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AN APPROXIMATION ALGORITHM FOR THE NON-PREEMPTIVE
CAPACITATED DIAL-A-RIDE PROBLEM

SVEN O. KRUMKE 1, JÖRG RAMBAU1, AND STEFFEN WEIDER1

ABSTRACT. In the Capacitated Dial-a-Ride Problem (CDARP) we are given a trans-
portation network and a finite set of transportation jobs. Each job specifies the source
and target location which are both part of the network. A server which can carry at
mostC objects at a time can move on the transportation network in order to pro-
cess the transportation requests. The problemCDARP consists of finding a shortest
transportation for the jobs starting and ending at a designated start location.

In this paper we are concerned with the restriction ofCDARP to graphs which
are simple paths. This setting arises for instance when modelling applications in ele-
vator transportation systems. It is known that even for this restricted class of graphs
CDARP is NP-hard to solve. We provide a polynomial time approximation algorithm
that finds a transportion of length at most thrice the length of the optimal transporta-
tion.

1. INTRODUCTION

In theCapacitated Dial-a-Ride ProblemCDARP we are given a transportation net-
work and a finite set of transportation jobs (requests). Each request specifies the source
and target location which are both part of the network. A server of capacityC, that is,
a server which is able carry at mostC objects at a time, can move on the transportation
network in order to process the transportation requests. The problemCDARP consists
of finding a shortest transportation schedule for the server starting and ending at a
designated start location and serving all specified requests.

In this paper we are concerned with the restriction ofCDARP to graphs which are
simple paths. This setting arises for instance when modelling the transporation system
consisting of a single elevator.

This paper is organized as follows. In Section 2 we formally define the problem
CDARP. We also give a short overview over previous work on the problem. The main
contribution of this paper is contained in Sections 3 and Section 4. In Section 3 we
present a polynomial time approximation algorithm forCDARP on paths with perfor-
mance3. The proof is contained in Section 4. Section 5 illustrates our algorithm on a
sample instance.

It should be noted that in [CR98] the authors claimed an approximation algorithm
with performance2 for CDARP on paths but neither the algorithm nor a proof of its
performance was given.

1Konrad-Zuse-Zentrum für Informationstechnik Berlin, Department Optimization, Takustr. 7, D-
14195 Berlin-Dahlem, Germany. Email:{krumke,rambau,weider }@zib.de . Research sup-
ported by the German Science Foundation (DFG, grant Gr 883/5-3)

Key words and phrases.NP-completeness, polynomial-time approximation algorithms, stacker-crane
problem, vehicle routing, elevator system.
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2. PRELIMINARIES AND PROBLEM DEFINITION

2.1. Basic Notation. A multisetX over a ground setU , denoted byX @ U , can be
defined as a mappingX : U → N, where foru ∈ U the numberX(u) denotes the
multiplicity of u in X. We writeu ∈ X if X(u) ≥ 1. Any (standard) set can be
viewed as a multiset with elements of multiplicity0 and1. If Y @ U thenX @ Y
denotes a multiset over the ground set{u ∈ U : Y (u) > 0 }. If X @ U andY @ U
are multisets over the same ground setU , then we denote byX + Y their multiset
union, by X − Y their multiset differenceand byX ∩ Y their multiset intersection,
defined foru ∈ U by

(X + Y )(u) = X(u) + Y (u)

(X − Y )(u) = max{X(u)− Y (u), 0}
(X ∩ Y )(u) = min{X(u), Y (u)}.

The multisetX @ U is a subset of the multisetY @ U , denoted byX ⊆ Y , if
X(u) ≤ Y (u) for all u ∈ U . For a weight functionc : U → R the weight of a
multisetX @ U is defined byc(X) :=

∑

u∈U c(u)X(u). We denote the cardinality
of a multisetX @ U by |X| :=

∑

u∈U X(u).
A mixed graphG = (V, E, R) consists of a setV of vertices, a setE of undirected

edges without parallels, and a multisetR of directed arcs (parallel arcs allowed). An
edge with endpointsu andv will be denoted by[u, v], an arcr from u to v by (u, v).
In the latter case we writeu = α(r) andv = ω(r).

If X @ E + A, then we denote byG[X] thesubgraph ofG induced byX, that is,
the subgraph ofG consisting of the arcs and edges inX together with their incident
vertices. A subgraph ofG induced by vertex setX ⊆ V is a subgraph with node
setX and containing all those edges and arcs fromG which have both endpoints inX.
The out-degreeof a vertexv in G, denoted bydeg+

G(v), equals the number of arcs
in G leavingv. Similarly, thein-degreedeg−G(v) is defined to be the number of arcs
enteringv. If X @ A, we briefly writedeg+

X(v) anddeg−X(v) instead ofdeg+
G[X](v)

anddeg−G[X](v).

2.2. Problem Definition. An instance ofCDARP is given by a finite mixed graphG =
(V, E, R) with edge weights given byd : E → R≥0, a capacityC ∈ N and start
position o ∈ V for the server. The “undirected part”G[E] of G models a trans-
portation network, the set of arcsR represents requests or objects to be transported.
Requestr ∈ R must be moved by the server from vertexα(r) ∈ V (the source of
requestr) to vertexω(r) ∈ V (the destination ofr).

In this paper we are concerned with the situation thatG[E] is a simple path ando
is one of its end points. For notational convencience we assume thatV = {1, . . . , n},
E = { [i, i + 1], i = 1, . . . , n− 1 } and that the initial positiono of the server is1.

A moveof the server from vertexv to vertexw carrying a setQ of requests is de-
noted by the triple(v, w, Q). It is required that for any move the number|Q| of requests
carried by the server does not exceed its capacityC. A move withQ = ∅ is called
empty move, a move with|Q| = C is called afully loaded move. A transportationis
a sequence of moves of the formT = (v1, v2, Q1), (v2, v3, Q2), . . . , (vk, vk+1, Qk).
Thecostof such a transportationT is

∑k
i=1 d(vi, vi+1), whered(vi, vi+1) denotes the
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shortest path distance between verticesvi andvi+1 in G. Requestr is moved from
vertexv1 to vertexvk+1 by T if r ∈ Qi for i = 1, . . . , k.

A feasible non-preemptive transportationfor an instance ofCDARP is a transporta-
tion T = (v1, v2, Q1), (v2, v3, Q2), . . . , (vk, vk+1, Qk) which satisfies the following
conditions:

(i) T starts and ends ato, that is,v1 = vk+1 = o.
(ii) For any requestr ∈ R the subsequence consisting of those moves(vi, vi+1, Qi)

from T with r ∈ Qi is a contiguous subsequence ofT and forms a transporta-
tion fromα(r) to ω(r).

In the case of a preemptive transportation the requirement in (ii) that the subsequence
is a contiguous subsequence ofT is dropped.

Definition 2.1 (ProblemCDARP). An instance ofCDARP is given by a finite mixed
graphG = (V,E, R) with edge weights given byd : E → R≥0, a capacityC ∈ N and
start positiono ∈ V for the server. The goal of problemCDARP is to find a feasible
transportation with minimum cost.

The optimum cost of a feasible transportation for instanceI of CDARP is denoted
by OPT(I). We drop the reference toI provided no confusion can occur. The problem
CDARP is NP-hard even on paths even if the capacity of the server is two [Gua98].
Hence, we are interested in efficientapproximation algorithmsfor CDARP.

Definition 2.2 (Approximation Algorithm). An approximation algorithm with perfor-
mance guaranteeγ for CDARP is a polynomial time algorithmALG which, given any
instanceI of CDARP, finds a feasible transportation with costALG(I) such that

ALG(I) ≤ γ OPT(I).

In all what follows we assume without loss of generality that for a given instance
of CDARP at least one arc ofR is incident with vertexn. Notice that this implies
OPT ≥ 2d(1, n), since any feasible transportation must visit vertexn and return to its
starting position ato = 1. We also assume that the number of requests|R| is at leastC.
If this is not the case, then a single upward and downward motion of the server from1
to n and backwards can be used to get a transportation of cost2d(1, n) which by the
previous comment must then be optimal.

2.3. Previous Work. As noted before Guan showed thatCDARP is NP-hard even on
paths even if the capacity of the server is two [Gua98]. The preemptive version is
polynomial time solvable on paths [Gua98], butNP-hard even on trees and even if
the capacity of the server is one [FG93]. In [CR98] an approximation algorithm for
CDARP with performanceO(

√
C log n log log n) was given, whereC denotes the ca-

pacity of the server. In the same paper the authors claimed an approximation algorithm
with performance2 for CDARP on paths but neither the algorithm nor a proof of its
performance was given.

The problemCDARP with capacityC = 1 is also calledDARP or the Stacker-
Crane-Problem. In [FHK78] the authors present a9/5-approximation algorithm for
DARP on general graphs. An improved algorithm for trees with performance5/4 is
given in [FG93]. On pathsDARP can be solved in polynomial time [AK88].
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3. THE ALGORITHM

In our presentation we imagine the simple pathG[E] as a vertical line with vertex1
being the lowest and vertexn the highest vertex, see Figure 1 for an illustration.
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FIGURE 1. Example of a mixed graphG = (V, E, R) given in an
instance ofCDARP.

We define the set ofupward requestsanddownward requestsas follows:

R↑ = { r ∈ R : α(r) < ω(r) }

R↓ = { r ∈ R : α(r) > ω(r) }.

In the example presented in Figure 1 we haveR↑ = {r1, r2} andR↓ = {r3}. Let A
be a subset ofR which is either completely contained inR↑ or R↓. In this case we let

α(A) =

{

min{α(r) : r ∈ A } , if A ⊆ R↑

max{α(r) : r ∈ A } , if A ⊆ R↓

and

ω(A) =

{

max{ω(r) : r ∈ A } , if A ⊆ R↑

min{ω(r) : r ∈ A } , if A ⊆ R↓.

In the sequel we have to refer to those request arcsr which have to be transported
over a specific edge[v, v + 1]. To facilitate the presentation we define the notions of
covers and segments.

Definition 3.1 (Cover). Let e = [v, v + 1] be an edge in the graphG[E]. A request
arc r = (α(r), ω(r)) ∈ R is said tocover e if α(r) ≤ v and ω(r) ≥ v + 1 or
α(r) ≥ v + 1 andω(r) ≤ v.

Definition 3.2 (Segment). Let R′ ⊆ R. A segmentof R′ is an inclusionwise maximal
subsetS ⊆ R′ with the property that the set of edges fromG covered byS forms a
connected subpath ofG.

Observe that the segments of a setR′ ⊆ R form a partition ofR′. We need one final
notation before presenting our algorithm.
Definition 3.3 (Number of covering requestsµv). For a vertexv ∈ V \ {n} and
a subsetD ⊆ R we defineµv(D) be the number of requests inD that cover the
edge[v, v + 1]. We also setµn(R′) := 0. We omit the setR′ if it is clear from the
context.
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We are now ready to state our approximation algorithm. The main algorithmFIN-
DANDPASTE is shown in Algorithm 2. This algorithm uses the subroutinesFINDU-
PARCS presented in Algorithm 1 andFINDDOWNARCS displayed in Algorithm 3.

Algorithm 1 Algorithm FINDUPARCS

Input: A multiset of requestsS @ R↑, two verticesvL ≤ vU from V
{The multisetS is modified byFINDUPARCS and the modified set is returned.}

1 Let H be the subpath ofG formed by the verticesvL, vL + 1, . . . , vU .
2 if there exists edges[v, v + 1] in H with vL ≤ v < v + 1 ≤ vU which are not

covered by any arc fromS then
3 For each of these edges[v, v + 1] add a dummy arc(v, v + 1) to S.
4 end if
5 M1 := ∅, M2 := ∅
6 l = 1, u = 2 {We maintain the invariant thatω(Ml) ≤ ω(Mu). Here,u stands

for “upper” andl for “lower”.}
7 while Mu = ∅ or ω(Mu) < ω(S) do
8 Find a pathP in the directed (acyclic) graph(V, S) with

ω(Ml) ≤ α(P ) ≤ ω(Mu) < ω(P ) (1)

such thatω(P ) is maximum among all those paths. (Here we setω(∅) :=
α(S)).

9 SetMl := Ml ∪ P {Add the arcs fromP to the “lower” setMl.}
10 S := S − P {Remove the arcs fromP from the multisetS.}
11 Interchange the values ofl andu.
12 end while
13 return M1, M2 and the modified multisetS.

Before we analyze the performance ofFINDANDPASTE we first derive some useful
properties of the subroutinesFINDUPARCS andFINDDOWNARCS.

Lemma 3.4. Suppose that AlgorithmFINDUPARCS is called with a nonempty setS ⊆
R↑ and thatP is a path which is found in Step 8 ofFINDUPARCS. Then this pathP
satisfies:

µω(P )−1(S) > µω(P )(S)

for the current setS whenP is added toMl in Step 9.

Proof. Suppose that the claim were not true for some pathP . Let v = ω(P ). Since
µv−1(S) ≤ µv(S), it follows that for any arc ending inv there must be at least one arc
from S starting inv. However,P ends inv and thus we could extendP by at least one
arc fromS which starts inv. This contradicts the property thatP was chosen in such
a way thatω(P ) = v is maximum. �

It is not trivial that in each iteration ofFINDUPARCS a pathP with the desired
property (1) exists.

Lemma 3.5. Suppose that AlgorithmFINDUPARCS is called with a nonempty setS ⊆
R↑. Then in any iteration of Step 8 there exists a pathP with the required properties.
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Algorithm 2 Algorithm FINDANDPASTE

Input: An instance ofCDARP whereG[E] is a path.

1 Compute the set of upward requestsR↑ and downward requestsR↓.
2 A := ∅ {Each arc in the multisetA corresponds to a transportation. In a final

“paste”-step these transportations will be pasted together by considering theDARP

instance(V,E, A).}
3 while R↑ 6= ∅ do
4 Let S be a segment ofR↑

5 Let L := α(S) andU := ω(S).
6 Call Algorithm FINDUPARCS(S) C times withvL := L andvL := U to obtain

2C sets of arcsM j
1 andM j

2 , j = 1, . . . , C. (Notice thatS shrinks with each
call to FINDUPARCS provided it is not yet empty but the values ofvL andvU
remain fixed.)

7 SetX↑
i :=

⊎C
i=1 P j

i for i = 1, 2.
8 Construct two sequences of upward moves,U1 andU2, whereUi (i = 1, 2)

transports all objects fromX↑
i . Ui starts atα(X↑

i ) and ends atω(X↑
i ).

9 A := A + (α(X↑
1 ), ω(X↑

1 )) {Add elements to the multisetA.}
10 if X↑

2 6= ∅ then
11 A := A + (α(X↑

2 ), ω(X↑
2 ))

12 end if
13 R↑ := R↑ \ (X↑

1 ∪X↑
2 )

14 end while
15 while R↓ 6= ∅ do
16 In the same way as above, call AlgorithmFINDDOWNARCS C times and con-

struct two sequencesD1 andD2 of downward moves from the2C sets of down-
ward arcs. Add directed arcs(α(Di), ω(Di)) of Di (i = 1, 2) to the multi-
setA. Remove the downward arcs form the2C sets found byFINDDOWNARCS

from R↓.
17 end while
18 Consider the instanceΠ of DARP with underlying graphG[E], request setA and

start vertexo = 1. Each arc inA corresponds to one sequence of (upward or
downward) moves constructed above in steps 8 and 16.

19 Find an optimal solutionTΠ for Π in polynomial time with the help of the algo-
rithm from [AK88].

20 Chain the sequences of upwards and downwards moves found in steps 8 and 16
to a transportation by taking them in the order as the corresponding arcs appear
in TΠ and connecting them by empty moves, if necessary.

Proof. We show the claim by induction on the number of iterations. In the first itera-
tion, we are in the situation thatMu = Ml = ∅. Hence,ω(Mu) = ω(Ml) = α(S) and
condition (1) reduces to

α(S) = α(P ) < ω(P ). (2)

Clearly, there must be a path starting atα(S), sinceS is nonempty. Any such path
satisfies (2).
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Assume now that we have reached in theith iteration (i ≥ 2) and for all previous
iterations it was possible to find a path. LetP (i−1) be the path found in the previous
iterationi− 1. To shorten notation we setw := ω(P (i−1)). LetS(i−1), S(i) denote the
setS at the beginning of iteration(i−1) andi, respectively. Notice that for the setMu
at the beginning of iterationi we haveω(Mu) = w. Thus (2) can be restated as

ω(Ml) ≤ α(P ) ≤ w < ω(P ) (3)

Notice that at the beginning of the first iteration we have haveµv(S(1)) ≥ 1 for all
α(S) ≤ v < ω(S) by Step 3. Since in all previous iterations we have we have
removed only such arcs fromS that end in verticesu ≤ w, it follows that

µu(S(i−1)) = µw(S(i)) for all u ≥ w. (4)

By Lemma 3.4 we haveµw−1(S(i−1)) > µw(S(i−1)). Together with (4) we obtain

µw−1(S(i)) ≥ µw(S(i)) ≥ 1. (5)

Our first step is to construct a pathP formed by arcs fromS(i) such that

α(P ) ≤ ω(Mu) = w < ω(P ). (6)

To this end, we distinguish two cases.
Case 1:µw−1(S(i)) ≥ µw(S(i)) = µw+1(S(i)) = · · · = µv−1(S(i)) > µv(S(i)) for
somev > w.

In this case, there must be least one arc fromS(i) ending inv. Observe that for any
vertexu with w ≤ u < v as many arcs fromS(i) end inu as arcs emanate fromu.
Hence, it follows that there is a pathP formed by arcs ofS(i) that starts at some
vertexx ≤ w and ends inv > w, which means thatP satisfies (6).
Case 2:µw−1(S(i)) ≥ µw(S(i)) = µw+1(S(i)) = · · · = µv−1(S(i)) < µv(S(i)) for
somev > w.

Either there exists an arcr ∈ S(i) with ω(r) = v andα(r) < v or there existsr ∈
S(i) with ω(r) > v andα(r) < v (where we have used the fact that1 ≤ µw(S(i)) =
µw+1(S(i)) = · · · = µv−1(S(i))). Again, since for any vertexu with w ≤ u < v as
many arcs fromS(i) end inu as arcs emanate fromu, we can conclude that there exists
a pathP satisfying (6).

We now show that for any pathP satisfying (6) far, we have in fact thatω(Ml) ≤
α(P ) which proves the claim of the lemma. IfMl = ∅ then there is nothing to show.
Hence assume thatMl 6= ∅. Suppose thatω(Ml) > α(P ). It follows that in one of the
previous iterationsj < i the pathP satisfiedα(P ) ≥ ω(Ml

(j)) for the then current
versionMl

(j) of Ml. But this means thatP it met all the conditions required in Step 8.
Thus, the path chosen in iterationj was not maximum with respect to its end vertex.
This is a contradiction. �

Corollary 3.6. Suppose that AlgorithmFINDUPARCS is called with a nonempty set
S ⊆ R↑. AlgorithmFINDUPARCS terminates after at mostn − 1 iterations with arc
setsM1 andM2 such that for each edge[v, v + 1] with α(S) ≤ v < ω(S) there exists
at least one and at most two arcs inM1∪M2 covering[v, v+1]. Moreover, all dummy
arcs added in Step 3 are contained inM1 ∪M2.

Proof. The property thatFINDUPARCS terminates after no more thann− 1 iterations
follows from Lemma 3.5 and the fact that in each iterationω(Mu) increases strictly.
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We now consider the covering property. By Lemma 3.5 the path found in the first
iteration starts atα(S). It is easy to show by induction that after each iteration all
edges[v, v + 1] with v < ω(Mu) are covered. Hence, at termination all edges are
covered at least once.

The arcs inM1 do not overlap (where we callr and r′ overlapping ifα(r) <
α(r′) < min{ω(r), ω(r′)} or vice versa) and neither do those inM2. Hence we can
conclude that any edge is covered by at most two arcs, that is at most one fromM1
and at most one fromM2. If a dummy arc(v, v + 1) was added in Step 3 then by
construction it is the only arc covering edge[v, v + 1]. Since we have shown that
each edge is covered by the arcs inM1 ∪M2 it follows that the dummy arc must be
contained inM1 ∪M2. �

We close this section by commenting on AlgorithmFINDDOWNARCS which is
needed in Step 16 of the main AlgorithmFINDANDPASTE. FINDDOWNARCS works
on R↓ in the analogous way asFINDUPARCS processesR↑. Basically the only dif-
ference is that the setsM1 andM2 “grow downwards” fromα(S) to ω(S) instead of
“growing upwards“ as inFINDUPARCS.

Algorithm 3 Algorithm FINDDOWNARCS

Input: A multiset of requestsS @ R↓, two verticesvL ≤ vU from V

1 Let H be the subpath ofG formed by the verticesvL, vL + 1, . . . , vU .
2 if there exists edges[v, v + 1] in H with vL ≤ v < v + 1 ≤ vU which are not

covered by any arc fromS then
3 For each of these edges[v, v + 1] add a dummy arc(v + 1, v) to S.
4 end if
5 M1 := ∅, M2 := ∅
6 l = 1, u = 2 {We maintain the invariant thatω(Ml) ≤ ω(Mu). Here,u stands

for “upper” andl for “lower”.}
7 while Ml = ∅ or ω(Ml) > ω(S) do
8 Find a pathP in the directed (acyclic) graph(V, S) with

ω(Mu) ≥ α(P ) ≥ ω(Ml) > ω(P ) (7)

such thatω(P ) is minimum among all those paths. (Here we setω(∅) := α(S)).
9 SetMu := Mu ∪ P {Add the arcs fromP to the “upper” setMu.}

10 S := S − P {Remove the arcs fromP from the multisetS.}
11 Interchange the values ofl andu.
12 end while
13 return M1, M2 and the modified multisetS.

The following property ofFINDDOWNPATH can be proven analogously to the cor-
responding result aboutFINDUPPATH:

Lemma 3.7. Suppose that AlgorithmFINDDOWNARCS is called with a nonempty set
S ⊆ R↓. AlgorithmFINDDOWNARCS terminates after at mostn − 1 iterations with
arc setsM1 andM2 such that for each edge[v, v + 1] with ω(s) ≤ v < α(S) there
exists at least one and at most two arcs inM1 ∪M2 covering[v, v + 1]. Moreover, all
dummy arcs added in Step 3 are contained inM1 ∪M2. �
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4. PROOF OFPERFORMANCE

In this section we are going to establish the performance of our algorithm, that is,
the property that given any instance ofCDARP Algorithm FINDANDPASTE finds a
solution of cost at most3 OPT. In fact, we are going to show a stronger result, namelyt
that the cost of the solution found byFINDANDPASTE is at most thrice the value of a
lower boundon OPT.

Definition 4.1 (Flow Bound). For edgee = [v, v + 1] of G we define

λ[v, v + 1] := max
{

dµv(R↑)/Ce, dµv(R↓)/Ce, 1
}

The value

Cflow := 2
∑

1≤v≤n−1

λ[v, v + 1] · d(v, v + 1)

is called theflow bound.

Notice thatmax{dµv(R↑)/Ce, 1} is a lower bound on the number of times any
feasible transportation must traverse edge[v, v + 1] in the direction from vertexv
to v + 1. Similarly, max{dµv(R↓)/Ce, 1} is a lower bound any transportation must
traverse[v, v+1] in direction fromv+1 to v. Since any feasible transportation always
returns to the start point, this implies that in fact the flow boundCflow is a lower bound
on the optimal solution cost:

Lemma 4.2. For any instanceI of CDARP it follows thatOPT(I) ≥ Cflow. �

One ingredient for bounding the cost of the solution found byFINDANDPASTE lies
in a closer look at the algorithm from [AK88] for solvingDARP (CDARP with capac-
ity C = 1) in polynomial time on paths. We are going to describe this algorithm and
point out the crucial details which will be used in the sequel.

Let (V, E, A) be a mixed graph given in an instance ofDARP where(V,E) is a
path. The algorithm [AK88] first “balances” the graph(V,A) by adding additional
“balancing” arcsB such that for any edge[v, v + 1] the number of upward arcs
from A ∪ B covering[v, v + 1] equals the number of downward arcs fromA ∪ B
covering[v, v + 1]. This implies that in the graph(V, A ∪ B) each vertexv ∈ V
satisfiesdeg+

A∪B(v) = deg−A∪B(v). In a second step the algorithm adds a setC of
“connecting arcs” of minimum weight such that(V, A∪B ∪C) is strongly connected
and the degree-balance is maintained. The graph(V,A ∪ B ∪ C) is Eulerian and
it can be can be shown that a Eulerian cycle in(V,A ∪ B ∪ C) yields an optimum
transportation. We refer to [AK88] for details.

We are ready to prove the main result aboutFINDANDPASTE:

Theorem 4.3. AlgorithmFINDANDPASTE finds a solution of cost at most3Cflow.

Proof. We show that for a specific edge[v, v + 1] the number of upward moves con-
structed in Step 8 ofFINDANDPASTE which traverse[v, v + 1] in direction fromv
to v + 1 is bounded from above by2λ[v, v + 1]. The bound for the number of down-
ward moves constructed in Step 16 is established analogously.

Denote the setR↑ at the beginning of thekth iteration of thewhile-loop enclosing
Step 8 byR↑(k). ThenR↑(1) = R↑ andµv(R↑(1)) ≤ λ[v, v + 1] for anyv ∈ V .
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FIGURE 2. An instance ofCDARP given by a pathG with 9 vertices,
and a set of requestsR. For a less cluttered display the directed arcs
corresponding toR are drawn parallel to the pathG[E].

Suppose that edge[v, v + 1] is contained in a segmentS used in Step 4 in thekth
iteration of thewhile-loop. In this caseµv(R↑(k)) > 0. By a single call toFINDU-
PARCS µv decreases strictly if it is greater than zero since by Corollary 3.6 at least
one arc fromM1 ∪ M2 covers[v, v + 1]. SinceFINDUPARCS is calledC times in
iterationk we conclude thatµv(R↑(k+1)) ≤ max{µv(R↑(k+1))− C, 0}.

Hence[v, v + 1] can be used at mostdµv(R↑)/Ce times in a segment in Step 4 and
thus by at most2dµv(R↑)/Ce ≤ 2λ[v, v + 1] upward moves constructed in Step 8.
As noted above, the analogous bound for the number of downward moves travers-
ing [v, v + 1] is established similarly.

So far we know that for each edge[v, v+1] at most2λ[v, v+1] upward moves from
Step 8 and at most2λ[v, v + 1] downward moves from Step 16 traverse[v, v + 1]. We
now consider the chaining of the sequences of moves in Step 20 with the help of the
polynomial time algorithm forDARP on paths from [AK88].

Notice that by adding balancing arcs (and corresponding empty moves) the maxi-
mum number of moves that traverse[v, v + 1] does not increase. Hence, it suffices to
consider the empty moves corresponding to connecting arcsC. Since the set of arcs
{ (v, v + 1), (v + 1, v) : 1 ≤ v ≤ n − 1 } is a feasible set of connecting arcs (which
also preserves balance), it follows that the cost of the connecting arcsC chosen by the
algorithm from [AK88] can not add empty moves of weight more than2d(1, n). Thus,
the total weight of the solution found by AlgorithmFINDANDPASTE is not greater than

2
∑

1≤v≤n−1

λ[v, v + 1]d(v, v + 1) + 2d(1, n) = 2Cflow + 2d(1, n) ≤ 3Cflow.

This completes the proof. �

5. EXAMPLE

In this section we illustrate AlgorithmFINDANDPASTE on a small example. Con-
sider the instance ofCDARP shown in Figure 2. In this instanceG[E] is a path
with 9 vertices and there are|R| = 36 requests to be transported by a server of ca-
pacityC = 3.

First the requests inR↑ are processed. At the beginning the setR↑ consists only of
one segmentS = R↑. Now, FINDUPARCS is calledC = 3 times producing a total
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FIGURE 3. The setsM j
1 , M j

2 , j = 1, 2, 3 obtained by the first call of
FINDUPARCS and the resulting sequences of upward movesU1 and
U2 constructed byFINDANDPASTE.
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FIGURE 4. The dotted arcs are removed fromR↑. Then FINDU-
PARCS is called again to construct sets of arcs, which are used to
build upward moves.

of six setsM j
1 , M j

2 , j = 1, 2, 3. These sets and the corresponding upward movesU1

andU2 produced from theM j
i are shown in Figure 3.

All requests transported in the upward moves inU1 andU2 are removed fromR↑.
SinceR↑ 6= ∅, the subroutineFINDUPARCS is called againC = 3 times. Notice,
that the modified setR↑ still consists of one segment, but now covering only the
edges[v, v +1], v = 2, . . . , 7. The result of the second round of calls toFINDUPARCS

is illustrated in Figure 4. Notice that in the second round of calls toFINDUPARCS a
new situation arises. After the second call in this round, the residual setR↑ does not
cover a connected path anymore. Hence, dummy arcs(2, 3) and(6, 7) are added (see
Figure 5, the dummy arcs are shown as dotted arcs). The dummy arcs are not included
in the sequences constructed in Step 8.

After the second round of calls toFINDUPARCS there is only one more request
remainig. This arc will be transported by a single move.

Now, the downward requestsR↓ are processed in a similar way with the help of
FINDDOWNARCS. This results in the sequences of moves shown in Figure 6.
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FIGURE 5. Dummy arcs (dotted) added in the second round of calls toFINDUPARCS.
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FIGURE 6. The setR↓ and some moves transporting all objects inR↓.
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FIGURE 7. The instanceΠ of DARP and its optimal solution.

Now FINDANDPASTE constructs an instanceΠ of DARP and uses the algorithm
from [AK88] to find an optimal solutionTΠ for Π. The instanceΠ and its solution are
shown in Figure 7. The dotted arcs in the solution correspond to balancing arcs added
by the algorithm.

The final solution found byFINDANDPASTE is displayed in Figure 8.
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FIGURE 8. The final solution found byFINDANDPASTE. The moves
shown as rectangles (and transporting the requests displayed within
the rectangles) are executed in the order indicated by the dotted arc
sequence.
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