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A System to Evaluate Gas Network Capacities:
Concepts and Implementation

Benjamin Hiller∗ Thorsten Koch∗ Lars Schewe†
Robert Schwarz∗ Jonas Schweiger∗

Abstract
Since 2005, the gas market in the European Union is liberalized and

the trading of natural gas is decoupled from its transport. The transport
is done by so-called transmissions system operators or TSOs. The mar-
ket model established by the European Union views the gas transmission
network as a black box, providing shippers (gas traders and consumers)
the opportunity to transport gas from any entry to any exit. TSOs are
required to offer maximum independent capacities at each entry and exit
such that the resulting gas flows can be realized by the network with-
out compromising security of supply. Therefore, evaluating the available
transport capacities is extremely important to the TSOs.

This paper gives an overview of the toolset for evaluating gas network
capacities that has been developed within the ForNe project, a joint re-
search project of seven research partners initiated by Open Grid Europe,
Germany’s biggest TSO. While most of the relevant mathematics is de-
scribed in the book [KHPS15], this article sketches the system as a whole,
describes some developments that have taken place recently, and gives
some details about the current implementation.

1 Introduction
About 20% of the whole energy demand of Germany (and Europe) is met by
natural gas. Until 2005, gas transport and supply in Europe was provided
by a handful companies, owning and operating the network to do so. To es-
tablish a European gas market, the European Union in 2005 legislated that
gas trading and transport had to be done by mutual completely independent
companies to ensure discrimination free access to the transport network for
all traders [GGH+15]. This changed the operation and business model of the
gas transport operators who, due to their high investment cost for natural gas
pipeline networks, are mostly a natural monopoly. Before, they were part of
an integrated organization and could plan the network operation and expansion
together with the traders. Since then, they are independent and need to plan
under the uncertainty about the gas flow situations resulting from trading. They
have to make sure that their network works under these new circumstances. The
∗Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, {hiller, koch, schwarz,
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goal of this article is to show how mathematical optimization can provide tools
to deal with these tasks.

In a simplified view, the EU regulations stipulate that the so-called entry/exit
model with a virtual trading point is the basis of the capacity market. The
idea is that for each network a virtual trading point is introduced. All market
participants need to buy capacity from the TSO to access this virtual trading
point. Suppliers need to buy entry capacity, demand customers need to buy
exit capacity. The preferred capacity product sold by the TSO is known as
freely allocable capacity, i.e., the capacity bought by the customer (the booking)
gives an upper bound on the amount of gas that can be bought resp. sold in
day-ahead trading. After trading, the amount of capacity used is communicated
to the TSO (the nomination). The TSO may assume that the result of market
operation is balanced in the sense that the amount nominated at entries is in
sum equal to the amount nominated at exits. The requirement for the TSO is
now that it is able to transport this gas. In general, this would be impossible
for the TSO. To prevent such a situation, the TSO is allowed to restrict the
amount of bookable capacity at each point in the network. A TSO may only
sell capacity rights for which it can guarantee that each “likely and realistic”
[Gas10, §9] gas flow complying with the capacity rights booked by all transport
customers can technically be realized. Thus a TSO needs a way to check this
requirement. We call this task the verification of booked capacities. Our goal for
this article is to discuss a system which supports the TSO in checking whether
it can sell a given set of booked capacities without risking the security of supply.

The results of this article were achieved as part of the Forschungskooper-
ation Netzoptimierung (ForNe) between Germany’s biggest TSO, Open Grid
Europe GmbH (OGE, then E.ON Gas Transport) and Zuse Institute Berlin,
Technische Universität Darmstadt, Friedrich-Alexander Universität Erlangen-
Nürnberg, Universität Duisburg-Essen, Leibniz-Universität Hannover, Humboldt-
Universität zu Berlin, Weierstrass-Institut für Angewandte Analysis und Stochastik,
and later on the companies develOPT, and atesio. It was mainly funded by OGE
and supported by the German Federal Minitry of Economic Affairs and Energy
and the Federal Minitry of Education and Research. The principal outcome
for OGE is a set of ForNe tools for the verification of booked capacities (about
300 000 lines of code). From the scientific point, the most visible outcome is the
book Evaluating gas network capacities [KHPS15] which describes most of the
research that was done. This article gives an update on this book and outlines
some of the more technical details of the toolchain that were not discussed in
the book.

The question tackled in this article concerns all TSOs in Europe. These
use different techniques to this end, which are only partially described in the
literature. From discussions, we know that most TSOs use a similar distinction
between generating “challenging” gas flow situations and checking these gas
flow situations as we do.Methods to generate “challenging” gas flow situations
are described in, e.g., [BEG+15, SHDA15, HS16]. Checking for technical fea-
sibility is either done using simulation tools and expert knowledge (augmented
by automated tools) or by similar optimization-based methods, e.g., [vdH04].
The physical models underlying these methods are either very detailed, if using
simulation tools, or suitably simplified. Our goal here was to provide a unified
methodology which allows us to incorporate more and more market information
to also deal with future capacity contracts and market-based mechanisms. We
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show the flexibility of our approach by showing how another contract type, flow
reallocation options, can be incorporated in our framework.

Scope and outline of our approach
The technical and contractual constraints that have to be taken into account
for verifying booked capacities are very complex. Apart from the entities of
interest, the transmission capacities, many more details need to be considered.
Our approach to this question takes into account the following aspects:

capacity contracts Capacity contracts define limits on the amounts of gas
that are injected or withdrawn, maybe subject to additional constraints
or conditions.

historical gas flows Gas flow measurements may be used for predicting future
gas flows where appropriate.

network topology and devices A gas network is modeled as graph with arcs
of different types representing pipes, valves, control valves and compressor
units.

operational constraints The operation of a network is subject to a range of
constraints like bounds for the pressure, joint operation of several network
elements, and complex flow bounds for certain paths in the network.

different gas qualities Gas from different sources differs in its composition,
resulting e.g., in different calorific values. Since the capacity rights and the
gas market are defined in terms of thermal power, the mixing of different
calorific values needs to be taken into account to ensure proper power
supply at the exits.

flow reallocation options A TSO may have contracted options to adjust the
flow at certain nodes in order to support operating the network reliably.

flow rebalancing As we deal with stationary models, adjusting the flow at
one node using a flow reallocation option requires an adjustment at other
nodes to maintain the balance of injected and withdrawn gas.

Mathematically, there are two major challenges in this problem. First, one
has to deal with the uncertainty of how transport customers use their capacity
contracts, i. e. uncertainty about which gas flow situations have to be served
by the network. Second, deciding feasibility of a given gas flow situation is,
with the detail level asked by OGE, a very difficult mixed-integer nonconvex
nonlinear decision problem. Similarly to what is done in industry, we address
these two challenges separately.

The uncertainty of how the network is going to be used is handled by con-
sidering (a large set of) nomination scenarios that describe particular gas flow
situations along with technical constraints, flow reallocation options, and rebal-
ancing rules. Each of these nomination scenarios is then separately checked for
technical feasibility: Is it possible to operate the network within the technical
limits, possibly using the flow reallocation options? The problem of answering
this question is called validation of nominations.
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The basic ideas for this approach are described in detail in [KHPS15]. In
addition to the problem aspects covered there, the models and methods have
been extended to cover the following.

• Dealing with different types of gas with different calorific values [GMSS15].
This is important as the capacity contracts are in terms of thermal power
of the transported gas, whereas the technical operation is described in
terms of mass flows. To couple these two views, it is necessary to track
the mixing of calorific values according to gas flow, which depends on the
operation of the network.

• Support for flow reallocation options and flow rebalancing. This is im-
portant as flow reallocation options are a flexible mechanism that may
be used to offer more transmission capacity without the need for network
expansion. The modeling of flow reallocation options and flow rebalancing
presented in Section 2.2.3 has not been published before.

The outline of the remaining paper is as follows. Section 2 presents the
mathematical models and methods from a high-level perspective, focusing on
the interplay of the submodels for different aspects of the problem. In Section 3,
we describe the architecture of the software and spotlight some parts of the
implementation and the experiences we have made so far. We conclude and
provide an outlook in Section 4.

2 Mathematical models and methods
This section summarizes the mathematical concepts proposed in [KHPS15] and
outlines the additional ideas developed for the extensions mentioned above. The
focus is on providing a basic understanding of all aspects and the description of
the interplay of all model components.

The topology of a gas network is modeled by a directed graph G = (V,A).
The set of entries is denoted by V+, the set of exits by V−, and their union
by V±. The arcs are often refered to as network elements.

The mathematical models we developed address two distinct aspects: The
usage of the network by shippers for their gas trading and the operation of the
network by the TSO. In principle, network usage may be modeled by a set of gas
flow situations. We model a particular gas flow situation as a balanced vector
of inflows and outflows P ext = (P ext

u )u∈V± and call such a vector a nomina-
tion [KHPS15]. However, considering fixed inflows is not sufficient in view of
flow reallocation options and the resulting necessity to model flow rebalancing
according to the market. We thus consider nomination scenarios, consisting
of a nomination and a market preference vector (wu)u∈V± that describes the
relative attractivity of entries and exits by weights. The nomination and the
market preference vector are the variables of the models and methods used to
derive a set of nomination scenarios that capture potential gas flow situations.

For the models and methods for the operation of the network that are used
to validate a nomination scenario, the nomination and the market preference
vectors are, of course, the parameters. At the exits, the goal is to obtain exactly
the outflows specified in the nomination. For the entries, however, flow reallo-
cation options may be used to change the inflows specified by the nomination
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network usage variables These variables model the gas flow situation desired
by gas transport customers.

P ext
u , u ∈ V± Desired inflow/outflow at each entry/exit in terms of ther-

mal power.
wu, u ∈ V± Weight of each entry/exit, describing the attractivity of in-

jecting/withdrawing gas at this particular node. We call the vec-
tor (wu)u∈V± the market preference vector.

network operation variables These variables model how the network is ac-
tually operated to serve the desired gas flow situation. This may include
modifying the gas flow situation by using reallocation options.

P eff
u ∈ R≥0, u ∈ V+ Effective inflow at each entry in terms of thermal

power after employing reallocation options and flow balancing.
Pu ∈ R≥0, u ∈ V− Outflow at each exit in terms of thermal power accord-

ing to the flow and calorific value arriving at this exit. The goal is
to operate the network such that we have Pu = P ext

u for all u ∈ V−.
qa ∈ R, a ∈ A Mass flow for each arc/network element. A nonnegative

value indicates flow in the direction of the arc, a negative value flow
in the opposite direction.

Hc,u ∈ R≥0, u ∈ V Calorific value at each network node.
pu ∈ R≥0, u ∈ V Pressure at each network node.
sa ∈ {0, 1}ka , a ∈ Aactive Vector of switching decisions for each active el-

ement. The number of switching variables ka depends on the type of
the network element.

Figure 1: Overview on the variables used to model network usage and network
operation.

to aid network operation. In this case, flow rebalancing adjusts the flows at the
remaining entries such that the overall inflow/outflow balance is maintained and
entries with a higher weight are used up to their booked capacities as much as
possible. Moreover, there are several other quantities that need to be considered
to model the technical and physical constraints of network operation.

Section 2.1 describes how we obtain suitable nomination scenarios and how
they are used to verify booked capacities. An overview of the models used to
validate a nomination scenario is given in Section 2.2. Fig. 1 shows the variables
used to model network usage and network operation, respectively.

2.1 Models and methods for verifying booked capacities
As summarized in the introduction, the entry/exit model enables the gas ship-
pers to easily deal with the task of transporting gas. All they need to do is to
book sufficient entry or exit capacities (depending on their role) some time in
advance and to sell or buy gas at the virtual trading point. Since the gas is sold
to/bought from a market participant in the same network, this transaction is
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automatically balanced. From the market perspective, everything is fine.
The TSO, however, needs to provision the network and/or limit the bookable

capacities such that the desired gas transport can be realized. To do this, it
is necessary to understand and model how the capacities may be used by the
shippers and which gas flow situations may arise. The gas withdrawn from
most of the exits is consumed and thus follows certain demand patterns. Due
to this, the offtake at these exits is quite predictable. The remaining exits are
e.g., storages and interconnection points to adjacent networks. As for entries,
their flows depend very much on the gas market and are thus hard to predict.
Moreover, the flows at these entries and exits may be highly correlated in a
way that adversely affects network operation. For instance, it may happen that
very few entries supply a large share of the exits and that the gas needs to be
transported over long distances, requiring much compression power.

To handle these two types of behavior, our approach [HHH+15] combines a
stochastical model for the predictable exit flows with an adversarial model for
the entry flows and the remaining exit flows. The stochastical model is estimated
from historical flow data as outlined in Section 2.1.1. The adversarial model
is based on the market preference vector (wu)u∈V± that provides a weight for
each entry and exit. This weight indicates the relative attractivity of injecting
or withdrawing gas at a particular node. These two models are combined to
obtain meaningful nomination scenarios that can be used for verifying booked
capacities. How this is done is described in more detail in Section 2.1.2.

2.1.1 Estimating distributional models for gas demand

Transmission system operators measure the amount of gas injected to or with-
drawn from the network for every entry and exit, respectively. They are legally
obliged [Gas10] to use this data in their capacity models to consider “likely and
realistic” flow situations for their network. This section summarizes the ap-
proach for obtaining distributional models from historical data about gas flows,
which is described in full detail in [HHL+15a].

The demand of exits usually follows certain patterns and it is thus reasonable
to describe it using stochastic models that are then used for forecasting. The
exit flows often depend of the local temperature in the particular geographical
area (see Fig. 2 for examples). To avoid modeling the temperature distributions
within Germany, we chose a pragmatic approach and introduced a network-
wide reference temperature. This reference temperature is determined, for each
day, as a weighted average of the local temperatures of several locations in
Germany. To further simplify the modeling of the temperature dependency
of gas demand, we divide the temperature range in temperature classes. Each
temperature class should be small enough to treat the temperature as constant
within this temperature class. Due to lack of data, this requirement is not
fulfilled for very low temperatures, which are thus handled differently.

For each temperature class with sufficiently many measurements, each of the
following univariate distributions is fitted to the measurement data of each exit:

• univariate normal distribution,

• univariate log-normal distribution,

• univariate uniform distribution,
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Figure 2: Plots showing the daily gas demand for four selected exits. The
indicated temperature is the local temperature at the exit location.

• univariate Dirac distribution.

The fit is done by determining the parameters of each distributions type such
that the maximum Kolmogorov distance between the distribution and the em-
pirical distribution is minimized. We select the distribution attaining the overall
minimum Kolmogorov distance for modeling the demand of the considered exit.

For the “cold” temperature classes with insufficient data, we employ the
following mechanism. The available measurement data of an exit is used to fit
a spline function to the means of the data of small temperature intervalls. This
spline function is then used to extrapolate estimates for the mean values of the
“cold” temperature classes. The distribution type and the remaining parameters
are copied from the “coldest” temperature class with sufficient data.

To account for correlations between the gas flows it is desirable to use mul-
tivariate stochastic models. We employ so-called multivariate normal-like dis-
tributions for this purpose. These are generalizations of multivariate normal
distributions that admit normal or log-normal distributions as marginal dis-
tributions. The corresponding multivariate stochastic models are obtained by
complementing the univariate marginal distributions of the nodes with normal
or log-normal distributions with the correlation matrix computed from the data.

2.1.2 Verifying booked capacities using nomination scenarios

As discussed in [HHH+15], we are actually interested in estimating the proba-
bility that a gas flow situation matching the capacity contracts of a booking is
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technically feasible within the gas network. To formalize this, let ξ : Ω→ RVstat

be a random demand vector defined on a suitable probability space (Ω,A,P),
where Vstat is the set of exits for which a stochastic model is available. More-
over, denote by κu the capacity booked at node u. Finally, let B=(ξ) be the set
of all vectors P ext = (P ext

u )u∈V that

• are balanced w.r.t. in- and outflow:∑
u∈V+

P ext
u =

∑
u∈V−

P ext
u , (1a)

• respect the capacity contracts for each node:

P ext
u ≤ κu (1b)

• for u ∈ Vstat coincide with the sampled values:

P ext
u = ξu. (1c)

We are then interested in estimating the probability

β := P(P ext ∈ B=(ξ) | P ext is technically feasible). (2)

This expresses the idea that a given (stochastic) exit demand can be met by
many supply patterns and that it should be very likely that any supply pattern
results in technically feasible operation.

Our method [HHH+15] estimates β using suitable nomination scenarios as
follows. Since validating a nomination scenario is computationally expensive,
the goal is to construct a small yet representative set of nomination scenarios
to validate.

1. Sample a (large) set of demand vectors according to ξ. In order to obtain
fast convergence even for relatively few samples we use a randomized quasi-
Monte Carlo method. As a result, we obtain a set {s1, . . . , sM} of sampled
demand vectors.

2. Use scenario reduction techniques to obtain a smaller, yet representative
set of demand vectors. The result is a subset {s1, . . . , sN}, N < M , of the
original sampled demand vectors, with potentially nonuniform probabili-
ties {p1, . . . , pN}.

3. For each demand vector s, obtain a set of market preference vectors that
describe potential supply patterns to satisfy this demand. In our method,
we draw these market preference vectors uniformly at random from the
unit sphere SV± to model a diverse set of potential market behaviors
(supply patterns). For each of these market preference vectors, solve the
optimization problem

min
{∑

u∈V±

wuP
ext
u

∣∣∣∣ P ext
u satisifes (1)

}
(3)

to obtain a balanced vector P ext of desired inflows and outflows.
Perform nomination validation for each nomination scenario (P ext, w).
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4. Estimate the probability β by ∑
{si|all nomination scenarios for si are feasible}

pi.

The probability estimated by the method may be used by network planners
to assess the risk of a particular set of capacity contracts.

2.2 Models and methods for nomination validation
The task in the nomination validation problem is to determine whether there
is a feasible control for the gas network serving a nomination scenario given
by the vector (P ext

u )u∈V± of desired in- and outflows, the market preference
vector (wu)u∈V± , and the set of applicable flow reallocation options.

To solve this very complex problem, we address each of the following three
problem aspects by a separate layer of modeling.

1. The operational capabilities of a gas network are described by the topology
of the network and the characteristics of each of the network elements.
These aspects can conveniently be modeled in terms of the mass flow qa

of each network element, the pressure pu at each node, and the switching
decisions sa for each active elements. The basic assumption here is that
the gas flow situation in terms of mass flows is given and fixed.

2. The next layer deals with the fact that the capacity contracts are not
concluded in terms of mass flow (qext

u )u∈V± , but instead in terms of thermal
power (P ext

u )u∈V± . This makes it necessary to model a simple form of gas
mixture.

3. Using flow reallocation options and the resulting re-balancing are market-
based mechanisms. These effects are modeled as a bilevel problem with
a linear second level problem, providing effective inflows (P eff

u )u∈V+ at
each entry. This bilevel model depends on the market preference vec-
tor (wu)u∈V± that governs the re-balancing and the desired in- and outflow
vector (P ext

u )u∈V± .

These three model layers are solved by an integrated method that is summarized
in Fig. 3. We will use the rest of this subsection to outline the different parts.

2.2.1 Technical and physical network operation: Nomination valida-
tion for flow nominations

The modeling of physical behavior of natural gas and the technical constraints of
the used network elements is described in great detail in [KHPS15], especially
in [FGG+15] or a shorter version in [SKMP15]. We briefly outline the most
important aspects of our modeling to indicate the complexity of the MINLP
model used. Our basic assumption concerning the gas physics are the following.

• We consider a stationary gas flow situation given as a vector of balanced
in- and outflows in terms of mass flow.
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Validation of a nomination scenario

vars P eff
u , Pu, Hc,u, qa, pu, sa params P ext

u , wu

Alternating direction method for master bilevel MINLP with
coarse technical model

vars P eff
u , Pu, Hc,u, qa, pu, sa

(coarse model) params P ext
u , wu

MILP for a linearized version of the master MINLP with
fixed calorific values

vars P eff
u , Pu, qa, pu, sa params P ext

u , wu, Hc,u

MILP for technical and physical network operation

vars qa, pu, sa params P eff
u , Pu, Hc,u

MILP version of bilevel model for flow reallocation op-
tions and balancing

vars P eff
u , Pu params P ext

u , wu, Hc,u

1

LP for determining calorific values from mass flows via
mixing

vars Hc,u params qa

2

1

high detail NLP with fixed switching decisions

vars Hc,u, qa, pu (fine model) params P eff
u , Pu, sa

2

Figure 3: Structure of the models and methods used by nomination validation
for checking a single nomination scenario. The models marked with thick lines
are solved by an off-the-shelf solver as part of the overall method.
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• We consider the isothermal case, i.e., we neglect the change of temperature
due to the various physical effects involved. The model is based on a con-
stant mean temperature calculated as a flow-weighted average according
to the injected gas qualities.

• We ignore the mixing of gas and assume all parameters (molar mass,
calorific value, norm density, pseudocritical pressure and temperature, mo-
lar heat capacity) of the gas to be constant with the value given by the
respective flow-weighted average as for the temperature. (Calorific values
will be handled specially by the method described in Section 2.2.2.)

• The so-called z-factor describing the deviation from a real gas is assumed
to be constant along a network element.

At each node u ∈ V , there are constraints for bounds on the pressure pu and
(mass) flow conservation. For each network element a = (u, v), there are bounds
for the mass flow qa. The various network elements are modeled as follows.

Pipes are assumed to be cylindrical with a constant slope. Together with the
assumption of a constant (mean) z-factor this leads to the following well-known
model for the pressure loss along a pipe

p2
v =

(
p2

u − Λ |q| q eS − 1
S

)
e−S (4)

with suitable constants Λ and S (see [KHPS15, p. 27]).
Resistors are virtual elements to approximately model the pressure loss due

to e.g., complex piping. There are two models for resistors, both of which incur
a pressure loss in the direction of flow. This is handled via a binary variable for
the flow direction. In the first form a resistor causes a nonlinear pressure loss
according to a type of Darcy–Weisbach formula:

pin − pout = C
q2

pin
, (5)

for some constant C depending on the parameters of the resistor (see [KHPS15,
p. 28]). In the second and simpler form, the pressure is loss is given by a fixed
constant.

Valves are used to route the gas flow. A valve can be in two states, open
and closed. An open valves admits arbitrary flow without changing the state of
the gas, whereas a closed valves blocks the flow and decouples the gas flow at
its ends. We model this behavior using a binary variable sa and the constraints

sa = 0 =⇒ qa = 0,
sa = 1 =⇒ pu = pv.

(6)

A control valve is used to reduce the pressure in a controlled way. The
working direction of a control valve is fixed. A control valve operates in one
of three states: active, closed, or bypass. When closed, a control valve behaves
like a closed valve; likewise, the bypass state corresponds to an open valve. If
the control valve is active, the pressure at its outlet can be reduced to a given
controllable value by at least ∆a and at most ∆a. We use two binary variables
to represent the states of a control valve: sac

a indicates whether it is active, and
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sbp
a whether it is bypassed. The closed state is encoded by sac

a = sbp
a = 0. For

a control valve with remote access, the state can be switched by the network
operators. Such a control valve is modeled by the constraints

sac
a + sbp

a = 0 =⇒ qa = 0,
sac

a = 1 =⇒ ∆a ≤ pu − pv ≤ ∆a, qa ≥ 0,
sbp

a = 1 =⇒ pu = pv,

sac
a + sbp

a ≤ 1.

(7)

For control valves without remote access, there is a a preset downstream pres-
sure pset

a and the state of the control valve is determined by the upstream and
downstream pressure: If the upstream pressure is at least pset

a and the down-
stream pressure is not greater than this value, than the flow is regulated such
that the downstream pressure attains the value of pset

a . Once the downstream
pressure rises above pset

a , the control valve without remote access closes au-
tomatically. If the downstream pressure is less than or equal to pset

a and the
upstream pressure drops below this threshold value, the control valve without
remote access opens fully and is in bypass. This state-dependent behavior is
modeled by the following additional constraints:

sac
a + sbp

a = 0 =⇒ pv ≥ pset
a ,

sac
a = 1 =⇒ pv = pset

a ,

sbp
a = 1 =⇒ pv ≤ pset

a .

(8)

To compensate for the pressure loss in the network, the TSO uses compres-
sors. Typically the TSO operates a number of compressor stations at various
points in the network, where a number of compressors are placed. The energy
expenditure in these compressor stations accounts for the majority of the op-
erating costs of the TSO. In coarse models, the only parameters of interest are
bounds on the in- and outflow of the station and the maximum absolute and
relative pressure increase that can be obtained. For a detailed physical model,
one needs take into account that a compressor consists of a compressor machine,
which compresses the gas and a compressor drive, which powers the compres-
sor machine. We do not go into detail of compressor modeling in this section,
but refer to the chapter [FGG+15] and to the report [HW16]. We note, how-
ever, that a detailed compressor model leads to a nonlinear nonconvex system
of constraints.

In addition to the constraints for operating each network element, there are
further contraints for the joint operation of the active elements. We model these
via so-called subnetwork operation modes which specify a set of joint switching
states for each element in a subnetwork. Typically, such a subnetwork corre-
sponds to a bigger physical entitity like a compressor or control valve station.

Another operational constraint arises from contractual restrictions. Due to
the fact that some pipeline systems are co-owned by several TSOs, there is a
need to share their transmission capacity between the owners. This is often
done by limiting the so-called transport moment (or payload distance) along the
co-owned pipeline. The transport momentum measures the amount of work
necessary to move the gas and is computed as

n∑
i=1

qai
Lai

, (9)
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where (a1, . . . , an) is a path given as a sequence of arcs and Lai
denotes the

length of the corresponding pipe.
The model sketched is a very complex MINLP model combining many non-

convex constraints for the pressure drop on pipes/resistors and the operating
ranges of compressor machines and drives with sophisticated switching decisions
for the active elements and the subnetwork operation modes. In this integrated
form, the model is not tractable yet. We therefore use a two-stage approach to
tackle it:

1. In the first stage, we use a simplified physical and technical model to
obtain switching decisions for operating the network.

2. The second stage uses these switching decisions to determine refined con-
trols in the detailed and accurate physical and technical model.

As the second stage does not involve any integer variables any more, it is ad-
dressed by the NLP method described in [SSW15c]. The first stage, however,
is still necessarily a nonconvex MINLP as the nonlinear pressure loss in pipes
cannot be meaningfully simplified further. We therefore developed the follow-
ing four distinct approaches exploiting different properties to tackle the hard
problem of finding feasible switching decisions.

MILP approach This approach [GMMS15] transforms the MINLP into an
MILP model using a general technique given by [GMMS12] building on
prior work. This MILP is a relaxation of our original MINLP. Ad-
vantages of this technique include: a priori guarantees on the error of
the solution with respect to the underlying MINLP model, certifica-
tion of infeasibility of the original MINLP, independence of the MILP
solver used. Extensions of this technique have been discussed in e.g.,
[GMS13, Gei11, Mor13, DGK+11, GKL+11].

Specialized MINLP approach This approach [HFH+15] uses a somewhat
coarser MINLP formulation. This allows to use a specialized algorithm
that is implemented in the general-purpose MINLP solver framework
SCIP [Ach09, VG16]. Advantages of this technique include: certification
of infeasibility with respect to the coarsened MINLP, short computation
times due to tight integration with the solver.

Reduced NLP heuristic This heuristic [GSS15] reformulates the MINLP as
a coarse NLP. The formulation chosen leads to very small NLPs which
allows to check a large number of discrete settings in a short time. To
reduce the number of settings to test, first a transshipment problem is
solved on an aggregated graph and then analyzed. The advantages of
this technique include: Adaptability to a specific network, computation
speed. Extensions of this technique to the case of random loads have been
discussed in [GHHS16].

MPEC heuristic This heuristic [SSW15b] reformulates all discrete decisions
as complementarity constraints and uses standard regularization approaches
to solve the resulting NLPs. Advantages of this technique include: com-
putation speed, very detailed physical model. Extensions of this technique
have been discussed in e.g., [RSSW16, Sch13, Sch15, SSW13].
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To validate these approaches, a highly detailed NLP model was implemented
[SSW15c, SSW15a, SSW16]. There are, however, difficulties when certifying
infeasibility [JSSW15, JOP16]. As reported in [HHL+15b], all four approaches
have their strengths and combining them provides a very powerful solver for the
nomination validation problem. When considering the extensibility for different
calorific values and the use of flow reallocation options (and hence nonconstant
in- and outflows in terms of mass flow), however, the MILP approach turned
out to be most flexible and robust.

2.2.2 Handling of different gas sources: Nomination validation for
power nominations

So far, the model for nomination validation assumed that in- and outflows are
specified in terms of mass flow (qext

u )u∈V± . However, as described in the in-
troduction, the desired in- and outflows (P ext

u )u∈V± are specified in terms of
thermal power. As the entries in our network, however, have distinct gas qual-
ities, the mass flow needed to satisfy the exit demand is not known a priori.
This means that we cannot simply assume that all gas is equal, but we have
to take into account the mixing of different gas types. Such mixing problems
are, without taking into account the gas physics, known as (generalized) pool-
ing problems [MF09], which are notoriously hard. The corresponding models
involve two new major difficulties:

• The coupling between the thermal power, the mass flow, and the calorific
value introduces (many) nonconvex bilinear constraints.

• In the considered gas networks, for many arcs the flow direction is not
known beforehand and depends on the network control. This leads to
nonsmoothness, as the mixing condition discriminates between ingoing
and outgoing arcs (w.r.t. flow), which is to be decided by the model.

To tackle this additional layer of complexity, a tailored method was developed,
which we outline here. For more details, we refer to [GMSS15]. The method
has also been extended to use more detailed compressor models [GMSS16b].

For thermal power, the gas quality parameter we need to track is the calorific
value Hc. We assume that for each node and each arc we have introduced a
variable Hc,u for all u ∈ V and Hc,a for all a ∈ A. The main mixing condition
for calorific values is then given by

Hc,u =
Hext

c,u q
ext
u +

∑
a∈I(u)Hc,a|qa|

qext
u +

∑
a∈I(u)|qa|

for all u ∈ V. (10)

Here, we assume constant molar mass in the network and define Hext
c,u = qext

u = 0
for all inner and exit nodes and qext

u = qu at entry nodes. The calorific valueHc,a

of an arc a is then given by

Hc,a = Hc,u for all u ∈ V, a ∈ O(u). (11)

In our case, it is helpful to rewrite these conditions using variables for the
thermal power Pu for all u ∈ V . Then using the relation Pu = quHc,u and the
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assumption that our gas has constant molar mass, we can rewrite condition (10)
and obtain ∑

a∈O(u)

|Pa| −
∑

a∈I(u)

|Pa| = Pu for all u ∈ V. (12)

This is the constraint we use to model the mixing of thermal power. The
resulting master MINLP is not efficiently solvable with the techniques described
so far. Nevertheless, an alternating direction method (ADM) can be used to
provide feasible solutions. Here, we only sketch the method, for details, we refer
to [GMSS15, GMSS16b]. The method alternatingly solves the following two
models that arise as restrictions of the master MINLP model. In this model, we
use as objective function the deviation of the Pu from the desired outflows P ext

u .

• In the first model, the calorific values Hc,u are fixed and we optimize with
respect to the network controls.

• In the second model, all other variables are fixed and we optimize with
respect to the calorific values Hc,u.

The first model is a slight variation of the MINLP described above, which
can be solved with the MILP approach. The second model is an LP which can
be readily solved using standard solvers. To achieve satisfactory performance,
further tweaks of the method are needed. The success of the method is maybe
not that surprising, if one takes into account that it is closely related to feasibility
pump heuristics [GMSS16a], which have been shown to be very successful in
practice.

2.2.3 Flow reallocations and market behavior

The task of the TSO is the operation of the gas network infrastructure to satisfy
the transportation demand. This involves the configuration of the technical
components, such as valves and compressor. In addition, the TSO may use non-
technical measures to help avoid bottlenecks. These include the flow reallocation
options that the TSO can conclude with its transportation customers, i.e., the
shippers. If any flow reallocation options are available, the nominated amount
of gas injected into the network may be changed in favor of the TSO.

We consider three types of flow reallocation options, all acting on entry nodes
only:

1. Minimum: the TSO may increase the amount of flow above the nominated
value.

2. Reduction: the TSOmay decrease the amount of flow below the nominated
value.

3. Distribution: the TSO may reduce the flow at one entry and simulta-
neously increase the flow at another entry by the same amount, staying
balanced.

These changes potentially introduce imbalance between injection and with-
drawal, leading to infeasibility in stationary models of gas flow. Therefore,
the nomination is rebalanced according to the preferences of the shippers (here
understood as a unified agent). Here, the capacity contracts need to be taken
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into account. Furthermore, the use of flow reallocation options protects certain
nodes from the influence of the shippers.

In this operational view, decisions happen at three stages, sequentially, where
each decision restricts the choices for the next stage.

1. TSO decides about usage of flow reallocation options.

2. Shippers decide about rebalancing of nomination.

3. TSO decides about technical configuration.

One can now canonically formulate a multi-level optimization problem con-
sisting of three levels, corresponding to the stages above. A generic version is
given by:

minimize
x,y,z

f0(x, y, z)

subject to f1(x) ≤ 0
maximize

y,z
g0(y, z)

subject to g1(x, y) ≤ 0
minimize

z
h0(z)

subject to h1(x, y, z) ≤ 0

(13)

In our case, the first and third level are decided by the same agent and
the objectives are identical: f0(x, y, z) = h0(z), depending only on the tech-
nical network state z. The constraints f1(x) restrict the usage of the flow
reallocation options x. The objective g0(y, z) is really a function of y only and
represents the shippers preference for the nomination values. The second-level
constraints g1(x, y) include both general rebalancing constraints, as well as re-
strictions stemming from the application of flow reallocation options through x.
Finally, the third-level constraints h1(x, y, z) describe the physical constraints
with respect to the technical control z based on the actually resulting nomina-
tion y and do not depend directly on the first-level decisions x. The simplified
model reads:

minimize
x,y,z

h0(z)

subject to f1(x) ≤ 0
maximize

y,z
g0(y)

subject to g1(x, y) ≤ 0
minimize

z
h0(z)

subject to h1(y, z) ≤ 0

(14)

This approach implies, however, that the shippers take into account the
third-level problem. In reality, they are ignorant of the technical details of
the gas network configuration and only know about the contractual constraints
(that is, the non-physical network connecting the entries and exits via the virtual
trading point). Therefore, the constraints h1(y, z) should be moved to the first
level and the third level be eliminated altogether.
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Figure 4: Flow network for follower problem in (15). Shown are three entries
E,F,G with all types of flow reallocation options: reduction at F , minimum flow
at G, and distribution F → E. Rectangular nodes represent sources and sinks.
The P ext nodes on the left are sources with a fixed supply corresponding to the
nominated value. The P eff nodes on the right are sinks with a variable demand,
as chosen by the shippers. The other nodes have no supply and demand. Three
different types of arcs are used to model the flow redistribution. Follower arcs
(in red) have a free flow variable of the follower (ya ≥ 0). Leader arcs (in blue)
are fixed by a leader variable (xa = ya ≥ 0). Finally, bounded arcs (red within
blue) have a flow variable of the follower that is bounded by leader variables
(0 ≤ xlb

a ≤ ya ≤ xub
a ).

This corrected formulation has only two levels:

minimize
x,y,z

h0(z)

subject to f1(x) ≤ 0
h1(y, z) ≤ 0
maximize

y
g0(y)

subject to g1(x, y) ≤ 0

(15)

Within this formulation (15), the problem of nomination validation as de-
scribed in Sections 2.2.1 and 2.2.2 is represented by the objective h0(z) and
constraints h1(y∗, z), given a fixed y∗.

The “follower” problem of (15) has the form of a network flow in the y
variables, with x acting as arc capacities. Figure 4 shows the structure of
the artificial network that represents the distribution and rebalancing of flow
injected at the entry nodes.

The objective of the follower (to be maximized) is a linear combination of
the P eff (demand) variables in the network 4. The coefficients are given by the
market preference vector (wu)u∈V±

The bilevel problem in (15) can be transformed to a single-level optimization
problem via the equivalent KKT reformulation of the follower problem [CMS07].
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Consider the follower problem in the generic linear programming form, given by

minimize
y

eT y

subject to By = f −Ax
y ≥ 0

(16)

We replace it with the corresponding optimality conditions

e− λ+ µTB = 0
By = f −Ax
λT y = 0
y, λ ≥ 0

(17)

The complementarity constraint λa ⊥ ya can be expressed as a special ordered
set of type 1 in the context of MIP solvers.

The leader variables x that model the choice and application of flow re-
allocation options are subject to additional constraints. For the case of flow
reallocation options, consider the entry G in Fig. 4. We introduce a binary vari-
able xuseFC

G ∈ {0, 1} as an indicator for the use of the flow reallocation option.
If xuseFC

G = 1, then the constraints xlb
a = xub

a = 0 become active, where a is
the arc from BareG to α−. These “protect” the flow from rebalancing via α.
Otherwise (xuseFC

G = 0), the constraints xb = 0 (where b is the arc from α0 to
ProtG), xlb

a = 0, xub
a = P ext

G − FirmCaplb are active. This means that no flow
goes from other nodes (via α) to G and the nominated flow may be used for
rebalancing.

3 Architecture of the ForNe System and current
implementation

In this section we discuss the requirements and the solution approach taken
in the ForNe System. The ForNe System consists of two parts of software:
The computing core and the user interface. The computing core implements
the aforementioned models, providing algorithms for the validation of flow and
power nominations. The user interface offers several means to interact with the
ForNe System and orchestrates the solution of high-level subproblems within
the validation of flow nominations and the verification of booked capacities.

The ForNe System has the dual purpose of being a platform to allow compu-
tations in scientific quality and in a production setting at OGE. With scientific
quality, we mean that the experiments should be as reproducible as possible.
Thus in this setting only machines with identical hardware and software are
used. Furthermore, every physical machine processes only one job at a time
to avoid random effects such as cache misses which cause random noise in the
computing times. In the production setting, the focus is on best possible use of
the available resources and reliable operation.

3.1 Requirements and features
The ForNe System is able to compute solutions for several kinds of problems
with the main objective to verify booked capacities. For this, the validation
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Figure 5: Overview of the architecture. Components with a white background
are handled by the user interface and components with a gray background by
the computing core.

of nominations is an important subproblem. As described in Section 2.2, the
validation of a nomination is a two stage process. The first stage computes
discrete decisions and a starting solution that is then refined by a highly detailed
NLP model. For power nominations the alternating direction method can be
used for validation or the nomination can be transformed into a flow nomination
assuming a uniform calorific value of the gas at all entries and exists. For flow
nomination validation, the four approaches described in Section 2.2.1 have been
implemented and can be run in parallel where the first algorithm to find a
feasible solution or proving that no such solution exists decides the result. We
refer to this parallel nomination validation of flow nominations as SuperNoVa.
The validation of a single flow or power nomination as well as the detailed NLP
are implemented in the computing core where the respective models are built,
solved and analyzed. The user interface is responsible to orchestrate the solution
of the different models as well as the parallel solution within a SuperNoVa and
the validation of nominations within a booking validation.

Figure 5 provides an overview of the process of the verification of booked ca-
pacities assuming the nominations are validated using the SuperNoVa approach.
In a first step, a distribution model is estimated from the measured data as de-
scribed in Section 2.1.1. In this step, the user interface only serves as a wrapper
to submit a job to the cluster as the estimation of the distribution is done in
the computing core. The resulting distribution is written to a file and can be
used to verify different variants of booked capacities, i.e., in the assessment of
which capacities can be published and which capacity requests accepted. The
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dashed arrow depicts this human interaction. The validation of a booking is a
process in two steps which is managed by the user interface. First, a number of
nomination scenarios is generated as described in Section 2.1.2; a feature that is
also implemented in the computing core. Then, these nominations are validated
in parallel.

The results of all subproblems that are solved by the computing core as
well as the building blocks of a booking validation are exposed to the users
for in-depth analysis and to test and validate the approaches. Furthermore,
straight forward mechanisms are in place to repeat the computation of the
subproblems outside of the overall solution approach. To ensure maintainability
and testability, the same code is called disrespecting if the call is done directly
by the user or within the solution of a higher level problem such as booking
validation.

Several interfaces are available to upload input data, start, stop, query the
status and download the results of jobs. This includes a HTML-based web in-
terface for human interaction and an XML-based web API allows an integration
into OGE’s processes and infrastructure. The HTML interface also supports the
upload of simple line based batch files where every line specifies one problem
instance.

Most of the jobs are rather long running; ranging from several hours for
the validation of a nomination to several days for the detailed validation of a
booking. Proper job management has to ensure that the status and, upon ter-
mination, the results of a job are available and users are notified. Furthermore,
the job has to support the abortion and in some cases also continuation of jobs.
Proper termination and restart has to be ensured for the problem types where
several components are solved individually and in parallel such as SuperNoVa
or booking validation.

3.2 Implementation Details
In this section, we provide some more technical details about the ForNe System.

The computing core is implemented in C++ using the framework Lamatto++ [GMM].
It includes appropriate data structures, parsing facilities, advanced data checks
on a logical level that go far beyond pure schema validation, preprocessing
(e.g., flow and pressure propagation and network simplification), abilities to
build various kinds of optimization models and algorithms developed in the
project, and solution analysis. It contains interfaces to several solvers, including
CPLEX [IBM], Gurobi [Gur], SCIP [Ach09, VG16], and Ipopt [WB06] (through
GAMS [GAM]). Apart from the problems that are in the focus of this paper,
the computing core contains algorithms for several related problems such as
for gas network topology extension for a single [FHH+11, Hum14] and multiple
scenarios [Sch17, SL16], and capacity maximization [Hay16].

The user interface is implemented in Python and uses Cherrypy [Che] as
web framework. A class hierarchy for problem types enables code reuse. Each
problem class contains a list of parameters and expected outputs from which the
various interfaces and documentation is generated. This approach ensures high
flexibility in the addition, modification and deletion of parameters which can
easily become time consuming and error prone without such an infrastructure.
Each problem class performs lightweight tasks directly and submits jobs to
solve subproblems with the computing core to the cluster. For example, for
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SuperNoVa four jobs are submitted to the cluster. Each of them determines
the status of the SuperNoVa upon termination and possibly kills the remaining
jobs as soon as the result of the SuperNoVa has been decided.

The computing cluster is hosted at the Zuse Institute Berlin and is managed
by the cluster resources management system SLURM [YJG03]. Dependencies
between jobs are used to trigger job evaluations and email notifications. Due to
the limited length of the job queue (50000 jobs in our installation), an additional
job queue is implemented in the interface as this quickly becomes a bottleneck,
e.g., if several bookings are to be validated in parallel.

An instance of a problem is typically described by several input files (describ-
ing e.g., the network, the compressors, the contractual situation, the nomination
scenario) and parameters (e.g., the formula for the real gas factor or the number
of threads a MIP solver can use). As input files, in particular for rather static
data such as network and compressor descriptions, are often used in multiple
instances, all files have to be uploaded before actually starting the instance. In-
put files are stored on a network file system also accessible by the cluster nodes.
Comparison of hash values ensures that the content of the files did not change
between submitting and actually starting the jobs. Result files from the com-
putation are first stored on the local disks of the cluster nodes and only copied
to the network file system when the job is finished as otherwise the permanent
writing of log files to the network file system becomes a bottleneck.

A SHA1 hash is computed for each instance taking into account the hashes
of all input files and all parameter values. Considering the hash of the entire file
content instead of the name of input files ensures that different file contents yield
different instances which is important if automated tools are used. Composite
problem types like SuperNoVa and booking validation know the hash values of
their subinstances, allowing to easily display or download the results or to rerun
a subinstance after possible code changes. This transparency was a major asset
during development and debugging.

Some of the solvers used in the computing core are also capable of using
multiple threads for parallel computations. In the scientific setting, only one
job per cluster node is allowed anyway which may then use all its cores. In the
production setting, we found it beneficial to limit the number of cores to be
able to run more instances at a time. Especially in SuperNoVa this increases
the throughput as it suffices if one of the four approaches decides the instance
and it is beneficial to start more jobs simultaneously. SLURM ensures that the
total number of threads used by all jobs scheduled on a computing node does
not exceed its number of cores and that only one job is assigned to each node
in the scientific setting.

4 Conclusions and outlook
The software system described has been used to conduct extensive computa-
tional experiments, comprising several months of computing time on a cluster
with more than 1500 cores located at ZIB. All in all, millions of nomination sce-
narios were generated and solved in parallel. The system proved to be reliable
and robust enough to handle this large-scale workload.

In a first phase, the goal was to establish the fitness for purpose on a rel-
atively few selected instances as well as the necessary performance and scal-
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ability for real-world use cases, where a single booking validation is supposed
to be supported by 1000 or more nomination scenarios. To assess the fitness
for purpose for nomination validation, OGE provided a small set of nomination
scenarios that had been validated using standard simulation software. For test-
ing the overall workflow for performance and scalability, OGE provided data for
historical gas flows, capacity contracts and reallocation options, and the topol-
ogy and technical parameters of the network both for their L-gas and H-gas
network, respectively. This data was taken from the existing simulation-based
process established at OGE [BEG+15], which was semi-automatically converted
to the respective input formats of the ForNe system. (Due to the complexity of
some of the models and the input data, some of the input had to be generated
manually.)

A second phase addressed the fitness for purpose of the entire workflow of
estimating distributions from the historical gas flows, generating nomination
scenarios from sampled gas flows and capacity contracts and validating these
nomination scenarios. It turned out that the initial quality of the input data
was not sufficient to obtain results matching those of the established process.
This resulted in many iterations with successively improved data. For finding
and repairing data errors, researchers’ experience and intimate knowledge of the
implemented models and algorithms turned out to be invaluable.

Regarding the practical use of tools built on highly complex mathematical
models, there are two conclusions from this observation. First of all, quality
assurance for complex input data is crucial to obtain meaningful results and
should be supported by tools (not just the data sanity checks of the optimiza-
tion code) as far as possible. For use in practice, such tools need to be usable
and appealing to the planners, i.e., without requiring a deep understanding of
the underlying math. Secondly, it is necessary to provide, as far as possible, eas-
ily comprehensible means to understand the working of the underlying models
and algorithms. Of course, this is very hard to achieve for general MIP/MINLP
solvers, but the problem-specific high-level design of the algorithms often allows
to derive insights from intermediate results. For instance, initial bound tighten-
ing combines input data from several sources, sometimes detecting infeasibility.
With some additional effort, it is possible to indicate the set of data that lead
to certain bounds, helping to pinpoint the data inconsistency.

All in all, the computational experiments established the feasibility and
power of the proposed approach. However, they also showed several possibilities
for improvement. Most importantly, the physical-technical model used in the
first stage of nomination validation to determine the discrete control decisions
turned out to be often too optimistic, i.e., it fails to detect situations that are
technically infeasible. Detailed investigations revealed the following potential
sources for this behavior:

• The MILP relaxations used to model pressure-loss in pipes and resistors
are sometimes quite weak. Improvements in the initial bound tightening
process may help to overcome this.

• The compressor modeling in the first stage of nomination validation ne-
glects the drives’ maximum power that sometimes limits the network ca-
pacity. This issue is addressed by novel compressor models [HW16] de-
veloped in a subproject of the recently established CRC/Transregio 154
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• The relaxation arising from the alternating direction scheme for handling
calorific values may be too coarse. In particular, due to its design this
scheme is not very powerful for proving technical infeasibility as it is not
an exact approach. More sophisticated decomposition schemes might be
useful to tackle this issue.

The running time necessary for validating a single nomination scenario should
also be improved substantially: It is usually well below one hour, but sometimes
exceeds 4 days. This may be improved, for instance, by incorporating the ideas
from the mentioned heuristic approaches in the current solver. There is also
room for improving the overall running time of a booking validation by improv-
ing the order in which the corresponding nomination scenarios are validated.

We hope that our methods can be extended to provide a full analysis of the
entry/exit system in the future and allow for a fully automated calculation of
welfare-optimal technical capacities. For steps in this direction, see [Hay16].
Another relevant and challenging research direction is to extend these methods
(or devise entirely new ones) towards network design. The goal is to extend or
adapt the existing network such that it can accomodate the gas flow situations
expected in the future.
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