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AN APPROXIMATION ALGORITHM FOR THE NON-PREEMPTIVE
CAPACITATED DIAL-A-RIDE PROBLEM

SVEN O. KRUMKE !, JORG RAMBAU!, AND STEFFEN WEIDER!

ABSTRACT. Inthe Capacitated Dial-a-Ride Proble@DARP) we are given a trans-
portation network and a finite set of transportation jobs. Each job specifies the source
and target location which are both part of the network. A server which can carry at
mostC objects at a time can move on the transportation network in order to pro-
cess the transportation requests. The probBDaRP consists of finding a shortest
transportation for the jobs starting and ending at a designated start location.

In this paper we are concerned with the restrictiorC&IARP to graphs which
are simple paths. This setting arises for instance when modelling applications in ele-
vator transportation systems. It is known that even for this restricted class of graphs
CDARPis NP-hard to solve. We provide a polynomial time approximation algorithm
that finds a transportion of length at most thrice the length of the optimal transporta-
tion.

1. INTRODUCTION

In the Capacitated Dial-a-Ride Probleif@DARP we are given a transportation net-
work and a finite set of transportation jobs (requests). Each request specifies the source
and target location which are both part of the network. A server of cap@gitlyat is,

a server which is able carry at m@stobjects at a time, can move on the transportation
network in order to process the transportation requests. The prdbI2xrpP consists

of finding a shortest transportation schedule for the server starting and ending at a
designated start location and serving all specified requests.

In this paper we are concerned with the restrictiolC&ARP to graphs which are
simple paths. This setting arises for instance when modelling the transporation system
consisting of a single elevator.

This paper is organized as follows. In Section 2 we formally define the problem
CDARP. We also give a short overview over previous work on the problem. The main
contribution of this paper is contained in Sections 3 and Section 4. In Section 3 we
present a polynomial time approximation algorithm @DARP on paths with perfor-
mance3. The proof is contained in Section 4. Section 5 illustrates our algorithm on a
sample instance.

It should be noted that in [CR98] the authors claimed an approximation algorithm
with performance for CDARP on paths but neither the algorithm nor a proof of its
performance was given.
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2. PRELIMINARIES AND PROBLEM DEFINITION

2.1. Basic Notation. A multisetX over a ground sdt/, denoted byX = U, can be
defined as a mapping : U — N, where foru € U the numberX (u) denotes the
multiplicity of u in X. We writeu € X if X(u) > 1. Any (standard) set can be
viewed as a multiset with elements of multiplicityand1. If Y — U thenX C Y
denotes a multiset over the ground §etc U : Y(u) > 0}. f X C UandY C U
are multisets over the same ground Eetthen we denote by + Y their multiset
union, by X — Y their multiset differenceand by X N Y their multiset intersection
defined foru € U by

(X +Y)(u) = X(u)+Y(u)
(X —Y)(u) = max{X(u) — Y(u),0}
(XNY)(u) = min{X (u), Y (u)}.

The multisetX C U is a subset of the multisé&t = U, denoted byX C Y, if
X(u) < Y(u)forallu € U. For a weight functiorc: U — R the weight of a
multisetX C U is defined byc(X) := Y~ .y c(u) X (u). We denote the cardinality
of amultisetX C U by | X| := " iy X (u).

A mixed graphG = (V, E, R) consists of a sét” of vertices, a seE of undirected
edges without parallels, and a multigef directed arcs (parallel arcs allowed). An
edge with endpoints andv will be denoted byu, v], an arcr from u to v by (u, v).

In the latter case we write = «(r) andv = w(r).

If X C E + A, then we denote bg[X| thesubgraph ofG induced byX, that is,
the subgraph off consisting of the arcs and edgesintogether with their incident
vertices. A subgraph off induced by vertex seX C V is a subgraph with node
setX and containing all those edges and arcs ft@nvhich have both endpoints ik .
The out-degreeof a vertexv in G, denoted bydeg/,(v), equals the number of arcs
in G leavingv. Similarly, thein-degreedeg,(v) is defined to be the number of arcs
enteringv. If X © A, we briefly writedeg?; (v) anddeg; (v) instead ofdegg[x] (v)

anddegé[x} (v).

2.2. Problem Definition. Aninstance ofCDARPis given by a finite mixed grapty =
(V,E, R) with edge weights given by: E — R>(, a capacityC' € N and start
positiono € V for the server. The “undirected parG[E] of G models a trans-
portation network, the set of ard® represents requests or objects to be transported.
Request € R must be moved by the server from vertek) € V (the source of
requestr) to vertexw(r) € V (the destination of).

In this paper we are concerned with the situation tHgf] is a simple path and
is one of its end points. For notational convencience we assum&thafl, ..., n},
E={[i,i+1],i=1,...,n— 1} and that the initial position of the server id.

A moveof the server from vertex to vertexw carrying a set) of requests is de-
noted by the tripl§v, w, Q). Itis required that for any move the numbé) of requests
carried by the server does not exceed its capacityA move with@ = () is called
empty movea move with|@Q| = C'is called afully loaded moveA transportationis
a sequence of moves of the forfh= (v, v2, Q1), (v2,v3,Q2), ..., (Vk, Vk+1, Qk)-
Thecostof such a transportatiofi is Zle d(vi, vi11), whered(v;, v;+1) denotes the
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shortest path distance between verticeandv;,; in G. Request is moved from
vertexwv; to vertexv, 1 by T if r € Q; fori=1,... k.

A feasible non-preemptive transportatifor an instance o€DARP is a transporta-
tion " = (v1,v2,Q1), (ve,v3,Q2),..., (v, k1, Q) Which satisfies the following
conditions:

(i) T starts and ends aft that is,v; = vg+1 = o.

(i) Foranyrequest € R the subsequence consisting of those mves; 1, Q;)
from T with r € @Q; is a contiguous subsequencelbind forms a transporta-
tion froma(r) to w(r).

In the case of a preemptive transportation the requirement in (ii) that the subsequence
is a contiguous subsequenceldis dropped.

Definition 2.1 (ProblemCDARP). An instance ofCDARP is given by a finite mixed
graphG = (V, E, R) with edge weights given by: £ — R, a capacityC' € N and

start positiorb € V for the server. The goal of proble@DARP is to find a feasible
transportation with minimum cost.

The optimum cost of a feasible transportation for instahoé CDARP is denoted
by opT(I). We drop the reference toprovided no confusion can occur. The problem
CDARP is NP-hard even on paths even if the capacity of the server is two [Gua98].
Hence, we are interested in efficiegproximation algorithm$or CDARP.

Definition 2.2 (Approximation Algorithm) An approximation algorithm with perfor-
mance guaranteeg for CDARP is a polynomial time algorithraLG which, given any
instancel of CDARP, finds a feasible transportation with c@giG(7) such that

ALG(I) < ~opPT(I).

In all what follows we assume without loss of generality that for a given instance
of CDARP at least one arc oR is incident with vertex,. Notice that this implies
OPT > 2d(1,n), since any feasible transportation must visit verteand return to its
starting position ab = 1. We also assume that the number of requiggitss at leastC.

If this is not the case, then a single upward and downward motion of the servet from
to n and backwards can be used to get a transportation o2dostn) which by the
previous comment must then be optimal.

2.3. Previous Work. As noted before Guan showed ti@aDARP is NP-hard even on
paths even if the capacity of the server is two [Gua98]. The preemptive version is
polynomial time solvable on paths [Gua98], iNiP-hard even on trees and even if
the capacity of the server is one [FG93]. In [CR98] an approximation algorithm for
CDARP with performance?(1/C log nloglog n) was given, wher€' denotes the ca-
pacity of the server. In the same paper the authors claimed an approximation algorithm
with performance for CDARP on paths but neither the algorithm nor a proof of its
performance was given.

The problemCDARP with capacityC' = 1 is also calledDARP or the Stacker-
Crane-Problem In [FHK78] the authors present% 5-approximation algorithm for
DARP on general graphs. An improved algorithm for trees with performarides
given in [FG93]. On path®ARP can be solved in polynomial time [AK88].
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3. THE ALGORITHM

In our presentation we imagine the simple p&tlt’] as a vertical line with vertex
being the lowest and vertexthe highest vertex, see Figure 1 for an illustration.
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FIGURE 1. Example of a mixed graply = (V, E, R) given in an
instance ofCDARP.

We define the set afpward requestanddownward requestas follows:
Rl ={reR:a(r) <w(r)}
R ={reR:a(r)>wr)}.

In the example presented in Figure 1 we h&le= {r;, 7} andR! = {r3}. Let A
be a subset oR which is either completely contained B or R'. In this case we let

~ Jmin{a(r):re A} ,ifACR!
a(A){max{a(r):TEA} if AC R!

and

min{w(r):r € A} ,if AC R

In the sequel we have to refer to those request asghich have to be transported
over a specific edgp, v + 1]. To facilitate the presentation we define the notions of
covers and segments.

Definition 3.1 (Cover) Lete = [v,v + 1] be an edge in the gragh[E]. A request
arcr = («a(r),w(r)) € R is said tocovere if a(r) < v andw(r) > v+ 1 or
a(r) > v+ landw(r) <w.

Definition 3.2 (Segment) Let R’ C R. A segmenbf R’ is an inclusionwise maximal
subsetS C R’ with the property that the set of edges fra@ihcovered byS forms a
connected subpath ¢f.

Observe that the segments of aBeC R form a partition ofR’. We need one final
notation before presenting our algorithm.

Definition 3.3 (Number of covering requesis,). For a vertexv € V \ {n} and
a subsetD C R we defineu,(D) be the number of requests i that cover the
edge[v, v + 1]. We also sefu,,(R') := 0. We omit the sef?’ if it is clear from the
context.

(A :{max{w(r):reA} JfFACR!
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We are now ready to state our approximation algorithm. The main algortm
DANDPASTE is shown in Algorithm 2. This algorithm uses the subroutiree U-
PARCS presented in Algorithm 1 aneENDDOWNARCS displayed in Algorithm 3.

Algorithm 1 Algorithm FINDUPARCS

Input: A multiset of requests C R, two verticesv;, < vy from V
{The multisetS is modified byrFiNDUPARCS and the modified set is returndd.

1 Let H be the subpath aff formed by the vertices;,v;, +1,...,vy.

2 if there exists edgde, v + 1] in H with v, < v < v+ 1 < vy which are not
covered by any arc fror§ then

3 For each of these edgés v + 1] add a dummy ar¢v, v + 1) to S.

4 end if

5 My =0, My :=10

6 l=1,u=2 {We maintain the invariant that()/;) < w(M,). Here,u stands
for “upper” andi for “lower”. }

7 while M,, = () orw(M,) < w(S) do

8 Find a pathP in the directed (acyclic) grapti/, S) with

w(M;) < a(P) < w(M,) < w(P) (1)

such thatw(P) is maximum among all those paths. (Here we s@l) :=
a(9)).

9 SetM;:=M;UP {Add the arcs fronP to the “lower” setM,.}

10 S:=5-P {Remove the arcs fror? from the multisetS.}

11 Interchange the values 6andu.

12 end while

13 return M, M5 and the modified multises.

Before we analyze the performancerofiDANDPASTE we first derive some useful
properties of the subroutin@sNDUPARCS andFINDDOWNARCS.

Lemma 3.4. Suppose that AlgorithrANDUPARCS is called with a nonempty sétC
R! and thatP is a path which is found in Step 8 6fNDUPARCS. Then this pathP
satisfies:

:uw(P)—l(S) > o (P) (S)
for the current set5 whenP is added taM; in Step 9.

Proof. Suppose that the claim were not true for some gathiLetv = w(P). Since
ty—1(S) < iy (S), it follows that for any arc ending in there must be at least one arc
from S starting inv. However,P ends inv and thus we could extenf by at least one
arc from.S which starts inv. This contradicts the property th&was chosen in such
a way thatv(P) = v is maximum. O

It is not trivial that in each iteration ofINDUPARCS a pathP with the desired
property (1) exists.

Lemma 3.5. Suppose that AlgorithrANDUPARCS is called with a nonempty sét C
R'. Then in any iteration of Step 8 there exists a pRttvith the required properties.
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Algorithm 2 Algorithm FINDANDPASTE

Input:  An instance ofCDARP whereG|[E] is a path.

1 Compute the set of upward reque&tsand downward requesfg'.

2 A:=( {Each arc in the multiset corresponds to a transportation. In a final
“paste”-step these transportations will be pasted together by consideriDg Hre
instancegV, E, A).}

3 while R" # () do

4  LetS be asegment aR!

5 LetL:=«(S)andU = w(S).

6  Call Algorithm FINDUPARCS(S) C times withvy, := L andvy, := U to obtain
20 sets of arcsVf/ andMj, j = 1,...,C. (Notice thatS shrinks with each
call to FINDUPARCS provided it is not yet empty but the valueswf anduvg;
remain fixed.)

7 SetX] =<, P/ fori=1,2.

8 Construct two sequences of upward movgs,and Us, whereU; (i = 1,2)
transports all objects fronYiT. U; starts abz(Xj) and ends aD(XiT).

9 A=A+ (a(XlT), w(XlT)) {Add elements to the multiset. }

10 if XJ # 0then
11 A=A+ (a(X)),w(X]))

12  endif
13 Rl := R\ (X] uXx))
14 end while

15 while R! # () do
16  Inthe same way as above, call AlgoritttNDDOWNARCS C' times and con-
struct two sequencds; and D, of downward moves from theC' sets of down-
ward arcs. Add directed ardsi(D;),w(D;)) of D; (i = 1,2) to the multi-
setA. Remove the downward arcs form t€ sets found byFINDDOWNARCS
from R
17 end while
18 Consider the instand@ of DARP with underlying graphG[E], request sel and
start vertexo = 1. Each arc inA corresponds to one sequence of (upward or
downward) moves constructed above in steps 8 and 16.
19 Find an optimal solutiod; for IT in polynomial time with the help of the algo-
rithm from [AK88].
20 Chain the sequences of upwards and downwards moves found in steps 8 and 16
to a transportation by taking them in the order as the corresponding arcs appear
in Trr and connecting them by empty moves, if necessary.

Proof. We show the claim by induction on the number of iterations. In the first itera-
tion, we are in the situation that,, = M; = (. Hencew(M,,) = w(M;) = «(S) and
condition (1) reduces to

a(S) = a(P) < w(P). 2
Clearly, there must be a path startingedtS), since.S is nonempty. Any such path
satisfies (2).
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Assume now that we have reached in ttieiteration ¢ > 2) and for all previous
iterations it was possible to find a path. Let—!) be the path found in the previous
iterationi — 1. To shorten notation we set:= w(P¢~Y). Let S¢~1, () denote the
setS at the beginning of iteratiofi — 1) ands, respectively. Notice that for the skf,
at the beginning of iteratiohwe havew(M,,) = w. Thus (2) can be restated as

w(M;) < a(P) <w < w(P) 3)
Notice that at the beginning of the first iteration we have h;aMeS(l)) > 1 for all

a(S) < v < w(S) by Step 3. Since in all previous iterations we have we have
removed only such arcs frodithat end in vertices < w, it follows that

(SO = 1y (S@)  forall u > w. (4)
By Lemma 3.4 we havg,,_1(S¢1) > 1,,(S¢~1). Together with (4) we obtain
po-1(8%) = p(59) = 1. (5)
Our first step is to construct a pathformed by arcs frons(®) such that
a(P) <w(M,) =w < w(P). (6)
To this end, we distinguish two cases.
Case 1:1y-1(S) > (D) = 1 (SW) = -+ = py 1 (SW) > 1y (SO) for

somev > w.

In this case, there must be least one arc figffh ending inv. Observe that for any
vertexu with w < u < v as many arcs fron$() end inu as arcs emanate from
Hence, it follows that there is a patfl formed by arcs ofS() that starts at some
vertexz < w and ends in > w, which means thaP satisfies (6).

Case 2:/‘11)71(5(2-)) > /Lw(s(z)) = ,Uerl(S(i)) == ,uvfl(s(i)) < ,uv(s(l)) for
somev > w.

Either there exists an arce S with w(r) = v anda(r) < v or there exists: €
S with w(r) > v anda(r) < v (where we have used the fact tHat 14,,(S®) =
w1 (SW) = -+ = p,_1(S™)). Again, since for any vertex with w < u < v as
many arcs fron (") end inu as arcs emanate from we can conclude that there exists
a pathpP satisfying (6).

We now show that for any patR satisfying (6) far, we have in fact that(1/;) <
a(P) which proves the claim of the lemma. 1f; = () then there is nothing to show.
Hence assume that; # (). Suppose that(M;) > «(P). It follows that in one of the
previous iterationg < i the pathP satisfieda(P) > w(M;%)) for the then current
versionM; ) of M,. But this means tha® it met all the conditions required in Step 8.
Thus, the path chosen in iteratigrwas not maximum with respect to its end vertex.
This is a contradiction. O

Corollary 3.6. Suppose that AlgorithrAINDUPARCS is called with a nonempty set
S C R, Algorithm FINDUPARCS terminates after at most — 1 iterations with arc
setsM; and M, such that for each edde, v + 1] with «(S) < v < w(S) there exists
at least one and at most two arcsif; U M, covering[v, v+ 1]. Moreover, all dummy
arcs added in Step 3 are containedify U M,.

Proof. The property thakINDUPARCS terminates after no more than— 1 iterations
follows from Lemma 3.5 and the fact that in each iteratigid/,,) increases strictly.
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We now consider the covering property. By Lemma 3.5 the path found in the first
iteration starts atv(S). It is easy to show by induction that after each iteration all
edgesjv,v + 1] with v < w(M,,) are covered. Hence, at termination all edges are
covered at least once.

The arcs inM; do not overlap (where we call and ' overlapping ifa(r) <
a(r’) < min{w(r),w(r")} or vice versa) and neither do thoseM. Hence we can
conclude that any edge is covered by at most two arcs, that is at most onéfrom
and at most one from/,. If a dummy arc(v,v + 1) was added in Step 3 then by
construction it is the only arc covering ed@e v + 1]. Since we have shown that
each edge is covered by the arcsMfh U M, it follows that the dummy arc must be
contained inM; U Ms. O

We close this section by commenting on AlgoritttNDDOWNARCS which is
needed in Step 16 of the main AlgorithfINDANDPASTE. FINDDOWNARCS WOrks
on R! in the analogous way asNDUPARCS processesk!. Basically the only dif-
ference is that the sefe; and/; “grow downwards” froma(S) to w(S) instead of
“growing upwards” as irFINDUPARCS.

Algorithm 3 Algorithm FINDDOWNARCS

Input: A multiset of requests C R!, two verticesv;, < vy from V

1 Let H be the subpath o formed by the verticesy,v;, + 1,...,vy.
2 if there exists edgds, v + 1] in H with vy, < v < v+ 1 < vy which are not
covered by any arc frorf then
For each of these edg@s v + 1] add a dummy ar¢v + 1,v) to S.
end if
My =0, My :=10
I =1,u=2 {We maintain the invariant that(}/;) < w(M,). Here,u stands
for “upper” and! for “lower”. }
7 while M; = 0 orw(M;) > w(S) do
8 Find a pathP in the directed (acyclic) grapti/, S) with

w(My) > a(P) > w(M;) > w(P) @)

such thatu(P) is minimum among all those paths. (Here wewsft) := «(.5)).
9 SetM, := M, UP {Add the arcs fromP to the “upper” setV/,.}
10 S:=5—-P {Remove the arcs fror®? from the multisetS.}
11  Interchange the values bandu.
12 end while
13 return M, M5 and the modified multises.

o O~ W

The following property ofFINDDOWNPATH can be proven analogously to the cor-
responding result aboBtNDUPPATH:

Lemma 3.7. Suppose that AlgorithmNDDOWNARCS is called with a nonempty set
S C R!. Algorithm FINDDOWNARCS terminates after at most — 1 iterations with
arc setsM; and M, such that for each edge, v + 1] with w(s) < v < a(S) there
exists at least one and at most two arcs\ifi U M5 covering[v, v + 1]. Moreover, all
dummy arcs added in Step 3 are containeddnU Ms. 0
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4., PROOF OFPERFORMANCE

In this section we are going to establish the performance of our algorithm, that is,
the property that given any instance @DARP Algorithm FINDANDPASTE finds a
solution of cost at mostOoPT. In fact, we are going to show a stronger result, namelyt
that the cost of the solution found IFYNDANDPASTE is at most thrice the value of a
lower boundon oPT.

Definition 4.1 (Flow Bound) For edgee = [v, v + 1] of G we define

Ao, v+ 1] = max { [, (R1)/CT, [ma(RY) /€, 1}

The value
Chiow := 2 Z Av,v+1] - d(v,v+1)

1<v<n—1
is called theflow bound

Notice thatmax{[u,(R')/C7,1} is a lower bound on the number of times any
feasible transportation must traverse edige + 1] in the direction from vertex
to v + 1. Similarly, max{[u,(R')/C],1} is a lower bound any transportation must
traversgv, v + 1] in direction fromv + 1 to v. Since any feasible transportation always
returns to the start point, this implies that in fact the flow boGhgl, is a lower bound
on the optimal solution cost:

Lemma 4.2. For any instancd of CDARP it follows thatopPT(I) > Ciow. O

One ingredient for bounding the cost of the solution foundriDANDPASTE lies
in a closer look at the algorithm from [AK88] for solvirigarP (CDARP with capac-
ity C = 1) in polynomial time on paths. We are going to describe this algorithm and
point out the crucial details which will be used in the sequel.

Let (V, E, A) be a mixed graph given in an instance@ArRpP where(V, E) is a
path. The algorithm [AK88] first “balances” the graph, A) by adding additional
“pbalancing” arcsB such that for any edgé&,v + 1] the number of upward arcs
from A U B covering[v,v + 1] equals the number of downward arcs froinu B
covering[v,v + 1]. This implies that in the graplV, A U B) each vertexs € V
satisfiesdeg ) 5(v) = degy z(v). In a second step the algorithm adds aGebf
“connecting arcs” of minimum weight such thdt, AU B U C) is strongly connected
and the degree-balance is maintained. The gi@pM U B U C) is Eulerian and
it can be can be shown that a Eulerian cycl€ i) A U B U C) yields an optimum
transportation. We refer to [AK88] for details.

We are ready to prove the main result abBIMDANDPASTE:

Theorem 4.3. Algorithm FINDANDPASTE finds a solution of cost at mo3€ow.

Proof. We show that for a specific edde, v + 1] the number of upward moves con-
structed in Step 8 OFINDANDPASTE which traversgv, v + 1] in direction fromuv
to v + 1 is bounded from above BA[v, v + 1]. The bound for the number of down-
ward moves constructed in Step 16 is established analogously.

Denote the seR! at the beginning of théth iteration of thewhile-loop enclosing
Step 8 byR!®). ThenR'™ = R" andy, (R'™) < A[v,v + 1] foranyv € V.
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FIGURE 2. An instance ofCDARP given by a pathy with 9 vertices,
and a set of requess. For a less cluttered display the directed arcs
corresponding td? are drawn parallel to the path[E].

Suppose that edde, v + 1] is contained in a segmestused in Step 4 in théth
iteration of thewhile-loop. In this case:,(R'*)) > 0. By a single call toFINDU-
PARCS 1, decreases strictly if it is greater than zero since by Corollary 3.6 at least
one arc fromM; U M, covers[v,v + 1]. SinceFINDUPARCS is calledC' times in
iterationk we conclude that, (R'**+1) < max{u,(R'*+1)) — C, 0}.

Hence[v, v + 1] can be used at mogt,(R')/C] times in a segment in Step 4 and
thus by at mos®[u,(R")/C] < 2A[v,v + 1] upward moves constructed in Step 8.

As noted above, the analogous bound for the number of downward moves travers-
ing [v, v + 1] is established similarly.

So far we know that for each ed@e v+ 1] at mos2A[v, v+ 1] upward moves from
Step 8 and at mo&t\[v, v + 1] downward moves from Step 16 travefsev + 1]. We
now consider the chaining of the sequences of moves in Step 20 with the help of the
polynomial time algorithm foDARP on paths from [AK88].

Notice that by adding balancing arcs (and corresponding empty moves) the maxi-
mum number of moves that travergev + 1] does not increase. Hence, it suffices to
consider the empty moves corresponding to connecting@rcSince the set of arcs
{(v,v+1),(v+1,v) : 1 <v <n-—1}Iis afeasible set of connecting arcs (which
also preserves balance), it follows that the cost of the connecting’achesen by the
algorithm from [AK88] can not add empty moves of weight more tRéfi, »). Thus,
the total weight of the solution found by AlgorithRINDANDPASTE is not greater than

2 > Ao+ 1]d(v, v+ 1) +2d(1,n) = 2 Criow + 2d(1,n) < 3 Chiow.
1<v<n—1

This completes the proof. O

5. EXAMPLE

In this section we illustrate AlgorithrAINDANDPASTE on a small example. Con-
sider the instance o€DARP shown in Figure 2. In this instanc@[E] is a path
with 9 vertices and there ard?| = 36 requests to be transported by a server of ca-
pacityC' = 3.

First the requests iR! are processed. At the beginning the Bétconsists only of
one segmens = R!. Now, FINDUPARCS is calledC = 3 times producing a total
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FIGURE 3. The setsM?, MJ,j = 1,2,3 obtained by the first call of

FINDUPARCS and the resulting sequences of upward mavesand
U, constructed byFINDANDPASTE.
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FIGURE 4. The dotted arcs are removed froRI. Then FINDU-
PARCS is called again to construct sets of arcs, which are used to
build upward moves.
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of six setsM{, M3, j = 1,2,3. These sets and the corresponding upward mbyes
andU; produced from thé/; are shown in Figure 3.

All requests transported in the upward moveg/inandU- are removed fronRk'.
SinceR! # (), the subroutineFINDUPARCS is called againC’ = 3 times. Notice,
that the modified seR! still consists of one segment, but now covering only the
edgequv,v+1],v =2,...,7. The result of the second round of callsHOIDUPARCS
is illustrated in Figure 4. Notice that in the second round of callsitmUPARCS a
new situation arises. After the second call in this round, the residudt'sdbes not
cover a connected path anymore. Hence, dummy @&y and(6, 7) are added (see
Figure 5, the dummy arcs are shown as dotted arcs). The dummy arcs are not included
in the sequences constructed in Step 8.

After the second round of calls teNDUPARCS there is only one more request
remainig. This arc will be transported by a single move.

Now, the downward request®! are processed in a similar way with the help of
FINDDOWNARCS. This results in the sequences of moves shown in Figure 6.
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FIGURE 5. Dummy arcs (dotted) added in the second round of calisNOUPARCS.
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FIGURE 6. The setR! and some moves transporting all objectgih
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FIGURE 7. The instancél of DARP and its optimal solution.

Now FINDANDPASTE constructs an instandd of DARP and uses the algorithm
from [AK88] to find an optimal solutiorf; for I1. The instancél and its solution are
shown in Figure 7. The dotted arcs in the solution correspond to balancing arcs added
by the algorithm.

The final solution found by¥INDANDPASTE is displayed in Figure 8.
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FIGURE 8. The final solution found by¥INDANDPASTE. The moves
shown as rectangles (and transporting the requests displayed within
the rectangles) are executed in the order indicated by the dotted arc
sequence.
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