future experiments on the KKT reformulation
may involve other branching rules for complementarity constraints than the most-infeasible rule
that is currently in use.

2.6.2 Multi-start Heuristic

The release of SCIP 4.0 contains a new primal heuristic based on a multi-start idea by Ugray
et al. [135]. The heuristic applies multiple NLP local searches to a mixed-integer nonlinear
program with possibly nonconvex constraints of the form g;(x) < 0. The algorithm tries to
identify clusters that approximate the boundary of the feasible set of the continuous relaxation by
sampling and pushing randomly generated points towards the feasible region by using consensus
vectors as introduced by Smith, Chinneck and Aitken [129]. For each cluster it uses a local search
heuristic to find feasible solutions. This section presents a brief description of the heuristic and
computational results on the MINLPLib2 benchmark library [100].

Algorithm. The multi-start heuristic first samples points in the domain [I, 4] and reduce the
infeasibility of each point by using a gradient descent method. Afterwards, points that are
relatively close to each other are grouped into clusters. Ideally, each cluster approximates the
boundary of some connected component of the continuous relaxation of the MINLP. A reference
point is computed by using a linear combination of all points of a cluster. This reference point is
used as an initial start point for a local search heuristic. All steps of the heuristic are visualized
in Figure 3. The following describes each of these steps in more detail.

sampling points First, K points x!,..., 2% in the box [l,u] are generated, where each point
x* is required to have a better objective value than the value I of the current incumbent
solution, so f(z*) <U.

The domain of an unbounded variable z; is reduced to a bounded box [I;,1; + ], [u; —a, u],

or [~5, 5] of size € R, depending on what variable bound is infinite. The default value
is o = 10*. Integer variables are rounded to the closest integer value and will be considered

in the following step as continuous variables.

reducing infeasibility For each point z € {z!,..., 2%}, a gradient-based method is used to
reduce the maximum infeasibility max;ca g;(Z), where M are the indices of constraints
of the MINLP. To reduce the infeasibility of a point Z, the algorithm computes a descent
direction
9i(T _
z( ) H2 Vgl(:c)

di = —1=—"75
[IVgi(z)
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for each violated constraint g;(Z) > 0. Note that if g;(x) < 0 is a linear constraint, the
point Z + d; is the projection of Z onto the hyperplane g;(x) = 0. To update the current
point Z, the constraint consensus method by Smith, Chinneck, and Aitken [129] is used.
The idea is to consider a linear combination

=2+ Y vid;

ieM

with

)0 if ¢;(Z) <0,
T T ke M:ge(@) > 0171 otherwise
simultaneously. This is an alternative approach to considering each violated constraint
individually like in alternating projection methods, which are explained in Boyd and Dat-

torro [29]. This update step is then iterated until Z becomes feasible or a stopping criterion
has been fulfilled.

clustering points All computed points of the previous step are grouped into clusters by using
a greedy algorithm. The clusters (hopefully) approximate the boundary of the feasible set
locally. The algorithm selects an unprocessed point and groups it with all points that have
a small relative distance to it. The relative distance between two points x and T is

Z |zj — 74

5 T =4l

Points with large violations are ignored. To reduce the computational effort, the maximum
number of clusters is bounded, per default, by three.

solving sub-problems A local search heuristic is called for each identified cluster C. A starting
point for the local search heuristic is computed by considering a linear combination of all
points in C'. Let

be the starting point for cluster C. In general, s does not satisfy the integrality condition of
the MINLP. Before passing s to the local search heuristic, the multi-start heuristic rounds
and fixes all integer variables to their closest integral value and solves the resulting NLP
sub-problem.

Computational results. The computational experiments of this section were performed on
the full MINLPLib2 benchmark library [100]. A time limit of one hour, a memory limit of 40 GB,
and to avoid stalling, a gap limit of 10~* are used. Each instance is solved with and without
applying the multi-start heuristic. Due to the computational cost of this heuristic, it is called
only once in the root node and given the lowest priority.

Aggregated results from the computational experiments are presented in Table 3. First, it
can be observed that two more instances can be solved when using the heuristic. However, due
to its computational costs, the heuristic slows down SCIP on easy instances, which are typically
solved within seconds. This was the case on 9.3% of the instances, which results in an average
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Figure 3: An example showing the different steps of the heuristic. The green colored area
is the feasible region for the continuous relaxation of a nonconvex problem. The second
picture shows the randomly generated points. After applying the gradient descent step
and clustering the resulting points, the heuristic identifies two clusters. For each cluster it
computes a starting point (marked with a red cross) by using a linear combination of all
cluster points.

slow down of 3% on all instances that have been solved to optimality by both settings. The
total number of branch-and-bound nodes does not change on average. On 469 purely continuous
instances of MINLPLib2, an average speed-up of 2% and a node reduction of 2% can be observed
when using the multi-start heuristic.

The heuristic found an improving, first, and best solution for 76, 15 and 34 instances, re-
spectively. It finds an improving solution more often on NLPs than on MINLPs. This can be
explained by the rounding step that is applied before calling the NLP solver. Rounding and
fixing integer variables to their closest integer value will most-likely lead to infeasible NLP sub-
problems and thus no feasible solution can be found. For this reason, per default, the multi-start
heuristic is only applied for continuous problems.

Table 3: Aggregated results for SCIP with and without applying the multi-start heuristic.

MINLP (1367) NLP (469)
Setting solved time nodes solved time nodes
default 710 14.8 966 238 4.9 204
multi-start 712 14.8 964 238 4.8 200

2.6.3 Nonlinear Optimization-Based Bound Tightening

Optimization-based bound tightening (OBBT) is one of the most effective procedures to reduce
variable domains of nonconvex mixed-integer nonlinear programs [113, 71]. It minimizes and
maximizes variables over a convex relaxation of (1) to learn the best possible bounds with respect
to this relaxation. In this section, a variant of OBBT using the convex nonlinear relaxation of
the problem is presented. Optimizing over this set might lead to stronger tightenings of variable
bounds compared to a linear relaxation. Additionally, this section presents a generalization of
the so-called Lagrangian variable bounds (LVBs) by Gleixner and Weltge [72], which represent
globally valid aggregations of all problem constraints. These aggregations can be used to derive
fast additional bound tightenings during the full spatial branch-and-bound tree search.

First, the propagation algorithm is briefly described and it is shown how to use the dual
solution of each sub-problem to derive LVBs. Finally, the impact of the algorithm is discussed
on a large subset of instances from the MINLPLib2 [100].
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Algorithm. In nonlinear optimization-based bound tightening (NLOBBT), auxiliary NLPs of
the form

min /max x; (18a)
st gj(z) <0 Vje M, (18b)
clz <U, (18¢)

—x < -, (18d)

x < u, (18e)

are solved, where each g; with j € M’ C M is a convex differentiable function and U the solution
value of the current incumbent. Note that (18) contains only the convex constraints of (1) and
thus, the optimal objective value of (18) provides a valid lower /upper bound on variable x;.

The propagator sorts all variables with respect to their occurrences in convex nonlinear con-
straints and sequentially solves convex NLPs of the form (18). Variables that could be successfully
tightened by the propagator will be prioritized in the next call of the propagator on a new node
in the branch-and-bound tree. By default, the propagator requires at least one nonconvex con-
straint in M to be executed. For purely convex problems, the benefit of having tighter bounds
is negligible. Moreover, variables that do not appear in any of the nonlinear convex constraints
will not be considered, even though they might lead to additional tightenings.

After solving an NLP to optimize x;, it is possible to exploit the dual information to generate
a globally valid inequality, called Lagrangian variable bound [71]. Let X;, i, o, and 5 be the
non-negative dual multipliers of the Constraints (18b), (18c), (18d), and (18e). Because of the
convexity of g; for each j € M’, it holds that

9;(x) = gj(«") + Vg;(z*)(x — 27) (19)

holds for every z* € R™. Let a* be the optimal solution after solving (18) for the case of
minimizing x; (similar for the case of maximizing z;). In the following, it is assumed that
Slater’s condition holds, i.e. 3z € R™ such that g;(z) < 0 for all j € M’. Together with the
convexity of (18) this implies that the KKT conditions

ei + A Vg(@*) +puc+B—-a=0 (20a)
Ngi(z*)=0  VjeM (20b)

/J,CTLC* = W (200)

>0 YjeM (20d)

p>0 (20e)

hold. Since the dual multipliers A; are non-negative, aggregating the inequalities =; > x; and
Ajg;(z) <0 leads to
X 2 T+ Z Aj 95 (), (21)
jeM’
which is redundant for the current bounds [I, u], but possibly not for other locally valid bounds
in a node of a branch-and-bound tree.
Instead of calling the, in general, very expensive NLOBBT propagator during the tree search,
it is possible to use (21) to derive further reductions on z;. By using the dual solution (A, u, «, 8)
of (18) together with the KKT conditions (20), one can linearize (21). The resulting linear in-
equality, which proves that x; is bounded from below by 2, can be seen as a cheap approximation
of NLOBBT in the branch-and-bound tree search. The details are as follows. First, g;(x) in (21)
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is underestimated with (19) using the identities (20b) and (20c). Combined with the first KKT
condition (20a) multiplied by (z — z*), one obtains a globally valid inequality

> (a—B—pe) e+ (B—ate) e +ul, (22)

which can be seen as an underestimator for variable x;.

Inequality (22) is called Lagrangian variable bound. SCIP handles such an inequality in the
LVB propagator (implemented in prop_genvbounds), which propagates it in every node of the
branch-and-bound tree.

An LVB is only added for z; if a; = 8; = 0, otherwise the right-hand side of (22) depends on
x; itself and thus, most-likely, cannot be used to strengthen the bound of x;.

Computational experiments. SCIP 4.0 has been extended by a new propagator plug-
in prop_nlobbt. Since solving NLPs might be numerically difficult, the feasibility tolerance
of the NLP solver is set to 107® (the SCIP default is 1075) to guarantee that the solution value
a¥ of (18) is indeed a valid bound for z; with respect to SCIP’s feasibility tolerances. Because
of the potentially high computational cost, the propagator has the lowest priority, runs only in
the root node of SCIP’s branch-and-bound tree, and is deactivated by default. Inequalities (22),
learned during propagation, are used in each node of the branch-and-bound tree whenever a new
incumbent solution is found or a variable bound is tightened.

Experimental setup. For the conducted experiment, the overall performance impact on the
complete branch-and-bound tree is analyzed. A comparison of the performance when enabling
our new propagator plug-in to SCIP with default settings is shown. SCIP ran with a time limit
of one hour per instance.

Test set. All instances of the MINLPLib2 benchmark library with at least one convex and
one nonconvex nonlinear constraint after presolving have been selected. This set contains 318
instances, which are divided into two subsets. The first set, called ALLSET, contains all instances
that have been successfully processed by both settings. The second set, called OPTSET, is a
subset of ALLSET and contains all instances that have been solved to optimality by both settings.

Computational results. Table 4 contains all aggregated results comparing SCIP with and
without NLOBBT on the instances of ALLSET and OPTSET. The columns show the number of
solved instances, shifted geometric means of solving times and the number of processed nodes
for each of the two subsets of instances.

By using NLOBBT, SCIP solves 5 more instances and processes the same number of nodes
on OPTSET. On ALLSET a speed-up of 5% can be observed, which can be explained by the
additional solved instances. Applying NLOBBT does not have a significant impact on solving
time nor the number of nodes for instances in OPTSET.

Table 4: Aggregated results for SCIP with and without applying the NLOBBT propa-

gator.
ALLSET OPTSET
Setting nsolve nodes time nsolve nodes time
SCIP 156 6491 230.3 154 1179 17.1
SCIP + NLOBBT 161 5798 217.8 154 1169 17.5
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2.6.4 Outer approximation cuts for convex relaxations

Two procedures for building tighter and/or deeper outer approximation cuts for quadratic convex
constraints or, more general, convex relaxations are included in SCIP 4.0. The first, the gauge
separator, is an extension of a method introduced in SCIP 3.2 to general convex relaxations.
The second new separator is based on projecting onto a convex relaxation of the feasible region.
Finally, a specialization of the previous method to convex quadratic constraints is presented.

Gauge function of a convex relaxation for separation. A technique for separating convex
quadratic functions was introduced in SCIP 3.2, [63], Section 2.5. The basic idea of the technique
is to build linearization cuts at a suitable boundary point of the relaxation represented by the
quadratic constraint.

The motivation for such a procedure is that gradient cuts are, in general, not supporting for
the feasible regions. This can easily be seen when considering the convex constraint 2 +y2 < 1
and separating the point x = y = 1. Indeed, the linearization cut at that point is given by
fL1) + 8, f(1,1)(z — 1) + 9y f(1,1)(y — 1) < 1, that is z + y < 2. Since the circle 22 + y* = 1
does not intersect the line z + y = %, the linearization cut is not supporting.

A new separator plug-in sepa_gauge is implemented in SCIP 4.0, which computes lineariza-
tion cuts that are supporting for more complex relaxations, such as, relaxations that contain
general convex constraints. The following definitions are needed to provide an explanation of
this method. Let

K=A{z: gi(z) <0Vie(}

be a convex relaxation of (1) where C C M are the indices of the nonlinear convex constraints.
For now, assume that the origin is an interior point of K. The gauge function of K (see [118])
is
vr(z) =1inf{t > 0: z € tK}.

Let £ ¢ K be the point to be separated. The plug-in computes & = (‘DKL@), which is a point
in the boundary of K, and then computes a linearization cut for any g;(x) that is active at Z.
These linearization cuts are supporting for K.

However, there are two technical difficulties. The first difficulty is that 0 is not always an
interior point of K. To handle this, the plug-in computes an interior point that is used to
translate K to the origin. This computation is performed only once. To compute an interior

point the problem

min ¢

st. gi(x) <t Viel,
gi(x) <0 VjeL,
t>1,

is solved, where £ C M are the indices of the linear constraints and t € R_. The bound ¢ > t is
needed to bound the problem. The linear constraints are considered here so that the boundary
point & satisfies the linear constraints whenever T satisfies them. Although there is no evidence
that this is better in general, intuitively, an interior point to a tighter relaxation of the feasible
region seems more appealing. If the plug-in does not find an interior point, it will be disabled.
The second difficulty is that, in contrast to the case when K is represented by a single convex
quadratic constraint an explicit formula for the gauge function is not available. However, it can
still be computed. Let xg, not necessarily 0, be an interior point and K’ = K — 2y = {z :
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gi(x +x0) <0VieC}. Then j is the solution of the one dimensional problem

1
err (2o
Glao + (T — 20)) = 0, (23)

where G(z) = max;ec gi(z). Given that G is convex, the plug-in implements a binary search to
solve (23). Note that in the case where x¢ # 0, & = xg + %.

The procedure reduces to computing a boundary point using an interior point plus a line
search, an idea introduced by Veinott [137] and later applied by Krongvist, Lundell and Wester-

lund in [87] in the context of extended cutting plane methods [138].

Projecting over a convex relaxation for separation. A natural method for computing a
supporting hyperplane that separates an infeasible point from convex constraints is to project the
point to be separated onto the boundary of the feasible region and create a gradient cut at the
projection. A key difference between this method and the separation method presented above
is that the projection does not need an interior point. On the other hand, more computational
time is needed due to the fact that a convex NLP needs to be solved for every separation step,
instead of computing an interior point once and perform a cheap line search for every separation.

The new separation plug-in sepa_convexproj computes the projection of the point to be
separated, Z, onto a convex relaxation of the feasible region K, by solving min,cx ||z — Z||2.
After computing the projection &, it computes linearization cuts for any convex constraint that
is active at #. Since this separator is very computationally expensive, it is turned off by default.

Projecting over a single quadratic constraint for separation. The projection method
described above can be implemented very efficiently when considering a single convex quadratic
constraint. Let f(z) = 2" Az + 2b"x, where A is positive semidefinite. The projection problem
for the set S :=={z : f(z) <c}is

mig ||z — Z||2 :min{fong cax A 4+2b"x Sc}. (24)
Te

Minimizing a quadratic objective over a quadratic constraint is a very well studied problem,
and algorithms to find approximate global minimizers efficiently are well known [102]. However,
it is shown here how to solve the problem for this concrete structure to make the computations
needed for an implementation explicit. To this end, the interior of S is assumed to be non-empty.

To solve (24), first perform a change of variables to remove the bilinear terms. Let PDPT
be an eigenvalue decomposition of A and y = PTx. By substitution, (24) is equivalent to

min {||Py — 7|3 : y"Dy+2b" Py < c}.

Since P is orthonormal, ||Py — Z||s = ||y — PTZ||2. With § = PTZ and b = PTb, the problem
can be rewritten as -
min {Hy — 73 y "Dy +2b"y < c}.

From the optimality conditions (since Z ¢ S), there exists p such that
20y —9)+ 2Dy +2b)p=0 < (I+pD)y=7—pb.
Thus,

gi —pbi
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and the problem reduces to finding p such that ¢(p) == y(p) " Dy(p) +2bTy(p) — ¢ = 0. It can
be shown that ¢(p) is a strictly decreasing, strictly convex function that has a unique zero in
[0,00). For the existence of the zero, it is necessary that the interior of S is not empty. In this
case, its unique root can be efficiently computed using Newton’s algorithm.

Computational results. For the gauge separator, preliminary computational experiments
show a slow-down of 25% on the convex instances of the MINLPLib2 [100]. When filtering
out the easy instances, that is, instances that take less than 100 seconds with and without the
separator, the slow-down is 10%. However, if the time spent in the separator is disregarded,
there is a 6.8% speed up. A similar phenomenon occurs with sepa_convexproj. There is a
general slow-down of 27%, but a speed-up of 5.6% when filtering out the easy instances and
disregarding the time spent in the separator. These separators are turned off by default, due to
this performance decrease. Nonetheless, the results show the potential of the methods and one
focus of future development will be techniques for reducing the computational effort.

Regarding the projection on single quadratics, preliminary results show a speed-up of 2%
on convex quadratic instances from MINLPLib2. Despite the improvement, more evidence is
needed before this can be activated by default. In particular, no experiment showing the effect
of these cuts on instances with convex and non-convex constraints have been performed. This
will be investigated in the future.

2.7 Parallelization

Computational performance of a mathematical programming solver depends heavily on the speed
of computer processors. With a greater focus on multi-core architectures, parallelization is
a required development of mathematical programming solvers. In response to this demand,
SCIP 4.0 contains the first internal shared memory parallelization framework for the solver. The
internal parallelization framework, whereby the parallelization is implemented within the core
of the code, complements the external parallelization already available with the UG framework,
which is presented in Section 5.

The internal shared memory parallelization framework is a development project towards a full
featured parallel mathematical programming solver. As part of this development, two different
parallelization libraries—TinyCThread [134] and OpenMP [37]—have been used to implement
the shared memory threading capability for SCIP, the details of which are provided in Section
2.7.1. As a first step in developing a parallel solver, a concurrent solver has been implemented
in SCIP, which is now available in the current release. The concurrent solver is capable of using
multiple mathematical programming solvers—either different solvers or the same solver with
different configurations—in parallel for a single instance.

The availability of three different parallelization implementations in SCIP 4.0 presents an
opportunity to evaluate any performance differences that may arise. Specifically, CONCUR-
RENTSCIP provides a shared memory parallelization that is completely deterministic, while
FIBERSCIP and PARASCIP—as a part of the UG framework (Section 5)—provide an asyn-
chronous communication scheme in shared and distributed memory environments respectively.
As such, within this release the new parallelization feature of distributed domain propagation has
been developed and the performance difference between CONCURRENTSCIP and FIBERSCIP is
presented [76] (Section 2.7.3).

There are many challenges in the development of a deterministic parallel solver. The first is
the definition of a clock, or counter, that provides a deterministic measure of time. Such a clock
is used for the synchronization of data across different threads. The second major challenge
is the development of an efficient method of communication between threads that introduces
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little idle time across all threads. Finally, the sharing of information is necessary for a high
performance parallel solver. Determining the type of information that should be shared and
designing efficient transfer mechanisms are of high priority. The details of how these goals are
achieved by the concurrent solver are described in the thesis of Gottwald [75]. A condensed
version is provided in Section 2.7.2.

2.7.1 Shared memory parallelization interface

To be independent of the library used for parallelization, in SCIP 4.0 this functionality is wrapped
into a seperate interface library. It provides a unified interface for locks and condition variables as
well as functions to execute tasks in parallel. One implementation is based on TinyCThread [134]
that exposes a platform independent API similar to the threading API in the C11 standard but
compatible with older C standards. The parallelization interface then implements a simple
thread pool with a work queue on top of it. A second variant uses OpenMP [37] to implement
the interface. Because it makes use of the task directive it requires at least OpenMP version 3.0
and is therefore not compatible with Microsoft compilers. The parallelization library SCIP 4.0
uses can be selected with a new compile option. Supporting different options allows for some
flexibility in the future development towards a fully parallelized solver.

2.7.2 CONCURRENTSCIP

In SCIP 4.0 several solvers can be executed concurrently to utilize multiple threads. When one
of the solvers terminates, all others will be stopped. The approach was shown to be effective
for small scale parallelization of MIP and SAT solvers. Fischetti et al. [55] have shown that in
CPLEX the performance variability can be reduced and the performance increased by evaluating
the root node with multiple solvers using different random seeds in parallel. Carvajal et al. [34]
implemented this approach based on CPLEX and evaluated the impact of sharing different types
of global information between the solvers, e.g. feasible solutions or cutting planes. They found
the approach to be competitive to the default parallelization of CPLEX and the sharing of
feasible solutions to be one of the best communication modes. For SAT solvers this approach
is mostly called portfolio parallelization and has proven to be surprisingly efficient. It was first
employed by the SAT solver ManySAT [78] which won the parallel track of the SAT competition
in 2008. Since then it became the dominating approach for parallelizing state-of-the-art SAT
solvers [10, 13, 12].

In CONCURRENTSCIP the different solvers can use any settings and share feasible primal
solutions as well as global variable bounds. Despite the communication of information between
the threads, this new feature is deterministic—the solving process of all the solvers can be
reproduced between multiple runs.

CONCURRENTSCIP is implemented as a new plugin type called concsolver. An imple-
mentation of a concurrent solver needs to supply callbacks for setting up the problem, starting
and stopping the solver as well as callbacks for communicating solutions and bounds. While
this design allows different types of solvers to be used concurrently, SCIP 4.0 only includes an
implementation for SCIP.

Deterministic clock. The instructions in a single-threaded program are always executed in
the same order. In contrast, however, the order of instructions from multiple threads can vary
non-deterministically. If the execution of a multi-threaded program shall be reproducible, the
threads must share information at deterministic points in the program. Therefore in CONCUR-
RENTSCIP the solvers determine commaunication points using a deterministic clock [7] and do
not exchange information between these points.
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Figure 4: Deterministic clock with different settings

The deterministic clock in SCIP is implemented as a linear combination of statistics that
are collected during the solving process, e.g. the number of LP iterations. To determine the
coefficients of the linear combination a regression algorithm was used on data of the statistics
and the corresponding wall clock time. This data was collected when running SCIP 4.0 with
different emphasis settings on several instances of MIPLIB 2010 [85]. Because SCIP includes
several heuristics that solve a sub-MIP it is important to make the statistics less dependent on
the instance size. Therefore they were scaled with the number of non-zeros in the presolved
problem.

For the regression we used an implementation of the Lasso [133] provided by scikit-learn [109].
This method applies a parameterized {-regularization, which tends to yield a sparser solution
and a smaller generalization error than ordinary least squares regression. Also other linear
regression methods that use a different regularization were tested, but for the task at hand Lasso
gave the best predictive accuracy. The parameter for choosing the amount of regularization was
determined by cross-validation where the samples of one problem instance at a time were left
out. The coefficients obtained were non-zero for the number of warm-started primal- and dual
LP iterations, the number of bound changes in probing mode, and the number of calls to an
internal function that checks whether solving should be stopped.

In Figure 4 the deterministic clock is compared to the wall clock when using different settings.
Depending on the settings used, e.g. aggressive heuristics or separation, the deterministic clock
behaves differently as the LP iterations within a heuristic and the LP iterations during the
cutting plane separation are both only approximately converted to deterministic time. Still, in
most cases the deterministic clock runs roughly at the same speed as the wall clock (Figure 4a
and 4b), but on some instances it fails to give a comparable measure of time for different settings
(Figure 4c¢). As a consequence some solvers have to wait for the other solvers regularly when
they reach a communication point too early. Therefore it is important to design a deterministic
communication scheme to cope with such behavior.

Synchronization. The deterministic clock can deviate between threads. This makes it difficult
to maintain a high CPU utilization and a low communication overhead since solvers might need
to wait for information shared by other solvers. In particular, a solver must wait if it wants
to read information from a communication point that has not yet been reached by all solvers,
otherwise this would incur non-determinism. If solvers are able to access shared information
immediately, a barrier is required at each communication point, i.e., a point in the program
when a thread is not allowed to continue if all other threads have not yet reached the barrier.
Because a barrier-based synchronization scheme can cause a large amount of idle time, the
reading of data by solvers at a communication point is delayed by an amount d. If the deter-
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Figure 5: The CPU utilization of concurrent SCIP using 8 threads on the instance
biellal, once without a delay and once using a delay.

ministic clock of a solver is at time ¢, it may only read data from communication points that
occurred at time ¢ — d or earlier. Thereby the solvers are often able to exchange information
deterministically without waiting at the expense of receiving slightly outdated information from
other solvers. However, the positive impact of the delay on the CPU utilization (see Figure 5)
outweighs this disadvantage, since solvers that are waiting frequently cannot contribute to the
overall performance.

Communication points can occur when one of the statistics that are used in the deterministic
clock are updated, i.e. when the deterministic clock advances. Then a synchronization event
is generated if the elapsed deterministic time since the last communication point exceeds the
current communication frequency. The solvers choose the delay and the initial frequency of
communication heuristically based on the number of non-zeros and the number of variables. The
frequency of communication is then adjusted dynamically based on the amount of the gap—
difference between upper and lower bounds—that was closed between communication points.

2.7.3 Distributed domain propagation

Distributed domain propagation (DDP) exploits variable bound information in a concurrent
solver to identify additional domain propagations. Due to the different settings that can be used
with CONCURRENTSCIP, the solvers will have different solution processes. Hence, the infor-
mation used for domain propagation can be different between the solvers and bound reductions
found in one solver may not be found in the other solvers. As such, DDP is able to perform
additional domain reductions in each individual solver by sharing new global variable bounds.
For details on the implementation we refer to Gottwald et al. [76].

2.7.4 Computational Results

Computational results for CONCURRENTSCIP without DDP are provided in the thesis of Gottwald [75].
In summary, CONCURRENTSCIP was shown to reduce performance variability and decrease the
primal integral significantly. An evaluation for the impact of DDP in FIBERSCIP and CONCUR-
RENTSCIP is provided in Section 5.1.1.
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3 Interfaces

SCIP provides many interfaces to different programming languages. The most recent release
delivers a new Java Interface (Section 3.1) and an interface to Julia (Section 3.2).

3.1 New Java Interface: JSCIPOPT

In SCIP 4.0, the already existing interface to the programming language Java has been vastly
changed and is now called JSCIPOPT2. The interface is created via the wrapper and inter-
face generator SWIG [131] and allows the user to model mixed-integer linear and quadratic
programming problems.

So far, the Java interface has been created by parsing the documentation of SCIP. This
approach is very error-prone and is not independent from the operating system. In contrast to
this, SWIG automates this process and facilitates interface extensions. It automatically converts
primitive data types from C to Java and generates for each C struct a corresponding Java class.
The resulting interface is more robust and can be easily extended by customizing SWIG.

Furthermore, the new interface contains four simple basic Java classes to make it more
user-friendly. Scip.java, Constraint.java, Variable.java, and Solution.java represent
the structures SCIP, SCIP_CONS, SCIP_VAR, and SCIP_SOL. These Java classes implement the
most important interface functions of scip.h, pub_cons.h, pub_var.h, and pub_sol.h in order
to create and solve an optimization problem.

The following example creates and solves the MIP

min x — 3y,

s.t. x+ 2y <10,
x € [2,3],
y €{0,1},

containing two variables and a linear constraint.

Scip scip = new Scip(Q);

scip.create("MIP example");

Variable x = scip.createVar("x", 2.0, 3.0, 1.0,
SCIP_Vartype.SCIP_VARTYPE_CONTINUQUS) ;

Variable y = scip.createVar("y", 0.0, 1.0, -3.0,
SCIP_Vartype.SCIP_VARTYPE_BINARY) ;

Variable[] vars = {x, y};

double[] vals = {1.0, 2.03};

Constraint cons = scip.createConsLinear("linear", vars, vals,
-scip.infinity(), 10.0);

scip.addCons(cons) ;

scip.releaseCons(cons) ;

scip.releaseVar(y);

scip.releaseVar(x);

scip.solve();
scip.free();

2https://github.com/SCIP- Interfaces/JSCIPOpt
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using JuMP, SCIP

"Maximize c over integer points in the 2-ball of radius r."
function solve_ball(c, r, tol=le-6)

n = length(c)

m = Model(solver=SCIPSolver())

@variable(m, -r <= x[1:n] <= +r, Int)

@objective(m, Max, dot(c,x))

num_callbacks = 0
function norm_callback(cb)
num_callbacks += 1
N = getvalue(x)[:]

L = norm(N)

if L >r + tol
@lazyconstraint(cb, dot(N,x) <= rxL)
end
end
addlazycallback(m, norm_callback)

solve(m)
return getvalue(x)[:], num_callbacks
end

sol, num_callbacks = solve_ball(rand(5), 50)
@show sol norm(sol) num_callbacks

Program 1: Short example on building a model with callbacks in JUMP and solving it
with SCIP.jL. Adapted from http://www.juliaopt.org/notebooks/JuMP-LazyL2Ball.
html
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3.2 Julia Interface for JuMP: SCIP.JjL

Julia, “a fresh approach to technical computing” [21], is a new programming language recently
developed at MIT. Among other features, it offers concise syntax for array operations, good
performance due to JIT compilation with type specialization via LLVM, powerful macro support,
and the ability to call C functions directly.

Within the Julia community, there is a lot of interest in mathematical optimization, leading
to the development of several packages by the JuliaOpt organization® [96]. In particular, the
JUMP project provides an efficient, general modeling language, which can communicate with
several mathematical programming solvers [47]. A key feature of JUMP is its support for the
implementation of solver callbacks, such as lazy constraints, user cuts and primal heuristics.
Importantly, the callbacks implemented in JUMP are completely independent of the underlying
solver. Another Julia package, namely MATHPROGBASE, defines an abstract solver interface,
based on the common features of available solvers. JUMP only communicates to the solvers
through MATHPROGBASE.

With the SCIP.JL project?, we wrap the SCIP solver for the Julia language and implement
the necessary methods to make it available via MATHPROGBASE. This enables users of JUMP to
develop their model and callbacks once and then easily switch between solvers, such as GUROBI,
GLPK and now also SCIP. The functionalities of SCIP currently available through SCIP.JjL
are: mixed integer programming, mixed integer nonlinear programming, lazy constraints, and
primal heuristics. Note that SCIP.JL currently is the only solver interface to JUMP to support
all of these features. However, SCIP.JL does not support obtaining duality information in linear
or nonlinear programming.

A small example of SCIP.JL with JUMP using a callback is shown in program 1.

On a more technical level, the design of the MATHPROGBASE interface was inspired by the
common features of existing solvers. On the other hand, SCIP was designed as a framework
extensible by plugins, with the goal of maximum flexibility. To bridge the significant conceptual
gap between the two approaches we built a thin wrapper of SCIP with a limited feature set,
simplified interface and some preset parameters, in the form of the C library CSIP?.

4 SoPlex

Many performance improvements and features have been developed for the release of SOPLEX 3.0.
First, in an effort to reduce the numerical difficulties in SOPLEX when used from within SCIP,
the scaling capabilities have been improved. This involves preserving the scaled problem instance
during modifications through the interface (see Section 4.1). Another new feature that is relevant
with respect to SCIP is the LP solution polishing technique to find more integral bases (see
Section 4.2).

As part of the current release, an experimental algorithm for a decomposition-based dual
simplex has been implemented. This implementation aims to assess the potential of using de-
composition within the simplex to address the negative effects of dual degeneracy. The details
of the developed algorithm are presented in Section 4.3. This work is a dual counterpart of the
decomposition-based algorithms developed to address primal degeneracy [50, 49, 48].

An unconventional feature of linear programming solvers that is available in SOPLEX is the
row representation of the basis matrix. This feature has existed since its initial development.
However, there is limited information available regarding its use and implementation. Section 4.4

Shttp://www.juliaopt.org
4nhttps://github.com/SCIP-Interfaces/SCIP.jl
Shttps://github.com/SCIP-Interfaces/CSIP
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will provide a short description of the row form of the basis matrix, its use within SOPLEX, and
computational experiments regarding its performance impact.

4.1 Scaling

Scaling is a widely used means to improve numerical stability of linear programs [80, 110].
SOPLEX has been no exception, applying equilibration scaling [110] by default and enabling
the user to switch to alternative scaling methods. To further enhance numerical stability, the
latest version of SOPLEX incorporates additional scaling approaches that will be detailed in the
following.

Broadly speaking, scaling of a linear program involves the multiplication of rows and columns
by positive real numbers. For a mathematical view, consider a linear program in the following
form

min{c'z: Az =b, { <2 < u}. (25)

Scaling of (25) can be described by means of two diagonal matrices R = (r; ;) and C' = (¢;;)
such that for the diagonal elements it holds that r;; € Rso and ¢;; € Rsg. The diagonals
correspond to the row and column scaling factors respectively. Defining

A'=RAC, b =Rb, ¢ =Cec, ¢'=C7%, and v =C tu
one obtains the scaled linear program
min{c -z: Az =V, ' <z <u'}. (26)

Each solution 2’ to (26) corresponds to a solution x := Cz’ of (25) with the same objective value.
With the expectation that (26) is more numerically stable than (25), the former will be solved
in place of the latter.

It is important to note that in SOPLEX scaling factors are always integral powers of 2.
Consequently, scaling will only modify the exponent of the stored floating point, which guarantees
that no roundoff error is added (apart from possible under- or overflow).

4.1.1 Least-squares scaling

A matrix is badly scaled if its non-zero entries are of vastly differing magnitude. While the
opposite statement is not necessarily true, having non-zero entries of same or similar magnitude
is generally seen as a desirable property (also beyond linear programming) and usually comes
with improved stability.

The least-squares scaling approach suggested in [41] follows this precept and attempts to keep
the absolute values of the non-zero entries of the constraint matrix close to 1. To this end, the
algorithm first computes real numbers «; and §; for each row and column of the LP constraint
matrix, respectively, such that the following expression is minimized:

> (logy lai| + i + B;)*. (27)

1,j:a;; 70

Next, for each ¢ and j the closest integers &; to a; and Bj to B; are chosen, and the computed

numbers are transformed to r;; == 2% and Cjj = 2P, Setting the off-diagonal entries r;; and c;;
to zero, one obtains scaling matrices R and C.
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SOPLEX 3.0 includes a least-squares scaling algorithm, as a tool to improve stability. To
minimize (27) a specialized conjugate gradient algorithm is used, as suggested in [41]. Since least-
squares scaling is computationally more expensive than equilibration scaling, it is not applied by
default. It can be activated by the user with the command line parameter -g5. It is recommended
that the least-squares scaling is only used for instances that are numerically difficult.

4.1.2 Persistent scaling in MIP solving

Besides being a stand-alone LP solver, SOPLEX also takes a pivotal role within the SCIP Op-
timization Suite as an underlying LP solver for MIP solving. During branch-and-bound, nu-
merically difficult LP relaxations may occur frequently even if the first root relaxation is well-
behaved. Nevertheless, all previous releases of SOPLEX only applied scaling to LPs if no warm
start from an existing basis was performed (e.g. at the root node). In order to maintain the LP
scaling throughout the entire branch-and-bound procedure—and allow for improved numerical
stability—in SOPLEX 3.0 persistent scaling has been implemented. This allows to consistently
apply scaling during the MIP solving process by storing the scaling factors for the root LP and
computing additional ones dynamically in case of newly inserted rows (e.g cutting planes) or
columns.

To enable the persistent scaling approach, a new interface layer was added to SOPLEX to
ensure consistency (with respect to scaling) when external data is received or when internal data
is accessed from outside of SOPLEX. For example, bound changes found in SCIP need to be
scaled before applying them in the LP and solution data of SOPLEX (such as solution variables
and reduced costs) must be unscaled accordingly. Operations involving the basis matrix of an
LP, e.g., computing the i-th row of the basis inverse to generate Gomory mixed integer cutting
planes, need to be transformed to represent the result with respect to the basis matrix of the
unscaled LP.

Persistent scaling is now applied by default. Computational experiments with SCIP on
MIPLIB 2010 [85] have shown no degradation in running time.

4.2 LP solution polishing

Solutions to (practical) linear programs are rarely unique. Instead, due to the presence of dual
degeneracy (see also Section 4.3) and the use of numerical tolerances, multiple distinct solutions
may fulfill the optimality and feasibility conditions. This is especially true for LP relaxations in
MIP solvers and one of the main reasons for their performance variability [85].

Searching on the optimal facet for another LP solution is not a new idea, though, and has
been investigated in many different ways. In Zanette et al. [145], the authors show how to exploit
dual degeneracy by using the lexicographic simplex algorithm to find an optimal basis, which is
then better suited to compute numerically stable cutting planes. A related approach for mixed
integer programming is k-sample by Fischetti et al. [55]. This approach reruns the initial root LP
several times on multiple cores using different random seeds. The aim is to collect different LP
optima that provide richer cuts for the MIP solver. Alternatively, CPLEX [81] implements an
algorithm [3] that fixes several variables and modifies the objective function to explore different
optimal LP solutions to improve cut generation and to obtain more accurate dual information.

Algorithm. LP solution polishing tries to improve the quality of an existing LP optimum.
The measure of solution quality in this case is the number of integer variables contained in the
optimal basis. Since a non-basic variable is always on one of its bounds, it’s also integral in the
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current LP solution. Therefore, the less basic integer variables present in an LP solution the
more integral it can be, which is usually a desired feature of relaxations in a MIP solver.

LP solution polishing, as described in Algorithm 5, starts after an optimal solution is found.
A modified primal simplex is employed to avoid losing feasibility and the pricing step is modified
to look for slack variables with zero dual multipliers to not deteriorate the objective function
value. The modified ratio test only accepts the pivot to leave the basis if it is a problem variable.
That way, in every successful iteration the number of problem variables in the basis can be
reduced by one.

To avoid setting continuous variables to their bounds it is necessary to pass the integrality
restrictions of variables in the MIP to SOPLEX. The LP interface in SCIP 4.0 has been extended
to facilitate this with negligible overhead, since the integrality information only needs to be
updated after variables have been added to or removed from the problem. Currently, solution
polishing is the only feature in SOPLEX that makes use of this information.

In contrast to the method described in Achterberg [3], the presented algorithm does not mod-
ify the problem data and is not providing any intermediate information to the calling process—in
this case SCIP. Furthermore, it is also possible to polish the solution of a pure linear program
by treating all variables as integer variables. In this case a polished solution is considered better,
because more variables are precisely on its bound rather than on some intermediate value in its
feasibility range.

Algorithm 5: LP solution polishing of SOPLEX

Input: Optimal (dual) solution x (y) with basis B of LP (25)
Output: Optimal solution of LP (25) with less or equal number of basic problem variables

1 set of problem variable indices C = {1,...,n}
2 set of slack variable indices R = {1,...,m}
3 set of non-basic indices N' = (R UC)\B
4 set of integer variable indices Z C C
5 foreach i € N do
6 \\ find entering candidate among non-basic indices
7 if i€ CAi€Zthen
8 \\ integer problem variable x; is non-basic, hence on its bound
9 continue
10 else
11 if (c— ATy); =0 then
12 \\ z; has zero reduced cost (pivoting preserves optimal solution value)
13 j < non-basic index in B chosen by primal ratio test
14 if jeCAjeT then
15 \\ found an integer problem variable x; to leave the basis
16 B« B\{j} U {i} \\ perform basis change
17 update z, y and N
18 else
19 \\ no suitable index found to leave the basis, reject candidate ¢
20 continue

21 return solution z,y and basis B
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Computational results. There are currently two different modes of using LP solution pol-
ishing within SCIP: running it only for the root LP solves and running it for every LP solve.
In experiments on MIPLIB 2010 [85], the first setting of applying polishing only at the root
node performed better. When compared to no LP solution polishing at all, the average number
of nodes was reduced by 8% and the running time by about 10%, over the instances that are
solved by both settings. However, simultaneously the number of instances solved within the time
limit of two hours decreased by two when using LP solution polishing at the root. These results
show the potential of solution polishing, but also the necessity to evaluate the benefit of polished
LP solutions in more detail. Potentially it is better applied using a more fine-grained strategy.
Hence, in the default settings of SCIP 4.0 LP solution polishing is deactivated.

4.3 Decomposition based dual simplex

Dual degeneracy is a phenomenon that is commonly observed in linear programs. A basis exhibits
dual degeneracy when there exists at least one non-basic variable that has a zero reduced cost.
Upon encountering a dual degenerate basis, the dual simplex method may perform a number of
degenerate pivots. A degenerate pivot is characterized by the update of the basis without any
improvement in the objective function value. Degeneracy can make the dual simplex method
stall if a number of degenerate pivots are performed in succession. As such, dual degeneracy sig-
nificantly impacts the effectiveness of the dual simplex method and can render highly degenerate
LPs unsolvable.

Many attempts have been made to address degeneracy in the dual simplex method. The
bound flipping ratio test [58] made a notable improvement to the performance of the dual simplex
method in the presence of degeneracy. Alternatively, pricing rules have been developed by Forrest
and Goldfarb [57] and Omer et al. [106] with the explicit intention to avoid degenerate pivots.

Degeneracy is a phenomenon that not only affects the dual simplex method, but also the pri-
mal simplex method. A basis is primal degenerate if there exists at least one basic variable taking
a value of either its upper or lower bound. In an attempt to address the effects of primal degener-
acy, which commonly arises in set partitioning problems, constraint aggregation approaches have
been developed by Elhallaoui, Villeneuve et al. [50] and Elhallaoui, Metrane, Soumis and De-
saulniers [49]. With a particular focus on column generation algorithms, constraint aggregation
involved reformulating the restricted master problem to contain a subset of the original con-
straints, some of which represent multiple constraints from the original formulation. A dynamic
procedure is employed that disaggregates the constraints, which is necessary to prove optimal-
ity. The reformulation approach presented by Elhallaoui, Villeneuve et al. [50] and Elhallaoui,
Metrane, Soumis and Desaulniers [49] motivated the development of the decomposition-based
improved primal simplex [48]. The improved primal simplex attempts to eliminate degeneracy
by forming two partitions of the columns that currently form the basis—degenerate and non-
degenerate—and using these partitions to perform a decomposition of the original problem.

While decomposition techniques have been shown to be successful in addressing primal de-
generacy, very few investigations into their applicability for the dual simplex method have been
performed. A fundamental part of the decomposition based approaches is the partitioning of
the degenerate and non-degenerate variables. The pivoting rule of Omer et al. [106] describes a
method to identify such a partition for a dual degenerate basis. This partitioning is then used
to identify variables that when pivoted into the basis are expected to provide a strict improve-
ment in the objective function value. Beyond the identification of degenerate and non-degenerate
variables, there has been little work performed to develop a decomposition based dual simplex
method.

The current release of SOPLEX includes a development version of a decomposition based
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dual simplex (DBDS) algorithm. This development version draws upon the concepts from the
improved primal simplex in an attempt to reduce the impact of degeneracy using decomposi-
tion techniques. The implementation of the DBDS aims to investigate the potential of such a
decomposition approach and identify possible future research directions.

4.3.1 Decomposition method

Consider the following linear program
max{c'z: Az < b} (28)

with c € R™, A € R™*™ and b € R™. Without loss of generality, it is assumed that m > n. The
dual of (28) reads
min{b y: ATy =¢,y >0} (29)

The dual simplex method can be applied to solve Problem (28). At each iteration of the dual
simplex method a basis B is given. By definition, B is feasible for (29), but may be infeasible
for (28). The basis B is given as the row-form, as described in Section 4.4—as such, B is of
dimension n X n. The primal-dual solution x,y corresponds to B.

The partitioning of the rows in the original problem is based upon the values of y in the
current basis B. The inverse of the basis matrix B is denoted as @), which will be used to perform
the decomposition. The sets P and A describe this partition by containing the dual variables that
have a non-zero and those that have a zero solution value, respectively. Given the partitioning
of the dual variables P and N, the concept of compatibility developed by Elhallaoui, Metrane,
Desaulniers and Soumis [48] is used to decompose the original problem (28). Namely, the set C
is defined to contain the indices of the rows i from the original problem that satisfy A; Q.»r = 0,
where Q.5 are the columns of Q indexed by A/. The rows satisfying A;.Q.»- = 0 are labeled the
complementary rows. Note that the set C contains all rows contained in P and those that are not

a linear combination of the rows contained in A/. For convenience, we define Z := {1,...,m}\C
as the set of incompatible rows. Finally, the inverse of the basis can be reordered such that
Q=(Qr|QN)

By performing the substitution x = QZ and letting z = Q.pZp + Q. AT, (28) becomes

max (' Q.p)Zp + (¢ Q.n)Zn
s.t. Ac.Q.pZp + Ac.Q.NnTn < bc, (30)
A1.Q.pTp + Az.Q NTnN < b1

By definition, ¢'Q =y}, ¢c"Q.n = yI/ =0and Ac.Q.nr = 0. A decomposition can be performed
by relaxing the incompatible constraints. This results in the following reduced problem for the
DBDS:
max (CTQ"p)ffp
st. (Ac.Q.p)Tp < bc.

In the DBDS, problem (31) is the master problem. The iterative algorithm of the DBDS
augmented with additional rows throughout the solution process. The additional rows are sourced
from the incompatible rows that were relaxed during the decomposition process.

In the DBDS, the reduced problem is solved to optimality to produce a basis that is used
to identify whether incompatible rows can be added to continue the solution process. Such an
optimal basis of (31) is denoted by B*, which has a corresponding dual solution that satisfies
ye > 0. By setting y; = 0, the solution from (31) can be extended to a feasible dual solution of
(28). Since (31) is solved to optimality, the dual solution vector y* is expected to be different to

(31)
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that corresponding to the basis B. As a consequence, the sets P and N, and respectively C and
7, must be redefined using the dual solution y*.

The basis B* UN, given by the solution to (31), is optimal for (28) if and only if there is a
corresponding primal feasible solution. This is verified by solving the complementary problem,
which is given by

max s
s.t. Az =0 Vi e P,
A;x+s<b Viel,
reR", seR.

(32)

If the objective function value of (32) is non-negative, then the basis B* is optimal for the
original problem. Otherwise, the solution given by (31) is infeasible for (28). The rows that are
infeasible—those satisfying A;. x* > b;—can then be selected to augment the reduced problem
(31).

Solving (32) can be viewed as an expensive pivoting rule for the dual simplex method. The
hope from employing such a pivot selection rule is that the performance improvements gained
from avoiding dual degeneracy is greater than the time required to set up and solve (32). As an
alternative to solving (32), Omer et al. [106] propose a statistical approach for a pivot selection
rule that identifies incompatible rows that are expected to provide non-degenerate pivots.

4.3.2 Implementation

The DBDS is implemented as an extension of SOPLEX and builds upon the data structures
provided within the linear programming solver. Central to the implementation of the DBDS
is the row-form of the basis matrix that is employed by SOPLEX. The use of the row-form
is necessary in performing the required matrix multiplications to transform the variables and
decomposition of the original problem.

A problem can be solved using the DBDS by setting the appropriate runtime parameters of
SoPLEX. The DBDS is activated by setting the parameter bool:decompositiondualsimplex
to true. By activating the DBDS, the solution algorithm is automatically set to the dual simplex
algorithm, the basis representation is set to row and persistent scaling is deactivated. Addi-
tional parameters are available to change different features of the DBDS algorithm. These
parameters include bool:usecompdual, which informs the DBDS that the dual formulation of
the complementary problem is solved; bool:explicitviol, if set to true will add all rows of
the original problem violated by the reduced problem solution to the reduced problem; and
int:decomp_maxaddedrows, which sets the maximum number of rows added to the reduced
problem in each algorithm iteration. The solution algorithm is then performed in three main
stages: initialization, decomposition, and termination.

Initialization. The decomposition approach of the DBDS requires a feasible dual basis to
identify a partitioning of compatible and incompatible rows. The initialization phase starts by
solving the original problem using the dual simplex method. Periodically during this initial solve
the basis matrix is checked for the level of degeneracy, which is given by the number of non-
basic rows with a zero reduced cost divided by total number of rows. Lower and upper bounds
on the degeneracy level of 10% and 90% respectively are arbitrarily set within SOPLEX as the
required limits for executing the DBDS. The lower bound of 10% is imposed so that at least
some degeneracy exists within the current basis. While the upper bound of 90% ensures that
a few pivots are performed away from the 100% degenerate initial slack basis. In the case that
the level of degeneracy does not fall between these two bounds after a predefined number of
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checks, then the DBDS is abandoned and default SOPLEX is called to solve the problem with
the initial algorithm set to the dual simplex. The number of checks that are performed is given
by a runtime parameter.

Decomposition. The decomposition of the original problem is performed using the degenerate
basis found during the initialization phase. As a first step, the reduced problem is constructed
by making the appropriate substitution of the variables and partitioning of the original problem
rows. The identification of the compatible and incompatible rows is very computationally ex-
pensive and can be overly time consuming. Only half of the maximum allowed running time is
provided to the decomposition phase. If this time is exceeded, then the decomposition approach
is terminated and default SOPLEX is invoked, with the initial algorithm set to the dual simplex,
to continue solving the original problem.

The complementary problem is constructed after the first solve of the reduced problem.
Starting from the original problem (28), the set of constraints that are currently tight in the
optimal basis to (31) are set to equality constraints. A single variable is then added and is
included in each of the incompatible rows. This additional variable is used to measure the
constraint violations arising from the solution to (31). Finally, all rows that are not tight in the
solution to (31) are removed. These operations result in a problem of the form given by (32).

The implementation of the DBDS allows the complementary problem to be solved as ei-
ther the primal or dual formulation. As explained in Elhallaoui, Metrane, Desaulniers and
Soumis [48], it is possible to eliminate many variables from the dual formulation of the comple-
mentary problem—expecting to improve computational performance. Currently the elimination
of variables is not performed in the dual formulation. This is a point for future development.

The DBDS is an iterative algorithm that solves the reduced and complementary problem.
Each solution to the reduced problem identifies the constraints in the complementary problem
that must be set to equality. The solution to the complementary problem identifies whether the
optimal basis of (31) is optimal for the original problem; if not, the violated rows that should be
added to the reduced problem are given by the complementary problem solution.

Termination. The purpose of the termination phase is to resolve the original problem so that
the solution from the reduced problem is transformed into the original problem space. At the
successful completion of the decomposition phase, the optimal solution to (31) is relative to the
substituted variables. To terminate the algorithm with the correct primal and dual solution
vectors, a primal solution vector is setup by translating the solution from the reduced problem.
The dual simplex algorithm is then executed to construct the dual solution vector and basis for
the original problem.

Alternatively, the termination phase is required when it is not possible to execute the DBDS
algorithm. This occurs if a dual degenerate basis is not discovered during the initialization phase,
or the runtime was exceeded during the detection of the compatible and incompatible rows. In
the first case, the default algorithm of SOPLEX continues without interruption, but with the
option to perform degeneracy checks disabled. The latter case invokes the default algorithm of
SOPLEX, with the initial algorithm set to the dual simplex method, after supplying the basis
that was used to perform the decomposition of the original problem. Also, if an error occurs
while executing the DBDS algorithm, then the same approach is used to resolve the original
problem using the dual simplex method.
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4.3.3 Investigation

The current implementation of the DBDS aims to investigate the potential of applying decompo-
sition techniques to address the impact of degeneracy in the dual simplex method. The approach
described above is very computationally expensive, hence it is not expected to be competitive
with the default algorithm implemented in SOPLEX with respect to time. As a measure of perfor-
mance, the number of iterations performed in all solves of the reduced problem in the DBDS and
the dual simplex iterations required to solve the original problem will be used for comparison.
This analysis does not include the iterations of the complementary problem. It is deemed that
solving the complementary problem is a pivot selection oracle, so the performed LP iterations
are ignored in the analysis.

A set of instances has been collected from a wide range of publicly available test sets. An
initial test set comprised 1235 LP instances collected from the following sources: CORQLS, the
Csaba Mészéaros LP collection”, the Hans Mittelmann benchmark instances®, MIPLIB?, and the
Netlib LP test set including the “kennington” folder!?. The DBDS algorithm was applied to all
instances within this test set using a time limit of 1 hour. Since this is a development version
of the DBDS, some instances abort due to insufficient memory. This occurred on 20 instances.
These instances were the first removed from the test set. Next, the instances that could not be
solved by the dual simplex method within 1 hour (50 instances) were removed. Then all other
instance where the DBDS was executed and completed successfully were selected. This resulted
in a test set consisting of 215 instances. This set of instances are those where a dual degenerate
basis was found and the decomposition for the DBDS could be performed successfully.

Many different settings have been evaluated in the computational experiments of the DBDS.
First, to provide an representative comparison, a ’default’ SOPLEX setting has been created.
The default setting, labelled as default_compare sets the basis to use the row representation
and the initial algorithm is set to the dual simplex. The DBDS is evaluated using four different
settings. For all settings, the row representation is used for the basis matrix and the initial
algorithm is set to the dual simplex method. Since the resolve of the reduced problem can be
computationally expensive after adding rows, the impact of limiting the number of added rows
is assessed. One setting permits the addition of at most 5 rows in each iteration, which has been
arbitrarily chosen as a suitably small number of rows. The other setting adds all violated rows
in each iteration. Finally, solving the complementary problem in the primal or dual form is also
assessed.

Figure 6 presents a performance profile that compares the number of iterations performed by
the default SOPLEX implementation and the different settings for the DBDS. From this result,
it is clear that the DBDS does not perform as well as default SOPLEX on the collected test
set. In particular, approximately 60% of all instances are solved by default SOPLEX in the least
number of iterations. Compared to all other settings, across all settings the DBDS performs the
least number of iterations in 25% to 35% of instances.

This demonstrates that the decomposition based simplex is not valuable as a general algorithm
and would be more suited as a problem specific implementation. From the current test set it
is not clear what the best instances are for the DBDS. Additionally, it indicates that more
research is required to identify whether there are benefits of such a decomposition approach.

6Computational Optimization Research At Lehigh. MIP Instances. http://coral.ie.lehigh.edu/data-sets/
mixed-integer-instances/

7Csaba Mészaros. LP Test Set. http://www.sztaki.hu/ meszaros/public_ftp/lptestset/

8Hans Mittelmann. LP Test Set. http://plato.asu.edu/ftp/lptestset/

9Zuse Institute Berlin. MIPLIB-Mixed Integer Problem Library. http://miplib.zib.de/

10University of Tennessee Knoxville and Oak Ridge National Laboratory. Netlib LP Library. http://www.
netlib.org/lp/
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10 Performance profile comparing Iterations
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Figure 6: Performance profile comparing a default implementation of SOPLEX against the
decomposition based simplex when different numbers of rows are added in each algorithm
iteration.

Investigations to identify the bottlenecks of the DBDS algorithm and identify an instance set
where the algorithm would be most valuable are future directions of research.

4.4 Row basis

Two different representations of the basis are provided within SOPLEX. The first is the commonly
known column representation, where the basis is a square matrix with size equal to the number
of rows. The other is the row representation, where the square basis matrix has a size equal to
the number of columns. For this section, the following LP formulation is used:

min ¢z
st. Az >b, (P)
x> 0.

The concept of having two different representations for the simplex algorithm has first been
investigated in detail in Wunderling [141] and is also explained in Gleixner [70]. Both represen-
tations are best illustrated using the following unifying definition of a basis.

Definition 4.4.1 (basis, basic solution). Let C C {1,...,n} and R C {1,...,m} be the index
sets of variables and constraints of (P), respectively.

1. We call (C,R) a basis of (P) if |C|+|R| = m. Variables and constraints with index in C :=
{1,...,n}\C and R :={1,...,m} \ R, respectively, are called nonbasic.

2. We call a basis (C, R) regular if the vectors A.;, j € C, and e;, i € R, are linearly independent.

3. We call a primal-dual pair (x,y) € R™ x R™ a basic solution of (P) if there exists a regular
basis (C, R) such that

z;=0, jé&C, (33)
Ajxz=b igR, (34)
y'Aj=c/, jec, (35)

yi=0, i€R (36)



4. A primal solution x is called primal feasible if Ax > b, x > 0. A dual solution y with reduced
costs d = c — ATy is called dual feasible if

dj:O\/(deO/\Ij:O) vie{l,...,n} (37)

and
yi:O\/(yiSO/\Ai,x:b) ViE{l,...,m}. (38)

Dantzig [44] designed the simplex method for what is called the column representation of
(P), which continues to be the basis for most state-of-the-art implementations. Here, slack
variables s € R™ are introduced in order to obtain equality constraints:

T

min c'x,
st. Axr—s=0,
x>0,

s> b,

Given a regular basis B = (C,R), the variables z;, j ¢ C, and s;, i ¢ R, are set to their
bounds as prescribed by (33) and (34). The m remaining columns A.;, j € C, and —e;, i € R,
form the (full rank) basis matrix M = (A.c|—Ir) € R™*™. The values of the basic solution can
then be computed by solving two systems of linear equations:

(xc>_b
SR

T, [C

M y_<0).

The row representation on the other hand is obtained by treating variable bounds as inequality
constraints. Here, the basis matrix N € R™*™ consists of rows ejT, j&Cand A;., i € R. So the
primal vector x can be computed by solving

0
Nx = <b7‘z) ,

which is identical to (33) and (34). If z € R™ denotes the dual multipliers associated with the
bound constraints > 0, then the dual vector y is computed solving

and

complemented with y; = 0 for i € R.
Consequently, every basis (C, R) defines both a column and a row basis matrix. More impor-
tantly, a column basis matrix is regular if and only if the row basis matrix is regular:

Lemma 4.1. Let (C,R) be a basis of (P), then the vectors A.;, j € C, and e;, i € R, are linearly
independent if and only if the vectors A;., i € R, and e;»r, j & C, are linearly independent.

Proof. After appropriate reordering of rows and columns the basis matrices of both representa-
tions yield the following:

0o I

Are IR) <
det(M) = det =det(Asp) - det(I) = det
( ) < A’RC 0 ( RC) ( ) AfZC A’EC

> = det(N)
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Hence, for a regular basis, both types of basis matrices M and N as defined above are regular.
Note that if the numbers of variables and constraints differ widely, so do the dimensions of M
and N and subsequently the effort for computing and updating the basic solution values. The
row orientation of the basis is computationally advantageous for instances that have significantly
more constraints than variables since the basis matrices are smaller.

SCIP and SOPLEX automatically switch to the row representation if there are at least
20% more constraints than variables. This threshold can be controlled with the parameter
rowrepswitch.

Furthermore, branch-and-cut algorithms frequently add new constraints to the LP relaxation.
In this case, the row representation is better suited than the column form, because an existing
LU factorization of the basis matrix can be updated and reused in a hot start since its dimen-
sion remains unchanged. Conversely, the column representation can better handle newly added
variables in a branch-and-price context. The appropriate representation is set for every new
LP solve, so it could happen that after adding many cutting planes to the problem, the row
representation might be preferred.

We use the MMM test set for computational experiments, see Section 2.1.4 for a definition
of the test set. About 35% of the instances in the test set have at least 20% more constraints
than variables after SCIP’s presolving, thus triggering the row representation when SOPLEX
solves the LP relaxation. On this subset of affected instances, the row representation leads to
a 20% reduction in the total solving time of SCIP, while the number of nodes remains almost
unchanged. When regarding the entire test set this amounts to a speed-up of 7%.

5 UG

The Ubiquity Generator framework UG [128] is a generic framework to parallelize an existing
state-of-the-art branch-and-bound based solver, which is referred to as the base solver, from
“outside.” UG is composed of a collection of base C+- classes, which define interfaces that can be
customized for any base solver (MIP/MINLP solvers). These allow descriptions of subproblems
and solutions to be translated into a solver-independent form. Additionally, there are base classes
that define interfaces for different message-passing protocols. Implementations of different ramp-
up strategies'', a dynamic load balancing scheme, check-pointing and restarting mechanisms are
available as a generic functionality. More details regarding these features that are provided by
the UG framework are presented in the papers of Shinano et al. [128] and Shinano et al. [126].
The branch-and-bound tree is maintained as a collection of subtrees by the base solvers, while
UG only extracts and manages a small number of subproblems from the base solvers for load
balancing. Typically, these subproblems are represented by variable bound changes.

Using the UG framework, two types of external parallelization have been developed for SCIP
and are included in the SCIP Optimization Suite. One is PARASCIP [126, 127], which can run
on distributed memory computing environments, the other is FIBERSCIP [128], which can run
on shared memory computing environments. PARASCIP has been used to solve previously
unsolved instances from MIPLIB 2003 and MIPLIB 2010. It produced 14 optimal solutions for
these instances so far, using up to 80,000 cores, i.e., 80,000 MPI processes.

UG 0.8.3 presents two new features. First, distributed domain propagation is now employed
during racing ramp-up (Section 5.1). Second, UG has been extended to base MIP solvers that
use distributed memory parallelization themselves (Section 5.2).

1 ramp-up is the process undertaken by a parallel solver from the start of computation until all processors have

been provided work for the first time.
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5.1 Distributed domain propagation

Distributed domain propagation (DDP) has been implemented within the UG framework to
share variable bound changes during the solving process of FIBERSCIP and PARASCIP. The
main details and concept of DDP have been presented in Section 2.7.3, with a focus on the
shared memory parallelization of CONCURRENTSCIP. In this section we describe the specific
implementation details of DDP for the UG framework.

FIBERSCIP provides the capability to share a wide range of information between solvers
during the solution process. The most important piece of shared information is new incumbent
solutions found by any of the solvers. Additionally, with the introduction of DDP, all global
variable domain changes are shared.

The main difference between the DDP implementations between FIBERSCIP and CONCUR-
RENTSCIP is the method of communication. In FIBERSCIP, the LOADCOORDINATOR provides
the functionality for controlling the parallel branch-and-bound tree search. In particular, the
LoADCOORDINATOR manages the transferring of nodes to different solvers, load balancing and
the sharing of global information. As such, the LOADCOORDINATOR is critical in the implemen-
tation of DDP. The best incumbent solution and the tightest lower and upper bounds for each
variable are stored within the LOADCOORDINATOR. Every global bound tightening found in one
of the solvers is sent to the LOADCOORDINATOR first, which controls the distribution among
the remaining solvers. When a new solution or bound is passed to the LOADCOORDINATOR and
is better than those currently stored, then this new piece of information is broadcasted to all
solvers immediately. As such, each solver asynchronously communicates updated bounds to all
solvers.

Apart from the communication system, the implementation of DDP is identical in CON-
CURRENTSCIP and FIBERSCIP. Specifically, the same propagation and event handler plugins
are used for both implementations, with only slight modifications for the different interfaces.
Given the same implementation of DDP, it is possible to evaluate and report of the difference in
communications systems. Note that DDP can only be applied during racing ramp-up.

5.1.1 Results

The experiments for DDP evaluate the solving performance of CONCURRENTSCIP and FIBER-
SCIP. While DDP has also been implemented for PARASCIP, the focus of this study has been
restricted to shared memory parallel implementations. To make a direct comparison between
CONCURRENTSCIP and FIBERSCIP, the latter is set to run using racing ramp-up only. In short,
racing ramp-up solves the same instance on all solvers using different parameter settings with the
limited communication of incumbent solutions and variable bound changes. Since the settings
used within FIBERSCIP during racing cannot be changed, CONCURRENTSCIP is configured to
use the same settings.

In Table 5 the nodes and solving time are given for the winning solver. They where aggre-
gated with a shifted geometric mean where the time was shifted by 10 seconds and the nodes
where shifted by 100. As can be seen in the table, FIBERSCIP and CONCURRENTSCIP with
the wall clock required less nodes and the solving time is smaller when DDP is enabled. For
CONCURRENTSCIP with the deterministic clock the results are less conclusive. We suspect that
the parameter settings for the deterministic synchronization need to be adjusted, since they have
been tuned on intermediate development versions of SCIP 4.0.

Table 6 shows the shifted geometric mean of the number of additional domain reductions
that were found via DDP in the winning solver. Clearly more domain reductions are found
when more threads are used. The reason is that each solver generates different data that is then
used for domain propagation, as explained in Section 2.7.3. The large difference between FIBER-
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Table 5: Comparison of CONCURRENTSCIP and FIBERSCIP with the default settings
of SCIP 4.0. Instances where no domain reduction was found via DDP and instances that
where not solved by all settings where left out.

with DDP without DDP
Time Nodes Time Nodes

Solver Settings

F1BERSCIP 4 threads 119.9 5129.5 118.8 5217.5
8 threads 112.9 4087.6 120.2 4406.2
12 threads 121.5 4294.3 123.7 4286.3
CONCURRENTSCIP 4 threads 172.2 53549 172.9 5512.8
8 threads 179.4 49714 182.1 4821.3
12 threads 202.8 4976.6 205.8 4543.8
CONCURRENTSCIP (Wall clock) 4 threads  136.2 5243.8 143.9 5631.0
8 threads 140.7 4527.8 145.0 4660.2
12 threads 152.6 4557.7 155.8 4799.4
SCIP 4.0 default 148.2  8556.1

SCIP and CONCURRENTSCIP indicates that the immediate asynchronous communication of the
bound changes, as implemented in FIBERSCIP, might have some advantages for DDP. However,
in CONCURRENTSCIP the delay of communication makes it more likely that a solver finds a
tighter bound for the same variable before the other domain reduction is received. Additionally,
FIBERSCIP will share each subsequent domain reduction of one variable individually, whereas
CONCURRENTSCIP communicates for each variable only the best bound that any of the solvers
found between two communication points.

5.1.2 Extension

The computational results for DDP presented in Sections 2.7.4 and 5.1.1 have focused on its
use within concurrent solvers—mnamely CONCURRENTSCIP and racing ramp-up of FIBERSCIP.
In addition to using DDP during racing ramp-up, FIBERSCIP and PARASCIP provide the
capabilities to share the global variable bound information generated in the racing stage between
solvers in all stages of the branch-and-bound algorithm. Given the low communication overhead
of transferring variable bound changes, it is expected that this will provide a significant benefit
to the solving process.

5.2 Capability to handle distributed base solvers

An extension of the UG framework is the ability to parallelize distributed memory base solvers.
This is to allow a parallelized solver to be employed on large-scale distributed memory computing
environments. For example, an LP or SDP solver that employs distributed memory parallelism
can be integrated into a large-scale parallel branch-and-bound solver with the use of UG. To
provide the capability, the UG framework was extended for this release.

PIPS-SBB [105] is an implementation of a general branch-and-bound algorithm for two-
stage Stochastic Mixed-Integer Programs (SMIPs). It is the first to solve LP relaxations by
using a distributed-memory simplex algorithm that leverages the structure of SMIPs. In a first
implementation, the branch-and-bound tree search itself was not parallelized'?. The development

12By the end of 2016, PIPS-SBB itself had an internal tree search parallelization
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Table 6: Comparison of the number of domain reductions that where found via DDP
in CONCURRENTSCIP and FIBERSCIP. The domain reductions on the subset of integer
variables are given additionally in the second column.

#Dom. red. #Int. dom. red.

Solver Settings

CONCURRENTSCIP 4 threads 15.3 7.6
8 threads 17.6 7.9
12 threads 21.9 8.8

CONCURRENTSCIP (Wall clock) 4 threads 16.0 8.7
8 threads 18.8 9.8
12 threads 27.9 14.3

F1BERSCIP 4 threads 89.9 42.8
8 threads 130.7 55.9
12 threads 147.9 60.5

of a tree parallilization version ug[PIPS-SBB, MPI] has been possible by using an enhancement
to UG which allows it to distribute an MPI Communicator to each distributed memory solver.
An MPI Communicator provides a separate communication space in MPI programs. With this
extension, UG is now able to handle distributed MIP base solvers.

5.3 Parallelization of multi-threaded MIP solvers

UG can be used to parallelize multi-threaded MIP solvers. For example, UG 0.8.3 has been
used to parallelize the commercial MIP solver XPRESS. There are two versions that are realized
by using this UG distribution, PARAXPRESS and FIBERXPRESS [127]. Since XPRESS is a multi-
threaded solver by itself, FIBERXPRESS provides two levels of multi-threading. It has been used
to investigate the parallel performance of an external parallelization as provided by UG.

In previous experiments, PARASCIP has been shown to effectively handle up to 80,000 MPI
processes. In PARAXPRESS, each process can run with multi-threaded XPRESS. Therefore,
PARAXPRESS can potentially handle over a million cores to solve a single instance if the suitable
hardware is available.

6 GCG

Many mathematical programs expose a model structure that can be exploited by decompo-
sition/reformulation methods like Dantzig-Wolfe reformulation [45] or Benders decomposition
[15]. The reformulation entails solving a different relaxation (hopefully stronger than the origi-
nal linear relaxation), which also implies an additional algorithmic burden like column generation.
GCG [67, 146] is able to handle Dantzig-Wolfe reformulations and Lagrangian decompositions
for input linear or mixed-integer linear programs. The current release GCG 2.1.2 is a bugfix
release.
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Background. Considering the doubly-bordered block-diagonal coefficient matrix of a MIP
with k blocks as

D! F!
D? F?
D+ R
Al A% ... AR @
a classical Dantzig-Wolfe reformulation can be applied when the F?, i = 1,...,k, and G are

zero. Otherwise, the corresponding linking variables can be duplicated for each of the (at most
k) subsystems they appear in and a Lagrangian decomposition be applied. The identity of
copies is then enforced via additional constraints in the master problem of the Dantzig-Wolfe
reformulation.

This matrix/model structure can be made known to GCG by providing an additional file in
*.dec, *.blk, or *.ref file formats (which are also used by similar frameworks like DIP [114]).
Moreover, GCG tries to detect such a structure using several heuristics and partitioning al-
gorithms working on different graph/hypergraph representations of the matrix [18]. There are
several experimental further detectors for other matrix forms like staircase structure, which are
disabled by default. When compiled with the external bliss [83] library, GCG tries to detect
whether a set of blocks D’ are identical, and if so, eliminates symmetry by aggregating these.
The structure detection loop currently undergoes a considerable extension and a full re-design
to be shipped with the next major release.

After a structure is chosen, the original problem is reformulated by using Dantzig-Wolfe re-
formulation. GCG then runs a fully generic branch-price-and-cut algorithm on the reformulated
problem, which is called master problem. The k subproblems, each having coefficient matrix D?
for ¢ = 1,...,k, can be solved as MIPs by SCIP or CPLEX, or by using a dedicated pricing
problem solver. Since the subproblems are independent, they can not only be solved sequen-
tially but also in parallel. GCG maintains both the original and the master problem, with
both having their own branch-and-bound trees. Technically, the main solving loop works on the
original problem, while the master problem is represented by a relaxator plugin. The trees are
kept synchronous, such that there is always a one-to-one correspondence between nodes in the
branch-and-bound tree of the original problem and the one of the master problem. Furthermore,
there is a mapping between (in particular solutions to) both models. Among the most important
ingredients are various branching rules (on original variables, Ryan-Foster branching for set par-
titioning models [119], and generic Vanderbeck’s branching) [136], primal heuristics [94], cutting
plane separators on original variables [95], dual variable smoothing, and a column pool.

7 Other extensions

Many applications and extensions of the SCIP Optimization Suite have been developed to
solve various classes of mathematical programming problems. The current release presents up-
dates to three main applications that are a focus of current development: SCIP-JACK [65],
PorySCIP [27] and SCIP-SDP [61].

7.1 SCIP-JACK — Steiner tree problem and variants

The Steiner tree problem in graphs (STP) is one of the classical A"P-hard problems [84]. Given
an undirected connected graph G = (V| E), costs ¢: F — Q4 and a set T C V of terminals, the
problem is to find a tree S C G of minimum cost that contains 7. Besides the (classical) STP,
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numerous additional Steiner tree problem variants have established themselves in the literature,
often propped up by various practical applications [65]. Against this backdrop, SCIP-JACK has
been created as an exact framework (within SCIP) that can solve 12 Steiner tree problem variants
in a unified approach [65]. A distinctive feature of SCIP-JACK is the transformation of all Steiner
tree problem variants into a directed Steiner tree problem (also known as Steiner arborescence
problem), which allows for a generic solving approach with a single branch-and-cut algorithm.
Despite its versatility, SCIP-JACK is highly competitive with the best (problem-specific) solvers
for several Steiner tree problem variants, see Gamrath et al. [65].

General Enhancements. SCIP-JACK 1.1 presents substantially improvements compared to
its predecessor in the last SCIP release. Many of these improvements are documented in Gam-
rath et al. [65] and Rehfeldt et al. [116], but even compared to these articles SCIP-JACK has
become significantly faster. In the following, several miscellaneous enhancements will be de-
scribed that have not found their way into the two just mentioned articles; either because of
the largely technical nature of the enhancements, or simply because they had not yet been im-
plemented at that time. In addition to the major new components covered in the subsequent
description, several new presolving techniques have been developed. For the latter enhancements
the interested reader is referred to the two articles cited above.

The high level improvements include a change in the default propagator of SCIP-JACK (see
Gamrath et al. [65]), which now additionally employs reduction techniques to fix variables (of the
underlying IP formulation [65]) to zero. Whenever ten percent of all arcs have been newly fixed
during the branch-and-cut procedure, the underlying directed graph D is (re-) transformed into a
graph G for the respective Steiner tree problem variant. All edges (or arcs) in G that correspond
to arcs that have been fixed to 0 in D are removed. Thereupon, the default reduction techniques
of SCIP-JACK are used to further reduce G and the changes are retranslated into arc fixings
in D. Furthermore, the separation algorithm of SCIP-JACK, which is based on the warm-start
preflow-push algorithm described in Hao and Orlin [79], has been completely reimplemented.
The new separation algorithm is for many instances more than ten times faster than the old one.
Notably, the underlying preflow-push algorithm is now bolstered by a global relabeling and a
gap relabeling heuristic, see Cherkassky and Goldberg [39].

On a lower level, many small implementation enhancements contribute to the broader pic-
ture. For instance, the dual ascent heuristic has been extended to combine the implementation
described in Pajor et al. [107] with the guiding solution criterion suggested in Polzin [111]. Also,
the breadth-first-search algorithm, which is a major run-time factor in the dual-ascent imple-
mentation suggested by Pajor et al. [107], has been reimplemented and no longer uses the default
queue of SCIP, but an ad-hoc implemented alternative. The latter reimplementation reduces
the overall run-time for several large-scale instances (with more than 100000 edges) by more
than 50 percent. Another example for a minor, but important, change can be found in the
reduction history management of SCIP-JACK: Each edge—or arc, depending on the Steiner
tree problem variant—is endowed with a linked list of ancestor edges, which allows to restore
each solution in the reduced graph to a solution in the original one. When, in the course of the
preprocessing, ancestor lists of two edges are joined, it needs to be checked that no two elements
point to the same (ancestor) edge—otherwise lists might become prohibitively large. This check
was formerly done by transforming one of the two lists to an array and using sorting combined
with binary search. However, this procedure proved to be a considerable slow-down factor for
several Steiner tree instances. Therefore, a hashing approach is now used that makes use of the
new SCIPallocCleanBufferArray method, which provides an array initialized with 0, but also
needs to contain only 0 elements when released. Furthermore, one can show that if two edges
that have a common ancestor are merged, the new edge cannot be part of an optimal solution
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and can therefore be discarded. This reduction method has also been added to SCIP-JAcK 1.1.

New primal heuristics. SCIP-JACK 1.1 comes with three new primal heuristics. While they
have already been used for the STP [111], recent work by the creators of SCIP-JACK on graph
transformation and reduction techniques [115, 116] allows to extend the three heuristics for the
first time beyond the STP. For instance, the heuristics are used in SCIP-JACK for the well-known
prize-collecting Steiner tree problem [82].

The first heuristic is the prune algorithm, which builds upon bound-based reduction tech-
niques [111, 116]. In its original version, the bound-based reductions eliminate a vertex (or edge)
by proving that any solution that contains it has a higher objective value than a best known
solution. In the prune heuristic, the upper bound originally defined by the best known solution
is reduced such that in each iteration a certain proportion of edges and vertices is eliminated.
Thereupon, all exact reduction methods are executed on the reduced graph, motivated by the
assumption that the (possibly inexact) eliminations performed by the bound-based method will
allow for further (exact) reductions. To avoid infeasibility, a guiding solution is initially com-
puted by using a constructive heuristic [65] and the elimination of any of the vertices or edges
of the guiding solution by the, inexact, bound-based method is prohibited. Within SCIP-JACK
the heuristic is called whenever a new best solution has been found.

The ascend-and-prune heuristic makes use of the dual-ascent algorithm described in Wong [140],
which provides a dual solution to a directed STP such that all terminals can be reached from
the root by paths with reduced cost 0. The ascend-and-prune heuristic considers the graph con-
stituted by the undirected edges corresponding to paths with reduced cost 0 from the root to
all additional terminals. On this subgraph a solution is computed by first employing an (exact)
reduction package and then using the prune heuristic. Within SCIP-JACK, ascend-and-prune is
performed after each execution of dual-ascent, in particular prior to the initiation of the branch-
and-cut procedure.

The last heuristic, slack-and-prune, is conceptually similar to the prune algorithm, but uses
the information provided by dual ascent to compute the lower bounds associated with the vertices
and edges. Since the dual-ascent algorithm has to be performed repeatedly, ascend-and-prune is
used to compute upper bound during the execution of slack-and-prune. However, requiring mul-
tiple dual ascent runs, the heuristic is computationally expensive and is therefore only executed
after the first LP solve at the root node and as part of the recombination heuristic originally
described in Gamrath et al. [65].

Computational results. To demonstrate the performance of SCIP-JACK 1.1 in comparison
to the six months older version (SCIP-JACK 1.0) described in Gamrath et al. [65], computational
experiments on four benchmark test sets were performed. The covered variants are the Steiner
tree problem in graphs (STP), the rectilinear minimum Steiner tree problem (RSMTP), the
prize-collecting Steiner tree problem (PCSTP), and the hop-constrained directed Steiner tree
problem (HCDSTP). More information on the test sets can be found in Gamrath et al. [65]. For
the computations a cluster of Intel Xeon X5672 CPUs with 3.20 GHz and 48 GB RAM was used
and CPLEX 12.6 was employed as the underlying LP solver. Moreover, the overall runtime for
each instance was limited by two hours.

The results of the experiments are provided in Table 7. The table lists in columns one and
two the test set and the problem variant. Furthermore, columns three and four show the number
of solved instances and the shifted geometric mean (with shift 1) of the runtime on the test set
for SCIP-JACK 1.0. The next two columns show the corresponding information for version 1.1.
The last two columns provide the relative change in the number of solved instances and the
average runtime.
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Table 7: Computational comparison of SCIP-JAcK with its predecessor.

SCIP-Jack 1.0 [65] SCIP-Jack 1.1 relative change [%)]
Test set type solved @ time [s] solved @ time [s] solved @ time
vienna-i-simple STP 75 218.9 83 64.2 +10.6 —70.7
estein60 RSMTP 12 2672.5 12 2122.5 - —20.5
PUCNU PCSTP 10 56.3 11 38.0 +10 —-32.5
grl4 HCDSTP 14 523.7 14 179.2 - —65.8

The results show that SCIP-JACK 1.1 runs substantially faster on all test sets, most notably
on vienna-i-simple and grl4. Moreover, nine more instances can now be solved to optimality
within two hours. Also, although not visible in Table 7, the average gap for the unsolved
instances is reduced by more than 50 percent with version 1.1. The enhanced performance of
SCIP-JACK is a result of both the general improvements and the new heuristics, albeit the former
can claim the larger share. In particular, the new implementation of the separation algorithm is
responsible for most of the newly solved instances.

In summary, the results mark a substantial improvement of SCIP-JACK as compared to its
predecessor described in Gamrath et al. [65], which was already shown to be highly competitive
with other state-of-the-art Steiner tree problem solvers.

7.2 PorLYSCIP — Multi-criteria optimization

Multi-criteria optimization is concerned with optimizing several conflicting objectives at once. It
can be considered as a generalization of single-objective optimization with numerous applications,
e.g., in sustainable manufacturing [123] or in traffic and logistics [124].

PoLySCIP 2.0 [27, 147] aims at solving problems of the form:

min (¢] z,...,¢] x)
s.t. Ax > b,
xeR"VZ",
where c¢1,...,c € R™ with & > 2 are given linear objectives and A € R™*"™, b € R™ describe
a finite set of linear constraints on the solution vector x, see Fig. 7. From here on, the feasible

domain is denoted by X and the image in objective space by Y := {(¢{ x,..., ¢/ x) : z € X}.

In contrast to the single-objective case, it is generally impossible to compute a single solution
that optimizes all objectives simultaneously. A feasible solution x* € X is efficient if there

is no x € X such that c;r:v < c:x*, fori=1,...,k, with c}rm < c;ra:* for at least one j. The
corresponding image (¢] z*, ..., ¢} 2*) € Y of an efficient solution 2* € X is called non-dominated.

The challenge given a multi-objective problem lies then in computing all non-dominated points,
see Fig. 8.

An efficient solution x* € X that is optimal for mingc y Zle )\icl—.'—x for some A € Rff_ is called
supported efficient solution and its corresponding image (¢ z*, ..., c,;'—x*) € ) is a supported non-
dominated point, see Fig. 9.

The previous version of POLYSCIP [63] allowed the user to compute the set of supported non-
dominated extreme points of conv()) by using a weight space partitioning approach [16, 130].
The bookkeeping of the weight space polyhedron was done via a graph data structure using the

library LEMON [90].
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Figure 9: Image of a bi-criteria integer program with supported non-dominated points
y' and y?. The dashed line indicates that minimizing any convex combination of ¢; and
¢z yields y* or 32, but not 3°.

New developments. A major revision of the source code was undertaken for the release of
PorLySCIP 2.0. Specifically, POLYSCIP is now independent of any external library. Necessary
computations with respect to the weight space polyhedron are now done via an implementation of
the double description method [60]. Furthermore, version 2.0 offers the functionality to compute
the entire set of non-dominated points (supported and unsupported) for integer problems with
two or three objectives.

Bi-criteria case. The set of non-dominated points for bi-criteria integer programming prob-
lems is computed in the following way: Initially, both objectives are minimized independently,
i.e., non-dominated extreme points y* of conv()), for i = 1,2, are computed such that 3 mini-
mizes ¢;. If an ideal point y € ) minimizing both objectives simultaneously is found, the problem
instance is solved at this point. If the considered problem is unbounded for both objectives, cor-
responding unbounded rays are computed and the problem instance is considered to be solved
at this point. If the problem is unbounded with respect to one of the objectives, a correspond-
ing unbounded ray as well as a non-dominated extreme point of conv()) with minimal value
over all non-dominated extreme points of conv()) with respect to the unbounded objective are
computed, see Fig. 10.

Let R(y?, yj) denote the rectangle in objective space given by y',y7 € Y via the four points
(Wi, v8), (vl v3), (Wh,v3), (yi,yb). After lexicographic non-dominated extreme points y and
y? are found, the remaining non-dominated points that are located in the rectangle R(y',y?)
are computed recursively. In a first step it is checked whether there is a feasible point 7° €
Y\ {y', 5} located in R(y',y?). If there is no such feasible point 3, then there is also no
further non-dominated point in the rectangle. If there is such a feasible point %3, then, in
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Figure 10: Part of an image of a bi-criteria integer program with infinitely many non-
dominated points. y? is the non-dominated extreme point of conv(Y) with minimal value
for ca. y? + g, for £ € IN, generates an infinite sequence of non-dominated points.

a second step, a corresponding non-dominated point y3 € Y\ {y',4?} located in R(y!,y?) is
computed. Subsequently, the rectangles R(y',y3) and R(y3,y?) are checked for further non-
dominated points. This procedure is repeated until all non-dominated points are computed.

To find out whether there is a feasible point (not necessarily non-dominated) in the rectangle
R(y',y’) with 4%, 4/ non-dominated and y¢ < y{, the following single-objective subproblem based
on the weighted Tchebycheff norm [28] is solved:

min z
st =A< z— Alc;—m,
—Aorg < 2 — /\QCQTJ;,
yi <elz <y,
i < g <y,
T EX,

Yi—n

. , i o
where r = (y! —1,y2 —1) is a reference point and A = (1, yl_:;) is chosen in a way that z*, 27 € X
2

corresponding to y* and y7, respectively, yield the same objective value for (39) whereas any
feasible solution corresponding to a point in the interior of R(y’,y?) yields an objective value
less than the one corresponding to z¢ and 7.

Let g* € Y\ {¢%,%7} be the feasible point located in R(y’,y’) found after (39) was solved
successfully, see Fig. 11. A corresponding non-dominated point y* located in R(y’,3’) will then
be computed by solving:

min (c;4c) 'z
s.t. clT:z: < g’f,
T =k

C T S Y2,

e k.

Tri-criteria case. For integer problems with three objectives a novel partitioning approach
for the set of non-dominated points [122| is pursued. Let N_;, for ¢ = 1,2,3, be the set of
non-dominated points of ) whose corresponding efficient solutions are also efficient for the given
integer problem where the i-th objective is being discarded. In a first step, a set of candidates
C;, for i = 1,2,3, is computed by employing the bi-criteria solver capabilities. Then, for each
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Figure 11: Feasible point §* located in R(y",%”) that can be found by solving (39).

candidate § € C;, ¢ = 1,2,3, a corresponding non-dominated point y € N_; is computed in a
second step. In particular, let § € C;, for some i € {1,2, 3}, be a candidate point. By solving

min (Cl+62 -‘ng)Tl‘
st ¢f @ =17, for j € {1,2,3}\ {i},
r e X,

a corresponding non-dominated point y € N_; is computed.

The second partition, denoted by N, consists of all non-dominated points of ) whose corre-
sponding efficient solutions are not efficient for any of the bi-criteria subproblems where one of
the original objectives is discarded. The potential objective values of non-dominated points in A/
are bounded from below and from above by points in the first partition as follows: Let y € A/ be
a non-dominated point belonging to the second partition. Then there are y* € N_;, i = 1,2, 3,
such that

max(y7,y7) < y1 <yl

max(ys,y3) < y2 < ¥3

max(ys, y3) < ys < Y5
In other words, the non-dominated points y* € N_;, i = 1,2,3, define rectangular boxes
in objective space where non-dominated points belonging to N might only be located. In
PoLySCIP 2.0, all possible boxes are created and made disjoint. Then, for each disjoint box
D = [b1,e1) X [ba,ea) X [b3,e3), the original tri-criteria integer program is restricted to D by
adding constraints b; < c;'—x < e;—e¢ fori € {1,2,3} and some appropriate € > 0, and solved

(recursively). Then, in a second step, each computed locally non-dominated point § € D is
checked for global non-dominance by solving the subproblem:

min (Cl+02 + Cg)Tl‘

s.t. ciTac <y, fori=1,2,3, (40)
rzeX.

Let u the be optimal value of (40). g € D is globally non-dominated if u = ¢1 + g2 +73. Otherwise
4 is discarded as a dominated point.

Outlook. Solving multi-criteria optimization problems efficiently depends heavily on the num-
ber of subproblems that need to be solved to find new non-dominated points. For bi-objective and
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tri-objective integer programs, respectively, the current implementation solves two subproblems,
which is not ideal. The next version should decrease the number of subproblems that need to
be solved. Furthermore, for tri-objective integer problems the number of locally computed non-
dominated points, which are discarded as dominated, can become prohibitively large for larger
instances. The next version should incorporate a way to compute only globally non-dominated
points. Further research will focus on an extension and implementation towards integer problems
with four objectives based on the partitioning approach described in [122].

7.3 SCIP-SDP

SCIP-SDP [149] is a plugin for mixed-integer semidefinite programming (MISDP) in SCIP. It
can solve MISDPs using either a cutting plane approach, similar to how SCIP solves MINLPs,
or a nonlinear branch-and-bound approach using interfaces to interior-point SDP-solvers. The
newest release SCIP-SDP 3.0 adds an interface to the commercial SDP-solver MOSEK [103].
After a short introduction of SCIP-SDP, the implementation of the interface will be described
before comparing its performance to the existing interfaces for DSDP [17] and SDPA [142, 143].
SCIP-SDP extends SCIP to mixed-integer semidefinite programs of the (dual) form

inf bTy
s.t. Az i — C t O,
2 A (41)
i <yi <wy Vi=1,...,m,
Yi €L VicZ,
with symmetric matrices C, A; € R"*™ for all i = 1,...,m. It extends SCIP by a constraint

handler and relaxator for SDPs, interfaces to multiple interior-point SDP-solvers, as well as two
file readers (CBF and an extended version of the SDPA format) and multiple heuristics and
propagators.

One of the main difficulties in solving general MISDPs lies in the non-inheritance of the
Slater condition for the continuous relaxation of (41). The Slater condition, which requires the
existence of a relatively interior point, is usually assumed for both primal and dual problem in the
convergence theory of interior-point SDP-solvers, see for example Ye [144]. Therefore its failure
may lead to numerical problems when solving the SDP relaxations. To handle these problems,
SCIP-SDP uses a penalty formulation

inf b'y+Ir

s.t. ZAiyi—C—&—I-rtQ

i=1
i <y <wy Vi=1,...,m,
r >0,

v €7 VieT,

with identity matrix I and penalty parameter I' > 0, to ensure the dual Slater condition. The
same kind of penalty formulation is also used internally in DSDP. For a detailed description of
SCIP-SDP and a discussion of the inheritance of the Slater condition in the branch-and-bound-
tree see [61].
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Table 8: Statistics of solver fails when the primal and dual Slater condition holds

solver #relaxations solved by default solved by penalty bounded by penalty unsolved
DSDP 909 065 99.70 % 0.30 % 0.00 % 0.00 %
SDPA 757 899 90.12% 6.53 % 0.00 % 3.35%
MOSEK 1551194 99.58 % 0.42 % 0.00 % 0.00 %

Feature description. The newly interfaced SDP-solver of MOSEK implements an interior-
point method based on the homogeneous self-dual embedding. It uses an extended formulation
with auxiliary variables to detect ill-posed problems as well as infeasibility, which is a significant
problem for other interior-point solvers.

Since MOSEK works on SDPs in primal form, instead of solving the relaxation of the dual
formulation (41) the corresponding primal problem

sup CeX — Zuivi—i—z&wi

i€y i€Jy
s.t. A;eX — Tui<ooyVi + 1ig;> —ccywi = b; Vi=1,...,m

X =0,
UZZO ViGJu,
w; >0 Vied

is given to MOSEK, where Jy == {i < m : {; > —oo} and J, == {i < m : u; < oo} are the
sets of finite variable bounds, 14 is the indicator function of the set A and X ¢ Y = Tr(XY)
is the usual scalar product on the set of symmetric matrices. For the penalty formulation, the
corresponding primal constraint Tr(X) < T is explicitly added to the problem.

Another difference between SCIP-SDP and MOSEK lies in the definition of feasibility tol-
erances. While SCIP-SDP uses an absolute tolerance for the smallest eigenvalue of the matrix,
MOSEK uses a relative tolerance. Moreover, instead of taking the smallest eigenvalue of the ma-
trix, MOSEK computes the largest absolute difference between Y ;" | A; y; — C and the current
dual iterate, which always stays positive definite. To ensure feasibility for the absolute toler-
ance used in SCIP, the feasibility tolerance given to MOSEK is adjusted by dividing through
(1 +max{C;;}) to revert the relative check in MOSEK. Furthermore, the default feasibility tol-
erance given to MOSEK is 10~7 in contrast to the 1076 used in SCIP-SDP, since the check on
the smallest eigenvalue is more restrictive than the check on the distance to the positive semidef-
inite cone. Computational experiments showed that this considerably reduces the originally high
number of solutions not satisfying the feasibility tolerance in SCIP-SDP.

Computational results. The new MOSEK interface is compared to the existing DSDP and
SDPA interfaces on the same test set used in [61], which has also become part of the conic
benchmark library [59]. It consists of 194 instances in total, subdivided into 60 truss topology,
65 cardinality constrained least squares and 69 minimum k-partitioning instances, including some
real world applications from cancer detection and very-large-scale integration (VLSI). The tests
were carried out on a cluster of 64-bit Intel Xeon E5-2620 CPUs running at 2.10GHz using
MOSEK 8.0.0.53, DSDP 5.8 and SDPA 7.4.0 together with preliminary developer versions of
SCIP 4.0 and SCIP-SDP 3.0.

A comparison of the solver behavior dependent on the Slater condition is given in Tables 8-10.
The tables show the total number of relaxations this state appeared in, the percentage of those
relaxations that could be solved using the default formulation, the share of instances solved to
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Table 9: Statistics of solver fails when either the primal or dual Slater condition does not

hold
solver #relaxations solved by default solved by penalty bounded by penalty unsolved
DSDP 45781 99.83 % 0.11% 0.00 % 0.04 %
SDPA 14559 57.55 % 1.15% 10.27 % 31.03%
MOSEK 81185 99.02 % 0.97 % 0.01 % 0.00 %
Table 10: Statistics of solver fails for infeasible subproblems
solver F#relaxations solved by default solved by penalty bounded by penalty unsolved
DSDP 83522 91.98% 2.23% 1.53% 4.26 %
SDPA 226 375 46.10 % 39.93% 4.80 % 9.17%
MOSEK 242743 85.55 % 13.34 % 1.11% 0.00 %

optimality or proven infeasible using the penalty formulation, the percentage of relaxations where
a new lower bound could be computed using the penalty formulation and the share of nodes that
could not be solved by either formulation. Note that these statistics are slightly biased towards
the truss topology instances since the values represent averages over all relaxations and the truss
topology instances tend to have the largest number of branch-and-bound nodes of all problem
types in the test set.

It can be observed that MOSEK, like DSDP, rarely encounters any problems when the Slater
condition holds. In case Slater’s condition fails, especially for the truss topology instances, it
can still solve over 99 % of all relaxations, while SDPA fails in more than 30 % of the cases. For
DSDP the results are now similar to MOSEK, because, after further tuning of some parameters,
two instances, which led to most of the unsuccessful solves in [61], can now be solved to optimality
while avoiding those parts of the tree that failed the Slater condition. Good results can also be
obtained with MOSEK for infeasible sub-problems, even though DSDP, which uses the same
kind of penalty formulation as SCIP-SDP internally to detect infeasibility, performs even better
now. Nevertheless, both can verify infeasibility for more than 85% of the infeasible nodes,
while SDPA, which only uses a generic primal-dual interior-point method without any specific
techniques for detecting infeasibility, can only prove it for less than half of the instances.

The overall performance of the different interfaces is given in Table 11 and Figure 12. The
number of branch-and-bound-nodes, the CPU time (with a limit of 3600 seconds) and the num-
ber of SDP iterations are given as shifted geometric means (with a shift of 100, 10 and 1000,
respectively). The given percentages are the amount of SDP relaxations that were solved to
optimality or proven infeasible using the penalty formulation and the share of relaxations, which
could not be solved using any method. Both are given as arithmetic means over the percentages
of each instance.

The MOSEK interface leads to an overall speed-up of more than a factor of two in comparison

Table 11: Solving times of SCIP-SDP for different SDP-solvers with default settings on
test set of 194 instances

solver solved aborts nodes time iters penalty unsucc
DSDP 174 0 390.45 158.19 11923.20 0.20 % 0.41 %
SDPA 162 10 504.13 134.62 16071.63 11.45% 12.56 %
MOSEK 187 0 386.32 63.94 6527.21 2.95% 0.12%
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Figure 12: Performance plot for different solvers with best settings on test set of 194
instances

to SDPA and even more compared to DSDP, while also solving many more instances within
one hour. Figure 12, however, shows that SDPA is still the fastest solver for almost half of
the individual instances, but once it gets into numerical troubles, SDPA will often not be able
to solve the instance at all, even given enough time. Moreover, while the difference between
MOSEK and DSDP is consistently between a factor of two and three on each of the three
instance sets, SDPA is slightly faster than MOSEK for cardinality constrained least squares,
performs only slightly worse for truss topology, but is much slower for minimum k-partitioning.

8 Overall performance improvements

The development of the SCIP Optimization Suite is driven by two main factors. First, the
addition of new functionality in order to increase the number and types of optimization problems
that can be handled. Second, the improvement of solving performance. In the following we
present the overall performance improvements achieved with the new features added for the
SCIP Optimization Suite 4.0. We report both the number of solved instances and the shifted
geometric means of the running time and of the number of branch-and-bound nodes, shifted
by 10 seconds and 100 nodes, respectively. The results are presented with respect to MIP and
MINLP separately. These two problem classes are a major focus of the development efforts for
the SCIP Optimization Suite.

It is important to note that the results can only give a rough indication since they rely on
benchmark sets of limited size. This is compensated for to some extent by generating for each
instance, in addition to its original encoding, four equivalent versions by permuting variables
and constraints. All five instances are theoretically equivalent. However, the phenomenon of
performance variability, which is common to MIP and MINLP solvers, can lead to vastly different
SCIP performance on each of the permuted instances. We aggregate, for each instance, the
performance indicators as follows: for the number of solved instances we report the count of the
instances solved in all permutations; for running times and nodes we compute the arithmetic
average over all permutations of an instance before calculating the shifted geometric mean over
all instances.
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Alternatively, we could have measured performance variability by running SCIP 4.0 with
different random seeds for the newly introduced parameter randomseedshift presented in Sec-
tion 2.1.7. However, since this was not available in the previous release, we could not have used
this to compare the performance of both versions.

The introduction of the random seed was chiefly motivated by the desire to reduce per-
formance variability and a potential overtuning on standard benchmark sets. One expected
consequence of the intensified randomization is of course an initial deterioration of the perfor-
mance on the “default” permutation of the instances. Using intermediate development versions
of SCIP before and after introduction of this feature, this deterioration was measured to be on
average about 11% on MIPLIB 2010 [85], depending on the value for randomseedshift. When
comparing running times over permutated instances, the deterioration was almost negligible (on
average about 2%), in some sense validating the implementation of the randomization. Note
that for the performance comparison on the “default” permutation the intensified randomization
introduces a clear bias in favor of SCIP 3.2.1, but this effect is very much intended.

8.1 MIP performance

Table 12 compares the performance of SCIP 3.2.1 and SCIP 4.0 on the MIPLIB 2010 [85] bench-
mark test set, which contains 87 instances. Each job was run exclusively on a machine with Intel
Xeon E5-2670 v2 CPUs with 2.50 GHz and 128 GB main memory, using a time limit of 7200 sec-
onds and a memory limit of 35GB. The underlying LP solver was SOPLEX—SOPLEX 2.2.1 for
SCIP 3.2.1 and SoPLEX 3.0 for SCIP 4.0.

The results over the set of five permutations (including the default permutation) show that
over all 87 instances SCIP 4.0 is faster by 7%. On the subset of instances that are solved within
the time limit by both SCIP versions (on all permutations, columns under “OPT”) the solving
time is reduced by 8%. For this subset, the number of solved nodes is almost identical between
the two versions.

When excluding the default permutation, the results show a stronger comparative perfor-
mance by SCIP 4.0. The solving time is reduced by 9% on the complete test set and by 10% on
the instances solved by both versions. It is also observed that the number of instances consis-
tently solved within the time limit over all permutations, which is a more conservative measure
than the average change in running time, increases from 65 to 66 instances.

In constrast, when solving only the default permutation of the instances the results are more
mixed. First, SCIP 4.0 exhibits a slight deterioration in solving time by 1% on the complete
test set and by 3% on the instances solved by both versions. This could be attributed to the
intensified randomization and the reduction of overtuning. Second, the number of instances
that SCIP 4.0 can solve within the time limit increases by 2. Finally, on the subset of harder
instances—for which at least one SCIP version needs at least 600 seconds runtime—SCIP 4.0
is faster by 5%.

It is observed that SCIP 4.0 still exhibits the best performance on the default permutation of
the instances. This is an effect also observed by other solvers. One possible explanation is that
the default order of variables and constraints in the problem exhibits some structure. Specifically,
related variables and constraints are often grouped together when generated by modeling tools.
Some techniques inside MIP solvers may exploit this structure—leading to better performance.
Since this may be a systematic benefit that is regularly encountered in real-world models, it
is arguably better to measure performance and performance variability using multiple random
seeds rather than multiple problem permutations. The changes to the handling of randomization,
described in Section 2.1.7, now makes this possible when comparing future versions of SCIP.
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Table 12: Aggregated results comparing SCIP 4.0 and SCIP 3.2.1 on the 87 instances
of the MIPLIB 2010 benchmark set [85].

ALL OoPT

solved time nodes time
default
SCIP 3.2.1 70 649.2 10892 351.7
SCIP 4.0 72 656.3 11795 362.3
permutations
SCIP 3.2.1 65 785.5 14325 404.8
SCIP 4.0 65 732.7 14160 373.5
permutations without default
SCIP 3.2.1 65 810.9 13974 430.4
SCIP 4.0 66 740.1 13376 387.8

8.2 MINLP performance

Table 13 compares the performance of SCIP 3.2.1 and SCIP 4.0 on 115 instances of the
MINLPLib2 [100] benchmark library that are currently used by Mittelmann [101]. Each job
was run exclusively on a cluster with a 64bit Intel Xeon X5672 CPUs at 3.20 GHz with 48 GB
main memory. Each instance was solved using a time limit of one hour, a memory limit of 40GB,
and a gap limit of 1073, For both versions the underlying LP solver was CPLEX 12.6.0.0 [81].

Compared to MIP, MINLP solving is in general numerically more difficult because nonlinear
terms can more intensely magnify numerical errors. Therefore, Table 13 contains an additional
column failed for the total number of instances for which SCIP terminates with a primal and
dual bound that is inconsistent with the values stated at the MINLPLib2 website [100]. The
value reported is the sum across all permutations.

The first, and arguably most important, observation is that the number of fails decreased
significantly. This result indicates that the numerical stability of SCIP for MINLP has been
greatly improved with the latest release. At the same time the number of solved instances
decreased, which might partially be due to this increased numerical precision—less instances
terminate prematurely. Note that SCIP 4.0 does not contain new features that systematically
improve numerics, but several numerical bugs in the code were continuously corrected during the
last development phase.

Similar to the MIP computational results, the average performance on the default permuta-
tion deteriorated. SCIP 4.0 processes 14% more nodes and needs 9% more time on the subset
of instances that are solved by both SCIP versions (see columns under “OPT”). In contrast,
the permutation runs show improvements in performance. On the four permutations excluding
the default permutation SCIP 4.0 is on average 10% faster and needs 17% less nodes over the
instances that are solved by both SCIP versions on all permutations. As for MIP, these result
suggests that SCIP 3.2.1 was overtuned. More evidence on this conclusion can be taken from
the average solution times over all instances. SCIP 3.2.1 experiences a greater slowdown when
permuting the instances compared to SCIP 4.0.

8.3 Performance update for bugfix release 4.0.1

On September 1, 2017, the release of SCIP Optimization Suite 4.0.1 made the updated versions
SCIP 4.0.1, SOPLEX 3.0.1, and UG 0.8.4 available, which mostly contained bugfixes and minor
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Table 13: Aggregated results comparing SCIP 4.0 and SCIP 3.2.1 on 115 instances of
the MINLPLib2 benchmark library.

ALL OoPT

solved failed time nodes time
default
SCIP 3.2.1 63 3 903.3 66812 262.0
SCIP 4.0 56 1 1072.7 76305 286.6
permutations
SCIP 3.2.1 53 10 1077.3 75835 306.5
SCIP 4.0 46 2 1144.5 66466 283.0
permutations without default
SCIP 3.2.1 54 7 1076.8 70745 324.6
SCIP 4.0 49 1 1108.0 59108 293.8

interface updates. However, the fixing of some bugs also showed a slight positive effect on the
performance of SCIP 4.0.1. On the default permutation we measured the following changes:

o On the MIPLIB 2010 benchmark set, SCIP 4.0.1 is on average 8% faster, although it solves two
instances less within the time limit of two hours. On the instances solved both by SCIP 4.0.0
and 4.0.1, the runtime and node reductions are 10% and 15%, respectively.

o On the 115 instances of MINLPLib2 introduced above, SCIP 4.0.1 solves one more instance
within the time limit of one hour and exhibits one less numerical fail. On the instances solved
both by SCIP 4.0.0 and 4.0.1, the runtime and number of nodes are reduced by 15% and
18%, respectively.

9 Final remarks

This report has provided a view into the development of the SCIP Optimization Suite. There are
many aspects that must be considered in the development of a solver, ranging from technical al-
gorithm implementations to the theoretical mathematics underlying solver features. Each of the
large range of topics may contribute to the solver performance. Neglecting technical algorithm
implementations in favor of new theoretical developments may result in a theoretically advanced
solver, but many challenges would remain open when striving for state-of-the-art solving perfor-
mance. Similarly, focusing purely on technical aspects of a solver will overlook the cutting edge of
mathematical optimization. As such, the paper has tried to touch on the breadth of research and
development for the SCIP Optimization Suite. We hope that the detailed description provided
in this report will bring awareness of the intricacies of developing mathematical programming
solvers in general.
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tion 2.1.6, Randomization 2.1.7) and RG (Hash tables 2.1.8). The updates to the presolving in
SCIP presented in Section 2.2 has been the work of GG (Presolving levels, stuffing) and DW
(Complementary slackness). New primal heuristics described in Section 2.3 have been developed
by GH (Graph induced neighborhood search, LP face), GG (Locks) and JW (Partial solutions).
Sections 2.4 and 2.5 detailing the extension to the reoptimization plugin and the experiments
with conflict analysis respectively is the work of JW. The KKT reformulation for MBQP detailed
in Section 2.6.1 has been contributed by TF. The Multi-start heuristic for MINLP in Section 2.6.2
and the NLOBBT propagator presented in Section 2.6.3 are the work of BM. Section 2.6.4 de-
tails the work of F'S on outer approximation cuts. The internal parallelization for SCIP that is
presented in Section 2.7 is the work of RG and SJM. The development of CONCURRENTSCIP
presented in Sections 2.7.2- 2.7.3 was the work of RG. The new interfaces for SCIP detailed in
Section 3 have been developed by BM (JSCIPOPT) and FS and RS (SCIP.jL). The updates
to scaling in SOPLEX that are presented in Section 4.1 is the work of MM and DR. Solution
polishing detailed in Section 4.2 has been developed by MM. The DBDS presented in Section 4.3
is the work of SJM. Section 5 details the updates to UG contributed by YS. The contributions
for GCG, presented in Section 6, are the work of ML, CP and JTW. The extensions to SCIP
presented in Section 7 are the work of DR (SCIP-JAcK), SS (PoLySCIP) and TG (SCIP-SDP).
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