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Abstract

We call an edge e of a perfect graph G critical if G — e is imperfect and say further
that e is anticritical with respect to the complementary graph G. We ask in which
perfect graphs critical and anticritical edges occur and how to find critical and
anticritical edges in perfect graphs. Finally, we study whether we can order the
edges of certain perfect graphs such that deleting all the edges yields a sequence of
perfect graphs ending up with a stable set.

1 Introduction

The present paper is devoted to the investigation of critical and anticritical edges with
respect to perfectness, a rich and well-studied graph property. BERGE proposed to call
a graph G = (V, E) perfect if, for each of its induced subgraphs G’ C G, the chromatic
number x(G') equals the clique number w(G’). That is, for every induced subgraph G’
of a perfect graph G we need as many stable sets to cover all nodes of G' as a maximum
clique of G’ has nodes (a set V' C V is a clique (stable set) of G if the nodes in V' are
pairwise (non-)adjacent).

BERGE [1] conjectured two characterizations of perfect graphs. His first conjecture was
that a graph G is perfect if and only if the clique covering number X(G’) equals the
stability number «(G") for all G' C G (i.e., that we need as many cliques to cover all
nodes of G’ as a maximum stable set of G’ has nodes). Since complementation transforms
stable sets into cliques and colorings into clique coverings, we have a(G) = w(G) and
x(G) = X(G) where G denotes the complement of G. Hence, BERGE conjectured that a
graph G is perfect if and only if its complement G is. This was proven by LovAsz [10]

and is nowadays known as Perfect Graph Theorem.

The second BERGE conjecture concerns a characterization of perfect graphs via forbid-
den subgraphs. It is a simple observation that chordless odd cycles Coryq with k£ > 2
termed odd holes, and their complements Cy 1, called odd antiholes, are imperfect.
Clearly, each graph containing an odd hole or an odd antihole as induced subgraph is
imperfect as well. BERGE conjectured in [1] that a graph is perfect if and only if it con-
tains neither odd holes nor odd antiholes as induced subgraphs; such graphs are nowadays
called Berge graphs. This still open Strong Perfect Graph Conjecture has already been
verified for several classes of F-free Berge graphs, e.g., if F'is a claw (PARTHASARATHY
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and RAVINDRA [15]), a diamond (TUCKER [18]), a clique K of size 4 (TUCKER [17]), or
a bull (CHVATAL and SBIHI [4]), see Figure 1. PADBERG [14] introduced the notion of
minimally imperfect graphs: imperfect graphs with the property that removing any of
its nodes yields a perfect graph. Using this term, the Strong Perfect Graph Conjecture
reads that odd holes and odd antiholes are the only minimally imperfect graphs. There-
fore, minimally imperfect Berge graphs are termed monsters. In order to verify or falsify
the Strong Perfect Graph Conjecture, many structural properties of minimally imperfect
graphs have been discovered. To mention only a few of them, the following node pairs
must not occur in minimally imperfect graphs G. It is well-known that G has no com-
parable pair (two nodes z and y with N(z) —y C N(y), i.e., all neighbors of = except
eventually y belong to the neighborhood of y). G does not admit twins (antitwins), i.e.,
two nodes x and y such that all remaining nodes of G' are adjacent to both or to none of
z and y (to either z or to y) due to the Replacement Lemma [10] (Antitwin Lemma [13]).
Note that the property of being a comparable pair, twins, or antitwins does not depend
on whether or not x and y are adjacent. Furthermore, no minimally imperfect graph
G contains an even pair (two nodes z and y such that all chordless paths connecting
x and y have even length) by the Even Pair Lemma [12] and a star-cutset (a cutset
S containing one node that is adjacent to all remaining nodes of S) by the Star-Cutset
Lemma [3].

claw diamond bull
Figure 1

The starting point of the investigation of critical and anticritical edges in perfect graphs
was the following. Imagine you have an arbitrary perfect graph and you consecutively
delete one edge until you get a stable set, or you consecutively add one edge until a clique
is reached. So you create a sequence of graphs starting and ending up with a perfect
graph. But, if you choose the edges to be deleted or added randomly, most graphs of your
sequence will be imperfect. The aim is to avoid the occurrence of imperfect graphs in our
sequence.

Problem 1.1 Given a certain perfect graph, is there a rule how to choose an edge to be
deleted or added in order to keep perfectness?

We call an edge e of a perfect graph G critical if G —e is imperfect. Moreover, we say that
e is an anticritical edge of the complement G: e ¢ E(G) holds and G + e is imperfect
due to the Perfect Graph Theorem [10]. Whenever we delete (add) a critical (anticritical)
edge e of a perfect graph G, we create in G — e (G + e) minimally imperfect subgraphs. In
order to attack Problem 1.1, we study in Section 2 those subgraphs G, C G which yield
the minimally imperfect subgraphs G, —e C G — e (G. + e C G + €). One example of a



critical edge is a single short chord of a cycle with odd length > 5 (that is a chord whose
endnodes have distance two on the cycle), the deletion of e yields an odd hole. Hence, one
rule in the sense of Problem 1.1 is “never remove a single short chord of an odd cycle”.
Analogously, adding the edge between the endnodes of a chordless path Py 1 with £ > 2
yields an odd hole, too. “Never add an edge connecting the endnodes of a chordless path
of even length > 4” is, therefore, another rule in the sense of 1.1. Further results of that
type are presented in Section 2.

Section 3 investigates whether it is easier to solve Problem 1.1 if the graph in question
belongs to a certain subclass of perfect graphs. Certain perfect graphs may not possess any
critical or anticritical edge, then we could choose an arbitrary edge keeping perfectness.

Problem 1.2 In which perfect graphs do critical and anticritical edges occur at all?

One answer gives a new characterization of Meyniel graphs. They have been introduced
in [11] as graphs all odd cycles of length > 5 of which admit at least two chords. So critical
edges in form of single short chords of odd cycles do obviously not occur in Meyniel graphs.
Actually, removing any edge from a Meyniel graph keeps perfectness by [8] and we show:
a graph is Meyniel if and only if it does not admit any critical edge. In particular, every
perfect but non-Meyniel graph admits at least one critical edge. We study in Section 3
for such classes of perfect graphs which minimally imperfect subgraphs may occur after
deleting (adding) a critical (anticritical) edge. The large abundance of classes of perfect
graphs led us to mention only results for some “classical” classes: Strongly perfect
graphs have been introduced in [2] to be graphs all of whose subgraphs G’ C G admit
a stable set that has a non-empty intersection with all maximal cliques of G'. Weakly
triangulated graphs are defined to have neither holes C;, nor antiholes C, with k > 5
as induced subgraphs [5]. MEYNIEL [12] called a graph G strict quasi parity if each of
its non-complete subgraphs has an even pair and quasi parity if G’ or G owns an even
pair for each subgraph G' C G.

In Section 4, we treat the following problem and present several classes of perfect graphs
for which the answer is in the affirmative.

Problem 1.3 For a certain perfect graph, is there an order of all the edges to be deleted
(added) so that we get a sequence of perfect graphs ending up with a stable set (clique)?

It turns out that it does not suffice to identify non-critical or non-anticritical edges: we
can certainly remove an arbitrary edge from a Meyniel graph keeping perfectness but, at
present, we do not know anything about critical edges of the resulting graph. Thus we
have to look for edges the deletion or addition of which preserves membership within the
corresponding subclass of perfect graphs. By this way, we present the studied ordering of
edges to be deleted or added for, e.g., weakly triangulated graphs.

2 Critical and Anticritical Edges

For every critical (anticritical) edge e of a perfect graph G there is necessarily at least
one subgraph G. C G such that G, — e (G, + €) is minimally imperfect. We study those
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subgraphs G, in order to give an answer to Problem 1.1. If G, —e C G —e is an odd hole,
then G, is isomorphic to an odd cycle of length > 5 which admits precisely one chord,
namely e. Moreover, e has to be a short chord of this cycle, forming a triangle with two
of its edges, since G, must not contain an odd hole (the case G, — e = C7 is depicted in
Figure 2(a) with e = zy). Thus, we have immediatly:

Proposition 2.1 IfG.—e is an odd hole Coy 1 with k > 2, then w(G,) = 3 and a(G,) = k
holds. G, contains an even hole Co,. A bull and the complement of a claw and of a
diamond appear in G, if k > 3.

In the complementary graph G, e is an anticritical edge and G, + e an odd antihole (see
Figure 2(b)). Clearly, the complementary statement of Proposition 2.1 is true for G,.

Proposition 2.2 If G, + e is an odd antihole_égkﬂ with k > 2, then w(G,) = k and
a(Ge) = 3 holds. G, contains an even antihole Cor. A bull, a claw, and a diamond appear
in Ge if k> 3.

@ (b) (d)

Figure 2

If Go —e C G —e is an odd antihole, then G, is the complement of an induced path Py,

with k& > 2 (the case G, — e = C7 is depicted in Figure 2(c) with e = zy). We have,
therefore:

Proposition 2.3 If G, — e is an odd antihole Coyy 1 with k > 2, then w(G,) =k +1 and
a(Ge) = 2 holds. G, is isomorphic to Py, 1. A diamond appears in G, if k > 3.

In the complement G, e is an anticritical edge, G, + e an odd hole, and G, an induced
path (see Figure 2(d)). The complementary assertion of Proposition 2.3 is true for Ge.

Proposition 2.4 If G.+e is an odd hole Cor1 with k > 2, then w(G.) = 2 and a(Ge) =
k+1 holds. G, is isomorphic to Py, 1. The complement of a diamond appears in G, if
k> 3.

Of course, such a description cannot be given if G, — e or G, + e is supposed to be a
monster and, if the Strong Perfect Graph Conjecture is true, this case does not occur at
all. With look at Problem 1.1, we list some properties of G, if e is a critical edge and
G, — e a generally minimal imperfect graph.
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Lemma 2.5 Let e be a critical edge of a perfect graph G and G, —e C G — e be minimally
imperfect.

(i) The endnodes of e belong to the intersection of all mazimum cliques of Gl.

)
(i)
)
)

The endnodes of e occur in a triangle of G..
(iii) An even hole is running through e in G..

(iv) If G, — e is a monster, then e belongs to a Ks and to a diamond of G..

Proof. Consider a critical edge e of a perfect graph G and let G.—e C G'—e be minimally
imperfect. We know w(G.) = x(Ge) but w(G. — ¢e) < x(Ge — €). Since the removal of
an edge cannot increase the chromatic number, w(G,) > w(G, — €) follows. That means
deleting e destroys all maximum cliques of G, and (i) is true. In particular, w(G.) = 2 and
w(Ge — e) =1 follows from (i) if the endnodes of e do not possess any common neighbor
in G.. Hence the endnodes of e occur in a triangle of G, and (ii) is shown.

Due to the Even Pair Lemma [12] there is an odd induced path between every two non-
adjacent nodes of GG, — e, in particular, between the endnodes of e. Thus an even hole is
running through e in G, and we obtain (iii).

In the special case that G, — e is supposed to be a monster, we need w(Ge — e) > 4 due
to a result of TUCKER [17]. (i) implies w(G, — e) < 4 if e does not belong to a K5 in G,.
To complete the proof of (iv), consider a common neighbor z of the endnodes = and y of
e which exists by (ii). The nodes z, z, y induce a P; in G, — e, hence a hole C is running
through z, z,y in G, — e due to a result of HOANG [9]. If G, — e is a monster, C' has to
be an even hole of length 4 (otherwise G — e or G, contain an odd hole). O

As immediate consequence, the complementary results hold for G, if e is anticritical.

Lemma 2.6 Suppose e = zy to be a critical edge of the perfect graph G.
(i) The nodes x and y belong to a stable set of size 3 in G.
(ii) G admits an even antihole containing x and y.

(iii) If e is M-anticritical, then x and y appear in the complement of a diamond and are
contained in a stable set of size 5.

Lemma 2.5(ii),(iii) and Lemma 2.6(i),(ii) can be seen as rules which we ask for in Prob-
lem 1.1: given a perfect graph, how to identify a non-critical or non-anticritical edge? We
are able to give further conditions when an edge of a perfect graph G cannot be critical.

Lemma 2.7 Suppose e = xy to be a critical edge of a perfect graph G. Then x and y
do not form twins, antitwins, or a comparable pair of G. Neither x nor y is a simplicial
node in G (that is a node with a clique as neighborhood).



Proof. Consider a perfect graph G, a critical edge e = xy of G, and a subgraph G, C GG
such that G, — e is minimally imperfect. Then x and y do not form a comparable pair,
twins, and antitwins of GG, else they would also be a comparable pair, twins, and antitwins
in G, — e leading to a contradiction to a well-known fact, the Replacement Lemma, [10],
and the Antitwin Lemma, [13], respectively. Now, neither 2 nor y can be a simplicial node,
since then x and y are either twins or a comparable pair of G, —e. O

If two nodes form twins, antitwins, or a comparable pair in GG, they do so in the comple-
mentary graph G. In addition, z and y form a 2-pair if all induced paths connecting
and y have lenth two. We can also show that z and y must not form a 2-pair if e ¢ E(G)
is supposed to be an anticritical edge of G.

Lemma 2.8 Let e = xy be an anticritical edge of the perfect graph G. Then x and y are
neither twins, antitwins, a comparable pair, nor a 2-pair of G.

Proof. Consider a perfect graph G, an anticritical edge e = zy ¢ E(G), and G, C G
such that G, + e C G — e is minimally imperfect. Then Lemma 2.7 implies that = and
y does not form a comparable pair, twins, and antitwins of G. Now assume z and y to
form a 2-pair. In the case Ng, () — Ng,(y) = 0 (all neighbors of z in G, belong to the
neighborhood of y), z and y would be a comparable pair in G, + e, hence there is a node
z' € Ng,(z) — Ng,(y). Since z and y are a 2-pair in G, and z’ and y are non-adjacent,
all paths in G, + e connecting 2’ and y must contain z or a node in Ng,_(z) N Ng, (y) in
contradiction to the Star-Cutset Lemma [3]. O

3 Which Graph Classes Admit Critical or Anticriti-
cal Edges?

This section is devoted to the investigation of Problem 1.2: In which perfect graphs do
critical or anticritical edges occur at all? More precisely, are there classes of perfect graphs
so that no graph in this class has a critical or anticritical edge? For some graph classes,
this follows immediately using the results established in the previous section. E.g., every
critical edge is contained in a triangle by Lemma 2.7(ii), so bipartite graphs do not
possess any critical edge (since they contain no odd cycles). Lemma 2.7(iii) says that
every critical edge has to occur in an even hole. Consequently, no triangulated graph
has a critical edge (since triangulated graphs do not admit any hole of length > 4). Both
properties together yield the existence of an odd cycle of length > 5 in the union of the
triangle and the even hole. So line-perfect graphs cannot admit critical edges, too
(since they are defined to contain no odd cycles of length > 5).

The next theorem characterizes the perfect graphs without any critical edge. It also yields
a new characterization of Meyniel graphs, defined to contain no odd cycles of length > 5
with at most one chord. The proof of this theorem relies on the perfectness of a superclass
of Meyniel graphs. Let G = (V, E) be a Meyniel graph and V' C V. The slim graph
G (V') is obtained by deleting every edge of G with both endnodes in V' and G(V’) is
perfect due to HERTZ [8].



Theorem 3.1 (HOUGARDY, WAGLER) A perfect graph does not admit any critical edge
if and only if it ws Meyniel.

Proof. Let G be a perfect graph without any critical edge. Assume G to be not a
Meyniel graph then G admits an odd cycle C' with length > 5 which has at most one
chord. Since G is perfect, C' cannot be chordless, hence C possess precisely one chord e.
If e were not a short chord of C, an odd hole would be contained in G. Thus e has to be
a short chord of C' and so it is an H-critical edge of G in contradiction to the precondition.

On the other hand, suppose G = (V, E) to be a Meyniel graph. Then, for every sub-
set V' C V, the graph G(V') generated from G by deleting every edge of G with both
endnodes in V' is a slim graph, still perfect by HERTZ [8]. Thus, if we choose an arbitrary
pair of adjacent nodes in a Meyniel graph and delete the edge connecting them, we get a
perfect graph again, i.e., a Meyniel graph cannot admit any critical edge. O

Making use of this new characterization of Meyniel graphs, a perfect graph does not admit
any anticritical edge if and only if it is co-Meyniel, the complement of a Meyniel graph.
Hence we obtain immediatly:

Corollary 3.2 A perfect graph does neither admit any critical nor anticritical edge if and
only if it is both Meyniel and co-Meyniel.

Consequently, critical (anticritical) edges occur in all perfect graphs G not contained in the
class of Meyniel (co-Meyniel) graphs. Our aim is to find out which minimally imperfect
subgraphs may occur in G — e (G +¢€). The results listed in the next lemma are obtained
by combining the knowledge on forbidden subgraphs in the respective graph classes and
the results from the previous section.

Lemma 3.3 Let G be a perfect graph, e € E(G) be a critical edge of G, and ¢’ ¢ E(Q)
be an anticritical edge of G.

(i) If G is diamond-free Berge, then G — e and G + €' do not contain a Copiq with
k > 3 by Proposition 2.3 and 2.2. Furthermore, G — e cannot admit any monster
by Lemma 2.5(iv).

(ii) For every K,-free Berge graph G, Proposition 2.3 and Lemma 2.5(iv) imply that
G — e has odd holes as the only minimally imperfect subgraphs. G + e’ does not
contain any Copy1 with k > 4 by Proposition 2.4.

(iii) Is G weakly triangulated or bull-free Berge, then G — e and G + €' cannot contain
Corr1 and Copyq with k > 3 by Proposition 2.1 and 2.2, respectively.

(iv) Is G strict quasi parity, a slim graph, or strongly perfect, then no even antihole Cy,
with k > 3 appears in G. Hence, G + e does not admit a Copyq with k > 3 by
Proposition 2.2.



4 Perfect and Co-Perfect Edge Orders

After considering the occurrence of critical edges in several classes of perfect graphs, we
turn to Problem 1.3: we are interested whether it is possible, for certain perfect graphs,
to successively delete or add edges keeping perfectness until a stable set or a clique is
reached. For that, we use knowledge from the previous sections.

Let G = (V, E) be a perfect graph. We call a numbering (eq, ..., e,) of its edge set E a
perfect edge order if, for G = G, all graphs G; := G;_1 — e; are perfect for 1 < < m.
Clearly, e; has to be a non-critical edge of G;_; for 1 < ¢ < m, and G,, is a stable set.
Analogously, we say that a perfect graph G admits a co-perfect edge order iff its com-
plement G has a perfect edge order. Here we simply use the numbering of the edges of G
for the non-edges of G and get finally a clique.

Note that it does not suffice to identify non-critical or non-anticritical edges in the perfect
graphs in question. E.g., we can certainly delete an arbitrary edge of a Meyniel graph
keeping perfectness by [8], but we may obtain a slim graph that is not Meyniel and do not
know anything about its non-critical edges so far. Hence, we cannot provide perfect edge
orders of Meyniel graphs, although the graphs in this class are even characterized that
they do not contain any critical edge due to Theorem 3.1. So we mainly have to look for
edges such that their deletion or addition preserves the membership to the corresponding
subclass of perfect graphs.

In general, we have to look for critical (anticritical) graphs with respect to the subclass
of perfect graphs under consideration: that are graphs which lose the studied property
by deleting (adding) an arbitrary edge. If there exist (anti)critical graphs in a certain
subclass C of perfect graphs, then there is no (co-)perfect edge order for all the graphs
belonging to C. Conversely, if we can ensure that no (anti)critical graph with respect to
a subclass C exists, then we know there is a (co-)perfect edge order for all graphs in C:
every graph G in C admits at least one edge e such that G —e (G +¢) still belongs to C. It
is “only” left to find that edge e. In order to answer the question whether or not Meyniel
graphs admit a perfect edge order we have, therefore, to solve the following problem:

Problem 4.1 Find a critical Meyniel graph or show that no such graph exists.

Looking for graph classes without critical graphs, we first observe that there are no critical
graphs with respect to every monotone class (that is a class defined by some forbidden
partial subgraphs). The simplest example is the class of bipartite graphs having no odd
cycles. Obviously, deleting an arbitrary edge of a bipartite graph yields a bipartite graph
again. Hence, bipartite graphs admit perfect edge orders and, in particular, every of their
edge orders is perfect. A superclass of bipartite graphs consists of all line-perfect graphs
having no odd cycles of length > 5 as forbidden partial subgraphs. Again, there are no
critical line-perfect graphs, hence every line-perfect graph admits a perfect edge order.
Moreover, we have that they are precisely those perfect graphs such that every of its edge
orders is perfect.



Theorem 4.2 A graph is line-perfect iff all edge orders are perfect.

Proof. A line-perfect graph G does not contain any odd cycle of length > 5 as partial
subgraph. Obviously, G — e does also not contain any odd cycle of length > 5 Ve € E(G)
and, therefore, is still line-perfect. Thus every ordering of F(QG) is perfect.

Now, assume G to be perfect but not line-perfect. Then G admits a cycle C' of odd length
at least 5 as partial subgraph. C cannot be chordless and every edge order of G' that
deletes all chords of C before an edge of C is not perfect. O

Bipartite and line-perfect graphs are subclasses of Meyniel graphs. A further class of
Meyniel graphs for which we know a perfect edge order consists off all triangulated graphs.
For those graphs, we have a well-known structural result, namely, that a graph is triangu-
lated iff every subgraph has a simplicial node. Consider a triangulated graph G = (V, E)
and let z be a simplicial node of G. Then no edge e incident to z is critical by Lemma 2.7.
The graph GG—e is not only still perfect, but even still triangulated, since x is also simplicial
in G — e. As a consequence, we obtain a perfect edge order for triangulated graphs:

Theorem 4.3 Every triangulated graph G admits a perfect edge order (ei, ..., em) with
G =Gy, G; = Gi_1 — e;, and e; incident to a simplicial node of G;_1 for 1 < i <m.

Clearly, the complementary classes of bipartite, line-perfect, and triangulated graphs ad-
mit the corresponding co-perfect edge orders. For one class of perfect (but not Meyniel)
graphs, both a perfect and a co-perfect edge order are known, namely, for weakly tri-
angulated graphs. Let G be non-complete and weakly triangulated. Then a 2-pair x, y
occurs in G due to a characterization of weakly triangulated graphs given by HAYWARD,
HOANG, and MAFFRAY in [7]. The graph G + xy is not only perfect by Lemma 2.8 but
still weakly triangulated by a result of SPINRAD and SRITHARAN [16]. Consequently, we
obtain a co-perfect edge order for weakly triangulated graphs by consecutively adding
edges between 2-pairs (called 2-pair non-edge order in [16]).

Theorem 4.4 (SPINRAD and SRITHARAN [16]) Every weakly triangulated graph G admits
a co-perfect edge order (ei, ..., em) with G = Go_, G; = Gi_1 + e; such that the endnodes
of e; form a 2-pair in G;_1 for 1 <i<m = |E(G)|.

That the class of weakly triangulated graphs is closed under complementation yields
particularly a perfect edge order for every weakly triangulated graph. HAYWARD proved
in [6] that the following perfect edge order of a weakly triangulated graph G corresponds
to the 2-pair non-edge order for G given by SPINRAD and SRITHARAN [16].

Theorem 4.5 (HAYWARD [6]) Every weakly triangulated graph G admits a perfect edge
order (e1,...,en) with G = Gy, G; = G;_1 — e; such that e; is not the middle edge of any
Py in G; for 1 <i<m=|E(G)|.

Weakly triangulated graphs are defined as a common generalization of triangulated and
co-triangulated graphs. Hence, the above theorems provide also a co-perfect edge order for



triangulated graphs and a perfect edge order for co-triangulated graphs. In addition, the
2-pair non-edge order for weakly triangulated graphs enables us to establish a co-perfect
edge order for bipartite graphs G: either there are non-adjacent nodes a, b in different
color classes of G and G + ab is still bipartite, or G is as complete bipartite graph weakly
triangulated.

At present, perfect or co-perfect edge orders are not known to the author for other sub-
classes of perfect graphs. However, we can ensure that no such edge order exists for some
classes C of perfect graphs: If C contains a critically (anticritically) perfect graph
G such that deleting (adding) an arbitrary edge yields an imperfect graph, then G is in
particular critical (anticritical) with respect to C and there is no perfect (co-perfect) edge
order for the graphs in C. The graph depicted in Figure 3(a) is critically and anticritically
perfect and belongs to the classes of F-free Berge graphs where F' is a claw, a diamond,
or a K4. Hence, that graph is also (anti)critical with respect to those classes and there
are, therefore, neither perfect nor co-perfect edge orders for those classes. The graph in
Figure 3(b) is anticritically perfect, strongly perfect, strict quasi parity and quasi parity.
Consequently, there are no co-perfect edge orders for all strongly perfect, all strict quasi
parity, or all quasi parity graphs.

(@ (b)

Figure 3
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