TakustraRe 7
D-14195 Berlin-Dahlem
Germany

Konrad-Zuse-Zentrum
fur Informationstechnik Berlin

OLIVER SANDER, DANIEL RUNGE

Fast Surface Reconstruction Using a
Probe Sphere

Z1B—Report 00-50 (December 2000)



Fast Surface Reconstruction Using a Probe
Sphere

Oliver Sander, Daniel Runge

Abstract

We introduce a new method for reconstructing a triangular surface
from an unorganized set of points in space. It is based on placing a probe
sphere on the point set and rolling it around, connecting all triples of
points that the sphere comes to rest on with a triangle. Therefore, the
algorithm interpolates, rather than approximates, the input points. The
method needs considerably less running time than previous algorithms
and yields good results on point sets that are reasonably well-behaved.

1 Introduction

Turning a real-life object into a computer model is a frequently encountered
problem. In such different areas as technical design and film-making, physical
objects are created as a first step towards a computer model.

Digitizing these objects usually involves, as an intermediate step, a repre-
sentation of the object as a set of points in space, possibly with no further
information about their mutual relationship than their respective 3D positions.
Such point sets can come from a wide variety of devices, such as laser range
scanners, radar or seismic surveys, or contact probe digitizers, but also from
purely mathematical models such as implicit functions.

The task of recreating a polygonal surface of the original object from the
points alone is a nontrivial one. Two important criteria have to be met:

The first one is robustness. A reconstruction algorithm should provide good
results under non-ideal conditions, i.e., on noisy or sparse data. Humans, when
looking at a point set, usually have an immediate, intuitive idea of what the
represented object looks like. One would wish an algorithm to come as close
as possible to this human intuition, a task which obviously touches the field
of artificial intelligence. However, this does not mean that a reconstruction
algorithm has to produce a sensible output all the time, since there are point
sets that do not represent any object surface, e.g., cloud-like distributions.

The second important factor is speed. With a perfectly robust algorithm,
execution time would not matter much, since, in order to create a lot of models
in a short time, a human operator would be able to start many processes at
once, being assured that they will all produce good output without further
assistance. In that case, high individual reconstruction times would not prevent
a high productivity. However, all algorithms we have encountered so far need
a certain amount of human assistance and postprocessing, which might even
involve letting the algorithm run several times on slightly modified point sets.
For this, interactive execution times would be desirable.



Figure 1: Reconstruction of a torus.

Existing algorithms for surface reconstruction usually belong to one of sev-
eral families. Ours is a member of the family of advancing-front algorithms.
Advancing front algorithms construct surfaces by trying to iteratively extend a
partially constructed surface across the current boundary. It is one of the lesser
used paradigms for surface reconstruction (see [5]). In comparison to existing
methods, this paper introduces a new heuristic for extending the surface, which
appears to be more robust than previous schemes.

Many situations exist where additional data other than the mere point po-
sitions is available. Laser scanners usually take several views of a model, hence
the viewing directions associated to the different views constitute extra informa-
tion that can be used by reconstruction algorithms. Some scanners even provide
surface normals for each point. Another example is data taken from segmented
CT images. There, sample points are arranged in slices and they form contours
within each slice. Some algorithms focus specifically on this case. Nevertheless,
since additional data does not always exist and is different depending on the
data source, we focus on the general case where no information other than the
geometric point positions is known.

2 Previous Work

In the past, a wide range of different approaches has been used to reconstruct
surfaces.

One of the most commonly known methods are the a-shapes of Edelsbrunner
and Miicke [8]. They start with the Delaunay tetrahedrization of the input point
set. From the resulting set of tetrahedra, which fills the convex hull of the point
set, they remove any tetrahedron, triangle, and edge whose circumsphere does



not fit into what they call an a-ball, i.e., a sphere with radius . The remaining
simplicial complex is termed a-shape. In order to extract a surface, a triangle
is kept if an a-ball touching its three vertices does not contain any other point.

The algorithmic complexity of the a-shape construction is bounded from
below by the construction of the Delaunay tetrahedrization, whose complexity
is O(n?).

Despite its rather slow asymptotic behaviour, the Delaunay tetrahedrization
is the starting point for a number of other reconstruction algorithms. Attali, for
example, introduces the so-called Normalized Meshes [1], which are subgraphs
of the Delaunay graph fullfilling a certain regularity condition. The approach
of Isselhard et. al. [11] starts with the Delaunay triangulation and removes
different types of tetrahedra until the final surface emerges. The ~y-indicator of
Veltkamp [16, 15] follows a similar idea, but sorts the removable tetrahedra ac-
cording to a constantly updated weight function (the name-giving v-indicator).
Bajaj’s a-solids [2, 3, 4], finally, are a variation on the standard a-shape ap-
proach. While a-shapes use eraser spheres at every point in space, the spheres
are now applied from outside the convex hull.

All these algorithms have in common, that they reconstruct surfaces by
removing elements from the full Delaunay triangulation according to different
heuristics.

Another class of algorithms uses signed distance functions in order to extract
a surface. Examples are the works of Hoppe [10, 9] and Curless and Levoy [7].
The idea is to create a function that for each point in space gives the distance
to the surface. This function can be constructed by approximating the surface
around a point by least-squares fitting a tangent plane in its k-neighborhood.
The set of these planes, properly oriented, is combined to give the distance
function. A standard marching cubes algorithm is then used to extract the 0-
isosurface of this function. Curless and Levoy have more recently tuned their
algorithm for laser-range data, using error and tangent plane information. They
also add a hole-filling step, which makes their program even more robust.

Boissonnat’s algorithm [5] is one of the few incremental surface-based con-
structions, and hence in the same family as our own method. It starts with
a first heuristically picked edge. The neighborhood of that edge is then ap-
proximated by a tangent plane, and all neighboring points are projected into
that plane. The point whose projection sees the edge under the largest angle is
chosen as the next point to be inserted.

A more extensive description of surface reconstruction algorithms can be
found in the survey article of Mencl and Miiller [13].

3 The Algorithm

The basic idea of our algorithm stems from computer chemistry. One standard
way to visualize large molecules is the solvent excluded surface (SES). It is
constructed by assuming the atoms in the molecule to be spheres of possibly
different sizes. A solvent, also approximated by a sphere, is then moved around
the molecule. The SES is the boundary surface between the region in space that
is accessible to the probe sphere and the rest. (For more on the construction of
the SES, see e.g. [14].) Shrinking all atoms to zero radius leads directly to our
algorithm.



d

Figure 2: Finding a new Triangle: i) the sphere rests on points a, b, c; i1) it
rolls over edge (a, b); iii) it is stopped by point d. Points a, b, d are added as a
new triangle.

3.1 Outline

Picture the points as little balls (with zero diameter), hovering in space on their
respective, fixed positions. Picture now a sphere of a fixed radius, approaching
the cloud of points. Eventually, it will touch (at least) three points at once. We
assume now that these three points are adjacent to each other on the surface to
be constructed. The assumption rests on the fact that a sphere approaching a
solid object will eventually be stopped by points on the surface of the object.

Imagine now that the sphere starts rolling (see Fig. 2). It keeps in touch
with two of the three points it rests on, and turns away from the third. It will
eventually touch a new point. (This new point might be the old point, touched
from the other side. In this case we assume that we have found a boundary and
continue our search somewhere else.) We again add the three resting points as
a triangle to the output surface and repeat the process recursively.

Several observations follow from the description above:

e The algorithm is interpolating, which means that the input points actually
become vertices of triangles in the output triangle mesh. For an example
of a reconstruction algorithm that is instead approzrimating, see Hoppe
[10, 9].

e The output surface is connected. Therefore, the algorithm cannot cor-
rectly reconstruct surfaces that consist of several different connected com-
ponents. In order to find all ‘parts’ of a surface, one might consider restart-
ing the algorithm on the points left over from a successfull reconstruction.

e Also, it will not find cavities within solids. This, however, doesn’t seem to
be a serious drawback at the moment, since a lot of input data is provided
by laser scanners, which don’t detect cavities either.

e By definition, the output surface is a subset of the a- shape of the point set
for the given radius. However, the running time is asymptotically better
than the O(n?) needed for the 3D Delaunay triangulation involved in a-
shape construction. (See Section 4.1 for more details on the algorithmic
complexity of our scheme.)



Figure 3: When rotating the probe sphere around an edge, the point that mini-
mizes o is chosen.

The basic algorithm is as follows:
1. Find a good starting triangle (see below) and add it to the output surface.

2. Place the three edges of that triangle in a job queue.

3. For each edge (v1, v2) in the queue do:

o If the edge is already connected to another triangle, return.

o Compute the position of the center of the sphere sitting on the trian-
gle.

e For each point within reach do:

— Compute the position of the center of the sphere sitting on vl1,
v2 and the new point.

e Choose the new point such that the angle at the midpoint of (v1,v2)
between the old and the new probe center position becomes minimal.
(See Fig. 3.)

e Add vl and v2 together with the new point as a new triangle.

e Place the two new edges in the job queue.

3.2 Finding Candidate Points

One of the most important problems in this algorithms is how to find, for a
given edge, a list of candidate points, i.e., a list of points that are close enough
to be touched by the rotating sphere. This problem is an instance of what are
called range-searching problems. The general form of a range-searching problem
is: given a set of points in R? and a subset © of R?, find all those points that
are in 2 [12]. Solutions for this problem obviously depend on the shape of the
query set €1, in our case a degenerated torus. Even though many sophisticated
algorithms exist, we found a very simple one to work very well in practice.

We subdivide the bounding box of the point set into a uniform array of
cubes. The axes of the cubes are parallel to the coordinate axes, and the edges
of the cubes have the same lengths as the probe sphere radius. Each cube holds
a list of the points it contains. Given a query position and a query radius,



the data structure returns a list of pointers to all cubes that have nonempty
intersection with the query sphere.

In general, given the nature of the original problem, many of those cubes will
be empty, and maintaining a full three-dimensional array is a waste of memory.
If memory is scarce, a hash table should be used. However, we hardly ever found
ourselves working with more than 15.000 cubes in total, making the memory
waste negligeable. Therefore, we preferred the speed of index computation and
the ease of implementation of a simple array to the more complex hash table.

3.3 Finding a First Triangle

A problem of special importance is the task of finding an initial triangle. If
the algorithm errs on the first triangle, it is highly unlikely that the subsequent
steps will lead to a decent result. However, the direct implementation of our
physical paradigm (the probe sphere) doesn’t quite work. The problem is that
we don’t know from where to let our sphere drop. It might just miss the point
set completely.

Therefore we deviate a little from physical intuition and use the following
approach: as a first point, we pick the point that is extreme along one coordinate
axis. From the points in the vicinity of that first point, we choose the one that is
extreme along the same axis. Note that this point is not necessarily the globally
secondmost extreme point. Care has to be taken in case of several points having
the same coordinate value. In order to find the third point, we place the probe
sphere on the edge spanned by these two points, and have it rotate around it,
much like in the general case. We choose the point that yields the lowest probe
sphere center along the previously chosen axis.

A particularly delicate problem arises when reconstructing bounded sur-
faces. If, by accident, the above described method puts the probe sphere into
the model, it will start rolling within it, returning undesired results in all but
the most ideal cases. Unfortunately, since the terms inside and outside are
topologically undefined when dealing with bounded manifolds, it is impossible
to invent a perfect algorithm for this special case.

4 Results

4.1 Theory

The algorithm is basically a breadth-first search on the surface graph of the
output surface. It is therefore linear in the number of output triangles [6]. As
the number of triangles in a surface is a linear function of the number of the
vertices, the algorithm is also linear in the size of the input point set. For each
triangle added to the surface, a number of candidate points have to be checked.
Since the main part of the work is the computation of the angle between two
probe positions, the number of these canditate points is crucial for efficiency.
Each time, we only consider points in the vicinity of the sphere, therefore, the
number of candidate points, and therefore speed, is strongly dependent on the
size of the probe sphere. It is actually cubic in the sphere radius.

In terms of algorithmic complexity, if the probe size is chosen small compared
to the total dimensions of the point cloud, (as should normally be the case)



Points Triangles Mode Time (sec)
Torus 9216 18432 fixed 1.2
Aorta | 37689 47547 fixed 21.7
Bunny | 67038 134034 fixed 17.4
Bunny | 67038 134053 adaptive 9.5
Paul 3157 6000 fixed 0.7

Table 1: Ezemplary running times

we can assume that the number of points checked when handling an edge is
constant. At the other end of the scale, if the sphere is enlarged to about
the same size as the point set, each point gets checked every time, i.e., the
asymptotic running time is more like O(T'N), N the number of output triangles
and T the number of sample points. If the probe sphere is chosen a lot larger
than the point set, we obtain a wrapping-type algorithm for the complex hull.

The algorithm uses only constant amount of storage in addition to the input
point set and the output surface.

4.2 Reality

We have tested the program on several data sets of different sizes, using an
SGI 0? equipped with a MIPS R10000 at 250 MHz and 256 Mbytes of main
memory. We achieved good result on all four of them within very short time.

Our first example is the torus from Figure 4. It was constructed analytically,
therefore, the vertices are evenly spaced and there’s no noise at all. As was to
be expected, the reconstruction was straightforward.

We chose the bunny from the CyberWare Scanners homepage as an example
for a very large dataset. Its sampling quality is again very good. Using the
adaptive probe size modification described below, we achieved a near-perfect
reconstruction on the first try.

Another real-life example, the blood vessel shown in Figure 6 is quite noisy.
In order to reconstruct the dataset, some manual preprocessing was necessary.
We ‘plugged’ the lower end of the vein (which was originally open) with some
extra points, to prevent the probe sphere from entering the model.

The last example, the front part of a face, shows that our algorithm can also
recognize boundaries quite well, as long as the sampling quality is good.

All model sizes and reconstruction times can be seen in Table 1.

5 Outlook/Research Directions

5.1 Adaptive Probe Size

One major weakness of the proposed algorithm is the fixed probe size. As the
amount of detail is usually not constant all over the object (consider the model
of a human skull, with eyes, nose and mouth on the front, but a more or less
featureless surface on the back) it makes sense to award a high sampling density
to detailed regions while having fewer points in flat areas. However, in order to
obtain good results from the algorithm, the probe size must always be chosen
large enough to bridge the gap between the two farthest neighboring points.



Figure 4: The Torus Figure 5: The Bunny

Figure 6: The Aorta Figure 7: Paul



This, however, may prevent the sphere from penetrating into small cavities or
depressions elsewhere, thus not revealing the full level of detail.

At first glance, the solution seems to be an adaptive probe size. We have
tried making the sphere size proportional to the length of the edge it turns
around. However, while this approach at least partly yields the desired effect
(and reduces the running time, because the sphere is smaller on average than
in the fixed mode) robustness suffers, especially on noisy data. Cause for this
is not so much the way the sphere size is chosen, but the fact that it changes at
all, introducing inconsistencies into the system (e.g. the sphere might ‘swallow’
points while changing size). Different approaches, like having the size change
according to some form of local point density, don’t avoid this problem, either.

5.2 A Better Data Structure

A way to further reduce the algorithm’s running time might be a different data
structure for holding the sample points. At the moment, a three-dimensional
array of ‘cubes’ is used, each ‘cube’ referencing a list of the points it contains
(see Section 3.2). The main advantage here is clearly the trivial implementation,
however, it’s not very memory efficient.

Since the sphere revolving around two points describes a degenerate torus,
it would be nice to have a data structure that effectively supports toroidal
range queries. While this seems too outlandish to ever have attracted someone’s
attention, effective structures for spherical queries exist, and could serve as a
first approximation. For more detailed information on range searching solutions,
see [12].

6 Summary and Conclusion

We have presented a new algorithm for the reconstruction of surfaces from
unorganized point sets. It is based on the construction of solvent excluded sur-
faces known from the visualization of molecules, namely having a probe sphere
‘roll over’ the point set and incorporating all point triples into the surface that
the sphere gets to rest on. This method is considerably faster than previous ap-
proaches. Even very large data sets are usually processed in a matter of seconds,
making the algorithm suitable for interactive use.

References

[1] Dominique Attali. r-regular shape reconstruction from unorganized points.
In ACM Symposium on Computational Geometry, pages 248-253, 1997.

[2] Chandrajit Bajaj, Fausto Bernadini, and Guoliang Xu. Automatic recon-
struction of surfaces and scalar fields from 3d scans. In Siggraph Proceed-
ings, pages 109-118, 1995.

[3] Chandrajit Bajaj, Fausto Bernadini, and Guoliang Xu. Reconstructing
surfaces and functions on surfaces from unorganized 3d data. Algorithmica,
19:243-261, 1997.



[4]

[5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Fausto Bernadini and Chandrajit Bajaj. Sampling and reconstructing man-
ifolds using alpha-shapes. In Proc. of the Ninth Canadian Conference on
Computational Geometry, pages 193-198, August 1997.

Jean-Daniel Boissonnat. Geometric structures for three-dimensional shape
representation. ACM Transactions on Graphics, 3(4):266-286, October
1984.

Thomas Cormen, Charles Leiserson, and Ronald Rivest. Introduction to
Algorithms. MIT Press, 1989.

Brian Curless and Marc Levoy. A volumetric method for building complex
models from range images. In Siggraph Proceedings, 1996.

Herbert Edelsbrunner and Hans Peter Miicke. Three-dimensional alpha
shapes. ACM Transactions on Graphics, 13:43-72, 1994.

Hugues Hoppe. Surface Reconstruction from Unorganized Points. PhD
thesis, University of Washington, 1994.

Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner
Stuetzle. Surface reconstruction from unorganized points. In Siggraph
Proceedings, pages 71-78, 1992.

Frank Isselhard, Guido Brunnett, and Thomas Schreiber. Polyhedral re-
construction of 3d objects by tetrahedra removal. Technical Report 288/97,
Fachbereich Informatik, University of Kaiserslautern, Germany, 1997.

Jiri Matou8ek. Geometric range searching. ACM Computational Survey,
26:421-461, 1994.

Robert Mencl and Heinrich Miiller. Interpolation and approximation of
surfaces from three-dimensional scattered data points. Technical report,
Department of Computer Science, University of Dortmund, 1997.

Daniel Runge. Algorithms and methods for the visualization of molecular
surfaces and interfaces. Master’s thesis, Humboldt-University of Berlin,
1999.

Remco C. Veltkamp. Closed object boundaries from scattered points. In
Lecture Notes in Computer Science 885. Springer Verlag, 1994.

Remco C. Veltkamp. Boundaries through scattered points of unknown
density. Graphics Models and Image Processing, 57(6):441-452, 1995.

10



